51
|
Caulfield ME, Vander Werp MJ, Stancati JA, Collier TJ, Sortwell CE, Sandoval IM, Manfredsson FP, Steece-Collier K. Downregulation of striatal CaV1.3 inhibits the escalation of levodopa-induced dyskinesia in male and female parkinsonian rats of advanced age. Neurobiol Dis 2023; 181:106111. [PMID: 37001610 DOI: 10.1016/j.nbd.2023.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
In the past 25 years, the prevalence of Parkinson's disease (PD) has nearly doubled. Age remains the primary risk factor for PD and as the global aging population increases this trend is predicted to continue. Even when treated with levodopa, the gold standard dopamine (DA) replacement therapy, individuals with PD frequently develop therapeutic side effects. Levodopa-induced dyskinesia (LID), a common side effect of long-term levodopa use, represents a significant unmet clinical need in the treatment of PD. Previously, in young adult (3-month-old) male parkinsonian rats, we demonstrated that the silencing of CaV1.3 (Cacan1d) L-type voltage-gated calcium channels via striatal delivery of rAAV-CaV1.3-shRNA provides uniform protection against the induction of LID, and significant reduction of established severe LID. With the goal of more closely replicating a clinical demographic, the current study examined the effects of CaV1.3-targeted gene therapy on LID escalation in male and female parkinsonian rats of advanced age (18-month-old at study completion). We tested the hypothesis that silencing aberrant CaV1.3 channel activity in the parkinsonian striatum would prevent moderate to severe dyskinesia with levodopa dose escalation. To test this hypothesis, 15-month-old male and female F344 rats were rendered unilaterally parkinsonian and primed with low-dose (3-4 mg/kg) levodopa. Following the establishment of stable, mild dyskinesias, rats received an intrastriatal injection of either the Cacna1d-specific rAAV-CaV1.3-shRNA vector (CAV-shRNA), or the scramble control rAAV-SCR-shRNA vector (SCR-shRNA). Daily (M-Fr) low-dose levodopa was maintained for 4 weeks during the vector transduction and gene silencing window followed by escalation to 6 mg/kg, then to 12 mg/kg levodopa. SCR-shRNA-shRNA rats showed stable LID expression with low-dose levodopa and the predicted escalation of LID severity with increased levodopa doses. Conversely, complex behavioral responses were observed in aged rats receiving CAV-shRNA, with approximately half of the male and female subjects-therapeutic 'Responders'-demonstrating protection against LID escalation, while the remaining half-therapeutic 'Non-Responders'-showed LID escalation similar to SCR-shRNA rats. Post-mortem histological analyses revealed individual variability in the detection of Cacna1d regulation in the DA-depleted striatum of aged rats. However, taken together, male and female therapeutic 'Responder' rats receiving CAV-shRNA had significantly less striatal Cacna1d in their vector-injected striatum relative to contralateral striatum than those with SCR-shRNA. The current data suggest that mRNA-level silencing of striatal CaV1.3 channels maintains potency in a clinically relevant in vivo scenario by preventing dose-dependent dyskinesia escalation in rats of advanced age. As compared to the uniform response previously reported in young male rats, there was notable variability between individual aged rats, particularly females, in the current study. Future investigations are needed to derive the sex-specific and age-related mechanisms which underlie variable responses to gene therapy and to elucidate factors which determine the therapeutic efficacy of treatment for PD.
Collapse
|
52
|
Foster WB, Beach KF, Carson PF, Harris KC, Alonso BL, Costa LT, Simamora RC, Corbin JE, Hoag KF, Mercado SI, Bernhard AG, Leung CH, Nestler EJ, Been LE. Estradiol withdrawal following a hormone simulated pregnancy induces deficits in affective behaviors and increases ∆FosB in D1 and D2 neurons in the nucleus accumbens core in mice. Horm Behav 2023; 149:105312. [PMID: 36645923 PMCID: PMC9974842 DOI: 10.1016/j.yhbeh.2023.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
In placental mammals, estradiol levels are chronically elevated during pregnancy, but quickly drop to prepartum levels following birth. This may produce an "estrogen withdrawal" state that has been linked to changes in affective states in humans and rodents during the postpartum period. The neural mechanisms underlying these affective changes, however, are understudied. We used a hormone-simulated pseudopregnancy (HSP), a model of postpartum estrogen withdrawal, in adult female C57BL/6 mice to test the impact of postpartum estradiol withdrawal on several behavioral measures of anxiety and motivation. We found that estradiol withdrawal following HSP increased anxiety-like behavior in the elevated plus maze, but not in the open field or marble burying tests. Although hormone treatment during HSP consistently increased sucrose consumption, sucrose preference was generally not impacted by hormone treatment or subsequent estradiol withdrawal. In the social motivation test, estradiol withdrawal decreased the amount of time spent in proximity to a social stimulus animal. These behavioral changes were accompanied by changes in the expression of ∆FosB, a transcription factor correlated with stable long-term plasticity, in the nucleus accumbens (NAc). Specifically, estrogen-withdrawn females had higher ∆FosB expression in the nucleus accumbens core, but ∆FosB expression did not vary across hormone conditions in the nucleus accumbens shell. Using transgenic reporter mice, we found that this increase in ∆FosB occurred in both D1- and D2-expressing cells in the NAc core. Together, these results suggest that postpartum estrogen withdrawal impacts anxiety and motivation and increases ∆FosB in the NAc core.
Collapse
Affiliation(s)
| | | | - Paige F Carson
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Kagan C Harris
- Haverford College, Department of Psychology, Haverford, PA, USA
| | | | - Leo T Costa
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Roy C Simamora
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Jaclyn E Corbin
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Keegan F Hoag
- Haverford College, Department of Psychology, Haverford, PA, USA
| | | | - Anya G Bernhard
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Cary H Leung
- Widener College, Department of Biology, Chester, PA, USA
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Laura E Been
- Haverford College, Department of Psychology, Haverford, PA, USA.
| |
Collapse
|
53
|
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer's Disease. Mol Neurobiol 2023; 60:1515-1526. [PMID: 36512265 DOI: 10.1007/s12035-022-03152-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Post-menopausal women are at a higher risk of developing Alzheimer's disease (AD) than males. The higher rates of AD in women are associated with the sharp decline in the estrogen levels after menopause. Estrogen has been shown to downregulate inflammatory cytokines in the central nervous system (CNS), which has a neuroprotective role against neurodegenerative diseases including AD. Sustained neuroinflammation is associated with neurodegeneration and contributes to AD. Nuclear factor kappa-B (NF-κB) is a transcription factor involved with the modulation of inflammation and interacts with estrogen to influence the progression of AD. Application of 17β-estradiol (E2) has been shown to inhibit NF-κB, thereby reducing transcription of NF-κB target genes. Despite accumulating evidence showing that estrogens have beneficial effects in pre-clinical AD studies, there are mixed results with hormone replacement therapy in clinical trials. Furthering our understanding of how NF-κB interacts with estrogen and alters the progression of neurodegenerative disorders including AD, should be beneficial and result in the development of novel therapeutics.
Collapse
Affiliation(s)
- Pranav Mishra
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Don A Davies
- Department of Biology, York University, Toronto, ON, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada. .,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
54
|
Sun S, Song F, Shi L, Zhang K, Gu Y, Sun J, Luo J. Transcriptome analysis of differentially expressed circular RNAs in the testis and ovary of golden pompano (Trachinotus blochii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101052. [PMID: 36563610 DOI: 10.1016/j.cbd.2022.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
The artificial breeding of golden pompano (Trachinotus blochii) has expanded greatly in recent years, and after long-term breeding efforts, clear sexual dimorphisms have been observed in T. blochii growth traits, with females growing faster. As sponges of microRNA (miRNAs), circular RNAs (CircRNAs) can alleviate miRNA inhibition of target mRNA. However, few studies have examined sex-related CircRNAs and none of those have looked at T. blochii. To further understand the role of CircRNAs in sex differentiation and sexual size dimorphism in T. blochii, six CircRNA libraries were constructed from the testes and ovaries of T. blochii. A total of 1522 CircRNAs were found distributed over all 24 chromosomes of T. blochii. 135 differentially expressed CircRNAs (DECs) were identified by screening, These DECs were then subjected to GO enrichment, which found 47 enriched pathways. A number of CircRNAs were enriched in cellular processes and metabolic processes. According to the KEGG pathway analysis, a series of sex differentiation pathways were enriched, including the GnRH, calcium, and MAPK signaling pathways. Furthermore, we selected two CircRNAs from the DECs named circ-cacna1b and circ-octc. We found that the cacna1b gene is regulated by 7 miRNAs, 3 of which were regulated by circ-cacna1b, i.e., mmu-miR-138-5p, fru-miR-138, and pma-miR-138b. In addition, the miRNA named pma-miR-138b can regulate sex-related genes, such as sox9 and dmrt1, among others. The co-expression network of CircRNA-miRNA-mRNA showed circ-cacna1b may play a crucial role in T. blochii sex differentiation by regulating pma-miR-138b to affect the expression of sex differentiation genes. The circ-octc may be one of the largest contributors to sexual size dimorphism during growth through its effect on lipid metabolism. These findings could broaden our understanding of CircRNAs and provide new insight into their function in sex differentiation and growth.
Collapse
Affiliation(s)
- Shukui Sun
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
| | - Feibiao Song
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China.
| | - Liping Shi
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
| | - Kaixi Zhang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
| | - Yue Gu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
| | - Junlong Sun
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China.
| |
Collapse
|
55
|
Miller CK, Krentzel AA, Meitzen J. ERα Stimulation Rapidly Modulates Excitatory Synapse Properties in Female Rat Nucleus Accumbens Core. Neuroendocrinology 2023; 113:1140-1153. [PMID: 36746131 PMCID: PMC10623399 DOI: 10.1159/000529571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The nucleus accumbens core (NAcc) is a sexually differentiated brain region that is modulated by steroid hormones such as 17β-estradiol (estradiol), with consequential impacts on relevant motivated behaviors and disorders such as addiction, anxiety, and depression. NAcc estradiol levels naturally fluctuate, including during the estrous cycle in adult female rats, which is analogous to the menstrual cycle in adult humans. Across the estrous cycle, excitatory synapse properties of medium spiny neurons rapidly change, as indicated by analysis of miniature excitatory postsynaptic currents (mEPSCs). mEPSC frequency decreases during estrous cycle phases associated with high estradiol levels. This decrease in mEPSC frequency is mimicked by acute topical exposure to estradiol. The identity of the estrogen receptor (ER) underlying this estradiol action is unknown. Adult rat NAcc expresses three ERs, all extranuclear: membrane ERα, membrane ERβ, and GPER1. METHODS In this brief report, we take a first step toward addressing this challenge by testing whether activation of ERs via acute topical agonist application is sufficient for inducing changes in mEPSC properties recorded via whole-cell patch clamp. RESULTS An agonist of ERα induced large decreases in mEPSC frequency, while agonists of ERβ and GPER1 did not robustly modulate mEPSC properties. CONCLUSIONS These data provide evidence that activation of ERα is sufficient for inducing changes in mEPSC frequency and is a likely candidate underlying the estradiol-induced changes observed during the estrous cycle. Overall, these findings extend our understanding of the neuroendocrinology of the NAcc and implicate ERα as a primary target for future studies.
Collapse
Affiliation(s)
- Christiana K. Miller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A. Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
56
|
Estrous Cycle Mediates Midbrain Neuron Excitability Altering Social Behavior upon Stress. J Neurosci 2023; 43:736-748. [PMID: 36549906 PMCID: PMC9899085 DOI: 10.1523/jneurosci.1504-22.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The estrous cycle is a potent modulator of neuron physiology. In rodents, in vivo ventral tegmental area (VTA) dopamine (DA) activity has been shown to fluctuate across the estrous cycle. Although the behavioral effect of fluctuating sex steroids on the reward circuit is well studied in response to drugs of abuse, few studies have focused on the molecular adaptations in the context of stress and motivated social behaviors. We hypothesized that estradiol fluctuations across the estrous cycle acts on the dopaminergic activity of the VTA to alter excitability and stress response. We used whole-cell slice electrophysiology of VTA DA neurons in naturally cycling, adult female C57BL/6J mice to characterize the effects of the estrous cycle and the role of 17β-estradiol on neuronal activity. We show that the estrous phase alters the effect of 17β-estradiol on excitability in the VTA. Behaviorally, the estrous phase during a series of acute variable social stressors modulates subsequent reward-related behaviors. Pharmacological inhibition of estrogen receptors in the VTA before stress during diestrus mimics the stress susceptibility found during estrus, whereas increased potassium channel activity in the VTA before stress reverses stress susceptibility found during estrus as assessed by social interaction behavior. This study identifies one possible potassium channel mechanism underlying the increased DA activity during estrus and reveals estrogen-dependent changes in neuronal function. Our findings demonstrate that the estrous cycle and estrogen signaling changes the physiology of DA neurons resulting in behavioral differences when the reward circuit is challenged with stress.SIGNIFICANCE STATEMENT The activity of the ventral tegmental area encodes signals of stress and reward. Dopaminergic activity has been found to be regulated by both local synaptic inputs as well as inputs from other brain regions. Here, we provide evidence that cycling sex steroids also play a role in modulating stress sensitivity of dopaminergic reward behavior. Specifically, we reveal a correlation of ionic activity with estrous phase, which influences the behavioral response to stress. These findings shed new light on how estrous cycle may influence dopaminergic activity primarily during times of stress perturbation.
Collapse
|
57
|
G-protein coupled estrogen receptor (GPER1) activation promotes synaptic insertion of AMPA receptors and induction of chemical LTP at hippocampal temporoammonic-CA1 synapses. Mol Brain 2023; 16:16. [PMID: 36709268 PMCID: PMC9883958 DOI: 10.1186/s13041-023-01003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
It is well documented that 17β estradiol (E2) regulates excitatory synaptic transmission at hippocampal Shaffer-collateral (SC)-CA1 synapses, via activation of the classical estrogen receptors (ERα and ERβ). Hippocampal CA1 pyramidal neurons are also innervated by the temporoammonic (TA) pathway, and excitatory TA-CA1 synapses are reported to be regulated by E2. Recent studies suggest a role for the novel G-protein coupled estrogen receptor (GPER1) at SC-CA1 synapses, however, the role of GPER1 in mediating the effects of E2 at juvenile TA-CA1 synapses is unclear. Here we demonstrate that the GPER1 agonist, G1 induces a persistent, concentration-dependent (1-10 nM) increase in excitatory synaptic transmission at TA-CA1 synapses and this effect is blocked by selective GPER1 antagonists. The ability of GPER1 to induce this novel form of chemical long-term potentiation (cLTP) was prevented following blockade of N-methyl-D-aspartate (NMDA) receptors, and it was not accompanied by any change in paired pulse facilitation ratio (PPR). GPER1-induced cLTP involved activation of ERK but was independent of phosphoinositide 3-kinase (PI3K) signalling. Prior treatment with philanthotoxin prevented the effects of G1, indicating that synaptic insertion of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors underlies GPER1-induced cLTP. Furthermore, activity-dependent LTP occluded G1-induced cLTP and vice versa, indicating that these processes have overlapping expression mechanisms. Activity-dependent LTP was blocked by the GPER1 antagonist, G15, suggesting that GPER1 plays a role in NMDA-dependent LTP at juvenile TA-CA1 synapses. These findings add a new dimension to our understanding of GPER1 in modulating neuronal plasticity with relevance to age-related neurodegenerative conditions.
Collapse
|
58
|
Turek J, Gąsior Ł. Estrogen fluctuations during the menopausal transition are a risk factor for depressive disorders. Pharmacol Rep 2023; 75:32-43. [PMID: 36639604 PMCID: PMC9889489 DOI: 10.1007/s43440-022-00444-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Women are significantly more likely to develop depression than men. Fluctuations in the ovarian estrogen hormone levels are closely linked with women's well-being. This narrative review discusses the available knowledge on the role of estrogen in modulating brain function and the correlation between changes in estrogen levels and the development of depression. Equally discussed are the possible mechanisms underlying these effects, including the role of estrogen in modulating brain-derived neurotrophic factor activity, serotonin neurotransmission, as well as the induction of inflammatory response and changes in metabolic activity, are discussed.
Collapse
Affiliation(s)
- Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| |
Collapse
|
59
|
Bandala C, Cárdenas-Rodríguez N, Reyes-Long S, Cortés-Algara A, Contreras-García IJ, Cruz-Hernández TR, Alfaro-Rodriguez A, Cortes-Altamirano JL, Perez-Santos M, Anaya-Ruiz M, Lara-Padilla E. Estrogens as a Possible Therapeutic Strategy for the Management of Neuroinflammation and Neuroprotection in COVID-19. Curr Neuropharmacol 2023; 21:2110-2125. [PMID: 37326113 PMCID: PMC10556364 DOI: 10.2174/1570159x21666230616103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) affects several tissues, including the central and peripheral nervous system. It has also been related to signs and symptoms that suggest neuroinflammation with possible effects in the short, medium, and long term. Estrogens could have a positive impact on the management of the disease, not only due to its already known immunomodulator effect, but also activating other pathways that may be important in the pathophysiology of COVID-19, such as the regulation of the virus receptor and its metabolites. In addition, they can have a positive effect on neuroinflammation secondary to pathologies other than COVID-19. The aim of this study is to analyze the molecular mechanisms that link estrogens with their possible therapeutic effect for neuroinflammation related to COVID-19. Advanced searches were performed in scientific databases as Pub- Med, ProQuest, EBSCO, the Science Citation index, and clinical trials. Estrogens have been shown to participate in the immune modulation of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to this mechanism, we propose that estrogens can regulate the expression and activity of the Angiotensin-converting enzyme 2 (ACE2), reestablishing its cytoprotective function, which may be limited by its interaction with SARS-CoV-2. In this proposal, estrogens and estrogenic compounds could increase the synthesis of Angiotensin-(1-7) (Ang-(1-7)) that acts through the Mas receptor (MasR) in cells that are being attacked by the virus. Estrogens can be a promising, accessible, and low-cost treatment for neuroprotection and neuroinflammation in patients with COVID-19, due to its direct immunomodulatory capacity in decreasing cytokine storm and increasing cytoprotective capacity of the axis ACE2/Ang (1-7)/MasR.
Collapse
Affiliation(s)
- Cindy Bandala
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
| | - Noemí Cárdenas-Rodríguez
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
- Neuroscience Laboratory, National Institute of Pediatrics, Mexico City, 04530, Mexico
| | - Samuel Reyes-Long
- Basic Neurosciences, National Institute of Rehabilitation LGII, Mexico City, 14389, Mexico
| | - Alfredo Cortés-Algara
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
- Department of Robotic Surgery and Laparoscopy in Gynecology, Centro Médico Nacional 20 de Noviembre, Mexico City, CP, Mexico
| | | | | | | | - José Luis Cortes-Altamirano
- Basic Neurosciences, National Institute of Rehabilitation LGII, Mexico City, 14389, Mexico
- Research Department, Ecatepec Valley State University, Valle de Anahuac, Ecatepec, 55210, Mexico State, Mexico
| | - Martín Perez-Santos
- Directorate of Innovation and Knowledge Transfer, Meritorious Autonomous University of Puebla, 72570, Puebla
| | - Maricruz Anaya-Ruiz
- Cell Biology Laboratory, Oriente Biomedical Research Center, Mexican Social Security Institute, Metepec, 74360, Puebla
| | - Eleazar Lara-Padilla
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
| |
Collapse
|
60
|
Kheloui S, Smith A, Ismail N. Combined oral contraceptives and mental health: Are adolescence and the gut-brain axis the missing links? Front Neuroendocrinol 2023; 68:101041. [PMID: 36244525 DOI: 10.1016/j.yfrne.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Combined oral contraceptives (containing synthetic forms of estradiol and progestins) are one of the most commonly used drugs among females. However, their effects on the gut-brain axis have not been investigated to a great extent despite clear evidence that suggest bi-directional interactions between the gut microbiome and endogenous sex hormones. Moreover, oral contraceptives are prescribed during adolescence, a critical period of development during which several brain structures and systems, such as hypothalamic-pituitary-gonadal axis, undergo maturation. Considering that oral contraceptives could impact the developing adolescent brain and that these effects may be mediated by the gut-brain axis, further research investigating the effects of oral contraceptives on the gut-brain axis is imperative. This article briefly reviews evidence from animal and human studies on the effects of combined oral contraceptives on the brain and the gut microbiota particularly during adolescence.
Collapse
Affiliation(s)
- Sarah Kheloui
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andra Smith
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada; LIFE Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
61
|
Douglass A, Dattilo M, Feola AJ. Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma. Cell Mol Neurobiol 2023; 43:79-97. [PMID: 34981287 PMCID: PMC9250947 DOI: 10.1007/s10571-021-01179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease.
Collapse
Affiliation(s)
- Amber Douglass
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Michael Dattilo
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Ophthalmology, Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
- Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew J Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA.
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA, 30322, USA.
- Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
62
|
Hill SE, Mengelkoch S. Moving beyond the mean: Promising research pathways to support a precision medicine approach to hormonal contraception. Front Neuroendocrinol 2023; 68:101042. [PMID: 36332783 DOI: 10.1016/j.yfrne.2022.101042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Women's psychological and behavioral responses to hormonal contraceptive (HC) treatment can be highly variable. One of the great challenges to researchers seeking to improve the experiences of women who use HCs is to identify the sources of this variability to minimize unpleasant psychobehavioral side-effects. In the following, we provide recommendations for programs of research aimed at identifying sources of heterogeneity in women's experiences with HC. First, we review research demonstrating person- and prescription- based heterogeneity in women's psychobehavioral responses to HCs. Next, we identify several promising person- and prescription- based sources of this heterogeneity that warrant future research. We close with a discussion of research approaches that are particularly well-suited to address the research questions raised in article. Together, this review provides researchers with several promising research pathways to help support the development of a precision medicine approach to HC treatment.
Collapse
|
63
|
La Barbera L, D'Amelio M. Alzheimer's Disease and Sex-Dependent Alterations in the Striatum: A Lesson from a Mouse Model. J Alzheimers Dis 2023; 94:1377-1380. [PMID: 37522213 DOI: 10.3233/jad-230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
In the last years, many clinical studies highlighted sex-specific differences in the pathophysiology of Alzheimer's disease (AD). The recent paper published in the Journal of Alzheimer's Disease shows the influence of sex on amyloid-β plaque deposition, behavior, and dopaminergic signaling in the 5xFAD mouse model of AD, with worse alterations in female mice. This commentary focuses on the importance of recognizing sex as a key variable to consider for a more precise clinical practice, with the challenge to develop sex-specific therapeutic interventions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Livia La Barbera
- Università Campus Bio-Medico di Roma, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marcello D'Amelio
- Università Campus Bio-Medico di Roma, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
64
|
Williams VJ, Koscik R, Sicinski K, Johnson SC, Herd P, Asthana S. Associations Between Midlife Menopausal Hormone Therapy Use, Incident Diabetes, and Late Life Memory in the Wisconsin Longitudinal Study. J Alzheimers Dis 2023; 93:727-741. [PMID: 37092221 PMCID: PMC10551825 DOI: 10.3233/jad-221240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Prior research suggests a link between menopausal hormone therapy (MHT) use, memory function, and diabetes risk. The menopausal transition is a modifiable period to enhance long-term health and cognitive outcomes, although studies have been limited by short follow-up periods precluding a solid understanding of the lasting effects of MHT use on cognition. OBJECTIVE We examined the effects of midlife MHT use on subsequent diabetes incidence and late life memory performance in a large, same-aged, population-based cohort. We hypothesized that the beneficial effects of MHT use on late life cognition would be partially mediated by reduced diabetes risk. METHODS 1,792 women from the Wisconsin Longitudinal Study (WLS) were included in analysis. We employed hierarchical linear regression, Cox regression, and causal mediation models to test the associations between MHT history, diabetes incidence, and late life cognitive performance. RESULTS 1,088/1,792 women (60.7%) reported a history of midlife MHT use and 220/1,792 (12.3%) reported a history of diabetes. MHT use history was associated with better late life immediate recall (but not delayed recall), as well as a reduced risk of diabetes with protracted time to onset. Causal mediation models suggest that the beneficial effect of midlife MHT use on late life immediate recall were at least partially mediated by diabetes risk. CONCLUSION Our data support a beneficial effect of MHT use on late life immediate recall (learning) that was partially mediated by protection against diabetes risk, supporting MHT use in midlife as protective against late life cognitive decline and adverse health outcomes.
Collapse
Affiliation(s)
- Victoria J. Williams
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca Koscik
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin at Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - Sanjay Asthana
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
65
|
Pillerová M, Pastorek M, Borbélyová V, Riljak V, Frick KM, Hodosy J, Tóthová L. Sex steroid hormones in depressive disorders as a basis for new potential treatment strategies. Physiol Res 2022; 71:S187-S202. [PMID: 36647907 PMCID: PMC9906660 DOI: 10.33549/physiolres.935001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
The sex steroid hormones (SSHs) such as testosterone, estradiol, progesterone, and their metabolites have important organizational and activational impacts on the brain during critical periods of brain development and in adulthood. A variety of slow and rapid mechanisms mediate both organizational and activational processes via intracellular or membrane receptors for SSHs. Physiological concentrations and distribution of SSHs in the brain result in normal brain development. Nevertheless, dysregulation of hormonal equilibrium may result in several mood disorders, including depressive disorders, later in adolescence or adulthood. Gender differences in cognitive abilities, emotions as well as the 2-3 times higher prevalence of depressive disorders in females, were already described. This implies that SSHs may play a role in the development of depressive disorders. In this review, we discuss preclinical and clinical studies linked to SSHs and development of depressive disorders. Our secondary aim includes a review of up-to-date knowledge about molecular mechanisms in the pathogenesis of depressive disorders. Understanding these molecular mechanisms might lead to significant treatment adjustments for patients with depressive disorders and to an amelioration of clinical outcomes for these patients. Nevertheless, the impact of SSHs on the brain in the context of the development of depressive disorders, progression, and treatment responsiveness is complex in nature, and depends upon several factors in concert such as gender, age, comorbidities, and general health conditions.
Collapse
Affiliation(s)
- M Pillerová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
66
|
Alberti P, Salvalaggio A, Argyriou AA, Bruna J, Visentin A, Cavaletti G, Briani C. Neurological Complications of Conventional and Novel Anticancer Treatments. Cancers (Basel) 2022; 14:cancers14246088. [PMID: 36551575 PMCID: PMC9776739 DOI: 10.3390/cancers14246088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Various neurological complications, affecting both the central and peripheral nervous system, can frequently be experienced by cancer survivors after exposure to conventional chemotherapy, but also to modern immunotherapy. In this review, we provide an overview of the most well-known adverse events related to chemotherapy, with a focus on chemotherapy induced peripheral neurotoxicity, but we also address some emerging novel clinical entities related to cancer treatment, including chemotherapy-related cognitive impairment and immune-mediated adverse events. Unfortunately, efficacious curative or preventive treatment for all these neurological complications is still lacking. We provide a description of the possible mechanisms involved to drive future drug discovery in this field, both for symptomatic treatment and neuroprotection.
Collapse
Affiliation(s)
- Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | | | - Andreas A. Argyriou
- Neurology Department, Agios Andreas State General Hospital of Patras, 26335 Patras, Greece
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Briani
- Neurology Unit, Department of Neurosciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
67
|
Ravindranath O, Calabro FJ, Foran W, Luna B. Pubertal development underlies optimization of inhibitory control through specialization of ventrolateral prefrontal cortex. Dev Cogn Neurosci 2022; 58:101162. [PMID: 36308857 PMCID: PMC9618767 DOI: 10.1016/j.dcn.2022.101162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023] Open
Abstract
Inhibitory control improves into young adulthood after specialization of relevant brain systems during adolescence. However, the biological mechanisms supporting this unique transition are not well understood. Given that adolescence is defined by puberty, we examined relative contributions of chronological age and pubertal maturation to inhibitory control development. 105 8-19-year-olds completed 1-5 longitudinal visits (227 visits total) in which pubertal development was assessed via self-reported Tanner stage and inhibitory control was assessed with an in-scanner antisaccade task. As expected, percentage and latency of correct antisaccade responses improved with age and pubertal stage. When controlling for pubertal stage, chronological age was distinctly associated with correct response rate. In contrast, pubertal stage was uniquely associated with antisaccade latency even when controlling for age. Chronological age was associated with fMRI task activation in several regions including the right dorsolateral prefrontal cortex, while puberty was associated with right ventrolateral prefrontal cortex (VLPFC) activation. Furthermore, task-related connectivity between VLPFC and cingulate was associated with both pubertal stage and response latency. These results suggest that while age-related developmental processes may support maturation of brain systems underlying the ability to inhibit a response, puberty may play a larger role in the effectiveness of generating cognitive control responses.
Collapse
Affiliation(s)
- Orma Ravindranath
- Psychology, University of Pittsburgh, USA; Center for Neural Basis of Cognition, University of Pittsburgh, USA.
| | - Finnegan J Calabro
- Center for Neural Basis of Cognition, University of Pittsburgh, USA; Psychiatry, University of Pittsburgh, USA; Bioengineering, University of Pittsburgh, USA
| | | | - Beatriz Luna
- Psychology, University of Pittsburgh, USA; Center for Neural Basis of Cognition, University of Pittsburgh, USA; Psychiatry, University of Pittsburgh, USA
| |
Collapse
|
68
|
Genetic overlap between temporomandibular disorders and primary headaches: A systematic review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:69-88. [PMID: 35242249 PMCID: PMC8881721 DOI: 10.1016/j.jdsr.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary headache disorders (PHD), specifically migraine, are strongly associated with temporomandibular disorders (TMD), sharing some patterns of orofacial pain. Both disorders have significant genetic contributions already studied. PRISMA guidelines were followed to conduct this systematic review, which comprehensively summarize and discuss the genetic overlap between TMD and PHD to aid future research in potential therapy targets. This review included eight original articles published between 2015 and 2020, written in English and related to either TMD and/or PHD. The genes simultaneously assessed in PHD and TMD studies were COMT, MTHFR, and ESR1. COMT was proved to play a critical role in TMD pathogenesis, as all studies have concluded about its impact on the occurrence of the disease, although no association with PHD was found. No proof on the impact of MTHFR gene regulation on either TMD or PHD was found. The most robust results are concerning the ESR1 gene, which is present in the genetic profile of both clinical conditions. This novel systematic review highlights not only the need for a clear understanding of the role of ESR1 and COMT genes in pain pathogenesis, but it also evaluates their potential as a promising therapeutic target to treat both pathologies.
Collapse
|
69
|
Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front Neural Circuits 2022; 16:939235. [PMID: 36389180 PMCID: PMC9663658 DOI: 10.3389/fncir.2022.939235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023] Open
Abstract
The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.
Collapse
Affiliation(s)
- Kate Zara Peters
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Fabien Naneix
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Fabien Naneix
| |
Collapse
|
70
|
Szczurowska E, Szánti-Pintér E, Randáková A, Jakubík J, Kudova E. Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int J Mol Sci 2022; 23:13075. [PMID: 36361865 PMCID: PMC9656441 DOI: 10.3390/ijms232113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2023] Open
Abstract
Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| |
Collapse
|
71
|
Unda SR, Marciano S, Milner TA, Marongiu R. State-of-the-art review of the clinical research on menopause and hormone replacement therapy association with Parkinson's disease: What meta-analysis studies cannot tell us. Front Aging Neurosci 2022; 14:971007. [PMID: 36337706 PMCID: PMC9631815 DOI: 10.3389/fnagi.2022.971007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2023] Open
Abstract
The menopause is a midlife endocrinological process that greatly affects women's central nervous system functions. Over the last 2 decades numerous clinical studies have addressed the influence of ovarian hormone decline on neurological disorders like Parkinson's disease and Alzheimer's disease. However, the findings in support of a role for age at menopause, type of menopause and hormone replacement therapy on Parkinson's disease onset and its core features show inconsistencies due to the heterogeneity in the study design. Here, we provide a unified overview of the clinical literature on the influence of menopause and ovarian hormones on Parkinson's disease. We highlight the possible sources of conflicting evidence and gather considerations for future observational clinical studies that aim to explore the neurological impact of menopause-related features in Parkinson's disease.
Collapse
Affiliation(s)
- Santiago R. Unda
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Sabina Marciano
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Roberta Marongiu
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
72
|
Sekikawa A, Wharton W, Butts B, Veliky CV, Garfein J, Li J, Goon S, Fort A, Li M, Hughes TM. Potential Protective Mechanisms of S-equol, a Metabolite of Soy Isoflavone by the Gut Microbiome, on Cognitive Decline and Dementia. Int J Mol Sci 2022; 23:11921. [PMID: 36233223 PMCID: PMC9570153 DOI: 10.3390/ijms231911921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-β. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-β is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Whitney Wharton
- School of Nursing and Medicine, Emory University, Atlanta, GA 30322, USA
| | - Brittany Butts
- School of Nursing and Medicine, Emory University, Atlanta, GA 30322, USA
| | - Cole V. Veliky
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Garfein
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiatong Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shatabdi Goon
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annamaria Fort
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mengyi Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
73
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
74
|
Daniyan MO, Fisusi FA, Adeoye OB. Neurotransmitters and molecular chaperones interactions in cerebral malaria: Is there a missing link? Front Mol Biosci 2022; 9:965569. [PMID: 36090033 PMCID: PMC9451049 DOI: 10.3389/fmolb.2022.965569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum is responsible for the most severe and deadliest human malaria infection. The most serious complication of this infection is cerebral malaria. Among the proposed hypotheses that seek to explain the manifestation of the neurological syndrome in cerebral malaria is the vascular occlusion/sequestration/mechanic hypothesis, the cytokine storm or inflammatory theory, or a combination of both. Unfortunately, despite the increasing volume of scientific information on cerebral malaria, our understanding of its pathophysiologic mechanism(s) is still very limited. In a bid to maintain its survival and development, P. falciparum exports a large number of proteins into the cytosol of the infected host red blood cell. Prominent among these are the P. falciparum erythrocytes membrane protein 1 (PfEMP1), P. falciparum histidine-rich protein II (PfHRP2), and P. falciparum heat shock proteins 70-x (PfHsp70-x). Functional activities and interaction of these proteins with one another and with recruited host resident proteins are critical factors in the pathology of malaria in general and cerebral malaria in particular. Furthermore, several neurological impairments, including cognitive, behavioral, and motor dysfunctions, are known to be associated with cerebral malaria. Also, the available evidence has implicated glutamate and glutamatergic pathways, coupled with a resultant alteration in serotonin, dopamine, norepinephrine, and histamine production. While seeking to improve our understanding of the pathophysiology of cerebral malaria, this article seeks to explore the possible links between host/parasite chaperones, and neurotransmitters, in relation to other molecular players in the pathology of cerebral malaria, to explore such links in antimalarial drug discovery.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Funmilola Adesodun Fisusi
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Olufunso Bayo Adeoye
- Department of Biochemistry, Benjamin S. Carson (Snr.) College of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
75
|
Andrews EJ, Martini AC, Head E. Exploring the role of sex differences in Alzheimer's disease pathogenesis in Down syndrome. Front Neurosci 2022; 16:954999. [PMID: 36033603 PMCID: PMC9411995 DOI: 10.3389/fnins.2022.954999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Women are disproportionately affected by Alzheimer's disease (AD), yet little is known about sex-specific effects on the development of AD in the Down syndrome (DS) population. DS is caused by a full or partial triplication of chromosome 21, which harbors the amyloid precursor protein (APP) gene, among others. The majority of people with DS in their early- to mid-40s will accumulate sufficient amyloid-beta (Aβ) in their brains along with neurofibrillary tangles (NFT) for a neuropathological diagnosis of AD, and the triplication of the APP gene is regarded as the main cause. Studies addressing sex differences with age and impact on dementia in people with DS are inconsistent. However, women with DS experience earlier age of onset of menopause, marked by a drop in estrogen, than women without DS. This review focuses on key sex differences observed with age and AD in people with DS and a discussion of possible underlying mechanisms that could be driving or protecting from AD development in DS. Understanding how biological sex influences the brain will lead to development of dedicated therapeutics and interventions to improve the quality of life for people with DS and AD.
Collapse
Affiliation(s)
- Elizabeth J. Andrews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Alessandra C. Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
76
|
Orsini CA, Truckenbrod LM, Wheeler AR. Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behav Processes 2022; 200:104663. [PMID: 35661794 PMCID: PMC9893517 DOI: 10.1016/j.beproc.2022.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Men and women differ in their ability to evaluate options that vary in their rewards and the risks that are associated with these outcomes. Most studies have shown that women are more risk averse than men and that gonadal hormones significantly contribute to this sex difference. Gonadal hormones can influence risk-based decision making (i.e., risk taking) by modulating the neurobiological substrates underlying this cognitive process. Indeed, estradiol, progesterone and testosterone modulate activity in the prefrontal cortex, amygdala and nucleus accumbens associated with reward and risk-related information. The use of animal models of decision making has advanced our understanding of the intersection between the behavioral, neural and hormonal mechanisms underlying sex differences in risk taking. This review will outline the current state of this literature, identify the current gaps in knowledge and suggest the neurobiological mechanisms by which hormones regulate risky decision making. Collectively, this knowledge can be used to understand the potential consequences of significant hormonal changes, whether endogenously or exogenously induced, on risk-based decision making as well as the neuroendocrinological basis of neuropsychiatric diseases that are characterized by impaired risk taking, such as substance use disorder and schizophrenia.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Texas at Austin, Austin, TX, USA,Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA,Correspondence to: Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, 108 E. Dean Keaton St., Stop A8000, Austin, TX 78712, USA. (C.A. Orsini)
| | - Leah M. Truckenbrod
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Alexa-Rae Wheeler
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
77
|
Overman MJ, Pendleton N, O'Neill TW, Bartfai G, Casanueva FF, Forti G, Rastrelli G, Giwercman A, Han TS, Huhtaniemi IT, Slowikowska-Hilczer J, Lean ME, Punab M, Lee DM, Antonio L, Gielen E, Rutter MK, Vanderschueren D, Wu FC, Tournoy J. Reproductive hormone levels, androgen receptor CAG repeat length and their longitudinal relationships with decline in cognitive subdomains in men: The European Male Ageing Study. Physiol Behav 2022; 252:113825. [PMID: 35487276 DOI: 10.1016/j.physbeh.2022.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It has been proposed that endogenous sex hormone levels may present a modifiable risk factor for cognitive decline. However, the evidence for effects of sex steroids on cognitive ageing is conflicting. We therefore investigated associations between endogenous hormone levels, androgen receptor CAG repeat length, and cognitive domains including visuoconstructional abilities, visual memory, and processing speed in a large-scale longitudinal study of middle-aged and older men. METHODS Men aged 40-79 years from the European Male Ageing Study (EMAS) underwent cognitive assessments and measurements of hormone levels at baseline and follow-up (mean = 4.4 years, SD ± 0.3 years). Hormone levels measured included total and calculated free testosterone and estradiol, dihydrotestosterone, luteinizing hormone, follicle-stimulating hormone, dehydroepiandrosterone sulphate and sex hormone-binding globulin. Cognitive function was assessed using the Rey-Osterrieth Complex Figure Copy and Recall, the Camden Topographical Recognition Memory and the Digit Symbol Substitution Test. Multivariate linear regressions were used to examine associations between baseline and change hormone levels, androgen receptor CAG repeat length, and cognitive decline. RESULTS Statistical analyses included 1,827 and 1,423 participants for models investigating relationships of cognition with hormone levels and CAG repeat length, respectively. In age-adjusted models, we found a significant association of higher baseline free testosterone (β=-0.001, p=0.005) and dihydrotestosterone levels (β=-0.065, p=0.003) with greater decline on Rey-Osterrieth Complex Figure Recall over time. However, these effects were no longer significant following adjustment for centre, health, and lifestyle factors. No relationships were observed between any other baseline hormone levels, change in hormone levels, or androgen receptor CAG repeat length with cognitive decline in the measured domains. CONCLUSIONS In this large-scale prospective study there was no evidence for an association between endogenous sex hormone levels or CAG repeat length and cognitive ageing in men. These data suggest that sex steroid levels do not affect visuospatial function, visual memory, or processing speed in middle-aged and older men.
Collapse
Affiliation(s)
- Margot J Overman
- Gerontology and Geriatrics, KU Leuven, Leuven, Belgium; Department of Psychiatry, University of Oxford, UK
| | - Neil Pendleton
- Clinical & Cognitive Neurosciences, Institute of Brain, Behaviour and Mental Health, The University of Manchester, UK
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-György Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University Spain; CIBEROBN Instituto de Salud Carlos III. Santiago de Compostela, Spain
| | - Gianni Forti
- Endocrinology Unit, University of Florence, Florence, Italy
| | - Giulia Rastrelli
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences, University of Florence, Florence, Italy
| | - Aleksander Giwercman
- Reproductive Medicine Centre, Skåne University Hospital, University of Lund, Lund, Sweden
| | - Thang S Han
- Institute of Cardiovascular Research, Royal Holloway University of London, Egham, Surrey, UK
| | - Ilpo T Huhtaniemi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London UK
| | | | - Michael Ej Lean
- Department of Human Nutrition, University of Glasgow, Glasgow, UK
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - David M Lee
- Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Leen Antonio
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Evelien Gielen
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dirk Vanderschueren
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| | - Jos Tournoy
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
78
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
79
|
Krentzel AA, Proaño SB, Dorris DM, Setzer B, Meitzen J. The estrous cycle and 17β-estradiol modulate the electrophysiological properties of rat nucleus accumbens core medium spiny neurons. J Neuroendocrinol 2022; 34:e13122. [PMID: 35365910 PMCID: PMC9250601 DOI: 10.1111/jne.13122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022]
Abstract
The nucleus accumbens core is a key nexus within the mammalian brain for integrating the premotor and limbic systems and regulating important cognitive functions such as motivated behaviors. Nucleus accumbens core functions show sex differences and are sensitive to the presence of hormones such as 17β-estradiol (estradiol) in normal and pathological contexts. The primary neuron type of the nucleus accumbens core, the medium spiny neuron (MSN), exhibits sex differences in both intrinsic excitability and glutamatergic excitatory synapse electrophysiological properties. Here, we provide a review of recent literature showing how estradiol modulates rat nucleus accumbens core MSN electrophysiology within the context of the estrous cycle. We review the changes in MSN electrophysiological properties across the estrous cycle and how these changes can be mimicked in response to exogenous estradiol exposure. We discuss in detail recent findings regarding how acute estradiol exposure rapidly modulates excitatory synapse properties in nucleus accumbens core but not caudate-putamen MSNs, which mirror the natural changes seen across estrous cycle phases. These recent insights demonstrate the strong impact of sex-specific estradiol action upon nucleus accumbens core neuron electrophysiology.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Stephanie B. Proaño
- Neurobiology LaboratoryNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkNCUSA
| | - David M. Dorris
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Beverly Setzer
- Graduate Program for Neuroscience and Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - John Meitzen
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNCUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
80
|
Marchant IC, Chabert S, Martínez-Pinto J, Sotomayor-Zárate R, Ramírez-Barrantes R, Acevedo L, Córdova C, Olivero P. Estrogen, Cognitive Performance, and Functional Imaging Studies: What Are We Missing About Neuroprotection? Front Cell Neurosci 2022; 16:866122. [PMID: 35634466 PMCID: PMC9133497 DOI: 10.3389/fncel.2022.866122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023] Open
Abstract
Menopause transition can be interpreted as a vulnerable state characterized by estrogen deficiency with detrimental systemic effects as the low-grade chronic inflammation that appears with aging and partly explains age-related disorders as cancer, diabetes mellitus and increased risk of cognitive impairment. Over the course of a lifetime, estrogen produces several beneficial effects in healthy neurological tissues as well as cardioprotective effects, and anti-inflammatory effects. However, clinical evidence on the efficacy of hormone treatment in menopausal women has failed to confirm the benefit reported in observational studies. Unambiguously, enhanced verbal memory is the most robust finding from longitudinal and cross-sectional studies, what merits consideration for future studies aiming to determine estrogen neuroprotective efficacy. Estrogen related brain activity and functional connectivity remain, however, unexplored. In this context, the resting state paradigm may provide valuable information about reproductive aging and hormonal treatment effects, and their relationship with brain imaging of functional connectivity may be key to understand and anticipate estrogen cognitive protective effects. To go in-depth into the molecular and cellular mechanisms underlying rapid-to-long lasting protective effects of estrogen, we will provide a comprehensive review of cognitive tasks used in animal studies to evaluate the effect of hormone treatment on cognitive performance and discuss about the tasks best suited to the demonstration of clinically significant differences in cognitive performance to be applied in human studies. Eventually, we will focus on studies evaluating the DMN activity and responsiveness to pharmacological stimulation in humans.
Collapse
Affiliation(s)
- Ivanny Carolina Marchant
- Laboratorio de Modelamiento en Medicina, Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ivanny Carolina Marchant
| | - Stéren Chabert
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
- Escuela de Ingeniería Biomédica, Universidad de Valparaiso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa, Valparaíso, Chile
- Laboratorio de Neuroquímica y Neurofarmacología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa, Valparaíso, Chile
- Laboratorio de Neuroquímica y Neurofarmacología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Lilian Acevedo
- Servicio de Neurología Hospital Carlos van Buren, Valparaíso, Chile
| | - Claudio Córdova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Olivero
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Pablo Olivero
| |
Collapse
|
81
|
Guo P, Xu J, Liang H, Xu L, Gao W, Chen Z, Gao Y, Zhang M, Yu G, Shao Z. Estrogen Suppresses Cytokines Release in cc4821 Neisseria meningitidis Infection via TLR4 and ERβ-p38-MAPK Pathway. Front Microbiol 2022; 13:834091. [PMID: 35422784 PMCID: PMC9002303 DOI: 10.3389/fmicb.2022.834091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen has long been known to possess immune-modulatory effects in diseases, and multiple pathological conditions show great sex disparities. However, the impact of estrogen in Neisseria meningitidis infection has not been determined. The present study aimed to investigate the role of estrogen in N. meningitidis infection and the molecular mechanism. We selected 35 N. meningitidis isolates representing different clonal complexes (cc), serogroups, and isolation sources to infect the HBMEC cell line. Results showed that the expression of estrogen receptor (ER) β in N. meningitidis-infected cells was downregulated compared with that in normal cells. The expression of ERβ induced by invasive isolates was lower than that in carriers. Serogroup C isolates induced the lowest expression of ERβ compared with serogroup A and B isolates. We used four cc4821 N. meningitidis isolates to infect two kinds of host cells (human brain microvascular endothelial cells and meningeal epithelial cells). The results showed that 17 β-estradiol (E2) could inhibit the release of inflammatory factors interleukin (IL)-6, IL-8, and tumor necrosis factor-α after N. meningitidis infection via TLR4. E2 could inhibit the activation of the p38-MAPK signal pathway induced by N. meningitidis infection through binding to ERβ, and significantly inhibit the release of inflammatory factors in N. meningitidis-infected host cells. This study demonstrated that estrogen plays a protective role in N. meningitidis infection. ERβ is potentially associated with the release of inflammatory cytokines in N. meningitidis infection, which sheds light on a possible therapeutic strategy for the treatment of invasive diseases caused by N. meningitidis.
Collapse
Affiliation(s)
- Pengbo Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Juan Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Liang
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ziman Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangfu Yu
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhujun Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
82
|
Ferraz da Silva I, Merlo E, Costa CS, Graceli JB, Rodrigues LCM. Tributyltin Exposure Is Associated With Recognition Memory Impairments, Alterations in Estrogen Receptor α Protein Levels, and Oxidative Stress in the Brain of Female Mice. FRONTIERS IN TOXICOLOGY 2022; 3:654077. [PMID: 35295135 PMCID: PMC8915859 DOI: 10.3389/ftox.2021.654077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023] Open
Abstract
Tributyltin (TBT) is a persistent organometallic pollutant widely used in several agricultural and industrial processes. TBT exposure is associated with various metabolic, reproductive, immune, and cardiovascular abnormalities. However, few studies have evaluated the effects of TBT on behavior. In the present study, we aimed to investigate whether TBT exposure results in oxidative, neuroendocrine, and behavioral alterations. TBT was administered to adult female mice (250, 500, or 750 ng/kg/day or veh for 14 days), and their recognition memory was assessed. We have also evaluated estrogen receptor (ER)α protein expression and oxidative stress (OS) in brain areas related to memory, as well as the correlation between them. A reduction in short- and long-term recognition memory (STM and LTM) performance, as well as in total exploration time was observed in TBT mice. Reduced ERα protein expression was observed in the prefrontal cortex (PFC) and hippocampus of TBT mice, while an increase in TBARS concentration was observed in the PFC of treated animals. Collectively, these data suggest that TBT exposure impairs recognition memory in female mice as a result of, at least in part, its toxicological effects on ERα expression and OS in specific brain areas related to memory.
Collapse
Affiliation(s)
- Igor Ferraz da Silva
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Eduardo Merlo
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espírito Santo, Vitoria, Brazil
| | - Charles S Costa
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espírito Santo, Vitoria, Brazil
| | - Jones B Graceli
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espírito Santo, Vitoria, Brazil
| | - Lívia C M Rodrigues
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| |
Collapse
|
83
|
Gender Differences in Dual Diagnoses Associated with Cannabis Use: A Review. Brain Sci 2022; 12:brainsci12030388. [PMID: 35326345 PMCID: PMC8946108 DOI: 10.3390/brainsci12030388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Gender differences in psychiatric disorders and drug use are well known. Cannabis is the most widely used illegal drug among young people. In recent years, its use has been related to the development of psychiatric pathologies; however, few studies have incorporated the gender perspective as of yet. The present work analyses the literature to determine the existence of gender differences in the development of psychotic, depressive and anxious symptoms associated with cannabis use. First, we describe cannabis misuse and its consequences, paying special attention to adolescent subjects. Second, the main gender differences in psychiatric disorders, such as psychosis, depression, anxiety and cannabis use disorders, are enumerated. Subsequently, we discuss the studies that have evaluated gender differences in the association between cannabis use and the appearance of psychotic, depressive and anxious symptoms; moreover, we consider the possible explanations for the identified gender differences. In conclusion, the studies referred to in this review reveal the existence of gender differences in psychiatric symptoms associated with cannabis use, although the direction of such differences is not always clear. Future research is necessary to discern the causal relationship between cannabis use and the development of psychiatric symptoms, as well as the gender differences found.
Collapse
|
84
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
85
|
Smith A, Woodside B, Abizaid A. Ghrelin and the Control of Energy Balance in Females. Front Endocrinol (Lausanne) 2022; 13:904754. [PMID: 35909536 PMCID: PMC9334675 DOI: 10.3389/fendo.2022.904754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ghrelin is considered one of the most potent orexigenic peptide hormones and one that promotes homeostatic and hedonic food intake. Research on ghrelin, however, has been conducted predominantly in males and particularly in male rodents. In female mammals the control of energy metabolism is complex and it involves the interaction between ovarian hormones like estrogen and progesterone, and metabolic hormones. In females, the role that ghrelin plays in promoting feeding and how this is impacted by ovarian hormones is not well understood. Basal ghrelin levels are higher in females than in males, and ghrelin sensitivity changes across the estrus cycle. Yet, responses to ghrelin are lower in female and seem dependent on circulating levels of ovarian hormones. In this review we discuss the role that ghrelin plays in regulating homeostatic and hedonic food intake in females, and how the effects of ghrelin interact with those of ovarian hormones to regulate feeding and energy balance.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
- Stress, Trauma and Relience (STAR) Work Group Carleton University, Ottawa, ON, Canada
- *Correspondence: Alfonso Abizaid,
| |
Collapse
|
86
|
McNealy KR, Houser SD, Barrett ST, Bevins RA. Investigating sex differences and the effect of drug exposure order in the sensory reward-enhancing effects of nicotine and d-amphetamine alone and in combination. Neuropharmacology 2022; 202:108845. [PMID: 34678376 PMCID: PMC8627442 DOI: 10.1016/j.neuropharm.2021.108845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Nicotine enhances the rewarding effects of other environmental stimuli; this reward-enhancement encourages and maintains nicotine consumption. Nicotine use precedes other psychostimulant use, but receiving a stimulant prescription also predicts future smoking. Previously, no study has investigated effects of drug exposure order in reward-enhancement, nor with nicotine and d-amphetamine. Thus, we aimed to investigate how drug exposure order impacted the reward-enhancing effects of nicotine and d-amphetamine, alone and in combination. We used 20 male and 20 female Sprague-Dawley rats. Enhancement was investigated within-subjects by examining responding maintained by a visual stimulus reinforcer following a pre-session injection of either d-amphetamine (Sal, 0.1, 0.3, or 0.6 mg/kg) or nicotine (Sal, 0.03, 0.06, 0.1, 0.3 mg/kg). Twenty rats (10 M, 10 F) completed enhancement testing with nicotine before d-amphetamine. The other 20 rats (10 M, 10 F) completed testing with d-amphetamine before nicotine. Following these phases, rats were then given two pre-session injections: one of d-amphetamine (Sal, 0.1, 0.3, or 0.6 mg/kg) and another of nicotine (Sal, 0.03, 0.06, 0.1, or 0.3 mg/kg). Experiencing amphetamine before nicotine increased reward-enhancing effects of nicotine. Females exhibited greater effects of d-amphetamine on reward-enhancement, with no effect of exposure order. During the interaction phase, receiving nicotine before amphetamine enhanced the interaction between nicotine and d-amphetamine for females whereas amphetamine before nicotine heightened this interaction for males. From this, prior and current amphetamine use, in addition to sex, should be considered when treating nicotine dependency and when examining factors driving poly-substance use involving nicotine and d-amphetamine. Keywords: Adderall, ADHD, Dexedrine, operant, smoking, polysubstance use.
Collapse
Affiliation(s)
- Kathleen R McNealy
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Sydney D Houser
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Scott T Barrett
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Rick A Bevins
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| |
Collapse
|
87
|
Fisher VL, Ortiz LS, Powers AR. A computational lens on menopause-associated psychosis. Front Psychiatry 2022; 13:906796. [PMID: 35990063 PMCID: PMC9381820 DOI: 10.3389/fpsyt.2022.906796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Psychotic episodes are debilitating disease states that can cause extreme distress and impair functioning. There are sex differences that drive the onset of these episodes. One difference is that, in addition to a risk period in adolescence and early adulthood, women approaching the menopause transition experience a second period of risk for new-onset psychosis. One leading hypothesis explaining this menopause-associated psychosis (MAP) is that estrogen decline in menopause removes a protective factor against processes that contribute to psychotic symptoms. However, the neural mechanisms connecting estrogen decline to these symptoms are still not well understood. Using the tools of computational psychiatry, links have been proposed between symptom presentation and potential algorithmic and biological correlates. These models connect changes in signaling with symptom formation by evaluating changes in information processing that are not easily observable (latent states). In this manuscript, we contextualize the observed effects of estrogen (decline) on neural pathways implicated in psychosis. We then propose how estrogen could drive changes in latent states giving rise to cognitive and psychotic symptoms associated with psychosis. Using computational frameworks to inform research in MAP may provide a systematic method for identifying patient-specific pathways driving symptoms and simultaneously refine models describing the pathogenesis of psychosis across all age groups.
Collapse
Affiliation(s)
- Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Liara S Ortiz
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
88
|
Pillerová M, Borbélyová V, Pastorek M, Riljak V, Hodosy J, Frick KM, Tóthová L. Molecular actions of sex hormones in the brain and their potential treatment use in anxiety disorders. Front Psychiatry 2022; 13:972158. [PMID: 36159923 PMCID: PMC9492942 DOI: 10.3389/fpsyt.2022.972158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are one of the most prevalent mood disorders that can lead to impaired quality of life. Current treatment of anxiety disorders has various adverse effects, safety concerns, or restricted efficacy; therefore, novel therapeutic targets need to be studied. Sex steroid hormones (SSHs) play a crucial role in the formation of brain structures, including regions of the limbic system and prefrontal cortex during perinatal development. In the brain, SSHs have activational and organizational effects mediated by either intracellular or transmembrane G-protein coupled receptors. During perinatal developmental periods, the physiological concentrations of SSHs lead to the normal development of the brain; however, the early hormonal dysregulation could result in various anxiety diorders later in life. Sex differences in the prevalence of anxiety disorders suggest that SSHs might be implicated in their development. In this review, we discuss preclinical and clinical studies regarding the role of dysregulated SSHs signaling during early brain development that modifies the risk for anxiety disorders in a sex-specific manner in adulthood. Moreover, our aim is to summarize potential molecular mechanisms by which the SSHs may affect anxiety disorders in preclinical research. Finally, the potential effects of SSHs in the treatment of anxiety disorders are discussed.
Collapse
Affiliation(s)
- Miriam Pillerová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michal Pastorek
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Július Hodosy
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - L'ubomíra Tóthová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
89
|
Long J, Wang Y, Liu L, Zhang J. The Prominent Role of the Temporal Lobe in Premenstrual Syndrome and Premenstrual Dysphoric Disorder: Evidence From Multimodal Neuroimaging. Front Psychiatry 2022; 13:954211. [PMID: 35836663 PMCID: PMC9274249 DOI: 10.3389/fpsyt.2022.954211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/13/2023] Open
Abstract
Premenstrual syndrome (PMS) is a group of psychological, physical, and behavioral symptoms that recur with the menstrual cycle, usually occurring a few days before menstruation and ceasing with the onset of menstruation. Premenstrual dysphoric disorder (PMDD) is a severe form of PMS that has been included in a subcategory of depression in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) according to the latest diagnostic criteria. Patients usually present with mild to moderate emotional and physical symptoms that affect their routine work, social activities, and family lives. The pathogenesis of PMDD remains unclear, and some researchers believe that it is related to fluctuations in ovarian hormone levels. However, the details of the interrelationships and regulating effects between ovarian hormones, symptoms, and the brain need to be more comprehensively determined. Recent studies have revealed some novel findings on PMS and PMDD based on brain morphology, function, and metabolism. Additionally, multiple studies have suggested that PMS and PMDD are closely related to brain structural and functional variations in certain core temporal lobe regions, such as the amygdala and hippocampus. We summarized neuroimaging studies of PMS and PMDD related to the temporal lobe by retrospectively reviewing relevant literature over the past decade. This review contributes to further clarifying the significant role of the temporal lobe in PMS and PMDD and understanding the neurochemical links between hormones, symptoms, and the brain.
Collapse
Affiliation(s)
- Jingyi Long
- Wuhan Mental Health Center, Wuhan, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Yuejie Wang
- Wuhan Mental Health Center, Wuhan, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lianzhong Liu
- Wuhan Mental Health Center, Wuhan, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Juan Zhang
- Wuhan Mental Health Center, Wuhan, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| |
Collapse
|
90
|
Mohammad A, Finch MS, Sweezey-Munroe J, MacPherson REK. Voluntary wheel running alters markers of amyloid-beta precursor protein processing in an ovarian hormone depleted model. Front Endocrinol (Lausanne) 2022; 13:1069404. [PMID: 36561562 PMCID: PMC9763310 DOI: 10.3389/fendo.2022.1069404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Aberrant cleavage of the transmembrane protein, amyloid-beta precursor protein (ABPP), results in the overproduction of amyloid-beta (AB) peptides which can form senile plaques in the brain. These plaques can get lodged within synapses and disrupt neuronal communication ultimately leading to rampant neuron death. The rate-limiting enzyme in AB production is beta-site ABPP cleaving enzyme 1 (BACE1). In females, estrogen loss is associated with increases in AB and BACE1 content and activity. Exercise is known to have anti-amyloidogenic effects and may be able to alter BACE1 in cases of ovarian hormone depletion. This study aimed to examine the effects of physical activity on BACE1 in intact and ovariectomized female mice. METHODS Female C57BL/6 mice (24 weeks old) underwent bilateral ovariectomy (OVX; n=20) or SHAM surgery (SHAM; n=20). Mice were assigned to one of four groups (n=10/group) for 8 weeks: (1) sham (SHAM), (2) sham with a wheel (SHAM VWR), (3) ovariectomized (OVX), or (4) ovariectomized with a wheel (OVX VWR). RESULTS Novel object recognition testing demonstrated that OVX mice had a lower percentage of novel object investigation time compared to SHAM. OVX mice also had higher prefrontal cortex BACE1 activity compared to SHAM (p<0.0001), while the OVX+VWR activity was not different from SHAM. DISCUSSIONS Our results demonstrate that voluntary wheel running in an ovariectomized model prevented increases in BACE1 activity, maintained memory recall, and may provide a method of slowing the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michael S. Finch
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | | | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
- *Correspondence: Rebecca E. K. MacPherson,
| |
Collapse
|
91
|
Ohno K, Abdelhamid M, Zhou C, Jung CG, Michikawa M. Bifidobacterium breve MCC1274 Supplementation Increased the Plasma Levels of Metabolites with Potential Anti-Oxidative Activity in APP Knock-In Mice. J Alzheimers Dis 2022; 89:1413-1425. [PMID: 36057824 PMCID: PMC9661342 DOI: 10.3233/jad-220479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND We previously reported the effects of a probiotic strain, Bifidobacterium breve MCC1274, in improving cognitive function in preclinical and clinical studies. Recently, we demonstrated that supplementation of this strain led to decreased amyloid-β production, attenuated microglial activation, and suppressed inflammation reaction in the brain of APP knock-in (AppNL - G - F) mice. OBJECTIVE In this study, we investigated the plasma metabolites to reveal the mechanism of action of this probiotic strain in this Alzheimer's disease (AD)-like model. METHODS Three-month-old mice were orally supplemented with B. breve MCC1274 or saline for four months and their plasma metabolites were comprehensively analyzed using CE-FTMS and LC-TOFMS. RESULTS Principal component analysis showed a significant difference in the plasma metabolites between the probiotic and control groups (PERMANOVA, p = 0.03). The levels of soy isoflavones (e.g., genistein) and indole derivatives of tryptophan (e.g., 5-methoxyindoleacetic acid), metabolites with potent anti-oxidative activities were significantly increased in the probiotic group. Moreover, there were increased levels of glutathione-related metabolites (e.g., glutathione (GSSG)_divalent, ophthalmic acid) and TCA cycle-related metabolites (e.g., 2-Oxoglutaric acid, succinic acid levels) in the probiotic group. Similar alternations were observed in the wild-type mice by the probiotic supplementation. CONCLUSION These results suggest that the supplementation of B. breve MCC1274 enhanced the bioavailability of potential anti-oxidative metabolites from the gut and addressed critical gaps in our understanding of the gut-brain axis underlying the mechanisms of the probiotic action of this strain in the improvement of cognitive function.
Collapse
Affiliation(s)
- Kazuya Ohno
- Department of Medicine for Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
92
|
Trofimova IN, Gaykalova AA. Emotionality vs. Other Biobehavioural Traits: A Look at Neurochemical Biomarkers for Their Differentiation. Front Psychol 2021; 12:781631. [PMID: 34987450 PMCID: PMC8720768 DOI: 10.3389/fpsyg.2021.781631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the differential contributions of multiple neurochemical systems to temperament traits related and those that are unrelated to emotionality, even though these systems have a significant overlap. The difference in neurochemical biomarkers of these traits is analysed from the perspective of the neurochemical model, Functional Ensemble of Temperament (FET) that uses multi-marker and constructivism principles. Special attention is given to a differential contribution of hypothalamic-pituitary hormones and opioid neuropeptides implicated in both emotional and non-emotional regulation. The review highlights the role of the mu-opioid receptor system in dispositional emotional valence and the role of the kappa-opioid system in dispositional perceptual and behavioural alertness. These opioid receptor (OR) systems, microbiota and cytokines are produced in three neuroanatomically distinct complexes in the brain and the body, which all together integrate dispositional emotionality. In contrast, hormones could be seen as neurochemical biomarkers of non-emotional aspects of behavioural regulation related to the construction of behaviour in fast-changing and current situations. As examples of the role of hormones, the review summarised their contribution to temperament traits of Sensation Seeking (SS) and Empathy (EMP), which FET considers as non-emotionality traits related to behavioural orientation. SS is presented here as based on (higher) testosterone (fluctuating), adrenaline and (low) cortisol systems, and EMP, as based on (higher) oxytocin, reciprocally coupled with vasopressin and (lower) testosterone. Due to the involvement of gonadal hormones, there are sex and age differences in these traits that could be explained by evolutionary theory. There are, therefore, specific neurochemical biomarkers differentiating (OR-based) dispositional emotionality and (hormones-based) body's regulation in fast-changing events. Here we propose to consider dispositional emotionality associated with OR systems as emotionality in a true sense, whereas to consider hormonal ensembles regulating SS and EMP as systems of behavioural orientation and not emotionality.
Collapse
Affiliation(s)
- Irina N. Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
93
|
Reddy V, McCarthy M, Raval AP. Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiol Dis 2021; 163:105596. [PMID: 34942334 DOI: 10.1016/j.nbd.2021.105596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Xenoestrogens, foreign synthetic chemicals mimicking estrogens, are lurking in our surroundings. Climate change may alter their toxicity and bioavailability. Since xenoestrogens have extremely high lipid solubility and are structurally similar to natural endogenous estrogens, they can bind to estrogen receptors (ERs) -alpha (ER-α) and -beta (ER-β). Scientific evidence accumulated over the past decades have suggested that natural 17β-estradiol (E2; a potent estrogen), via activation of its receptors, plays a pivotal role in regulation of brain development, differentiation, metabolism, synaptic plasticity, neuroprotection, cognition, anxiety, body temperature, feeding and sexual behavior. In the brain, ER-β is predominantly expressed in the various regions, including cerebral cortex and hippocampus, that have been shown to play a key role in cognition. Therefore, disturbances in function of ER-β mediated E2 signaling by xenoestrogens can lead to deleterious effects that potentiate a variety of neurological diseases starting from prenatal to post-menopause in women. The goal of this review is to identify the possible neurological effects of xenoestrogens that can alter estrogen receptor-mediated signaling in the brain during different stages of the female lifespan.
Collapse
Affiliation(s)
- Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
94
|
Hirtz A, Lebourdais N, Rech F, Bailly Y, Vaginay A, Smaïl-Tabbone M, Dubois-Pot-Schneider H, Dumond H. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation. Cells 2021; 10:cells10123438. [PMID: 34943948 PMCID: PMC8699794 DOI: 10.3390/cells10123438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor in adults, which is very aggressive, with a very poor prognosis that affects men twice as much as women, suggesting that female hormones (estrogen) play a protective role. With an in silico approach, we highlighted that the expression of the membrane G-protein-coupled estrogen receptor (GPER) had an impact on GBM female patient survival. In this context, we explored for the first time the role of the GPER agonist G-1 on GBM cell proliferation. Our results suggested that G-1 exposure had a cytostatic effect, leading to reversible G2/M arrest, due to tubulin polymerization blockade during mitosis. However, the observed effect was independent of GPER. Interestingly, G-1 potentiated the efficacy of temozolomide, the current standard chemotherapy treatment, since the combination of both treatments led to prolonged mitotic arrest, even in a temozolomide less-sensitive cell line. In conclusion, our results suggested that G-1, in combination with standard chemotherapy, might be a promising way to limit the progression and aggressiveness of GBM.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Nolwenn Lebourdais
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Yann Bailly
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Athénaïs Vaginay
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France;
| | | | - Hélène Dubois-Pot-Schneider
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Correspondence: ; Tel.: +33-372746115
| |
Collapse
|
95
|
Cote S, Butler R, Michaud V, Lavallee E, Croteau E, Mendrek A, Lepage J, Whittingstall K. The regional effect of serum hormone levels on cerebral blood flow in healthy nonpregnant women. Hum Brain Mapp 2021; 42:5677-5688. [PMID: 34480503 PMCID: PMC8559491 DOI: 10.1002/hbm.25646] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Sex hormones estrogen (EST) and progesterone (PROG) have received increased attention for their important physiological action outside of reproduction. While studies have shown that EST and PROG have significant impacts on brain function, their impact on the cerebrovascular system in humans remains largely unknown. To address this, we used a multi-modal magnetic resonance imaging (MRI) approach to investigate the link between serum hormones in the follicular phase and luteal phase of the menstrual cycle (MC) with measures of cerebrovascular function (cerebral blood flow [CBF]) and structure (intracranial artery diameter). Fourteen naturally cycling women were recruited and assessed at two-time points of their MC. CBF was derived from pseudo-continuous arterial spin labeling while diameters of the internal carotid and basilar artery was assessed using time of flight magnetic resonance angiography, blood samples were performed after the MRI. Results show that PROG and EST had opposing and spatially distinct effects on CBF: PROG correlated negatively with CBF in anterior brain regions (r = -.86, p < .01), while EST correlations were positive, yet weak and most prominent in posterior areas (r = .78, p < .01). No significant correlations between either hormone or intracranial artery diameter were observed. These results show that EST and PROG have opposing and regionally distinct effects on CBF and that this relationship is likely not due to interactions with large intracranial arteries. Considering that CBF in healthy women appears tightly linked to their current hormonal state, future studies should consider assessing MC-related hormone fluctuations in the design of functional MRI studies in this population.
Collapse
Affiliation(s)
- Samantha Cote
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
| | - Russell Butler
- Faculty of Arts and Sciences, Department of Computer ScienceBishop's UniversitySherbrookeQuebecCanada
| | - Vincent Michaud
- Department of Diagnostic RadiologyUniversity of SherbrookeSherbrookeQuebecCanada
| | - Eric Lavallee
- Sherbrooke Molecular Imaging Center (CIMS), Sherbrooke University Hospital Research Center (CR‐CHUS)SherbrookeQuebecCanada
| | - Etienne Croteau
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Sherbrooke Molecular Imaging Center (CIMS), Sherbrooke University Hospital Research Center (CR‐CHUS)SherbrookeQuebecCanada
| | - Adrianna Mendrek
- Faculty of Arts and Sciences, Department of PsychologyBishop's UniversitySherbrookeQuebecCanada
| | - Jean‐Francois Lepage
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Faculty of Medicine and Health Sciences, Department of PediatricsUniversity of SherbrookeSherbrookeQuebecCanada
| | - Kevin Whittingstall
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Department of Diagnostic RadiologyUniversity of SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
96
|
Du ZR, Gu Y, Xie XM, Zhang M, Jiang GY, Chen WF. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats. J Steroid Biochem Mol Biol 2021; 214:105989. [PMID: 34478828 DOI: 10.1016/j.jsbmb.2021.105989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Genistein is an estrogen-like phytoestrogen that can exert biological effects via the crosstalk of estrogen receptor and insulin-like growth factor 1 receptor (IGF-1R). The present study aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) and IGF-1R in the anti-inflammatory effects of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in ovariectomized rats. Our results showed that genistein treatment could ameliorate the apomorphine-induced rotational behavior in LPS-induced inflammatory PD rat model. Genistein attenuated LPS-induced decrease of the contents of dopamine (DA) and its metabolites in striatum as well as the loss of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra (SN) of the lesioned side, which could be blocked by GPER antagonist G15 or IGF-1R antagonist JB1. Meanwhile, G15 or JB1 could attenuate the anti-inflammatory effects of genistein in LPS-induced microglial activation and production of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, genistein could inhibit the LPS-induced phosphorylation of p38, JNK, ERK and IκB in the lesioned side of SN and these effects could also be blocked by G15 or JB1. Taken together, our data provide the first evidence that genistein can inhibit the increase of microglia and protect dopaminergic neurons at least in part via GPER and IGF-1R signaling pathways in ovariectomized PD rat model.
Collapse
Affiliation(s)
- Zhong-Rui Du
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Laboratory of Sports of Human Science, Ludong University, Yantai, 264000, China
| | - Yu Gu
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiao-Man Xie
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mei Zhang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guo-Yi Jiang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
97
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
98
|
Yang M, Gao S, Xiong W, Zhang XY. Sex-differential associations between cognitive impairments and white matter abnormalities in first episode and drug-naïve schizophrenia. Early Interv Psychiatry 2021; 15:1179-1187. [PMID: 33058544 DOI: 10.1111/eip.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022]
Abstract
AIM Previous evidence has suggested that schizophrenia patients may display sex differences in cognitive impairments and cognitive impairments are related to disrupted white matter (WM) microstructure. The current research aims to address the intriguing possibility for the sex-specific association between cognitive deficits and WM abnormalities in first-episode and drug-naïve schizophrenia. METHODS Cognitive performance on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) was measured in 39 FEND patients (females:males = 23:16) and 30 healthy controls (females:males = 17:13), together with whole-brain WM fractional anisotropy (FA) values determined using voxel-based diffusion tensor imaging. Correlations between cognitive performance and FA values were assessed. RESULTS Patients performed significantly worse than healthy controls in the total score and most of the subscores of MCCB. Female patients displayed better cognitive performance than male patients on the Trail Making A Test, the Hopkins Verbal Learning Test and the Spatial Span Test in the Wechsler Memory Scale. More importantly, sex-differential association between cognitive performance and FA values was found in patients, but not in healthy controls. In particular, FA values in the cerebellum were negatively correlated with the continuous performance and digital sequence scores in male patients but positively correlated with the performance on the Spatial Span Test in the Wechsler Memory Scale in female patients. CONCLUSIONS These findings suggest sex-specific neurobiological substrates involved in cognitive deficits in early-onset schizophrenia and have important implications for differentially targeted interventions between males and females.
Collapse
Affiliation(s)
- Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weisen Xiong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
99
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
100
|
Qu N, Wang XM, Zhang T, Zhang SF, Li Y, Cao FY, Wang Q, Ning LN, Tian Q. Estrogen Receptor α Agonist is Beneficial for Young Female Rats Against Chronic Unpredicted Mild Stress-Induced Depressive Behavior and Cognitive Deficits. J Alzheimers Dis 2021; 77:1077-1093. [PMID: 32804146 DOI: 10.3233/jad-200486] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Women are reported more likely to develop depression and dementia. However, the involved mechanism is poorly understood. OBJECTIVE Here, we clarified the role of estrogen receptor α (ERα) in depression and cognitive deficit in young female rats. METHODS After being exposed to 7-weeks' chronic unpredicted mild stress (CUMS), the depression resilient rats (Res rats) and depressed rats (Dep rats) were selected according to their records in sucrose preference test, forced swimming test, and open field test. Their cognition abilities were tested by Morris water maze. Proteomic assay, immunoprecipitation, western blotting, immunohistochemical, and Nissl staining were also used to understand the involved mechanism. RESULTS Compared with control rats and Res rats, Dep rats showed cognitive deficits and hippocampal impairments revealed by proteomic data, neuron losses, increased cleaved caspase-3, β-catenin phosphorylation, and glycogen synthase kinase3β (GSK3β) activation. As ERα, but not ERβ, was found declined in hippocampi of Dep rats, 4,4k,4a-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT, an ERα agonist, 1 mg/kg/day), was used to treat Dep rats (Dep + PPT). Twenty days later, the depressive behaviors, cognition deficits, and hippocampal neuron loss were rescued in Dep + PPT rats. Furthermore, Res and Dep + PPT rats had higher levels of β-catenin combined with ERα and lower levels of β-catenin combined with GSK3β than Dep rats in hippocampi. CONCLUSION These results demonstrated hippocampal ERα is an important pro-resilient factor in CUMS-induced depressive behaviors and cognitive deficits. It was also given that the neuroprotection afforded by hippocampal ERα/Wnt interactions have significant implications for cognition and emotion in young females.
Collapse
Affiliation(s)
- Na Qu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Teng Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Fu-Yuan Cao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathology, Gannan Medical University Pingxiang Hospital, Pingxiang, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|