51
|
Tissue Culture Models. MOLECULAR PATHOLOGY LIBRARY 2009. [PMCID: PMC7122392 DOI: 10.1007/978-0-387-89626-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
52
|
Wu CA, Peluso JJ, Shanley JD, Puddington L, Thrall RS. Murine cytomegalovirus influences Foxj1 expression, ciliogenesis, and mucus plugging in mice with allergic airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:714-24. [PMID: 18258850 DOI: 10.2353/ajpath.2008.070462] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have followed throughout time the development of allergic airway disease (AAD) in both uninfected mice and mice infected intranasally with murine cytomegalovirus (MCMV). Histological evaluation of lung tissue from uninfected mice with AAD demonstrated mucus plugging after 14 and 21 days of ovalbumin-aerosol challenge, with resolution of mucus plugging occurring by 42 days. In MCMV/AAD mice, mucus plugging was observed after 7 days of ovalbumin-aerosol challenge and remained present at 42 days. The level of interleukin-13 in bronchoalveolar lavage fluid from MCMV/AAD mice was decreased compared with AAD mice and was accompanied by increased levels of interferon-gamma. Levels of Muc5A/C, Muc5B, or Muc2 mucin mRNA in the lungs of MCMV/AAD mice were not elevated compared with AAD mice. MCMV was able to infect the airway epithelium, resulting in decreased expression of Foxj1, a transcription factor critical for ciliogenesis, and a loss of ciliated epithelial cells. In addition, an increase in the number of epithelial cells staining positive for periodic acid-Schiff was observed in MCMV/AAD airways. Together, these findings suggest that MCMV infection of the airway epithelium enhances goblet cell metaplasia and diminishes efficient mucociliary clearance in mice with AAD, resulting in increased mucus plugging.
Collapse
Affiliation(s)
- Carol A Wu
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1319, USA.
| | | | | | | | | |
Collapse
|
53
|
|
54
|
Okazaki M, Gelman AE, Tietjens JR, Ibricevic A, Kornfeld CG, Huang HJ, Richardson SB, Lai J, Garbow JR, Patterson GA, Krupnick AS, Brody SL, Kreisel D. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants. Am J Respir Cell Mol Biol 2007; 37:625-30. [PMID: 17717320 PMCID: PMC2219553 DOI: 10.1165/rcmb.2007-0257rc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.
Collapse
Affiliation(s)
- Mikio Okazaki
- Department of Surgery, and the Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
This protocol describes the setup, maintenance and characteristics of a tissue-engineered model of the human bronchial mucosa that can be used for basic physiology and pathophysiology studies. The model includes a well-differentiated epithelium with functional cilia, mucus secretion and subepithelial fibroblasts within type I collagen. The tissue is created within porous polymeric wells to prevent gel contraction and allow culture at the air-liquid interface. It requires at least 2 wk to be established and can be maintained thereafter for over 4 wk, with tissue differentiation moving towards a more physiologically relevant phenotype with increasing time in culture. Over time, the extracellular matrix also remodels, depositing proteins such as types III and IV collagen and fibronectin. Because it recapitulates many key anatomical and functional features of the airway wall, this model is well suited for a wide range of studies, including those on airway remodeling, transepithelial transport and inflammatory cell interactions with the mucosa. The entire protocol takes 4-6 wk, including cell expansion, depending on the extent of ciliogenesis desired.
Collapse
Affiliation(s)
- Melanie M Choe
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
56
|
Cheng DS, Han W, Chen SM, Sherrill TP, Chont M, Park GY, Sheller JR, Polosukhin VV, Christman JW, Yull FE, Blackwell TS. Airway epithelium controls lung inflammation and injury through the NF-kappa B pathway. THE JOURNAL OF IMMUNOLOGY 2007; 178:6504-13. [PMID: 17475880 DOI: 10.4049/jimmunol.178.10.6504] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although airway epithelial cells provide important barrier and host defense functions, a crucial role for these cells in development of acute lung inflammation and injury has not been elucidated. We investigated whether NF-kappaB pathway signaling in airway epithelium could decisively impact inflammatory phenotypes in the lungs by using a tetracycline-inducible system to achieve selective NF-kappaB activation or inhibition in vivo. In transgenic mice that express a constitutively active form of IkappaB kinase 2 under control of the epithelial-specific CC10 promoter, treatment with doxycycline induced NF-kappaB activation with consequent production of a variety of proinflammatory cytokines, high-protein pulmonary edema, and neutrophilic lung inflammation. Continued treatment with doxycycline caused progressive lung injury and hypoxemia with a high mortality rate. In contrast, inducible expression of a dominant inhibitor of NF-kappaB in airway epithelium prevented lung inflammation and injury resulting from expression of constitutively active form of IkappaB kinase 2 or Escherichia coli LPS delivered directly to the airways or systemically via an osmotic pump implanted in the peritoneal cavity. Our findings indicate that the NF-kappaB pathway in airway epithelial cells is critical for generation of lung inflammation and injury in response to local and systemic stimuli; therefore, targeting inflammatory pathways in airway epithelium could prove to be an effective therapeutic strategy for inflammatory lung diseases.
Collapse
Affiliation(s)
- Dong-sheng Cheng
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Gomperts BN, Kim LJ, Flaherty SA, Hackett BP. IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am J Respir Cell Mol Biol 2007; 37:339-46. [PMID: 17541011 PMCID: PMC2720122 DOI: 10.1165/rcmb.2006-0400oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mucociliary clearance is essential to the defense mechanisms of the respiratory system. Loss of normal mucociliary clearance contributes to the pathogenesis of genetic and acquired lung diseases. Treatment of cultured differentiated human airway epithelial tissue with IL-13 resulted in a loss of ciliated epithelial cells and an increase in mucus-secreting cells. The loss of ciliated cells was characterized by mislocation of basal bodies and loss of ezrin from the apical cell compartment. In addition to the loss of ciliated cells and increase in mucous cells after IL-13 treatment, cells with characteristics of both ciliated and mucous cells were observed in the airway epithelium. In association with the decrease in ciliated cells after IL-13 treatment, there was noted a decrease in foxj1 expression in the airway epithelium, characterized by a decrease in the number of foxj1-expressing cells. Within the foxj1 promoter, a STAT-binding element was identified and inhibition of foxj1 expression by STAT-6 and IL-13 was demonstrated. These findings suggest molecular and cellular mechanisms for cilia loss in pulmonary disease. Inhibition of foxj1 expression results in loss of apical localization of ezrin and basal bodies with subsequent loss of axonemal structures. These findings have important implications for the pathogenesis and treatment of airway diseases.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Department of Pediatrics and Mattel Children's Hospital, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
58
|
Pan J, You Y, Huang T, Brody SL. RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J Cell Sci 2007; 120:1868-76. [PMID: 17488776 DOI: 10.1242/jcs.005306] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programs that direct cellular differentiation are dependent on the strict temporal expression of regulatory factors that can be provided by Rho GTPases. Ciliogenesis is a complex sequence of events involving the generation and docking of basal bodies at the apical membrane, followed by ciliary axoneme generation. Although a cilia proteome has been assembled, programs that direct ciliated cell differentiation are not well established, particularly in mammalian systems. Using mouse primary culture airway epithelial cells, we identified a critical stage of ciliogenesis requiring the temporal establishment of an apical web-like structure of actin for basal body docking and subsequent axoneme growth. Apical web formation and basal body docking were prevented by interruption of actin remodeling and were dependent on RhoA activation. Additional evidence for this program was provided by analysis of Foxj1-null mice that failed to dock basal bodies and lacked apical actin. Foxj1 expression coincided with actin web formation, activated RhoA and RhoB, and persisted despite RhoA inhibition, suggesting that Foxj1 promoted RhoA during ciliogenesis. Apical ezrin localization was also dependent on Foxj1, actin remodeling, and RhoA, but was not critical for ciliogenesis. Thus, temporal Foxj1 and RhoA activity are essential regulatory events for cytoskeletal remodeling during mammalian ciliogenesis.
Collapse
Affiliation(s)
- Jiehong Pan
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
59
|
Zhang Y, Huang G, Shornick LP, Roswit WT, Shipley JM, Brody SL, Holtzman MJ. A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells. Am J Respir Cell Mol Biol 2007; 36:515-9. [PMID: 17255554 PMCID: PMC1899335 DOI: 10.1165/rcmb.2006-0475rc] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ciliated airway epithelial cells are critical for mucosal barrier function, including host defense against pathogens. This cell population is often the primary target and thereby the first line of defense against many common respiratory viruses. It is also the precursor for mucous cells and thereby promotes mucociliary clearance of infectious and other noxious agents. Cells with motile cilia in other organs (e.g., brain and reproductive organs) may also have roles in development and reproduction. However, definitive proof of ciliated cell function is hampered by the lack of strategies to specifically target this cell population for loss of function in vivo. To this end, cell type-specific gene promoters have been combined with the Cre/LoxP system to disrupt genes in airway and alveolar epithelial cell populations expressing surfactant protein C (SP-C) or Clara cell secretory protein (CCSP). By contrast, an analogous system to disrupt gene function in ciliated airway epithelial cells was still needed. Here we report the generation and analysis of mouse lines with a FOXJ1 promoter driving the Cre recombinase and show that this system mediates genomic recombination specifically in ciliated cells. The pattern of recombination recapitulates endogenous FOXJ1 promoter function, being restricted to ciliated cells present in pulmonary airways as well as choroid plexus, ependyma, oviduct, and testis. This transgenic mouse system thereby offers a new strategy for specific knockouts of genes in ciliated cells. It should prove extremely useful for defining ciliated cell function in airway mucosal immunity as well as development and reproduction.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Perlman S, Holmes KV. Infection of human airway epithelia by SARS coronavirus is associated with ACE2 expression and localization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:479-84. [PMID: 17037581 PMCID: PMC7123641 DOI: 10.1007/978-0-387-33012-9_85] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
61
|
Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, Holtzman MJ, Brody SL. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 2006; 80:7469-80. [PMID: 16840327 PMCID: PMC1563738 DOI: 10.1128/jvi.02677-05] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent human infections caused by the highly pathogenic avian influenza virus H5N1 strains emphasize an urgent need for assessment of factors that allow viral transmission, replication, and intra-airway spread. Important determinants for virus infection are epithelial cell receptors identified as glycans terminated by an alpha2,3-linked sialic acid (SA) that preferentially bind avian strains and glycans terminated by an alpha2,6-linked SA that bind human strains. The mouse is often used as a model for study of influenza viruses, including recent avian strains; however, the selectivity for infection of specific respiratory cell populations is not well described, and any relationship between receptors in the mouse and human lungs is incompletely understood. Here, using in vitro human and mouse airway epithelial cell models and in vivo mouse infection, we found that the alpha2,3-linked SA receptor was expressed in ciliated airway and type II alveolar epithelial cells and was targeted for cell-specific infection in both species. The alpha2,6-linked SA receptor was not expressed in the mouse, a factor that may contribute to the inability of some human strains to efficiently infect the mouse lung. In human airway epithelial cells, alpha2,6-linked SA was expressed and functional in both ciliated and goblet cells, providing expanded cellular tropism. Differences in receptor and cell-specific expression in these species suggest that differentiated human airway epithelial cell cultures may be superior for evaluation of some human strains, while the mouse can provide a model for studying avian strains that preferentially bind only the alpha2,3-linked SA receptor.
Collapse
Affiliation(s)
- Aida Ibricevic
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Newby CM, Rowe RK, Pekosz A. Influenza A virus infection of primary differentiated airway epithelial cell cultures derived from Syrian golden hamsters. Virology 2006; 354:80-90. [PMID: 16876846 PMCID: PMC1704084 DOI: 10.1016/j.virol.2006.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 03/15/2006] [Accepted: 06/15/2006] [Indexed: 01/16/2023]
Abstract
The ability of several different influenza A virus strains to infect and replicate in primary, differentiated airway epithelial cell cultures from Syrian golden hamsters was investigated. All virus strains tested replicated equivalently in the cultures and displayed a preference for infecting nonciliated cells. This tropism correlated with the expression of both alpha2,3- and alpha2,6-linked sialic acid on the nonciliated cells. In contrast, the ciliated cells did not have detectable alpha2,6-linked sialic acid and expressed only low amounts of alpha2,3-linked sialic acid. In contrast to clinical isolates, laboratory strains of influenza A virus infected a limited number of ciliated cells at late times post-infection. The presence of alpha2,3- and alpha2,6-linked sialic acid residues on the same cell type suggests that Syrian golden hamsters and differentiated airway epithelial cell cultures derived from hamsters may provide a system for studying the reassortment of influenza A virus strains which utilize different forms of sialic acid as a primary virus receptor.
Collapse
Affiliation(s)
| | | | - Andrew Pekosz
- Depts. of Molecular Microbiology and
- Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 S.Euclid Ave., Campus Box 8230, St. Louis, MO 63110
- * corresponding author: Andrew Pekosz, ; tel: 314.747.2132;fax: 314.362.7325
| |
Collapse
|
63
|
Tyner JW, Kim EY, Ide K, Pelletier MR, Roswit WT, Morton JD, Battaile JT, Patel AC, Patterson GA, Castro M, Spoor MS, You Y, Brody SL, Holtzman MJ. Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest 2006; 116:309-21. [PMID: 16453019 PMCID: PMC1359039 DOI: 10.1172/jci25167] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 10/25/2005] [Indexed: 12/26/2022] Open
Abstract
Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Ralpha2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.
Collapse
Affiliation(s)
- Jeffrey W Tyner
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Rowe RK, Pekosz A. Bidirectional virus secretion and nonciliated cell tropism following Andes virus infection of primary airway epithelial cell cultures. J Virol 2006; 80:1087-97. [PMID: 16414986 PMCID: PMC1346943 DOI: 10.1128/jvi.80.3.1087-1097.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 11/02/2005] [Indexed: 02/02/2023] Open
Abstract
Hantavirus pulmonary syndrome (HPS) is an acute disease resulting from infection with any one of a number of New World hantaviruses. HPS has a mortality rate of 40% and, unlike many other severe respiratory diseases, often occurs in young, healthy adults. Infection is usually initiated after inhalation of rodent excreta containing virus particles, but human-to-human transmission has been documented. Postmortem tissue samples show high levels of viral antigen within the respiratory endothelium, but it is not clear how the virus can traverse the respiratory epithelium in order to initiate infection in the microvasculature. We have utilized Andes virus infection of primary, differentiated airway epithelial cells to investigate the ability of the virus to interact with and cross the respiratory epithelium. Andes virus infects the Clara and goblet cell populations but not the ciliated cells, and this infection pattern corresponds to the expression of beta(3) integrin, the viral receptor. The virus can infect via the apical or basolateral membrane, and progeny virus particles are secreted bidirectionally. There is no obvious cytopathology associated with infection, and beta(3) integrins do not appear to be critical for respiratory epithelial cell monolayer integrity. Our data suggest that hantavirus infection of the respiratory epithelium may play an important role in the early or prodrome phase of disease as well as serving as a source of virus involved in transmission.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
65
|
Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2006; 79:14614-21. [PMID: 16282461 PMCID: PMC1287568 DOI: 10.1128/jvi.79.23.14614-14621.2005] [Citation(s) in RCA: 640] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.
Collapse
Affiliation(s)
- Hong Peng Jia
- Department of Pediatrics, 240-G EMRB, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Garcia-Medina R, Dunne WM, Singh PK, Brody SL. Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells. Infect Immun 2006; 73:8298-305. [PMID: 16299327 PMCID: PMC1307054 DOI: 10.1128/iai.73.12.8298-8305.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa can notably cause both acute and chronic infection. While several virulence factors are implicated in the acute phase of infection, advances in understanding bacterial pathogenesis suggest that chronic P. aeruginosa infection is related to biofilm formation. However, the relationship between these two forms of disease is not well understood. Accumulating evidence indicates that, during acute infection, P. aeruginosa enters epithelial cells, a process viewed as either a host-mediated defense response or a pathogenic mechanism to avoid host-mediated killing. We investigated the possibility that epithelial cell entry during early P. aeruginosa-epithelial cell contact favors bacterial survival and is linked to chronic infection. Using electron microscopy and confocal microscopy to analyze primary culture airway epithelial cells infected with P. aeruginosa, we found that epithelial cells developed pod-like clusters of intracellular bacteria with regional variation in protein expression. Extracellular gentamicin added to the medium after acute infection led to the persistence of intracellular P. aeruginosa for at least 3 days. Importantly, compared to bacterial culture under planktonic conditions, the intracellular bacteria were insensitive to growth inhibition or killing by antibiotics that were capable of intraepithelial cell penetration. These findings suggest that P. aeruginosa can use airway epithelial cells as a sanctuary for persistence and develop a reversible antibiotic resistance phenotype characteristic of biofilm physiology that can contribute to development of chronic infection.
Collapse
Affiliation(s)
- Raquel Garcia-Medina
- Department of Internal Medicine, Washington University School of Medicine, Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
67
|
Gauld LM, Boynton A. Relationship between peak cough flow and spirometry in Duchenne muscular dystrophy. Pediatr Pulmonol 2005; 39:457-60. [PMID: 15765540 DOI: 10.1002/ppul.20151] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spirometry is used to monitor respiratory progress in children with Duchenne muscular dystrophy (DMD). Mucociliary clearance depends on cough strength, which can be measured by peak cough flow (PCF). It is not routinely measured in most centers. When the PCF falls below 270 l/min, mucociliary clearance is likely to be impaired during viral illnesses, and techniques to assist mucociliary clearance should be taught. There is no known association between spirometry and PCF. Our aim was to assess if PCF relates to spirometry measures, and if spirometry can be used to predict when the PCF <270 l/min. Children with DMD aged 6-19 years were recruited. Spirometry was performed with a Jaeger Masterscope with version 4.60 software. PCF was performed with a Wright peak flow meter. Data were collected into an Access '97 database, and statistics were performed with Stata 7.0. The association between PCF and spirometry was defined with linear regression. Logistic regression was used to predict the probability that the PCF would be <270 l/min for any given forced vital capacity (FVC) or forced expired volume in 1 sec (FEV1). The risk ratios for PCF <270 l/min were calculated for the spirometry parameters. PCF is associated with FVC (R2, 0.72) and FEV1 (R2, 0.69). The likelihood of PCF <270 l/min rises when FVC <2.l and FEV1 <2.l/sec. The risk ratio for PCF <270 l/min when FVC <2.1 l is 4.80 (1.72-13.40) and when FEV1 <2.1 l/sec is 3.94 (1.43-10.85). In children with DMD, PCF should be measured when FVC <2.1 l or FEV1 <2.1 l/sec, so that techniques to assist with mucociliary clearance can be effectively used.
Collapse
Affiliation(s)
- Leanne M Gauld
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, New South Wales, Australia.
| | | |
Collapse
|
68
|
Rowe RK, Brody SL, Pekosz A. Differentiated cultures of primary hamster tracheal airway epithelial cells. In Vitro Cell Dev Biol Anim 2004; 40:303-11. [PMID: 15780007 PMCID: PMC1592688 DOI: 10.1290/0408056.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 10/11/2004] [Indexed: 12/26/2022]
Abstract
Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air-liquid interface (ALI). The secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)-positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI, as judged by the appearance of beta tubulin IV-positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.
Collapse
Affiliation(s)
- Regina K. Rowe
- Molecular Microbiology and Microbial Pathogenesis Graduate Program, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, 63110 St. Louis, Missouri
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, 63110 St. Louis, Missouri
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, 63110 St. Louis, Missouri
| | - Andrew Pekosz
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, 63110 St. Louis, Missouri
- Department of Pathology and Immunology, Washington Univeristy School of Medicine, 660 South Euclid Avenue, Campus Box 8230, 63110 St. Louis, Missouri
| |
Collapse
|
69
|
Huang T, You Y, Spoor MS, Richer EJ, Kudva VV, Paige RC, Seiler MP, Liebler JM, Zabner J, Plopper CG, Brody SL. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J Cell Sci 2004; 116:4935-45. [PMID: 14625387 DOI: 10.1242/jcs.00830] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Establishment and maintenance of epithelial cell polarity depend on cytoskeletal organization and protein trafficking to polarized cortical membranes. ERM (ezrin, radixin, moesin) family members link polarized proteins with cytoskeletal actin. Although ERMs are often considered to be functionally similar, we found that, in airway epithelial cells, apical localization of ERMs depend on cell differentiation and is independently regulated. Moesin was present in the apical membrane of all undifferentiated epithelial cells. However, in differentiated cells, ezrin and moesin were selectively localized to apical membranes of ciliated airway cells and were absent from secretory cells. To identify regulatory proteins required for selective ERM trafficking, we evaluated airway epithelial cells lacking Foxj1, an F-box factor that directs programs required for cilia formation at the apical membrane. Interestingly, Foxj1 expression was also required for localization of apical ezrin, but not moesin. Additionally, membrane-cytoskeletal and threonine-phosphorylated ezrin were decreased in Foxj1-null cells, consistent with absent apical ezrin. Although apical moesin expression was present in null cells, it could not compensate for ezrin because ERM-associated EBP50 and the beta2 adrenergic receptor failed to localize apically in the absence of Foxj1. These findings indicate that Foxj1 regulates ERM proteins differentially to selectively direct the apical localization of ezrin for the organization of multi-protein complexes in apical membranes of airway epithelial cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
You Y, Huang T, Richer EJ, Schmidt JEH, Zabner J, Borok Z, Brody SL. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 286:L650-7. [PMID: 12818891 DOI: 10.1152/ajplung.00170.2003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Factors required for commitment of an undifferentiated airway epithelial cell to a ciliated cell are unknown. Cell ultrastructure analysis indicates ciliated cell commitment activates a multistage program involving synthesis of cilia precursor proteins and assembly of macromolecular complexes. Foxj1 is an f-box transcription factor expressed in ciliated cells and shown to be required for cilia formation by gene deletion in a mouse model. To identify a specific role for foxj1 in directing the ciliated cell phenotype, we evaluated the capacity of foxj1 to induce ciliogenesis and direct cilia assembly. In a primary culture model of wild-type mouse airway epithelial cells, foxj1 expression preceded the appearance of cilia and in cultured foxj1 null cells cilia did not develop. Delivery of foxj1 to polarized epithelial cell lines and primary cultured alveolar epithelial cells failed to promote ciliogenesis. Similarly, delivery of foxj1 to wild-type airway epithelial cells did not enhance the total number of ciliated cells. In contrast, delivery of foxj1 to null cells resulted in the appearance of cilia. Analysis revealed that, in the absence of foxj1, null cells contained cilia precursor basal bodies, indicating prior commitment to ciliogenesis. However, the basal bodies were disorganized within the apical compartment and failed to dock with the apical membrane. Reconstitution of foxj1 in null cells restored normal basal body organization, resulting in axoneme growth. Thus foxj1 functions in late-stage ciliogenesis to regulate programs promoting basal body docking and axoneme formation in cells previously committed to the ciliated cell phenotype.
Collapse
Affiliation(s)
- Yingjian You
- Washington Univ. School of Medicine, Campus Box 8052, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Gomperts BN, Gong-Cooper X, Hackett BP. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci 2004; 117:1329-37. [PMID: 14996907 DOI: 10.1242/jcs.00978] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead box transcription factor Foxj1 is required for cilia formation and left-right axis determination. To define the role of Foxj1 in ciliogenesis, microarray analysis was performed to identify differentially expressed genes in the pulmonary epithelium of foxj1(+/+) and foxj1(-/-) mice. In the absence of Foxj1, the expression of calpastatin, an inhibitor of the protease calpain, decreased. RNase protection confirmed the decrease in calpastatin expression and decreased calpastatin was detected in the proximal pulmonary epithelium of foxj1(-/-) mice by immunohistochemistry. No change was detected in the expression of calpain 2 in the pulmonary epithelium by western blot or immunohistochemistry. By western blot and immunofluorescence, ezrin, a substrate for calpain, was also found to decrease in the pulmonary epithelium of foxj1(-/-) mice. No change in ezrin gene expression was found by RT-PCR. A decrease in ezrin binding phosphoprotein-50 (EBP-50) was also detected by immunofluorescence in the foxj1(-/-) mouse pulmonary epithelium. Immunoelectron microscopy demonstrated ezrin associated with the basal bodies of cilia in the pulmonary epithelium. Treatment of tracheal explants from foxj1(-/-) mice with a calpain inhibitor resulted in a partial reappearance of cilia observed in these mice. Additionally, following treatment of foxj1(-/-) tracheal explants with calpain inhibitor, basal bodies were observed in an apical location along with relocalization of ezrin and EBP-50. Regulation of calpain activity by calpastatin thus provides a mechanism for regulating the anchoring of basal bodies to the apical cytoskeleton in ciliated cells. In the absence of Foxj1, decreased calpastatin expression with decreased ezrin and EBP-50 results in an inability of basal bodies to anchor to the apical cytoskeleton and subsequent failure of axonemal formation.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Developmental Biology Research Unit, The Edward R. Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
72
|
Grubb BR, Jones JH, Boucher RC. Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice. Am J Physiol Lung Cell Mol Physiol 2003; 286:L588-95. [PMID: 14633516 DOI: 10.1152/ajplung.00302.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report a novel method to measure mucociliary transport (MCT) in both the upper and lower airways of normal and CF mice. The in vivo microdialysis technique involves placing a small quantity of dye on the airway surface and a microdialysis probe a defined distance from the site of dye deposition. The dye is transported toward the probe by ciliary transport and, upon reaching the microdialysis probe, diffuses across the dialysis membrane and is collected in the dialysate leaving the probe. The rate of MCT is calculated from the length of time from dye deposition to recovery. The rate of tracheal MCT in normal mice was 2.2 +/- 0.45 (SE) mm/min (n = 6), a value similar to that in reports using other techniques. MCT in CF mice was not different (2.3 +/- 0.29, n = 6), consistent with previous observations suggesting that tracheal ion transport properties are not different between CF and normal mice. The rate of MCT in the nasal cavity of normal mice was slower than in the trachea (1.3 +/- 0.26, n = 4). MCT in the CF mouse nasal cavity (1.4 +/- 0.31, n = 8), a region in which the CF mouse exhibits bioelectric properties similar to the human CF patient, was, again, not different from the normal mouse, perhaps reflecting copious gland secretion offsetting Na(+) and liquid hyperabsorption. In conclusion, we have developed a versatile, simple in vivo method to measure MCT in both upper and lower airways of mice and larger animals.
Collapse
Affiliation(s)
- B R Grubb
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
73
|
You Y, Richer EJ, Huang T, Brody SL. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1315-21. [PMID: 12388377 DOI: 10.1152/ajplung.00169.2002] [Citation(s) in RCA: 371] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 x 10(4) cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.
Collapse
Affiliation(s)
- Yingjian You
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|