51
|
Ma LY, Liu SF, Du JH, Niu Y, Hou PF, Shu Q, Ma RR, Wu SD, Qu QM, Lv YL. Chronic ghrelin administration suppresses IKK/NF-κB/BACE1 mediated Aβ production in primary neurons and improves cognitive function via upregulation of PP1 in STZ-diabetic rats. Neurobiol Learn Mem 2020; 169:107155. [PMID: 31904547 DOI: 10.1016/j.nlm.2019.107155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/19/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023]
Abstract
Diabetic rats display cognition impairments accompanied by activation of NF-κB signalling and increased Aβ expression. Ghrelin has been suggested to improve cognition in diabetic rats. In this study, we investigated the role of ghrelin on cognition and NF-κB mediated Aβ production in diabetic rats. A diabetic rat model was established with streptozotocin (STZ) injection, and diabetic rats were intracerebroventricularly administered with ghrelin or (D-lys3)-GHRP-6 (DG). Our results showed that diabetic rats had cognition impairment in the Morris water maze test, accompanied by the higher expression of Aβ in the hippocampus. Western blot analysis showed that diabetic rats exhibited significantly decreased levels of GHSR-1a and protein phosphatase 1 (PP1) in the hippocampus and increased activation of the IKK/NF-κB/BACE1 pathway. Chronic ghrelin administration upregulated hippocampal PP1 expression, suppressed IKK/NF-κB/BACE1 mediated Aβ production, and improved cognition in STZ-induced diabetic rats. These effects were reversed by DG. Then, primary rat hippocampal neurons were isolated and treated with high glucose, followed by Ghrelin and DG, PP1 or IKK. Similar to the in vivo results, high glucose suppressed the expression levels of GHSR-1a and PP1, activated the IKK/NF-κB/BACE1 pathway, increased Aβ production. Ghrelin suppressed IKK/NF-κB/BACE1 induced Aβ production. This improvement was reversed by DG and a PP1 antagonist and was enhanced by the IKK antagonist. Our findings indicated that chronic ghrelin administration can suppress IKK/NF-κB/BACE1 mediated Aβ production in primary neurons with high glucose treatment and improve the cognition via PP1 upregulation in diabetic rats.
Collapse
Affiliation(s)
- Lou-Yan Ma
- The Second Department of Geriatrics, Ninth Hospital of Xi'an, Xi'an, China
| | - Song-Fang Liu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Jun-Hui Du
- Department of Ophthalmology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yu Niu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Peng-Fei Hou
- Department of Neurosurgery, Ninth Hospital of Xi'an, Xi'an, China
| | - Qing Shu
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an, China
| | - Ran-Ran Ma
- Department of Neurology, Ninth Hospital of Xi'an, Xi'an, China
| | - Song-Di Wu
- Department of Neurology, First Hospital of Xi'an, Xi'an, China.
| | - Qiu-Min Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ya-Li Lv
- Department of Neurology, Fourth Hospital of Xi'an, Xi'an, China.
| |
Collapse
|
52
|
Buntwal L, Sassi M, Morgan AH, Andrews ZB, Davies JS. Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease. Trends Endocrinol Metab 2019; 30:844-859. [PMID: 31445747 DOI: 10.1016/j.tem.2019.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
There is a close relationship between cognition and nutritional status, however, the mechanisms underlying this relationship require elucidation. The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to thrive and survive, and accumulating evidence points to ghrelin being key in promoting adult hippocampal neurogenesis and memory. Aberrant neurogenesis is linked to cognitive decline in ageing and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neurone formation is an important objective in understanding the link between nutritional status and central nervous system (CNS) function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Collapse
Affiliation(s)
- Luke Buntwal
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - Martina Sassi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - Alwena H Morgan
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - Zane B Andrews
- Department of Physiology, Biomedical Discovery Unit, Monash University, Melbourne, Australia
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK.
| |
Collapse
|
53
|
MacCormack JK, Muscatell KA. The metabolic mind: A role for leptin and ghrelin in affect and social cognition. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2019. [DOI: 10.1111/spc3.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Acute But Not Chronic Calorie Restriction Defends against Stress-Related Anxiety and Despair in a GHS-R1a-Dependent Manner. Neuroscience 2019; 412:94-104. [DOI: 10.1016/j.neuroscience.2019.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
|
55
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
56
|
Perello M, Cabral A, Cornejo MP, De Francesco PN, Fernandez G, Uriarte M. Brain accessibility delineates the central effects of circulating ghrelin. J Neuroendocrinol 2019; 31:e12677. [PMID: 30582239 DOI: 10.1111/jne.12677] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Ghrelin is a hormone produced in the gastrointestinal tract that acts via the growth hormone secretagogue receptor. In the central nervous system, ghrelin signalling is able to recruit different neuronal targets that regulate the behavioural, neuroendocrine, metabolic and autonomic effects of the hormone. Notably, several studies using radioactive or fluorescent variants of ghrelin have found that the accessibility of circulating ghrelin into the mouse brain is both strikingly low and restricted to some specific brain areas. A variety of studies addressing central effects of systemically injected ghrelin in mice have also provided indirect evidence that the accessibility of plasma ghrelin into the brain is limited. Here, we review these previous observations and discuss the putative pathways that would allow plasma ghrelin to gain access into the brain together with their physiological implications. Additionally, we discuss some potential features regarding the accessibility of plasma ghrelin into the human brain based on the observations reported by studies that investigate the consequences of ghrelin administration to humans.
Collapse
Affiliation(s)
- Mario Perello
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - María P Cornejo
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
57
|
Cavalcante DP, Turones LC, Camargo-Silva G, Santana JS, Colugnati DB, Pansani AP, Xavier CH, Henschel Pobbe RL. Role of dorsal raphe nucleus GHS-R1a receptors in the regulation of inhibitory avoidance and escape behaviors in rats. Behav Brain Res 2019; 365:178-184. [DOI: 10.1016/j.bbr.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
|
58
|
Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, Studer E, Suchankova P, Westberg L, Jerlhag E. Ghrelin and aggressive behaviours-Evidence from preclinical and human genetic studies. Psychoneuroendocrinology 2019; 104:80-88. [PMID: 30818255 DOI: 10.1016/j.psyneuen.2019.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
Abstract
Aggressive behaviour is of crucial importance in the defence for limited resources including food and mates and involves central serotonin as well as dopamine signalling. As ghrelin modulates food intake and sexual behaviour we initially investigated the hypothesis that central ghrelin signalling regulates aggressive behaviour in the resident intruder paradigm in male mice. Moreover, interaction between ghrelin signalling and serotonergic, noradrenergic as well as dopaminergic neurotransmission in aggression was investigated. The relevance of ghrelin for human aggression per se as well as for aggression induced by alcohol was evaluated in a human genetic association study comprising young men (n = 784) from the normal population assessed for anti-social behaviours. The present study demonstrates that central ghrelin infusion, but not ghrelin administered systemically, increases aggression. Moreover aggressive behaviour is decreased by pharmacological suppression of the growth hormone secretagogue receptor-1 A (GHSR-1A) by JMV2959. As indicated by the ex vivo biochemical data serotonin, rather than dopamine or noradrenaline, in amygdala may have central roles for the ability of JMV2959 to reduce aggression. This link between central serotonin, GHSR-1A and aggression is further substantiated by the behavioural data showing that JMV2959 cannot decrease aggression following depletion of central serotonin signalling. The genetic association study demonstrates that males carrying the Leu72Leu genotype of the pre-pro-ghrelin gene and displaying hazardous alcohol use are more aggressive when compared to the group carrying the Met-allele. Collectively, this contributes to the identification of central ghrelin pathway as an important modulator in the onset of aggressive behaviours in male mice.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Julia Winsa-Jörnulf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Lundström
- Institute of Neuroscience and Physiology, Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Paul Lichtenstein
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Henrik Anckarsäter
- Institute of Neuroscience and Physiology, Centre of Ethics, Law and Mental Health (CELAM), University of Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Petra Suchankova
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
59
|
Serrenho D, Santos SD, Carvalho AL. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front Cell Neurosci 2019; 13:205. [PMID: 31191250 PMCID: PMC6546032 DOI: 10.3389/fncel.2019.00205] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity of the neuronal circuits associated with feeding behavior is regulated by peripheral signals as a response to changes in the energy status of the body. These signals include glucose, free fatty acids, leptin and ghrelin and are released into circulation, being able to reach the brain. Ghrelin, a small peptide released from the stomach, is an orexigenic hormone produced in peripheral organs, and its action regulates food intake, body weight and glucose homeostasis. Behavioral studies show that ghrelin is implicated in the regulation of both hedonic and homeostatic feeding and of cognition. Ghrelin-induced synaptic plasticity has been described in neuronal circuits associated with these behaviors. In this review, we discuss the neuromodulatory mechanisms induced by ghrelin in regulating synaptic plasticity in three main neuronal circuits previously associated with feeding behaviors, namely hypothalamic (homeostatic feeding), ventral tegmental (hedonic and motivational feeding) and hippocampal (cognitive) circuits. Given the central role of ghrelin in regulating feeding behaviors, and the altered ghrelin levels associated with metabolic disorders such as obesity and anorexia, it is of paramount relevance to understand the effects of ghrelin on synaptic plasticity of neuronal circuits associated with feeding behaviors.
Collapse
Affiliation(s)
- Débora Serrenho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Sandra D Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
60
|
Ströher R, de Oliveira C, Costa Lopes B, da Silva LS, Regner GG, Richardt Medeiros H, de Macedo IC, Caumo W, Torres ILS. Maternal deprivation alters nociceptive response in a gender-dependent manner in rats. Int J Dev Neurosci 2019; 76:25-33. [PMID: 31071409 DOI: 10.1016/j.ijdevneu.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 04/07/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022] Open
Abstract
The present study aimed at investigating both the early and long-term effects of maternal deprivation as well as gender on neuromotor reflexes, anxiety behavior and thermal nociceptive responses. A total of 64 Wistar rats pups (32 males, 32 females) were utilized and were deprived of their mother for 3 h/daily, from postnatal day 1 (P1) until P10. Successively, animals were divided into 2 groups: control group (C) - pups no subjected to intervention; and the maternal-deprived group (MD): pups subjected to maternal deprivation. The neuromotor reflexes were evaluated through the righting reflex and negative geotaxis tests; the exploratory behavior by open field test (OFT); the anxiety-like behavior by elevated plus-maze test (EPM); the thermal nociceptive responses byhot plate (HP) and tail-flick (TFL) tests. All the animals subjected to maternal deprivation showed a delayed reflex response at P8 in the negative geotaxis test. In contrast, the OFT at P20 identified an effect of gender on the outer crossings and grooming as well as an interaction between gender and maternal deprivation on latency. Additionally, effect of maternal deprivation in the open and closed arms as well as gender effect in the protected head-dipping (PHD) and non-protected head-dipping (NPHD) were observed at P20 (EPM). In contrast, there were a gender effect on latency and an interaction between gender and maternal deprivation on rearing at P42. Moreover, in nociceptive tests was observed an analgesic effect induced by maternal deprivation; however, in the TFL test, only deprived females showed this effect. Surprisingly, only control animals presented an ontogeny nociceptive effect in the HP testat P21 and P43, which may be related to an increase in the inhibitory nociceptive pathways throughout life. In this way, we suggest maternal deprivation to be able to anticipate the maturation of the inhibitory nociceptive pathway. In conclusion, maternal deprivation induced a delayed reflex response at P8 and altered the anxiety and nociceptive behaviors according to the time after exposure to this stressor, in a gender-specific manner.
Collapse
Affiliation(s)
- Roberta Ströher
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica-Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Carla de Oliveira
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lisiane Santos da Silva
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Gregory Regner
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica-Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isabel Cristina de Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Universidade Federal do Pampa, São Gabriel, RS, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica-Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Farmacologia, Instituto de CiênciasBásicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
61
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
62
|
Guo L, Niu M, Yang J, Li L, Liu S, Sun Y, Zhou Z, Zhou Y. GHS-R1a Deficiency Alleviates Depression-Related Behaviors After Chronic Social Defeat Stress. Front Neurosci 2019; 13:364. [PMID: 31057357 PMCID: PMC6478702 DOI: 10.3389/fnins.2019.00364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is an important orexigenic hormone that regulates feeding, metabolism and glucose homeostasis in human and rodents. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), which is widely expressed inside and outside of the brain. Recent studies suggested that acyl-ghrelin, the active form of ghrelin, is a persistent biomarker for chronic stress exposure. However, how ghrelin/GHS-R1a signaling contributes to stress responses and mood regulation remains uncertain. In this study, we applied the chronic social defeat stress (CSDS) paradigm to both GHS-R1a knock-out (Ghsr-/-) mice and littermate control (Ghsr+/+) mice, and then measured their depression- and anxiety-related behaviors. We found that Ghsr+/+ mice, but not Ghsr-/- mice, displayed apparent anxiety and depression after CSDS, while two groups mice showed identical behaviors at baseline, non-stress state. By screening the central and peripheral responses of Ghsr-/- mice and Ghsr+/+ mice to chronic stress, we found similar elevations of total ghrelin and adrenocorticotropic hormone (ACTH) in the serum of Ghsr-/- mice and Ghsr+/+ mice after CSDS, but decreased interleukin-6 (IL-6) in the serum of defeated Ghsr-/- mice compared to defeated Ghsr+/+ mice. We also found increased concentration of brain derived neurotropic factor (BDNF) in the hippocampus of Ghsr-/- mice compared to Ghsr+/+ mice after CSDS. The basal levels of ghrelin, ACTH, IL-6, and BDNF were not different between Ghsr-/- mice and Ghsr+/+ mice. Our findings thus suggested that the differential expressions of BDNF and IL-6 after CSDS may contribute to less anxiety and less despair observed in GHS-R1a-deficient mice than in WT control mice. Therefore, ghrelin/GHS-R1a signaling may play a pro-anxiety and pro-depression effect in response to chronic stress, while GHS-R1a deficiency may provide resistance to depressive symptoms of CSDS.
Collapse
Affiliation(s)
- Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Physiology, Binzhou Medical University, Yantai, China
| | - Minglu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Clinic Laboratory, PKU Care Luzhong Hospital, Zibo, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Dongying No.1 Middle School, Dongying, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Shuhan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Zhishang Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
63
|
Mohammadi S, Oryan S, Komaki A, Eidi A, Zarei M. Effects of Hippocampal Microinjection of Irisin, an Exercise-Induced Myokine, on Spatial and Passive Avoidance Learning and Memory in Male Rats. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09842-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
64
|
Zahiri H, Rostampour M, Khakpour B, Rohampour K. The effect of ghrelin and adenosine mono phosphate kinase (AMPK) on the passive avoidance memory in male wistar rats. Neuropeptides 2019; 73:66-70. [PMID: 30553544 DOI: 10.1016/j.npep.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/25/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hamideh Zahiri
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Behrouz Khakpour
- Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
65
|
Differential expression of the ghrelin-related mRNAs GHS-R1a, GHS-R1b, and MBOAT4 in Japanese patients with schizophrenia. Psychiatry Res 2019; 272:334-339. [PMID: 30597386 DOI: 10.1016/j.psychres.2018.12.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/26/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Ghrelin regulates appetite and also plays important roles in cognition and may be involved in vulnerability to SCZ. METHODS In this study, we measured mRNA expression of the ghrelin-related molecules, growth hormone secretagogue receptor 1a (GHS-R1a) and 1b (GHS-R1b), and the ghrelin activator, membrane bound O-acyltransferase 4 (MBOAT4). Peripheral leukocytes from Japanese patients with SCZ (n = 49; 23 males, 26 females; age = 61.8 ± 13.3 years) and controls (n = 50; 25 males, 25 females; age = 62.0 ± 14.3 years) were recruited according to their clinical information. We also studied the DNA methylation rates of these genes in DNA from leukocytes. RESULTS The mRNA expression of GHS-R1a was significantly decreased in SCZ (SCZ vs. control: 0.35 ± 0.081 vs. 1.00 ± 0.059, respectively, p = 0.007), but expression levels of GHS-R1b and MBOAT4 were significantly increased in SCZ (SCZ vs. control: 2.02 ± 0.91 vs. 1.00 ± 0.32, p = 0.023, 1.37 ± 0.21 vs. 1.00 ± 0.11, respectively, p = 0.014). No differences in methylation rates for any genes were found. CONCLUSION We conclude that opposite expression of GHS-R1a and GHS-R1b, and elevated MBOAT4 mRNA expression may reflect the mechanisms of SCZ.
Collapse
|
66
|
Administration of ghrelin associated with decreased expression of matrix metalloproteinase-9 following normobaric systemic hypoxia in the brain. Endocr Regul 2018; 52:152-158. [PMID: 31517605 DOI: 10.2478/enr-2018-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE According to our previous studies, ghrelin protects blood brain barrier (BBB) integrity and it attenuates hypoxia-induced brain edema in the hypoxic conditions. However, the underlying mechanisms remain poorly understood. Several studies suggest a role for matrix metal-loproteinase-9 (MMP9) in the BBB disruption and cerebral edema formation. The present study was conducted to determine the effect of ghrelin on MMP9 protein expression in the model of acute and chronic systemic hypoxia. METHODS Adult male Wistar rats were divided into acute or chronic controls, acute or chronic hypoxia and ghrelin-treated acute or chronic hypoxia groups. The hypoxic groups were kept in the hypoxic chamber (10-11% O2) for two (acute) or ten days (chronic). Effect of ghrelin on MMP9 protein expression was assessed using immunoblotting. RESULTS Our results showed that acute and chronic systemic hypoxia increased the MMP9 protein expression in the brain (p<0.001). Treatment with ghrelin significantly attenuated this expression in the cerebral hypoxia (p<0.05). CONCLUSION Our results demonstrate that the neuroprotective effects of ghrelin may be mediated, in part, by decreasing in MMP9 production in the hypoxic brain.
Collapse
|
67
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
68
|
Morin V, Hozer F, Costemale-Lacoste JF. The effects of ghrelin on sleep, appetite, and memory, and its possible role in depression: A review of the literature. Encephale 2018; 44:256-263. [DOI: 10.1016/j.encep.2017.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
|
69
|
Morris LS, Voon V, Leggio L. Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13781. [PMID: 29797564 PMCID: PMC6252147 DOI: 10.1111/acer.13781] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Since its discovery, the gut hormone, ghrelin, has been implicated in diverse functional roles in the central nervous system. Central and peripheral interactions between ghrelin and other hormones, including the stress-response hormone cortisol, govern complex behavioral responses to external cues and internal states. By acting at ventral tegmental area dopaminergic projections and other areas involved in reward processing, ghrelin can induce both general and directed motivation for rewards, including craving for alcohol and other alcohol-seeking behaviors. Stress-induced increases in cortisol seem to increase ghrelin in the periphery, suggesting a pathway by which ghrelin influences how stressful life events trigger motivation for rewards. However, in some states, ghrelin may be protective against the anxiogenic effects of stressors. This critical review brings together a dynamic and growing literature, that is, at times inconsistent, on the relationships between ghrelin, central reward-motivation pathways, and central and peripheral stress responses, with a special focus on its emerging role in the context of alcohol use disorder.
Collapse
Affiliation(s)
- Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychology, University of Cambridge, UK
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
70
|
Mandal A, Prabhavalkar KS, Bhatt LK. Gastrointestinal hormones in regulation of memory. Peptides 2018; 102:16-25. [PMID: 29466709 DOI: 10.1016/j.peptides.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The connection between the gastrointestinal hormones and the brain has been established many years ago. This relation is termed the gut-brain axis (GBA). The GBA is a bidirectional communication which not only regulates gastrointestinal homeostasis but is also linked with higher emotional and cognitive functions. Hypothalamus plays a critical role in the regulation of energy metabolism, nutrient partitioning and control of feeding behaviors. Various gut hormones are released inside the gastrointestinal tract on food intake. These hormones act peripherally and influence the different responses of the tissues to the food intake, but do also have effects on the brain. The hypothalamus, in turn, integrates visceral function with limbic system structures such as hippocampus, amygdala, and cerebral cortex. The hippocampus has been known for its involvement in the cognitive function and the modulation of synaptic plasticity. This review aims to establish the role of various gut hormones in learning and memory, through the interaction of various receptors in the hippocampus. Understanding their role in memory can also aid in finding novel therapeutic strategies for the treatment of the neurological disorders associated with memory dysfunctions.
Collapse
Affiliation(s)
- Anwesha Mandal
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
71
|
Lalonde R, Strazielle C. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity. Rev Neurosci 2018; 28:617-648. [PMID: 28609296 DOI: 10.1515/revneuro-2016-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
Collapse
Affiliation(s)
| | - Catherine Strazielle
- , Laboratoire 'Stress, Immunité, Pathogènes' EA 7300 and Service de Microscopie Electronique, Faculté de Médecine
| |
Collapse
|
72
|
Brimijoin S, Gao Y, Geng L, Chen VP. Treating Cocaine Addiction, Obesity, and Emotional Disorders by Viral Gene Transfer of Butyrylcholinesterase. Front Pharmacol 2018. [PMID: 29535625 PMCID: PMC5835039 DOI: 10.3389/fphar.2018.00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Butyrylcholinesterase (BChE), a plasma enzyme that hydrolyses the neurotransmitter, acetylcholine relatively well, with far lower efficiency than acetylcholinesterase (AChE) but with the capability to degrade a broad range of bioactive esters. AChE is universally understood as essential to cholinergic neurotransmission, voluntary muscle performance, and cognition, among other roles, and its catalytic impact is essential for life. A total absence of BChE activity, whether by enzyme inhibition or simple lack of enzyme protein is not only compatible with life, but does not lead to obvious physiologic disturbance. However, very recent studies at Mayo Clinic have amassed support for the concept that BChE does have a true physiological role as a "ghrelin hydrolase" and, pharmacologically, as a cocaine hydrolase. Human subjects and animal mutations that lack functional BChE show higher than normal levels of ghrelin, an acylated peptide that drives hunger and feeding, along with certain emotional behaviors. Mice treated by viral gene transfer of BChE show higher plasma levels of enzyme and lower levels of ghrelin. Ghrelin is acknowledged as a driver of food-seeking and stress. This brief review examines some key phenomena and considers means of modulating BChE as treatments for cocaine addiction, anxiety, aggression, and obesity.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Vicky P Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
73
|
Beheshti S, Aslani N. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation. Neuropeptides 2018; 67:20-26. [PMID: 29137815 DOI: 10.1016/j.npep.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance.
Collapse
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Neda Aslani
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
74
|
Suda Y, Kuzumaki N, Narita M, Hamada Y, Shibasaki M, Tanaka K, Tamura H, Kawamura T, Kondo T, Yamanaka A, Narita M. Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors. Biochem Biophys Res Commun 2018; 496:1102-1108. [DOI: 10.1016/j.bbrc.2018.01.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
|
75
|
Mahbod P, Smith EP, Fitzgerald ME, Morano RL, Packard BA, Ghosal S, Scheimann JR, Perez-Tilve D, Herman JP, Tong J. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice. Endocrinology 2018; 159:388-399. [PMID: 29155981 PMCID: PMC5761608 DOI: 10.1210/en.2017-00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent.
Collapse
Affiliation(s)
- Parinaz Mahbod
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Eric P. Smith
- Department of Medicine, University of Cincinnati,
Cincinnati, Ohio 45267
| | - Maureen E. Fitzgerald
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Rachel L. Morano
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Benjamin A. Packard
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Jessie R. Scheimann
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Diego Perez-Tilve
- Department of Medicine, University of Cincinnati,
Cincinnati, Ohio 45267
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Jenny Tong
- Division of Endocrinology, Metabolism and Nutrition,
Department of Medicine, Duke University, Durham, North Carolina 27708
| |
Collapse
|
76
|
Brimijoin S, Tye S. Favorable Impact on Stress-Related Behaviors by Modulating Plasma Butyrylcholinesterase. Cell Mol Neurobiol 2018; 38:7-12. [PMID: 28712092 PMCID: PMC5775978 DOI: 10.1007/s10571-017-0523-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
In the last decade, it has become clear that the neuropeptide "ghrelin" and its principal receptor have a large impact on anxiety and stress. Our recent studies have uncovered a link between plasma butyrylcholinesterase (BChE) and ghrelin. BChE actually turns out to be the key regulator of this peptide. This article reviews our recent work on manipulating ghrelin levels in mouse blood and brain by long term elevation of BChE, leading to sustained decrease of ghrelin. That effect in turn was found to reduce stress-induced aggression in group caged mice. Positive consequences were fewer bite wounds and longer survival times. No adverse effects were observed. Further exploration may pave the way for BChE-based treatment of anxiety in humans.
Collapse
|
77
|
Farajdokht F, Mohaddes G, Shanehbandi D, Karimi P, Babri S. Ghrelin attenuated hyperalgesia induced by chronic nitroglycerin: CGRP and TRPV1 as targets for migraine management. Cephalalgia 2017; 38:1716-1730. [DOI: 10.1177/0333102417748563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background According to the neurovascular theory of migraine, activation of the trigeminovascular system contributes to the development of migraine. This study examined the effects of chronic intraperitoneal ghrelin (150 µg/kg) treatment on the development of chronic migraine induced by intermittent injection of nitroglycerin 10 mg/kg. Methods Baseline and post-drug (2 h following nitroglycerin injection) mechanical and thermal sensitivity were assessed by von Frey hair and tail immersion tests, respectively on days 1, 3, 5, 7, 9 and 11. Moreover, we investigated the effect of ghrelin treatment on nitroglycerin-induced aversive behavior by using a two-chamber conditioned place aversion paradigm. At the end of behavioral testing, on day 11, animals were sacrificed and plasma concentration of calcitonin gene-related peptide was measured using a rat-specific enzyme-linked immunosorbent assay kit. Also, real time polymerase chain reaction was used to quantify mRNA expression of calcitonin gene-related peptide and transient receptor potential vanilloid 1 in the trigeminal ganglion. Results Our results indicated that nitroglycerin activated the trigeminovascular system, which was reflected by mechanical and thermal hypersensitivity and elevation of mRNA expression of calcitonin gene-related peptide and transient receptor potential vanilloid-1, as migraine markers, and plasma calcitonin gene-related peptide levels. Moreover, chronic nitroglycerin injection induced conditioned place aversion and body weight loss. Nevertheless, ghrelin modulated nitroglycerin-triggered changes in transient receptor potential vanilloid-1 and calcitonin gene-related peptide expression, and mitigated nitroglycerin-induced hyperalgesia. Conclusion These results provide the first convincing evidence that ghrelin has a modulating effect on central sensitization induced by chronic intermittent nitroglycerin, and its antinociceptive effect may be related to a reduction of these factors in the trigeminal ganglion.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
78
|
Souza A, Carraro Detanico B, Fernandes Medeiros L, Oliveira CD, Leal Scarabelot V, Giotti Cioato S, Caumo W, Torres ILS. Acute stress disrupts temporal patterns of behavioral and biochemical parameters of rats. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1386267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andressa Souza
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Bernardo Carraro Detanico
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Liciane Fernandes Medeiros
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Carla de Oliveira
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Vanessa Leal Scarabelot
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Stefania Giotti Cioato
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Iraci LS Torres
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| |
Collapse
|
79
|
Huang R, Han J, Tian S, Cai R, Sun J, Shen Y, Wang S. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients. Oncotarget 2017; 8:15126-15135. [PMID: 28146431 PMCID: PMC5362472 DOI: 10.18632/oncotarget.14852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. RESULTS In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghrelin levels compared with their healthy-cognition subjects (all p < 0.05). Further logistic regression analysis showed that ghrelin level was one of independent factors for MCI in T2DM patients (p < 0.05). Moreover, partial correlation analysis demonstrated that ghrelin levels were positively associated with the scores of Montreal Cognitive Assessment (r = 0.196, p = 0.041) and Auditory Verbal Learning Test-delayed recall (r = 0.197, p = 0.040) after adjustment for HbA1c, FBG and HOMA-IR, wherein the latter represented episodic memory functions. No significant differences were found for the distributions of genotype and allele of ghrelin rs4684677 polymorphism between MCI and control group. MATERIALS AND METHODS A total of 218 T2DM patients, with 112 patients who satisfied the MCI diagnostic criteria and 106 who exhibited healthy cognition, were enrolled in this study. Demographic characteristics, clinical variables and cognitive performances were extensively assessed. Plasma ghrelin levels and ghrelin rs4684677 polymorphism were also determined. CONCLUSIONS Our results suggest that decreased ghrelin levels are associated with MCI, especially with episodic memory dysfunction in T2DM populations.
Collapse
Affiliation(s)
- Rong Huang
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009.,Medical School of Southeast University, Nanjing, PR China, 210009
| | - Jing Han
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Sai Tian
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Rongrong Cai
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Jie Sun
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Yanjue Shen
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Shaohua Wang
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| |
Collapse
|
80
|
The Role of Ghrelin and Ghrelin Signaling in Aging. Int J Mol Sci 2017; 18:ijms18071511. [PMID: 28704966 PMCID: PMC5536001 DOI: 10.3390/ijms18071511] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/20/2023] Open
Abstract
With our aging society, more people hope for a long and healthy life. In recent years, researchers have focused on healthy longevity factors. In particular, calorie restriction delays aging, reduces mortality, and extends life. Ghrelin, which is secreted during fasting, is well known as an orexigenic peptide. Because ghrelin is increased by caloric restriction, ghrelin may play an important role in the mechanism of longevity mediated by calorie restriction. In this review, we will discuss the role of orexigenic peptides with a particular focus on ghrelin. We conclude that the ghrelin-growth hormone secretagogue-R signaling pathway may play an important role in the anti-aging mechanism.
Collapse
|
81
|
Longitudinal changes of associations between the preproghrelin Leu72Met polymorphism with depression in Chinese Han adolescents after the Wenchuan earthquake. Psychiatr Genet 2017; 27:161-168. [PMID: 28570394 DOI: 10.1097/ypg.0000000000000180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM The present study aimed to investigate longitudinal associations of preproghrelin Leu72Met with depression in Chinese Han adolescents after the Wenchuan earthquake in 2008. MATERIALS AND METHODS A total of 709 volunteers were enrolled from a high school near the epicenter of the earthquake and 662, 643, and 510 students were finally included at 6, 12, and 18 months, respectively, after the earthquake. Depressive symptoms were assessed using the Beck Depression Inventory (BDI). The genotypes were identified by PCR-restriction fragment length polymorphism analyses and verified by DNA sequencing. RESULTS Females had a higher prevalence of depression than males at 6 months after the earthquake in 72Leu/Leu homozygotes (χ-test, P=0.007), but not in 72Met allele carriers. 72Met allele carriers had lower prevalence (χ-test, P=0.025) and BDI scores (Kruskal-Wallis test, P=0.034) than 72Leu/Leu homozygotes only among males at 18 months, but not at 6 or 12 months. The prevalence was consecutively decreased in male 72Met allele carriers (χ-test, P=0.010), but not in male 72Leu/Leu homozygotes, female 72Met allele carriers, or female 72Leu/Leu homozygotes during follow-up. Potential factors of depression prevalence and predictors of BDI scores were different between 72Leu/Leu homozygotes and 72Met allele carriers at different time points during follow-up. CONCLUSION These results suggest that the 72Met allele of the preproghrelin Leu72Met polymorphism may be associated with rehabilitation of depression in male Chinese Han adolescents after the natural disaster.
Collapse
|
82
|
Ge T, Yang W, Fan J, Li B. Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget 2017; 8:59929-59939. [PMID: 28938694 PMCID: PMC5601790 DOI: 10.18632/oncotarget.18349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, plays a major role in inhibiting seizures. However, the underlying mechanism of ghrelin's anticonvulsant action is still unclear. Nowadays, there are considerable evidences showing that ghrelin is implicated in various neurophysiological processes, including learning and memory, neuroprotection, neurogenesis, and inflammatory effects. In this review, we will summarize the effects of ghrelin on epilepsy. It may provide a comprehensive picture of the role of ghrelin in epilepsy.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
83
|
Stefanov IS, Ananiev JR, Ivanova KV, Tolekova AN, Vodenicharov AP, Gulubova MV. Distribution of ghrelin-positive mast cells in rat stomach. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1326013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
84
|
Colldén G, Tschöp MH, Müller TD. Therapeutic Potential of Targeting the Ghrelin Pathway. Int J Mol Sci 2017; 18:ijms18040798. [PMID: 28398233 PMCID: PMC5412382 DOI: 10.3390/ijms18040798] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Collapse
Affiliation(s)
- Gustav Colldén
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Institute for Diabetes and Obesity (IDO), Business Campus Garching-Hochbrück, Parkring 13, 85748 Garching, Germany.
| |
Collapse
|
85
|
Kim C, Kim S, Park S. Neurogenic Effects of Ghrelin on the Hippocampus. Int J Mol Sci 2017; 18:ijms18030588. [PMID: 28282857 PMCID: PMC5372604 DOI: 10.3390/ijms18030588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
Mammalian neurogenesis continues throughout adulthood in the subventricular zone of the lateral ventricle and in the subgranular zone of the dentate gyrus in the hippocampus. It is well known that hippocampal neurogenesis is essential in mediating hippocampus-dependent learning and memory. Ghrelin, a peptide hormone mainly synthesized in the stomach, has been shown to play a major role in the regulation of energy metabolism. A plethora of evidence indicates that ghrelin can also exert important effects on neurogenesis in the hippocampus of the adult brain. The aim of this review is to discuss the current role of ghrelin on the in vivo and in vitro regulation of neurogenesis in the adult hippocampus. We will also discuss the possible role of ghrelin in dietary restriction-induced hippocampal neurogenesis and the link between ghrelin-induced hippocampal neurogenesis and cognitive functions.
Collapse
Affiliation(s)
- Chanyang Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Sehee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
86
|
From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017; 18:ijms18020273. [PMID: 28134808 PMCID: PMC5343809 DOI: 10.3390/ijms18020273] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.
Collapse
|
87
|
Farajdokht F, Babri S, Karimi P, Alipour MR, Bughchechi R, Mohaddes G. Chronic ghrelin treatment reduced photophobia and anxiety-like behaviors in nitroglycerin- induced migraine: role of pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci 2017; 45:763-772. [DOI: 10.1111/ejn.13486] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee of Tabriz University of Medical Sciences; Tabriz Iran
| | - Shirin Babri
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Ramin Bughchechi
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
88
|
Pereira JADS, da Silva FC, de Moraes-Vieira PMM. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J Diabetes Res 2017; 2017:4527980. [PMID: 29082258 PMCID: PMC5610818 DOI: 10.1155/2017/4527980] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Corrêa da Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
89
|
Jiao Q, Du X, Li Y, Gong B, Shi L, Tang T, Jiang H. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neurosci Biobehav Rev 2016; 73:98-111. [PMID: 27993602 DOI: 10.1016/j.neubiorev.2016.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/01/2016] [Accepted: 12/10/2016] [Indexed: 02/08/2023]
Abstract
Ghrelin, a peptide released by the stomach that plays a major role in regulating energy metabolism, has recently been shown to have effects on neurobiological behaviors. Ghrelin enhances neuronal survival by reducing apoptosis, alleviating inflammation and oxidative stress, and accordingly improving mitochondrial function. Ghrelin also stimulates the proliferation, differentiation and migration of neural stem/progenitor cells (NS/PCs). Additionally, the ghrelin is benefit for the recovery of memory, mood and cognitive dysfunction after stroke or traumatic brain injury. Because of its neuroprotective and neurogenic roles, ghrelin may be used as a therapeutic agent in the brain to combat neurodegenerative disease. In this review, we highlight the pre-clinical evidence and the proposed mechanisms underlying the role of ghrelin in physiological and pathological brain function.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Bing Gong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
90
|
Chen S, Zuo X, Li Y, Jiang T, Zhang N, Dai F, Chen Q, Zhang Q. Ghrelin is a possible new predictor associated with executive function in patients with type 2 diabetes mellitus. J Diabetes Investig 2016; 8:306-313. [PMID: 27689345 PMCID: PMC5415456 DOI: 10.1111/jdi.12580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/27/2016] [Accepted: 09/27/2016] [Indexed: 01/21/2023] Open
Abstract
AIMS/INTRODUCTION The aim of the present research was to study the ghrelin level, executive function and their possible association in patients with type 2 diabetes mellitus. MATERIALS AND METHODS A total of 370 people were recruited between March 2015 and March 2016 in this study. Among them, 212 participants were patients with type 2 diabetes mellitus and 158 participants were included as the control group. Their blood sample was analyzed for the level of ghrelin and other clinical indexes. Cognitive function was measured by the Montreal Cognitive Assessment, and executive function was evaluated by the Wisconsin Card Sorting Test. RESULTS In the type 2 diabetes mellitus group, age, years of education, duration of diabetes, fasting blood glucose, glycated hemoglobin, hypertension and waist-to-hip ratio were correlated with total Montreal Cognitive Assessment scores. No association was found between ghrelin level and total Montreal Cognitive Assessment score in patients with type 2 diabetes mellitus. However, ghrelin was found to be a significant predictor for executive function impairment measured by the Wisconsin Card Sorting Test in patients with type 2 diabetes mellitus. CONCLUSIONS The level of serum ghrelin might be a biomarker of executive function and become a strong predictor of executive function impairment in patients with type 2 diabetes mellitus. Ghrelin might have a potential protective effect against cognitive function impairment in type 2 diabetes patients.
Collapse
Affiliation(s)
- Siting Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Zuo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tian Jiang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiaoer Chen
- College of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
91
|
Gastón MS, Cid MP, Salvatierra NA. Bicuculline, a GABA A-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress. Behav Brain Res 2016; 320:464-472. [PMID: 27780724 DOI: 10.1016/j.bbr.2016.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/13/2016] [Accepted: 10/21/2016] [Indexed: 02/01/2023]
Abstract
Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABAA receptor competitive antagonist) but not by diazepam (a GABAA receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABAA receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABAA receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABAA receptor.
Collapse
Affiliation(s)
- M S Gastón
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), UNC, CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina.
| | - M P Cid
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), UNC, CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina
| | - N A Salvatierra
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), UNC, CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina.
| |
Collapse
|
92
|
Stark R, Santos VV, Geenen B, Cabral A, Dinan T, Bayliss JA, Lockie SH, Reichenbach A, Lemus MB, Perello M, Spencer SJ, Kozicz T, Andrews ZB. Des-Acyl Ghrelin and Ghrelin O-Acyltransferase Regulate Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Response to Acute Stress. Endocrinology 2016; 157:3946-3957. [PMID: 27490185 DOI: 10.1210/en.2016-1306] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation status. It is therefore critical to assess and state the acylation status of plasma ghrelin in all studies. In this study we tested the effect of des-acyl ghrelin administration on the hypothalamic-pituitary-adrenal axis and on anxiety-like behavior of mice lacking endogenous ghrelin and in ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no endogenous acyl ghrelin and high endogenous des-acyl ghrelin. Our results show des-acyl ghrelin produces an anxiogenic effect under nonstressed conditions, but this switches to an anxiolytic effect under stress. Des-acyl ghrelin influences plasma corticosterone under both nonstressed and stressed conditions, although c-fos activation in the paraventricular nucleus of the hypothalamus is not different. By contrast, GOAT KO are anxious under both nonstressed and stressed conditions, although this is not due to corticosterone release from the adrenals but rather from impaired feedback actions in the paraventricular nucleus of the hypothalamus, as assessed by c-fos activation. These results reveal des-acyl ghrelin treatment and GOAT deletion have differential effects on the hypothalamic-pituitary-adrenal axis and anxiety-like behavior, suggesting that anxiety-like behavior in GOAT KO mice is not due to high plasma des-acyl ghrelin.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Vanessa V Santos
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Bram Geenen
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Agustina Cabral
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Tara Dinan
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Jacqueline A Bayliss
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Mario Perello
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Sarah J Spencer
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Tamas Kozicz
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| |
Collapse
|
93
|
Farajdokht F, Babri S, Karimi P, Mohaddes G. Ghrelin attenuates hyperalgesia and light aversion-induced by nitroglycerin in male rats. Neurosci Lett 2016; 630:30-37. [DOI: 10.1016/j.neulet.2016.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/04/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023]
|
94
|
Repeated transcranial direct current stimulation reduces food craving in Wistar rats. Appetite 2016; 103:29-37. [DOI: 10.1016/j.appet.2016.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/26/2023]
|
95
|
Kunath N, Müller NCJ, Tonon M, Konrad BN, Pawlowski M, Kopczak A, Elbau I, Uhr M, Kühn S, Repantis D, Ohla K, Müller TD, Fernández G, Tschöp M, Czisch M, Steiger A, Dresler M. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans. Neuroimage 2016; 142:465-473. [PMID: 27402596 DOI: 10.1016/j.neuroimage.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023] Open
Abstract
Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans.
Collapse
Affiliation(s)
- N Kunath
- Max Planck Institute of Psychiatry, Munich, Germany
| | - N C J Müller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Tonon
- Max Planck Institute of Psychiatry, Munich, Germany
| | - B N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Pawlowski
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A Kopczak
- Max Planck Institute of Psychiatry, Munich, Germany
| | - I Elbau
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - S Kühn
- Max Planck Institute for Human Development, Berlin, Germany
| | - D Repantis
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, CBF, Berlin, Germany
| | - K Ohla
- German Institute for Human Nutrition, Potsdam-Rehbrücke, Germany
| | - T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany; Department of Medicine, Technische Universität München, Munich, Germany
| | - G Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany; Department of Medicine, Technische Universität München, Munich, Germany
| | - M Czisch
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Dresler
- Max Planck Institute of Psychiatry, Munich, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
96
|
Palleria C, Leporini C, Maida F, Succurro E, De Sarro G, Arturi F, Russo E. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front Neuroendocrinol 2016; 42:76-92. [PMID: 27521218 DOI: 10.1016/j.yfrne.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease that can cause serious damage to various organs. Among the best-known complications, an important role is played by cognitive impairment. Impairment of cognitive functioning has been reported both in type 1 and 2 diabetes mellitus. While this comorbidity has long been known, no major advances have been achieved in clinical research; it is clear that appropriate control of blood glucose levels represents the best current (although unsatisfactory) approach in the prevention of cognitive impairment. We have focused our attention on the possible effect on the brain of antidiabetic drugs, despite their effects on blood glucose levels, giving a brief rationale on the mechanisms (e.g. GLP-1, BDNF, ghrelin) that might be involved. Indeed, GLP-1 agonists are currently clinically studied in other neurodegenerative diseases (i.e. Parkinson's and Alzheimer's disease); furthermore, also other antidiabetic drugs have proven efficacy in preclinical studies. Overall, promising results are already available and finding new intervention strategies represents a current need in this field of research.
Collapse
Affiliation(s)
- Caterina Palleria
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Christian Leporini
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Francesca Maida
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, Internal Medicine Unit of "Mater Domini", University Hospital, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, Internal Medicine Unit of "Mater Domini", University Hospital, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
97
|
Borrow AP, Stranahan AM, Suchecki D, Yunes R. Neuroendocrine Regulation of Anxiety: Beyond the Hypothalamic-Pituitary-Adrenal Axis. J Neuroendocrinol 2016; 28. [PMID: 27318180 DOI: 10.1111/jne.12403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
The central nervous system regulates and responds to endocrine signals, and this reciprocal relationship determines emotional processing and behavioural anxiety. Although the hypothalamic-pituitary-adrenal (HPA) axis remains the best-characterised system for this relationship, other steroid and peptide hormones are increasingly recognised for their effects on anxiety-like behaviour and reward. The present review examines recent developments related to the role of a number of different hormones in anxiety, including pregnane neurosteroids, gut peptides, neuropeptides and hormonal signals derived from fatty acids. Findings from both basic and clinical studies suggest that these alternative systems may complement or occlude stress-induced changes in anxiety and anxiety-like behaviour. By broadening the scope of mechanisms for depression and anxiety, it may be possible to develop novel strategies to attenuate stress-related psychiatric conditions. The targets for these potential therapies, as discussed in this review, encompass multiple circuits and systems, including those outside of the HPA axis.
Collapse
Affiliation(s)
- A P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - D Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R Yunes
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Mendoza, Mendoza, Argentina
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
98
|
Cabral A, Portiansky E, Sánchez-Jaramillo E, Zigman JM, Perello M. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology 2016; 67:27-39. [PMID: 26874559 PMCID: PMC4808343 DOI: 10.1016/j.psyneuen.2016.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin's orexigenic action vs. its role as a stress signal are anatomically dissociated.
Collapse
Affiliation(s)
| | | | | | | | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE-Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina.
| |
Collapse
|
99
|
Smethells JR, Swalve N, Brimijoin S, Gao Y, Parks RJ, Greer A, Carroll ME. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase. J Pharmacol Exp Ther 2016; 357:375-81. [PMID: 26968195 PMCID: PMC4851322 DOI: 10.1124/jpet.116.232504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse.
Collapse
Affiliation(s)
- John R Smethells
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| | - Natashia Swalve
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| | - Stephen Brimijoin
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| | - Yang Gao
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| | - Robin J Parks
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| | - Adam Greer
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| | - Marilyn E Carroll
- Research Fellow, Pharmaco-Neuro-Immunology Training Program (J.R.S.) and Department of Biological Science (A.G.), University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota Medical School (N.S., M.E.C.), Minneapolis, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota (S.B., Y.G.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (R.J.P.)
| |
Collapse
|
100
|
Brockway ET, Krater KR, Selva JA, Wauson SER, Currie PJ. Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides 2016; 79:95-102. [PMID: 27020248 DOI: 10.1016/j.peptides.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Ghrelin administration directly into hypothalamic nuclei, including the arcuate nucleus (ArcN) and the paraventricular nucleus (PVN), alters the expression of stress-related behaviors. In the present study we investigated the effect of feeding status on the ability of ghrelin to induce stress and anxiogenesis. Adult male Sprague Dawley rats were implanted with guide cannula targeting either the ArcN or PVN. In the first experiment we confirmed that ArcN and PVN ghrelin treatment produced anxiety-like behavior as measured using the elevated plus maze (EPM) paradigm. Ghrelin was administered during the early dark cycle. Immediately after microinjections rats were placed in the EPM for 5min. Both ArcN and PVN treatment reduced open arm exploration. The effect was attenuated by pretreatment with the ghrelin 1a receptor antagonist [d-Lys(3)]-GHRP-6. In a separate group of animals ghrelin was injected into either nucleus and rats were returned to their home cages for 60min with free access to food. An additional group of rats was returned to home cages with no food access. After 60min with or without food access all rats were tested in the EPM. Results indicated that food consumption just prior to EPM testing reversed the avoidance of the open arms of the EPM. In contrast, rats injected with ghrelin, placed in their home cage for 60min without food, and subsequently tested in the EPM, exhibited an increased avoidance of the open arms, consistent with stress activation. Overall, our findings demonstrate that ghrelin 1a receptor blockade and feeding status appear to impact the ability of ArcN and PVN ghrelin to elicit stress and anxiety-like behaviors.
Collapse
Affiliation(s)
- Emma T Brockway
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Katherine R Krater
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Joaquín A Selva
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Shelby E R Wauson
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Paul J Currie
- Department of Psychology, Reed College, Portland, OR 97202, United States.
| |
Collapse
|