51
|
Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem J 2008; 414:205-14. [DOI: 10.1042/bj20080668] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The photosynthetic CO2-fixing enzyme Rubisco [ribulose-P2 (D-ribulose-1,5-bisphosphate) carboxylase/oxygenase] has long been a target for engineering kinetic improvements. Towards this goal we used an RDE (Rubisco-dependent Escherichia coli) selection system to evolve Synechococcus PCC6301 Form I Rubisco under different selection pressures. In the fastest growing colonies, the Rubisco L (large) subunit substitutions I174V, Q212L, M262T, F345L or F345I were repeatedly selected and shown to increase functional Rubisco expression 4- to 7-fold in the RDE and 5- to 17-fold when expressed in XL1-Blue E. coli. Introducing the F345I L-subunit substitution into Synechococcus PCC7002 Rubisco improved its functional expression 11-fold in XL1-Blue cells but could not elicit functional Arabidopsis Rubisco expression in the bacterium. The L subunit substitutions L161M and M169L were complementary in improving Rubisco yield 11-fold, whereas individually they improved yield ∼5-fold. In XL1-Blue cells, additional GroE chaperonin enhanced expression of the I174V, Q212L and M262T mutant Rubiscos but engendered little change in the yield of the more assembly-competent F345I or F345L mutants. In contrast, the Rubisco chaperone RbcX stimulated functional assembly of wild-type and mutant Rubiscos. The kinetic properties of the mutated Rubiscos varied with noticeable reductions in carboxylation and oxygenation efficiency accompanying the Q212L mutation and a 2-fold increase in Kribulose-P2 (KM for the substrate ribulose-P2) for the F345L mutant, which was contrary to the ∼30% reductions in Kribulose-P2 for the other mutants. These results confirm the RDE systems versatility for identifying mutations that improve functional Rubisco expression in E. coli and provide an impetus for developing the system to screen for kinetic improvements.
Collapse
|
52
|
Andersson I, Backlund A. Structure and function of Rubisco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:275-91. [PMID: 18294858 DOI: 10.1016/j.plaphy.2008.01.001] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Indexed: 05/18/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating CO(2) into the biosphere. At the same time Rubisco is an extremely inefficient catalyst and its carboxylase activity is compromised by an opposing oxygenase activity involving atmospheric O(2). The shortcomings of Rubisco have implications for crop yield, nitrogen and water usage, and for the global carbon cycle. Numerous high-resolution crystal structures of different forms of Rubisco are now available, including structures of mutant enzymes. This review uses the information provided in these structures in a structure-based sequence alignment and discusses Rubisco function in the context of structural variations at all levels--amino acid sequence, fold, tertiary and quaternary structure--with an evolutionary perspective and an emphasis on the structural features of the enzyme that may determine its function as a carboxylase.
Collapse
Affiliation(s)
- Inger Andersson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Husargatan 3, BMC Box 590, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|
53
|
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BIOENERGY RESEARCH 2008; 1:20-43. [PMID: 0 DOI: 10.1007/s12155-008-9008-8] [Citation(s) in RCA: 769] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
54
|
Whitney SM, Sharwood RE. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1909-21. [PMID: 18250079 DOI: 10.1093/jxb/erm311] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inability to assemble Rubisco from any photosynthetic eukaryote within Escherichia coli has hampered structure-function studies of higher plant Rubisco. Precise genetic manipulation of the tobacco chloroplast genome (plastome) by homologous recombination has facilitated the successful production of transplastomic lines that have either mutated the Rubisco large subunit (L) gene, rbcL, or replaced it with foreign variants. Here the capacity of a new tobacco transplastomic line, (cm)trL, to augment future Rubisco engineering studies is demonstrated. Initially the rbcL was replaced with the selectable marker gene, aadA, and an artificial codon-modified (cm)rbcM gene that codes for the structurally novel Rubisco dimer (L(2), approximately 100 kDa) from Rhodosprillum rubrum. To obtain (cm)trL, the aadA was excised by transiently introducing a T-DNA encoding CRE recombinase biolistically. Selection using aadA enabled transplantation of mutated and wild-type tobacco Rubisco genes into the (cm)trL plastome with an efficiency that was 3- to 10-fold higher than comparable transformations into wild-type tobacco. Transformants producing the re-introduced form I tobacco Rubisco variants (hexadecamers comprising eight L and eight small subunits, approximately 520 kDa) were identified by non-denaturing PAGE with fully segregated homoplasmic lines (where no L(2) Rubisco was produced) obtained within 6-9 weeks after transformation which enabled their Rubisco kinetics to be quickly examined. Here the usefulness of (cm)trL in more readily examining the production, folding, and assembly capabilities of both mutated tobacco and foreign form I Rubisco subunits in tobacco plastids is discussed, and the feasibility of quickly assessing the kinetic properties of those that functionally assemble is demonstrated.
Collapse
Affiliation(s)
- Spencer M Whitney
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|
55
|
Sharwood RE, von Caemmerer S, Maliga P, Whitney SM. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. PLANT PHYSIOLOGY 2008; 146:83-96. [PMID: 17993544 PMCID: PMC2230571 DOI: 10.1104/pp.107.109058] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/01/2007] [Indexed: 05/18/2023]
Abstract
Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.
Collapse
Affiliation(s)
- Robert Edward Sharwood
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
56
|
Engineering Photosynthetic Pathways. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
57
|
Kubien DS, Whitney SM, Moore PV, Jesson LK. The biochemistry of Rubisco in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1767-77. [PMID: 18227079 DOI: 10.1093/jxb/erm283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
C(4) plants have been reported to have Rubiscos with higher maximum carboxylation rates (kcat(CO(2))) and Michaelis-Menten constants (K(m)) for CO(2) (K(c)) than the enzyme from C(3) species, but variation in other kinetic parameters between the two photosynthetic pathways has not been extensively examined. The CO(2)/O(2) specificity (S(C/O)), kcat(CO(2)), K(c), and the K(m) for O(2) (K(o)) and RuBP (K(m-RuBP)), were measured at 25 degrees C, in Rubisco purified from 16 species of Flaveria (Asteraceae). Our analysis included two C(3) species of Flaveria, four C(4) species, and ten C(3)-C(4) or C(4)-like species, in addition to other C(4) (Zea mays and Amaranthus edulis) and C(3) (Spinacea oleracea and Chenopodium album) plants. The S(C/O) of the C(4) Flaveria species was about 77 mol mol(-1), which was approximately 5% lower than the corresponding value in the C(3) species. For Rubisco from the C(4) Flaverias kcat(CO(2)) and K(c) were 23% and 45% higher, respectively, than for Rubisco from the C(3) plants. Interestingly, it was found that the K(o) for Rubisco from the C(4) species F. bidentis and F. trinervia were similar to the C(3) Flaveria Rubiscos (approximately 650 microM) while the K(o) for Rubisco in the C(4) species F. kochiana, F. australasica, Z. mays, and A. edulis was reduced more than 2-fold. There were no pathway-related differences in K(m-RuBP). In the C(3)-C(4) species kcat(CO(2)) and K(c) were generally similar to the C(3) Rubiscos, but the K(o) values were more variable. The typical negative relationships were observed between S(C/O) and both kcat(CO(2)) and K(c), and a strongly positive relationship was observed between kcat(CO(2)) and Kc. However, the statistical significance of these relationships was influenced by the phylogenetic relatedness of the species.
Collapse
Affiliation(s)
- David S Kubien
- Department of Biology, The University of New Brunswick, Box 4400, Fredericton, New Brunswick, E3B 5A3, Canada.
| | | | | | | |
Collapse
|
58
|
Abstract
The discovery of the CO(2)-fixing enzyme Rubisco in the Archaebacteria has presented a conundrum in that they apparently lack the gene for phosphoribulokinase, which is required to generate Rubisco's substrate ribulose 1,5-bisphosphate (RuBP). However, two groups have now demonstrated novel RuBP synthesis pathways, demystifying Rubisco's non-autotrophic and perhaps ancient role. A new CO(2) fixing role for Rubisco, which is distinct from the globally dominant Calvin cycle, is providing important clues furthering our understanding of the evolution of autotrophy. This perspective is strengthened by the additional recognition in this commentary that some Rubisco-containing Archaea do also contain PRK and may represent an interesting autotrophic evolutionary transition. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
59
|
Watanabe H, Enomoto T, Tanaka S. Ab initio study of molecular interactions in higher plant and Galdieria partita Rubiscos with the fragment molecular orbital method. Biochem Biophys Res Commun 2007; 361:367-72. [PMID: 17651697 DOI: 10.1016/j.bbrc.2007.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/03/2007] [Indexed: 11/26/2022]
Abstract
Ribulose bisphosphate carboxylase/oxygenase (Rubisco) from one of the thermophilic red algae Galdieria partita with a high specificity factor shows a characteristic difference from higher plant Rubisco in structural change. We investigate such a difference by evaluating the inter-fragment interaction energy (IFIE) value with fragment molecular orbital (FMO) method in comparison to experimental structural studies. We found some important residues which determine the loop6 stability or which make difference in the structure between higher plant and G. partita Rubiscos. We found that amino acid change of LYS18 to ILE18 is important for the difference in location at which anion binding site is occupied, P1alpha or P1beta, when inorganic anions are bound to the enzyme. Occupation of P2 anion binding site makes the stabilizing interaction between LYS128 and the loop6 stronger. Amino acid change of HIS386 to GLN386 contributed to the difference in the loop6 stability, while amino acid change of MET472 to THR472 did not contribute to it. It is confirmed that the patterns of interactions among THR65, THR67, and THR462 are consistent with previous experimental discussions. However, we found a case that THR65 was not stabilized with anion at P1alpha binding site in a closed-state structure of G. partita Rubisco.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan.
| | | | | |
Collapse
|
60
|
Greene D, Whitney S, Matsumura I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J 2007; 404:517-24. [PMID: 17391103 PMCID: PMC1896282 DOI: 10.1042/bj20070071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photosynthetic CO2-fixing enzyme, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), is responsible for most of the world's biomass, but is a slow non-specific catalyst. We seek to identify and overcome the chemical and biological constraints that limit the evolutionary potential of Rubisco in Nature. Recently, the horizontal transfer of Calvin cycle genes (rbcL, rbcS and prkA) from cyanobacteria (Synechococcus PCC6301) to gamma-proteobacteria (Escherichia coli) was emulated in the laboratory. Three unique Rubisco variants containing single (M259T) and double (M259T/A8S, M259T/F342S) amino acid substitutions in the L (large) subunit were identified after three rounds of random mutagenesis and selection in E. coli. Here we show that the M259T mutation did not increase steady-state levels of rbcL mRNA or L protein. It instead improved the yield of properly folded L subunit in E. coli 4-9-fold by decreasing its natural propensity to misfold in vivo and/or by enhancing its interaction with the GroES-GroEL chaperonins. The addition of osmolites to the growth media enhanced productive folding of the M259T L subunit relative to the wild-type L subunit, while overexpression of the trigger factor and DnaK/DnaJ/GrpE chaperones impeded Rubisco assembly. The evolved enzymes showed improvement in their kinetic properties with the M259T variant showing a 12% increase in carboxylation turnover rate (k(c)cat), a 15% improvement in its K(M) for CO2 and no change in its K(M) for ribulose-1,5-bisphosphate or its CO2/O2 selectivity. The results of the present study show that the directed evolution of the Synechococcus Rubisco in E. coli can elicit improvements in folding and catalytic efficiency.
Collapse
Affiliation(s)
- Dina N. Greene
- *Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, U.S.A
| | - Spencer M. Whitney
- †Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Ichiro Matsumura
- *Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
61
|
|
62
|
Saschenbrecker S, Bracher A, Rao KV, Rao BV, Hartl FU, Hayer-Hartl M. Structure and Function of RbcX, an Assembly Chaperone for Hexadecameric Rubisco. Cell 2007; 129:1189-200. [PMID: 17574029 DOI: 10.1016/j.cell.2007.04.025] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/25/2007] [Accepted: 04/10/2007] [Indexed: 11/29/2022]
Abstract
After folding, many proteins must assemble into oligomeric complexes to become biologically active. Here we describe the role of RbcX as an assembly chaperone of ribulose-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme responsible for the fixation of atmospheric carbon dioxide. In cyanobacteria and plants, Rubisco is an approximately 520 kDa complex composed of eight large subunits (RbcL) and eight small subunits (RbcS). We found that cyanobacterial RbcX functions downstream of chaperonin-mediated RbcL folding in promoting the formation of RbcL(8) core complexes. Structural analysis revealed that the 15 kDa RbcX forms a homodimer with two cooperating RbcL-binding regions. A central cleft specifically binds the exposed C-terminal peptide of RbcL subunits, enabling a peripheral surface of RbcX to mediate RbcL(8) assembly. Due to the dynamic nature of these interactions, RbcX is readily displaced from RbcL(8) complexes by RbcS, producing the active enzyme. The strategies employed by RbcX in achieving substrate specificity and efficient product release may be generally relevant in assisted assembly reactions.
Collapse
Affiliation(s)
- Sandra Saschenbrecker
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
64
|
Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 2007; 18:100-6. [PMID: 17169550 DOI: 10.1016/j.copbio.2006.12.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Transgene expression from the chloroplast (plastid) genome offers several attractions to plant biotechnologists, including high-level accumulation of foreign proteins, transgene stacking in operons and a lack of epigenetic interference with the stability of transgene expression. In addition, the technology provides an environmentally benign method of plant genetic engineering, because plastids and their genetic information are maternally inherited in most crops and thus are largely excluded from pollen transmission. During the past few years, researchers in both the public and private sectors have begun to explore possible areas of application of plastid transformation in plant biotechnology as a viable alternative to conventional nuclear transgenic technologies. Recent proof-of-concept studies highlight the potential of plastid genome engineering for the expression of resistance traits, the production of biopharmaceuticals and metabolic pathway engineering in plants.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
65
|
Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2007:2975-92. [PMID: 17622414 DOI: 10.1039/b700658f] [Citation(s) in RCA: 908] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The need to reduce the accumulation of CO(2) into the atmosphere requires new technologies able to reduce the CO(2) emission. The utilization of CO(2) as a building block may represent an interesting approach to synthetic methodologies less intensive in carbon and energy. In this paper the general properties of carbon dioxide and its interaction with metal centres is first considered. The potential of carbon dioxide as a raw material in the synthesis of chemicals such as carboxylates, carbonates, carbamates is then discussed. The utilization of CO(2) as source of carbon for the synthesis of fuels or other C(1) molecules such as formic acid and methanol is also described and the conditions for its implementation are outlined. A comparison of chemical and biotechnological conversion routes of CO(2) is made and the barriers to their exploitation are highlighted.
Collapse
Affiliation(s)
- Michele Aresta
- Department of Chemistry and CIRCC, University of Bari, Via Celso Ulpiani 27, Bari, Italy.
| | | |
Collapse
|
66
|
Whitney SM, Sharwood RE. Linked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance. J Biol Chem 2006; 282:3809-18. [PMID: 17150955 DOI: 10.1074/jbc.m610479200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although transgenic manipulation in higher plants of the catalytic large subunit (L) of the photosynthetic CO2-fixing enzyme ribulose 1,5-bisphospahte carboxylase/oxygenase (Rubisco) is now possible, the manipulation of its cognate small subunit (S) is frustrated by the nuclear location of its multiple gene copies. To examine whether L and S can be engineered simultaneously by fusing them together, the subunits from Synechococcus PCC6301 Rubisco were tethered together by different linker sequences, producing variant fusion peptides. In Escherichia coli the variant PCC6301 LS fusions assembled into catalytically functional octameric ([LS]8) and hexadecameric ([[LS]8]2) quaternary structures that excluded the integration of co-expressed unfused S. Assembly of the LS fusions into Rubisco complexes was impaired 50-90% relative to the assembly of unlinked L and S into L8S8 enzyme. Assembly in E. coli was not emulated using tobacco SL fusions that accumulated entirely as insoluble protein. Catalytic measurements showed the CO2/O2 specificity, carboxylation rate, and Michaelis constants for CO2 and ribulose 1,5-bisphosphate for the cyanobacterial Rubisco complexes comprising fusions where the S was linked to the N terminus of L closely matched those of the wild-type L8S8 enzyme. In contrast, the substrate affinities and carboxylation rate of the Rubisco complexes comprising fusions where L was fused to the N terminus of S or a six-histidine tag was appended to the C terminus of L were compromised. Overall this work provides a framework for implementing an alternative strategy for exploring simultaneous engineering of modified, or foreign, Rubisco L and S subunits in higher plant plastids.
Collapse
Affiliation(s)
- Spencer M Whitney
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P O Box 475, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
67
|
Yoshida S, Inui M, Yukawa H, Kanao T, Tomizawa KI, Atomi H, Imanaka T. Phototrophic growth of a Rubisco-deficient mesophilic purple nonsulfur bacterium harboring a Type III Rubisco from a hyperthermophilic archaeon. J Biotechnol 2006; 124:532-44. [PMID: 16530868 DOI: 10.1016/j.jbiotec.2006.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 01/24/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
The hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 harbors a structurally novel, Type III Rubisco (Rbc(Tk)). In terms of protein engineering of Rubiscos, the enzyme may provide an alternative target to the conventional Type I and Type II enzymes. With a future aim to improve the catalytic properties of Rbc(Tk), here we examined whether or not the enzyme could support growth of a mesophilic organism dependent on CO2 fixation. Via double-crossover homologous recombination, we first deleted three Rubisco genes present on the chromosome of the photosynthetic mesophile Rhodopseudomonas palustris No. 7. The mutant strain (delta3) could neither grow under photoautotrophic nor photoheterotrophic conditions. We introduced the rbc(Tk) gene into strain delta3 either on a plasmid, or by integrating the gene onto the chromosome. The two transformant strains harboring rbc(Tk) displayed growth under photoautotrophic and photoheterotrophic conditions, both dependent on CO2 fixation. Specific growth rates and Rubisco activity levels were compared under photoheterotrophic conditions among the two transformants and the wild-type strain. We observed that the levels of Rubisco activity in the respective cell-free extracts correlated well with the specific growth rates. Immunoprecipitation experiments revealed that Rubisco activity detected in the transformants was derived solely from Rbc(Tk). These results demonstrated that the Type III Rbc(Tk) from a hyperthermophile could support CO2 fixation in a mesophilic organism, and that the specific growth rate of the transformant can be used as a convenient parameter for selection of engineered proteins with improved Rubisco activity.
Collapse
Affiliation(s)
- Shosuke Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
68
|
Kode V, Mudd EA, Iamtham S, Day A. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:901-9. [PMID: 16709203 DOI: 10.1111/j.1365-313x.2006.02736.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe a simple and efficient homology-based excision method to delete plastid genes. The procedure allows one or more adjacent plastid genes to be deleted without the retention of a marker gene. We used aadA-based transformation to duplicate a 649 bp region of plastid DNA corresponding to the atpB promoter region. Efficient recombination between atpB repeats deletes the intervening foreign genes and 1,984 bp of plastid DNA (co-ordinates 57,424-59,317) containing the rbcL gene. Only five foreign bases are present in DeltarbcL plants illustrating the precision of homology-based excision. Sequence analysis of non-functional rbcL-related sequences in DeltarbcL plants indicated an extra-plastidic origin. Mutant DeltarbcL plants were heterotrophic, pale-green and contained round plastids with reduced amounts of thylakoids. Restoration of autotrophy and leaf pigmentation following aadA-based transformation with the wild-type rbcL gene ruled out mutations in other genes. Excision and re-use of aadA shows that, despite the multiplicity of plastid genomes, homology-based excision ensures complete removal of functional aadA genes. Rescue of the DeltarbcL mutation and autotrophic growth stabilizes transgenic plastids in heteroplasmic transformants following antibiotic withdrawal, enhancing the overall efficiency of plastid transformation. Unlike the available set of homoplasmic knockout mutants in 25 plastid genes, the rbcL deletion mutant isolated here is readily transformed with the efficient aadA marker gene. This improvement in deletion design facilitates advanced studies that require the isolation of double mutants in distant plastid genes and the replacement of the deleted locus with site-directed mutant alleles and is not easily achieved using other methods.
Collapse
Affiliation(s)
- Vasumathi Kode
- Faculty of Life Sciences, The University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
69
|
Tcherkez GGB, Farquhar GD, Andrews TJ. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A 2006; 103:7246-51. [PMID: 16641091 PMCID: PMC1464328 DOI: 10.1073/pnas.0600605103] [Citation(s) in RCA: 470] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Indexed: 11/18/2022] Open
Abstract
The cornerstone of autotrophy, the CO(2)-fixing enzyme, d-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is hamstrung by slow catalysis and confusion between CO(2) and O(2) as substrates, an "abominably perplexing" puzzle, in Darwin's parlance. Here we argue that these characteristics stem from difficulty in binding the featureless CO(2) molecule, which forces specificity for the gaseous substrate to be determined largely or completely in the transition state. We hypothesize that natural selection for greater CO(2)/O(2) specificity, in response to reducing atmospheric CO(2):O(2) ratios, has resulted in a transition state for CO(2) addition in which the CO(2) moiety closely resembles a carboxylate group. This maximizes the structural difference between the transition states for carboxylation and the competing oxygenation, allowing better differentiation between them. However, increasing structural similarity between the carboxylation transition state and its carboxyketone product exposes the carboxyketone to the strong binding required to stabilize the transition state and causes the carboxyketone intermediate to bind so tightly that its cleavage to products is slowed. We assert that all Rubiscos may be nearly perfectly adapted to the differing CO(2), O(2), and thermal conditions in their subcellular environments, optimizing this compromise between CO(2)/O(2) specificity and the maximum rate of catalytic turnover. Our hypothesis explains the feeble rate enhancement displayed by Rubisco in processing the exogenously supplied carboxyketone intermediate, compared with its nonenzymatic hydrolysis, and the positive correlation between CO(2)/O(2) specificity and (12)C/(13)C fractionation. It further predicts that, because a more product-like transition state is more ordered (decreased entropy), the effectiveness of this strategy will deteriorate with increasing temperature.
Collapse
Affiliation(s)
- Guillaume G. B. Tcherkez
- Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Graham D. Farquhar
- Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - T. John Andrews
- Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
70
|
Parikh MR, Greene DN, Woods KK, Matsumura I. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Protein Eng Des Sel 2006; 19:113-9. [PMID: 16423843 PMCID: PMC2012944 DOI: 10.1093/protein/gzj010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Calvin Cycle is the primary conduit for the fixation of carbon dioxide into the biosphere; ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the rate-limiting fixation step. Our goal is to direct the evolution of RuBisCO variants with improved kinetic and biophysical properties. The Calvin Cycle was partially reconstructed in Escherichia coli; the engineered strain requires the Synechococcus PCC6301 RuBisCO for growth in minimal media supplemented with a pentose. We randomly mutated the gene encoding the large subunit of RuBisCO (rbcL), co-expressed the resulting library with the small subunit (rbcS) and the Synechococcus PCC7492 phosphoribulokinase (prkA), and selected hypermorphic variants. The RuBisCO variants that evolved during three rounds of random mutagenesis and selection were over-expressed, and exhibited 5-fold improvement in specific activity relative to the wild-type enzyme. These results demonstrate a new strategy for the artificial selection of RuBisCO and other non-native metabolic enzymes.
Collapse
Affiliation(s)
- Monal R. Parikh
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dina N. Greene
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | - Ichiro Matsumura
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
71
|
Raines CA. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. PLANT, CELL & ENVIRONMENT 2006; 29:331-9. [PMID: 17080589 DOI: 10.1111/j.1365-3040.2005.01488.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The limitation to photosynthetic CO2 assimilation in C3 plants in hot, dry environments is dominated by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) because CO2 availability is restricted and photorespiration is stimulated. Using a combination of genetic engineering and transgenic technology, three approaches to reduce photorespiration have been taken; two of these focused on increasing the carboxylation efficiency of Rubisco either by reducing the oxygenase reaction directly or by manipulating the Rubisco enzyme by concentrating CO2 in the region of Rubisco through the introduction of enzymes of the C4 pathway. The third approach attempted to reduce photorespiration directly by manipulation of enzymes in this pathway. The progress in each of these areas is discussed, and the most promising approaches are highlighted. Under saturating CO2 conditions, Rubisco did not limit photosynthesis, and limitation shifted to ribulose bisphosphate (RuBP) regeneration capacity of the C3 cycle. Transgenic analysis was used to identify the specific enzymes that may be targets for improving carbon fixation, and the way this may be exploited in the high CO2 future is considered.
Collapse
Affiliation(s)
- Christine A Raines
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
72
|
McNevin D, von Caemmerer S, Farquhar G. Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3883-900. [PMID: 17046981 DOI: 10.1093/jxb/erl156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The forward and reverse rate constants involved in carbamylation, activation, carboxylation, and inhibition of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) have been estimated by a new technique of simultaneous non-linear regression of a differential equation kinetic model to multiple experimental data. Parameters predicted by the model fitted to data from purified spinach enzyme in vitro included binding affinity constants for non-substrate CO2 and Mg2+ of 200+/-80 microM and 700+/-200 microM, respectively, as well as a turnover number (k(cat)) of 3.3+/-0.5 s(-1), a Michaelis half-saturation constant for carboxylation (K(M,C)) of 10+/-4 microM and a Michaelis constant for RuBP binding (K(M,RuBP)) of 1.5+/-0.5 microM. These and other constants agree well with previously measured values where they exist. The model is then used to show that slow inactivation of RuBisCO (fallover) in oxygen-free conditions at low concentrations of CO2 and Mg2+ is due to decarbamylation and binding of RuBP to uncarbamylated enzyme. In spite of RuBP binding more tightly to uncarbamylated enzyme than to the activated form, RuBisCO is activated at high concentrations of CO2 and Mg2+. This apparent paradox is resolved by considering activation kinetics and the fact that while RuBP binds tightly but slowly to uncarbamylated enzyme, it binds fast and loosely to activated enzyme. This modelling technique is presented as a new method for determining multiple kinetic data simultaneously from a limited experimental data set. The method can be used to compare the properties of RuBisCO from different species quickly and easily.
Collapse
Affiliation(s)
- Dennis McNevin
- Molecular Plant Physiology Group, Research School of Biological Sciences, Building 46, The Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
73
|
Spreitzer RJ, Peddi SR, Satagopan S. Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci U S A 2005; 102:17225-30. [PMID: 16282373 PMCID: PMC1287997 DOI: 10.1073/pnas.0508042102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation and, thus, limits agricultural productivity. However, Rubisco enzymes from different species have different catalytic constants. If the structural basis for such differences were known, a rationale could be developed for genetically engineering an improved enzyme. Residues at the bottom of the large-subunit alpha/beta-barrel active site of Rubisco from the green alga Chlamydomonas reinhardtii (methyl-Cys-256, Lys-258, and Ile-265) were previously changed through directed mutagenesis and chloroplast transformation to residues characteristic of land-plant Rubisco (Phe-256, Arg-258, and Val-265). The resultant enzyme has decreases in carboxylation efficiency and CO(2)/O(2) specificity, despite the fact that land-plant Rubisco has greater specificity than the Chlamydomonas enzyme. Because the residues are close to a variable loop between beta-strands A and B of the small subunit that can also affect catalysis, additional substitutions were created at this interface. When large-subunit Val-221 and Val-235 were changed to land-plant Cys-221 and Ile-235, they complemented the original substitutions and returned CO(2)/O(2) specificity to the normal level. Further substitution with the shorter betaA-betaB loop of the spinach small subunit caused a 12-17% increase in specificity. The enhanced CO(2)/O(2) specificity of the mutant enzyme is lower than that of the spinach enzyme, but the carboxylation and oxygenation kinetic constants are nearly indistinguishable from those of spinach and substantially different from those of Chlamydomonas Rubisco. Thus, this interface between large and small subunits, far from the active site, contributes significantly to the differences in catalytic properties between algal and land-plant Rubisco enzymes.
Collapse
Affiliation(s)
- Robert J Spreitzer
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | | | | |
Collapse
|
74
|
Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 2005; 4:957-70. [PMID: 16307108 DOI: 10.1039/b506923h] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solar energy capture, conversion into chemical energy and biopolymers by photoautotrophic organisms, is the basis for almost all life on Earth. A broad range of organisms have developed complex molecular machinery for the efficient conversion of sunlight to chemical energy over the past 3 billion years, which to the present day has not been matched by any man-made technologies. Chlorophyll photochemistry within photosystem II (PSII) drives the water-splitting reaction efficiently at room temperature, in contrast with the thermal dissociation reaction that requires a temperature of ca. 1550 K. The successful elucidation of the high-resolution structure of PSII, and in particular the structure of its Mn(4)Ca cluster provides an invaluable blueprint for designing solar powered biotechnologies for the future. This knowledge, combined with new molecular genetic tools, fully sequenced genomes, and an ever increasing knowledge base of physiological processes of oxygenic phototrophs has inspired scientists from many countries to develop new biotechnological strategies to produce renewable CO(2)-neutral energy from sunlight. This review focuses particularly on the potential of use of cyanobacteria and microalgae for biohydrogen production. Specifically this article reviews the predicted size of the global energy market and the constraints of global warming upon it, before detailing the complex set of biochemical pathways that underlie the photosynthetic process and how they could be modified for improved biohydrogen production.
Collapse
Affiliation(s)
- Olaf Kruse
- University of Bielefeld, Department of Biology, 33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
75
|
Abstract
Mitochondria and plastids (including chloroplasts) have a small but vital genetic coding capacity, but what are the properties of some genes that dictate that they must remain encoded in organelles? Mitochondria and plastids (including chloroplasts) have a small but vital genetic coding capacity, but what are the properties of some genes that dictate that they must remain encoded in organelles?
Collapse
Affiliation(s)
- Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, S106 91, Sweden
| | - James Whelan
- Plant Molecular Biology Group, School of Biomedical and Chemical Science, University of Western Australia, Nedlands 6009, Western Australia, Australia
| |
Collapse
|
76
|
Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill GG, Xu N, Liu S. Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics 2005; 5:961-72. [PMID: 15712239 DOI: 10.1002/pmic.200401131] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of the numerous factors affecting rice yield, how solar radiation is transformed into biomass through rice leaves is the most important. We have analyzed proteomic changes in rice leaves collected from six different developing stages (vegetative to ripening). We studied protein expression profiles of rice leaves by running two-dimensional gel electrophoresis. Differential protein expression among the six phases were analyzed by image analysis, which allowed the identification of 49 significantly different gel spots. The spots were further verified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, in which 89.8% of them were confirmed to be rice proteins. Finally, we confirmed some of the interesting rice proteins by immunoblotting. Three major conclusions can be drawn from these experimental results. (i) Protein expression in rice leaves, at least for high or middle abundance proteins, is attenuated during growth (especially some chloroplast proteins). However, the change is slow and the expression profiles are relatively stable during rice development. (ii) Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), a major protein in rice leaves, is expressed at constant levels at different growth stages. Interestingly, a high ratio of degradation of the RuBisCO large subunit was found in all samples. This was confirmed by two approaches, mass spectrometry and immunoblotting. The degraded fragments are similar to other digested products of RuBisCO mediated by free radials. (iii) The expression of antioxidant proteins such as superoxide dismutase and peroxidase decline at the early ripening stage.
Collapse
Affiliation(s)
- Caifeng Zhao
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Maliga P. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochem Photobiol Sci 2005; 4:971-6. [PMID: 16307109 DOI: 10.1039/b514699m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transformation of the plastid genome, until recently restricted to tobacco, is now being extended to a rapidly growing list of crops. This perspective provides an overview of emerging trends of technology development in the field with a focus on vector design and marker excision systems. The new tools will facilitate engineering of the photosynthetic machinery and enable novel agricultural and industrial applications.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
78
|
Abstract
Plastids of higher plants are semi-autonomous organelles with a small, highly polyploid genome and their own transcription-translation machinery. This review provides an overview of the technology for the genetic modification of the plastid genome including: vectors, marker genes and gene design, the use of gene knockouts and over-expression to probe plastid function and the application of site-specific recombinases for excision of target DNA. Examples for applications in basic science include the study of plastid gene transcription, mRNA editing, photosynthesis and evolution. Examples for biotechnological applications are incorporation of transgenes in the plastid genome for containment and high-level expression of recombinant proteins for pharmaceutical and industrial applications. Plastid transformation is routine only in tobacco. Progress in implementing the technology in other crops is discussed.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| |
Collapse
|
79
|
Pearce FG, Andrews TJ. The relationship between side reactions and slow inhibition of ribulose-bisphosphate carboxylase revealed by a loop 6 mutant of the tobacco enzyme. J Biol Chem 2003; 278:32526-36. [PMID: 12783874 DOI: 10.1074/jbc.m305493200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first directed mutant of a higher plant ribulose-bisphosphate carboxylase/oxygenase (Rubisco), constructed by chloroplast transformation, is catalytically impaired but still able to support the plant's photosynthesis and growth (Whitney, S. M., von Caemmerer, S., Hudson, G. S., and Andrews, T. J. (1999) Plant Physiol. 121, 579-588). This mutant enzyme has a Leu to Val substitution at residue 335 in the flexible loop 6 of the large subunit, which closes over the substrate during catalysis. Its active site was intact, as judged by its barely impaired competency in the initial enolization step of the reaction sequence, and its ability to bind tightly the intermediate analog, 2'-carboxy-D-arabinitol-1,5-bisphosphate. Prompted by observations that the mutant enzyme displayed much less slow inhibition during catalysis in vitro than the wild type, its tendency to catalyze side reactions and its response to the slow inhibitor D-xylulose-1,5-bisphosphate were studied. The lessening in slow inhibition was not caused by reduced production of inhibitory side products. Except for pyruvate production, these reactions were strongly enhanced by the mutation, as was the ability to catalyze the carboxylation of D-xylulose-1,5-bisphosphate. Rather, reduced inhibition was the result of lessened sensitivity to these inhibitors. The slow isomerization phase that characterizes inhibition of the wild-type enzyme by D-xylulose-1,5-bisphosphate was completely eliminated by the mutation, and the mutant was more adept than the wild type in catalyzing the benzylic acid-type rearrangement of D-glycero-2,3-pentodiulose-1,5-bisphosphate (produced by oxidation of the substrate, D-ribulose-1,5-bisphosphate). These observations are consistent with increased flexibility of loop 6 induced by the mutation, and they reveal the underlying mechanisms by which the side reactions cause slow inhibition.
Collapse
Affiliation(s)
- F Grant Pearce
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, P. O. Box 475, Canberra, Australian Capital Territory 2601, Australia
| | | |
Collapse
|
80
|
Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 2003; 414:130-40. [PMID: 12781764 DOI: 10.1016/s0003-9861(03)00164-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme assimilating CO2 in biology. Despite serious efforts, using many different methods, a detailed understanding of activity and regulation in Rubisco still eludes us. New results in X-ray crystallography may provide a structural framework on which to base experimental approaches for more detailed analyses of the function of Rubisco at the molecular level. This article gives a critical review of the field and summarizes recent results from structural studies of Rubisco.
Collapse
|