51
|
Abstract
Within the immune system, multiple isoforms of the human prolactin receptor (PRLr) serve to mediate the effects of its ligand (PRL). Now numbering four, these isoforms are structurally and functionally distinct, demonstrating significant differences in ligand affinities, kinetics of transduction and the transduction proteins activated. The proximal transduction pathways activated during PRLr-associated signaling include the tyrosine kinases Jak2, Fyn and Tec, the phosphatase SHP-2, the guanine nucleotide exchange factor Vav, and the signaling suppressor SOCS. Differential activation of these pathways may contribute to the pleiotropism of PRL action in tissues of the immune system.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19066, USA.
| | | |
Collapse
|
52
|
Aoki N, Matsuda T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol 2002; 16:58-69. [PMID: 11773439 DOI: 10.1210/mend.16.1.0761] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the present study we examined involvement of nuclear protein tyrosine phosphatase TC-PTP in PRL-mediated signaling. TC-PTP could dephosphorylate signal transducer and activator of transcription 5a (STAT5a) and STAT5b, but the apparent dephosphorylation activity of TC-PTP was weaker than that of cytosolic PTP1B 30 min after PRL stimulation in transfected COS-7 cells, whereas both STAT5a and STAT5b were dephosphorylated to the same extent by recombinant TC-PTP and PTP1B in vitro. Tyrosine-phosphorylated STAT5 was coimmunoprecipitated with substrate trapping mutants of TC-PTP, suggesting that STAT5 is a specific substrate of TC-PTP. These observations were further extended in mammary epithelial COMMA-1D cells stably expressing TC-PTP. A time-course study revealed that dephosphorylation of STAT5 by TC-PTP was delayed compared with that by cytosolic PTP1B due to nuclear localization of TC-PTP throughout PRL stimulation in mammary epithelial cells. Endogenous beta-casein gene expression and beta-casein gene promoter activation in COS-7 cells were largely suppressed by TC-PTP wild type as well as catalytically inactive mutants, suggesting that stable complexes formed between STAT5 and TC-PTP in the nucleus. Taken together, we conclude that TC-PTP is catalytically competent with respect to dephosphorylation and deactivation of PRL-activated STAT5 in the nucleus.
Collapse
Affiliation(s)
- Naohito Aoki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
53
|
Prolactin regulates macrophage and NK cell mediated inflammation and cytotoxic response against tumor. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1567-7443(02)80020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
54
|
Dif F, Saunier E, Demeneix B, Kelly PA, Edery M. Cytokine-inducible SH2-containing protein suppresses PRL signaling by binding the PRL receptor. Endocrinology 2001; 142:5286-93. [PMID: 11713228 DOI: 10.1210/endo.142.12.8549] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibition of PRL hormone signaling by suppressor of cytokine signaling (SOCS)/cytokine-inducible SH2-containing protein (CIS) was investigated in transfected HEK 293 cells. We used the physiologically relevant wild-type beta-casein promoter as a target gene for PRL action. We demonstrate that CIS produces a 70% inhibition of PRL signaling by a mechanism distinct from, and downstream of, the effect of SOCS-1 on JAK2. This inhibition involves association with the PRL receptor (PRLR), resulting in the inhibition of signal transducer and activator of transcription 5 (STAT5) activation. Further, we show that SOCS-3 coimmunoprecipitates with the PRLR. These data suggest that SOCS-3 involves a second pathway for the inhibition of PRL signaling other than JAK2 inhibition. Additional results indicate that SOCS-2 can play a more important potentiator role on PRL signaling, resulting in a restoration of 50% of transcriptional inhibition induced by SOCS-3 and a restoration of 100% of transcriptional inhibition induced by CIS. SOCS-2 was able to block the inhibitory effect of SOCS-1. These results indicate that SOCS-2 seems to be an antagonist of the other SOCS. SOCS-1 binds JAK2 and inhibits its phosphorylation; SOCS-3 does not bind JAK2 but binds the PRLR that may mediate its inhibition of JAK2; and finally, CIS binds the PRLR but inhibits signal transducer and activator of transcription 5 rather than JAK2.
Collapse
Affiliation(s)
- F Dif
- Institut National de la Santé et la Recherche Médicale, Unité 344, Endocrinologie Moléculaire, Faculté de Médecine Necker, 75730 Paris, France
| | | | | | | | | |
Collapse
|
55
|
Frasor J, Barkai U, Zhong L, Fazleabas AT, Gibori G. PRL-induced ERalpha gene expression is mediated by Janus kinase 2 (Jak2) while signal transducer and activator of transcription 5b (Stat5b) phosphorylation involves Jak2 and a second tyrosine kinase. Mol Endocrinol 2001; 15:1941-52. [PMID: 11682625 DOI: 10.1210/mend.15.11.0722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the rat corpus luteum of pregnancy, PRL stimulation of ER expression is a prerequisite for E2 to have any luteotropic effect. Previous work from our laboratory has established that PRL stimulates ERalpha expression at the level of transcription and that the transcription factor Stat5 (signal transducer and activator of transcription 5) mediates this stimulation. Since it is well established that PRL activates Stat5 through the tyrosine kinase, Janus kinase 2 (Jak2), the role of Jak2 in PRL regulation of ERalpha expression was investigated. In primary luteinized granulosa cells, the general tyrosine kinase inhibitors, genistein and AG18, and the Jak2 inhibitor, AG490, prevented PRL stimulation of ERalpha mRNA levels, suggesting that PRL signaling to the ERalpha gene requires Jak2 activity. However, using an antibody that recognizes the tyrosine-phosphorylated forms of both Stat5a and Stat5b (Y694/Y699), it was found that AG490 could inhibit PRL-induced Stat5a phosphorylation only and had little or no effect on Stat5b phosphorylation. These effects of AG490 were confirmed in COS cells overexpressing Stat5b. Also in COS cells, a kinase-negative Jak2 prevented PRL stimulation of ERalpha promoter activity and Stat5b phosphorylation while a constitutively active Jak2 could stimulate both in the absence of PRL. Furthermore, kinase-negative-Jak2, but not AG490, could inhibit Stat5b nuclear translocation and DNA binding. Therefore, it seems that in the presence of AG490, Stat5b remains phosphorylated, is located in the nucleus and capable of binding DNA, but is apparently transcriptionally inactive. These findings suggest that PRL may activate a second tyrosine kinase, other than Jak2, that is capable of phosphorylating Stat5b without inducing transcriptional activity. To investigate whether another signaling pathway is involved, the src kinase inhibitor PP2 and the phosphoinositol-3 kinase inhibitor (PI3K), LY294002, were used. Neither inhibitor alone had any major effect on PRL regulation of ERalpha promoter activity or on PRL-induced Stat5b phosphorylation. However, the combination of AG490 and LY294002 largely prevented PRL-induced Stat5b phosphorylation. These findings indicate that PRL stimulation of ERalpha expression requires Jak2 and also that PRL can induce Stat5b phosphorylation through two tyrosine kinases, Jak2 and one downstream of PI3K. Furthermore, these results suggest that the role of Jak2 in activating Stat5b may be through a mechanism other than simply inducing Stat5b phosphorylation.
Collapse
Affiliation(s)
- J Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
56
|
Bernichtein S, Kinet S, Jeay S, Llovera M, Madern D, Martial JA, Kelly PA, Goffin V. S179D-human PRL, a pseudophosphorylated human PRL analog, is an agonist and not an antagonist. Endocrinology 2001; 142:3950-63. [PMID: 11517174 DOI: 10.1210/endo.142.9.8369] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
For many years, our group has been involved in the development of human PRL antagonists. In two recent publications, S179D-human PRL, a human PRL analog designed to mimic a putative S179-phosphorylated human PRL, was reported to be a highly potent antagonist of human PRL-induced proliferation and signaling in rat Nb2 cells. We prepared this analog with the aim of testing it in various bioassays involving the homologous, human PRL receptor. In our hands, S179D- human PRL was able to stimulate 1) the proliferation of rat Nb2 cells and of human mammary tumor epithelial cells (T-47D), 2) transcriptional activation of the lactogenic hormone response element-luciferase reporter gene, and 3) activation of the Janus kinase/signal transducer and activator of transcription and MAPK pathways. Using the previously characterized antagonist G129R-human PRL as a control, we failed to observe any evidence for antagonism of S179D-human PRL toward any of the human PRL-induced effects analyzed, including cell proliferation, transcriptional activation, and signaling. In conclusion, our data argue that S179D-human PRL is an agonist displaying slightly reduced affinity and activity due to local alteration of receptor binding site 1, and that the antagonistic properties previously attributed to S179D-human PRL cannot be confirmed in any of the assays analyzed in this study.
Collapse
Affiliation(s)
- S Bernichtein
- INSERM, U-344, Molecular Endocrinology, Faculté de Médecine Necker, 75730 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Fresno Vara JA, Cáceres MA, Silva A, Martín-Pérez J. Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 2001; 12:2171-83. [PMID: 11452011 PMCID: PMC55670 DOI: 10.1091/mbc.12.7.2171] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Prolactin (PRL) is a pleiotropic cytokine promoting cellular proliferation and differentiation. Because PRL activates the Src family of tyrosine kinases (SFK), we have studied the role of these kinases in PRL cell proliferation signaling. PRL induced [(3)H]thymidine incorporation upon transient transfection of BaF-3 cells with the PRL receptor. This effect was inhibited by cotransfection with the dominant negative mutant of c-Src (K>A295/Y>F527, SrcDM). The role of SFK in PRL-induced proliferation was confirmed in the BaF-3 PRL receptor-stable transfectant, W53 cells, where PRL induced Fyn and Lyn activation. The SFK-selective inhibitors PP1/PP2 and herbimycin A blocked PRL-dependent cell proliferation by arresting the W53 cells in G1, with no evident apoptosis. In parallel, PP1/PP2 inhibited PRL induction of cell growth-related genes c-fos, c-jun, c-myc, and odc. These inhibitors have no effect on PRL-mediated activation of Ras/Mapk and Jak/Start pathways. In contrast, they inhibited the PRL-dependent stimulation of the SFKs substrate Sam68, the phosphorylation of the tyrosine phosphatase Shp2, and the PI3K-dependent Akt and p70S6k serine kinases. Consistently, transient expression of SrcDM in W53 cells also blocked PRL activation of Akt. These results demonstrate that activation of SFKs is required for cell proliferation induced by PRL.
Collapse
Affiliation(s)
- J A Fresno Vara
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid 28029, Spain
| | | | | | | |
Collapse
|
58
|
Clevenger CV, Rycyzyn MA, Syed F, Kline JB. Prolactin Receptor Signal Transduction. PROLACTIN 2001. [DOI: 10.1007/978-1-4615-1683-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
59
|
Ali S, Ali S. Recruitment of the protein-tyrosine phosphatase SHP-2 to the C-terminal tyrosine of the prolactin receptor and to the adaptor protein Gab2. J Biol Chem 2000; 275:39073-80. [PMID: 10991949 DOI: 10.1074/jbc.m007478200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.
Collapse
Affiliation(s)
- S Ali
- Department of Medicine, Division of Hematology and Molecular Oncology Group, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
60
|
Aoki N, Matsuda T. A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J Biol Chem 2000; 275:39718-26. [PMID: 10993888 DOI: 10.1074/jbc.m005615200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin (PRL) plays a central and crucial role in the regulation of milk protein gene expression in mammary epithelial cells. PRL binding to its cognate receptor leads to receptor dimerization and activation of the tyrosine kinase Janus kinase 2 (JAK2), associated with the membrane-proximal, intracellular domain of the receptor. In turn, JAK2 phosphorylates and activates STAT5, a member of the signal transducers and activators of transcription (STAT) family. We have recently reported that 16 different protein-tyrosine phosphatases (PTP) were expressed in lactating mouse mammary gland and mammary epithelial cells (Aoki, N., Kawamura, M., Yamaguchi-Aoki, Y., Ohira, S., and Matsuda, T. (1999) J. Biochem. (Tokyo) 125, 669-675). We investigated the involvement of each PTP in PRL signaling. Among the 12 phosphatases including SHP-2 examined, a cytosolic phosphatase PTP1B was found to specifically dephosphorylate STAT5a and STAT5b in transfected COS7 and in vitro. Nuclear translocation of STAT5a and STAT5b was largely inhibited upon overexpression of PTP1B. The PRL-dependent transcriptional activation of the beta-casein gene promoter was also inhibited by PTP1B. Furthermore, retrovirus-mediated overexpression of PTP1B resulted in dephosphorylation of endogenous STAT5 and down-regulation of beta-casein gene expression in mammary epithelial COMMA-1D cells when the cells were treated with lactogenic hormones. Endogenous tyrosine-phosphorylated STAT5 proteins in mammary epithelial COMMA-1D cells as well as tyrosine-phosphorylated STAT5a and STAT5b expressed in COS7 cells were co-precipitated by substrate-trapping mutants of recombinant PTP1B. These results strongly suggest that PTP1B dephosphorylates PRL-activated STAT5a and STAT5b, thereby negatively regulating PRL-mediated signaling pathway.
Collapse
Affiliation(s)
- N Aoki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
61
|
Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX. Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 2000; 18:693-704. [PMID: 10978848 DOI: 10.1016/s0736-5748(00)00031-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In normal development, embryonic astrocytes progress through their cell lineage by acquiring differentiation, by apoptosis, and by proliferation. In this study, we show that embryonic astrocytes may maintain and make gains in differentiation as they simultaneously progress through one cell cycle when induced by prolactin (PRL). Prolactin induced the majority of astrocytes to incorporate bromodeoxyuridine (BrdU) with a four-fold increase over controls after 18 h of exposure. Investigating possible mitogenic signaling pathways we show for the first time that prolactin is coupled to a sustained phospholipase D (PLD) activation, with an efficacy similar to the phorbol ester and astrocytic mitogen 12-tetradecanoylphorbol-13-acetate (TPA). Both cyclosporine and suramin abolished this activation. Staurosporine and calphostin C also inhibited the PRL effect by 50%, consistent with involvement of protein kinase C-(PKC)-alpha, the major PKC isoform in astrocytes. Genistein and PP1 blocked the activation indicating additional regulation by cytosolic tyrosine kinases. This profile of PLD activation was suggestive of a PLD I isoform and a mitogenic response. Upon completion of the cell cycle, analysis of glia fibrillary acidic protein (GFAP) and vimentin abundance, and glutamine synthetase (GS) activity showed that astrocytes had gained in expression of differentiation markers. Moreover, the intensity of GFAP immunofluorescence was greater per cell, as was the length of the cell processes. In exploring the signaling for prolactin-induced differentiation we found that prolactin activated the tyrosine kinase Janus kinase (JAK) 2 and significantly stimulated tyrosine, phosphorylation of the prolactin receptor. Stat 1 and 3 were also activated presumably downstream to JAK2 activation. A rapid translocation of the cytosolic Stats over the nucleus was seen in nearly every astrocyte corresponding well with the gains in GFAP per cell. The Stats translocation did not depend on MEK-ERK inhibition by PD98059, inhibition of p38 by 1 microm SB203580, or Src kinase family inhibition by PP1. Our results demonstrate the ability of PRL to concurrently induce activation of PLD, a mitogenic signaling pathway in astrocytes, and prolonged stimulation of Stat1, compatible with the increased GFAP upregulation and cell differentiation. Considered together this data may provide an explanation on the fast gain in both numbers and differentiation in the astrocytic population during development (HD 09402, CRF).
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
62
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1542] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
63
|
Dalrymple A, Edery M, Jabbour HN. Sequence and functional characterisation of the marmoset monkey (Callithrix jacchus) prolactin receptor: comparative homology with the human long-form prolactin receptor. Mol Cell Endocrinol 2000; 167:89-97. [PMID: 11000523 DOI: 10.1016/s0303-7207(00)00285-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study demonstrates the cloning and in-vitro characterisation of the marmoset monkey (Callithrix jacchus) prolactin receptor cDNA. The marmoset prolactin receptor cDNA was generated by reverse transcription-polymerase chain reaction using adrenal RNA and primers designed from prolactin receptor conserved regions. Sequence analysis predicts a mature protein of 598 amino acids exclusive of the 24 amino acid signal peptide. The marmoset prolactin receptor cDNA shares 93 and 61% base pair, and 89 and 61% amino acid sequence homologies with the long form human and rat prolactin receptor cDNA, respectively. The marmoset prolactin receptor cDNA sequence retains all the receptor sequences that have been shown previously to be essential for ligand binding, structural integrity and signal transduction. Transfection of human 293 fibroblast cells with the marmoset prolactin receptor cDNA (three independent experiments) confirmed the expression of a receptor that has high binding affinity to human growth hormone (K(a)=3.6+/-0.07 nM(-1) and B(max)=7.55+/-2.06x10(-11) M) and human prolactin (K(a)=3.1+/-0.12 nM(-1) and B(max)=2.87+/-0.66x10(-11) M). Functionality of the receptor was assessed by co-transfection of 293 fibroblast cells with marmoset prolactin receptor cDNA and the Jak2 cDNA, or marmoset prolactin receptor and a Stat5 responsive element linked to the luciferase coding sequence. Incubation of the cells with 18 nM ovine prolactin resulted in rapid phosphorylation of Jak2 as ascertained by Western blotting. In addition, the marmoset prolactin receptor cDNA led to 9.06+/-0.47-fold induction of luciferase gene activity. This was comparable with the induction observed following transfection with the human prolactin receptor cDNA (8.55+/-0. 5-fold). In-vivo prolactin receptor expression in the marmoset monkey was assessed by ribonuclease protection assay and detected in a number of tissues including female reproductive organs. These data confirm the cloning and functionality of the marmoset prolactin receptor cDNA. The marmoset prolactin receptor shares a high sequence homology with the long-form human prolactin receptor, and both receptors bind hormones with comparable affinity and confer a similar intracellular response. The marmoset monkey may provide a useful tool to investigate the role of prolactin in primate reproduction.
Collapse
Affiliation(s)
- A Dalrymple
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, 37 Chalmers Street, EH3 9ET, Edinburgh, UK
| | | | | |
Collapse
|
64
|
Sorin B, Vacher AM, Djiane J, Vacher P. Role of protein kinases in the prolactin-induced intracellular calcium rise in Chinese hamster ovary cells expressing the prolactin receptor. J Neuroendocrinol 2000; 12:910-8. [PMID: 10971816 DOI: 10.1046/j.1365-2826.2000.00546.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is still only limited understanding of the early steps of prolactin signal transduction in target cells. It has been shown that prolactin actions are associated with cell protein phosphorylation, Ca2+ increases, and so on. However, the link between the activation of kinases and calcium influx or intracellular Ca2+ mobilization has not yet been clearly established. Chinese hamster ovary (CHO) cells, stably transfected with the long form of rabbit mammary gland prolactin receptor (PRL-R) cDNA were used for PRL-R signal transduction studies. Spectrofluorimetric techniques were used to measure intracellular calcium ([Ca2+]i) in cell populations with Indo1 as a calcium fluorescent probe. We demonstrate that, although protein kinase C activation (PMA or DiC8) caused a calcium influx in CHO cells, prolactin-induced PKC activation was not responsible for the early effect of prolactin on [Ca2+]i. Activation of protein kinase A (PKA) or protein kinase G did not modify [Ca2+]i and inhibition of PKA pathway did not affect the prolactin response. In the same way, phosphatidylinositol-3 kinaseinhibition had no effect on the prolactin-induced Ca2+ increase. On the other hand, tyrosine kinase inhibitors (herbimycin A, lavendustin A, and genistein) completely blocked the effect of prolactin on [Ca2+]i (influx and release). W7, a calmodulin-antagonist, and a specific inhibitor of calmodulin kinases (KN-62), only blocked prolactin-induced Ca2+ influx but had no significant effect on Ca2+ release. Using pharmacological agents, we present new data concerning the involvement of protein phosphorylations in the early effects of prolactin on ionic channels in CHO cells expressing the long form of PRL-R. Our results suggest that, at least in the very early steps of prolactin signal transduction, serine-threonine phosphorylation does not participate in the prolactin-induced calcium increase. On the other hand, tyrosine phosphorylation is a crucial, very early step, since it controls K+ channel activation, calcium influx, and intracellular calcium mobilization. Calmodulin acts later, since its inhibition only blocks the prolactin-induced Ca2+ influx.
Collapse
Affiliation(s)
- B Sorin
- Laboratory of Neurophysiology, University of Bordeaux II, CNRS UMR 5543, France
| | | | | | | |
Collapse
|
65
|
Cheng Y, Zhizhin I, Perlman RL, Mangoura D. Prolactin-induced cell proliferation in PC12 cells depends on JNK but not ERK activation. J Biol Chem 2000; 275:23326-32. [PMID: 10807911 DOI: 10.1074/jbc.m001837200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effects of pituitary and extrapituitary prolactin include cellular proliferation and differentiation. PC12 cells was used as a model to delineate respective signaling of prolactin. Prolactin acted as a mitogen for undifferentiated PC12 cells, as measured by significant increases in bromodeoxyuridine incorporation and in cell numbers, with an efficacy equal to epidermal growth factor. Both the long and short form of the prolactin receptor was expressed, yet only the long isoform was tyrosine-phosphorylated upon agonist binding. Functional prolactin receptor signaling was further demonstrated in the activation of JAK2 and phosphorylation activation of the transcription factors Stat1, -3, and -5a. Surprisingly, prolactin stimulated a sustained activation of Raf-B, without activation of the MAP kinases ERK1 or -2. Instead, in solid phase kinase assays using a glutathione S-transferase-c-Jun fusion protein (amino acids 1-79) as the substrate, a significant activation of the mitogen-activated protein Janus kinase (c-Jun N-terminal kinase; JNK) was observed. The prolactin-induced activation of JNK was prolonged and accompanied by a significant increase in c-Jun mRNA abundance and c-Jun protein synthesis. Moreover, analysis of bromodeoxyuridine incorporation at the single cell level revealed that epidermal growth factor-dependent incorporation was inhibited by PD98059 and independent of SB203580, whereas prolactin-induced incorporation was ERK and mitogen-activated protein kinase p38 independent but was abolished with JNK inhibition by 30 microm SB203580. Our studies suggest that prolactin may have a role in the growth of PC12 cells, where it stimulates concurrent mitogenic and differentiation-promoting signaling pathways.
Collapse
Affiliation(s)
- Y Cheng
- Kennedy Center, Department of Pediatrics, Committee on Neurobiology and Committee Cell Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
66
|
Yu TX, Rillema JA. Prolactin stimulation of tyrosyl phosphorylation of Shc proteins in Nb(2) lymphoma cells, but not mammary tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:89-93. [PMID: 10838162 DOI: 10.1016/s0167-4889(00)00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prolactin (PRL) stimulates lactogenesis in mammary cells and mitogenesis in a variety of cell types including Nb(2) cells. Studies indicate that a different composite of signaling pathways is involved in the PRL stimulation of mitogenesis as compared to lactogenesis. In the present studies, PRL is shown to stimulate the tyrosyl phosphorylation of all three isoforms of Shc proteins in Nb(2) cells (mitogenesis), but not in the mammary gland. Maximal phosphorylation of the Shc proteins is expressed between 10 and 15 min after a 50-ng/ml PRL treatment. In addition, there is an increased association between the Grb2 protein and Shc proteins upon PRL stimulation. However, no increased association between JAK2 and Shc proteins was observed in either the Nb(2) cells or mammary tissues.
Collapse
Affiliation(s)
- T X Yu
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | | |
Collapse
|
67
|
Tse DL, Chow BK, Chan CB, Lee LT, Cheng CH. Molecular cloning and expression studies of a prolactin receptor in goldfish (Carassius auratus). Life Sci 2000; 66:593-605. [PMID: 10794515 DOI: 10.1016/s0024-3205(99)00632-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A full-length cDNA clone, of a size of 4.6 kb, for the goldfish prolactin receptor has been isolated. This cDNA clone encodes a protein of 600 amino acids homologous to prolactin receptors of other species. A Kyte-Doolittle hydropathy analysis of the receptor indicates that the translated protein consists of a signal peptide of 22 amino acids, an extracellular domain of 228 amino acids, a single transmembrane domain of 24 amino acids, and an intracellular domain of 346 amino acids. Several characteristic landmarks of prolactin receptor could be identified in this clone. These include the four conserved cysteine residues and the WS motif within the extracellular domain, and the box 1 and box 2 regions of the intracellular domain. Among all the prolactin receptor sequences known to date, this clone bears the closest resemblance to the tilapia prolactin receptor, although homology between these two fish prolactin receptors is rather low. There are only 57.4% of nucleotide and 48.3% of amino acid sequence identities between these two fish receptors. This receptor cDNA was transfected into CHO-K1 cells for functional analysis. RT-PCR analysis with a pair of gene specific primers indicate that the receptor was transcribed in the transfected cells. Using a cell proliferation assay based on the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, the receptor transfected CHO-K1 cells can be stimulated to proliferate upon the addition of ovine prolactin in the culture medium. The tissue distribution of the prolactin receptor in goldfish was studied by RT-PCR/Southern analysis and by Northern analysis. The results indicated that the receptor is expressed mostly in the kidney, the gill and the intestine of goldfish, corroborating with the osmoregulatory role of prolactin in fish. In addition, an appreciable level of the receptor is also found in the brain and gonads of goldfish. Northern analysis showed that there are two transcript sizes, a major 4.6 kb and a minor 3.5 kb mRNAs, in the kidney, gill and intestine.
Collapse
Affiliation(s)
- D L Tse
- Department of Zoology, University of Hong Kong, Pokfulam, China
| | | | | | | | | |
Collapse
|
68
|
Olazabal I, Muñoz J, Ogueta S, Obregón E, García-Ruiz JP. Prolactin (PRL)-PRL receptor system increases cell proliferation involving JNK (c-Jun amino terminal kinase) and AP-1 activation: inhibition by glucocorticoids. Mol Endocrinol 2000; 14:564-75. [PMID: 10770493 DOI: 10.1210/mend.14.4.0442] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PRL receptor (PRLR) signal transduction supports PRL-induced growth/differentiation processes. While PRL is known to activate Jak2-Stat5 (signal transducer and activator of transcription 5) signaling pathway, the mechanism by which cell proliferation is stimulated is less known. We show that PRL induces proliferation of bovine mammary gland epithelial cells and AP-1 site activation. Using PRLR mutants and the PRLR short form, we have found that both homodimerization of PRLR wild type and the integrity of box-1 and C-distal tyrosine of PRLR intracellular domain are needed in PRL-induced proliferation and AP-1 activation. The effect of PRL has been assayed in the presence of dexamethasone (Dex), insulin, and alone. We found that Dex negatively regulates PRL-induced proliferation and AP-1 site activation. We demonstrate that PRL exerts activation of AP-1 transcriptional complex, and the mechanism by which this activation is produced is also studied. We show that PRL induces an increase in the c-Jun content of AP-1 transcriptional complexes. The PRL-induced c-Jun of AP-1 transcriptional complex diminishes in the presence of Dex in a dose-dependent manner. Dex inhibition was reversed by the higher concentration of PRL added to cells. Despite the fact that the regulation of the AP-1 site is complex, we found that PRL activates the c-Jun amino terminal kinase (JNK), while glucocorticoid prevents this JNK activation. These data support a regulation of cellular growth by PRL-PRLR system by increasing AP-1 transcriptional complex activity via JNK activation. JNK activation can be repressed by glucocorticoid in a DNA-binding-independent manner.
Collapse
Affiliation(s)
- I Olazabal
- Departamento de Biología Molecular-Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
69
|
Cassy S, Charlier M, Bélair L, Guillomot M, Laud K, Djiane J. Increase in prolactin receptor (PRL-R) mRNA level in the mammary gland after hormonal induction of lactation in virgin ewes. Domest Anim Endocrinol 2000; 18:41-55. [PMID: 10701763 DOI: 10.1016/s0739-7240(99)00062-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In order to examine the hormonal regulation of the prolactin-receptor (PRL-R) gene expression during mammary gland development, ewes were treated to induce lactation via an estrogen-progesterone-hydrocortisone and ovine growth hormone treatment. In situ hybridization analysis was used and revealed that sex steroids increased PRL-R mRNA levels in the mammary gland. Using RNase protection assay we showed that the estradiol + progesterone treatment increased both the levels of the long and the short forms of PRL-R mRNA. Addition of hydrocortisone increased the level of alphaS1-casein transcripts and the level of the ratio of the long to the short form of the PRL-R mRNA. This ratio can be further enhanced by addition of ovine growth hormone to the latter treatment. This suggests a role of hydrocortisone and ovine growth hormone in the alternative splicing that leads to the preferential expression of the long form of the PRL-R mRNA. In conclusion, the present experiments suggest that estrogen, progesterone and hydrocortisone are the major regulators of the PRL-R gene expression during pregnancy and prepare the mammary gland for its differentiation.
Collapse
MESH Headings
- Alternative Splicing/physiology
- Animals
- Blotting, Northern/veterinary
- DNA Primers/chemistry
- Electrophoresis, Agar Gel
- Electrophoresis, Polyacrylamide Gel/veterinary
- Estrogens/physiology
- Female
- Gene Expression Regulation, Developmental
- Growth Hormone/physiology
- Hydrocortisone/physiology
- Image Processing, Computer-Assisted
- In Situ Hybridization/veterinary
- Lactation
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/physiology
- Progesterone/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/isolation & purification
- Receptors, Prolactin/analysis
- Receptors, Prolactin/genetics
- Receptors, Prolactin/physiology
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Ribonucleases/chemistry
- Sheep/growth & development
- Sheep/physiology
Collapse
Affiliation(s)
- S Cassy
- Laboratoire de Biologie Cellulaire et Moleculaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
70
|
Tomic S, Chughtai N, Ali S. SOCS-1, -2, -3: selective targets and functions downstream of the prolactin receptor. Mol Cell Endocrinol 1999; 158:45-54. [PMID: 10630404 DOI: 10.1016/s0303-7207(99)00180-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Suppressors of cytokine signaling, SOCS-1, SOCS-2 and SOCS-3, are non-transmembrane proteins with Src-homology-2 (SH2) domain, involved in negative regulation of the Janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway. Using transient overexpression system the role of SOCS proteins in regulating prolactin receptor intracellular mediators leading to gene activation was analyzed. Overexpression of SOCS-1 led to a significant reduction in PRLR-mediated tyrosyl phosphorylation of Jak2, PRLR, Stat5 and the cytoplasmic protein tyrosine phosphatase SHP2. Overexpression of SOCS-3 however, led to selective inhibition in PRLR-mediated tyrosyl phosphorylation of Jak2, the PRLR as well as SHP2. On the other hand, overexpression of SOCS-2 had no inhibitory effects on the tyrosyl phosphorylation status of the PRLR, Jak2, Stat5 or SHP2 in response to PRLR activation. Finally, the role of SOCS proteins in regulating the biological activity of the PRLR was investigated. Unlike SOCS-2, both SOCS-1 and SOCS-3 abolished the ability of the PRLR to induce beta-casein gene promoter activation. These results demonstrate that SOCS-1, SOCS-2 and SOCS-3 are differentially implicated in PRLR signaling to gene activation.
Collapse
Affiliation(s)
- S Tomic
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montréal, Qué., Canada
| | | | | |
Collapse
|
71
|
Kline JB, Roehrs H, Clevenger CV. Functional characterization of the intermediate isoform of the human prolactin receptor. J Biol Chem 1999; 274:35461-8. [PMID: 10585417 DOI: 10.1074/jbc.274.50.35461] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin-dependent signaling occurs as the result of ligand-induced dimerization of the prolactin receptor (PRLr). While three PRLr isoforms have been characterized in the rat, studies have suggested the existence of several human isoforms in breast carcinoma species and normal tissues. Reverse transcription polymerase chain reaction was performed on mRNA isolated from the breast carcinoma cell line T47D, revealing two predominant receptor isoforms: the previously described long PRLr and a novel human intermediate PRLr. The nucleotide sequence of the intermediate isoform was found to be identical to the long isoform except for a 573-base pair deletion occurring at a consensus splice site, resulting in a frameshift and truncated intracytoplasmic domain. Scatchard analysis of the intermediate PRLr revealed an affinity for PRL comparable with the long PRLr. While Ba/F3 transfectants expressing the long PRLr proliferated in response to PRL, intermediate PRLr transfectants exhibited modest incorporation of [(3)H]thymidine. Significantly, however, both the long and intermediate PRLr were equivalent in their inhibition of apoptosis of the Ba/F3 transfectants after PRL treatment. The activation of proximal signaling molecules also differed between isoforms. Upon ligand binding, Jak2 and Fyn were activated in CHO-K1 cells transiently transfected with the long PRLr. In contrast, the intermediate PRLr transfectants showed equivalent levels of Jak2 activation but only minimal activation of Fyn. Last, Northern analysis revealed variable tissue expression of intermediate PRLr transcript that differed from that of the long PRLr. Taken together, differences in signaling and tissue expression suggest that the human intermediate PRLr differs from the long PRLr in physiological function.
Collapse
Affiliation(s)
- J B Kline
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
72
|
Goffin V, Binart N, Clément-Lacroix P, Bouchard B, Bole-Feysot C, Edery M, Lucas BK, Touraine P, Pezet A, Maaskant R, Pichard C, Helloco C, Baran N, Favre H, Bernichtein S, Allamando A, Ormandy C, Kelly PA. From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:189-201. [PMID: 10596761 DOI: 10.1016/s1050-3862(99)00025-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prolactin (PRL), a polypeptide hormone secreted mainly by the pituitary and, to a lesser extent, by peripheral tissues, affects more physiological processes than all other pituitary hormones combined since it is involved in > 300 separate functions in vertebrates. Its main actions are related to lactation and reproduction. The initial step of PRL action is the binding to a specific membrane receptor, the PRLR, which belongs to the class 1 cytokine receptor superfamily. PRL-binding sites have been identified in a number of tissues and cell types in adult animals. Signal transduction by this receptor is mediated, at least in part, by two families of signaling molecules: Janus tyrosine kinases and signal transducers and activators of transcription (STATs). Disruption of the PRLR gene has provided a new mouse model with which to identify actions directly associated with PRL or any other PRLR ligands, such as placental lactogens. To date, several different phenotypes have been analyzed and are briefly described in this review. Coupled with the SAGE technique, this PRLR knockout model is being used to qualitatively and quantitatively evaluate the expression pattern of hepatic genes in two physiological situations: transcriptomes corresponding to livers from both wild type and PRLR KO mice are being compared, and following statistical analyses, candidate genes presenting a differential profile will be further characterized. Such a new approach will undoubtedly open future avenues of research for PRL targets. To date, no pathology linked to any mutation in the genes encoding PRL or its receptor have been identified. The development of genetic models provides new opportunities to understand how PRL can participate to the development of pathologies throughout life, as for example the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Larrea F, Sánchez-González S, Méndez I, García-Becerra R, Cabrera V, Ulloa-Aguirre A. G protein-coupled receptors as targets for prolactin actions. Arch Med Res 1999; 30:532-543. [PMID: 10714368 DOI: 10.1016/s0188-0128(99)00056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prolactin (PRL) is known to be involved in a wide range of biological functions including osmoregulation, lactation, reproduction, and immunomodulation. The first step in PRL action involves its interaction with a specific membrane receptor that belongs to the cytokine receptor superfamily. In spite of the lack of a kinase domain, receptors of the cytokine superfamily induce tyrosine phosphorylation of cellular substrates including the receptors. The role of PRL in female reproductive functions is well known and a direct effect on ovarian and testicular steroidogenesis has been established. In the ovary, PRL binds to a specific membrane receptor and exerts an inhibitory effect on follicular steroidogenesis. This effect is the result of an impairment involving FSH stimulation of G protein-coupled receptors (GPCR) and cyclic AMP-mediated activation of aromatase cytochrome P450 gene expression. This observation may indicate a direct connection between tyrosine phosphorylation and follicle-stimulating hormone (FSH) receptor (FSHR) transduction pathways, as is the case for growth factor receptors with intrinsic tyrosine kinase activity, which share several downstream signaling elements with GPCRs. Some studies leading to our understanding of these pathways are reviewed.
Collapse
Affiliation(s)
- F Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de la Nutrición Salvador Zubirán, México, D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
74
|
Kinet S, Bernichtein S, Kelly PA, Martial JA, Goffin V. Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites. J Biol Chem 1999; 274:26033-43. [PMID: 10473550 DOI: 10.1074/jbc.274.37.26033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc increases the affinity of human growth hormone (hGH) for the human prolactin receptor (hPRLR) due to the coordination of one zinc ion involving Glu-174(hGH) and His-18(hGH). In contrast, binding of hPRL to the hPRLR is zinc-independent. We engineered in binding site 1 of hPRL a hGH-like zinc coordination site, by mutating Asp-183(hPRL) (homologous to Glu-174(hGH)) into Glu (D183E mutation). This mutation was also introduced into G129R hPRL, a binding site 2 mutant (Goffin, V., Kinet, S., Ferrag, F., Binart, N., Martial, J. A. , and Kelly, P. A. (1996) J. Biol. Chem. 271, 16573-16579). These analogs were characterized using a stable clone expressing both the hPRLR and a PRLR-responsive reporter gene. The D183E mutation per se decreases the binding affinity and transcriptional activity of hPRL. However, this loss is partially rescued by the addition of zinc and the effect is much more marked on bioactivity than on binding affinity. These data indicate that the D183E mutation confers zinc sensitivity to hPRL biological properties. Due to an impaired site 2, the agonistic activity of G129R analog is almost nil. Although the double mutant D183E/G129R displays lower affinity ( approximately 1 log) compared with G129R hPRL, it unexpectedly recovers partial agonistic activity in the absence of zinc. Moreover, whereas zinc increases the affinity of D183E/G129R, it paradoxically abolishes its agonistic activity. Our results demonstrate that the biological properties of hPRL analogs do not necessarily parallel their overall affinity. Rather, the relative affinities of the individual binding sites 1 and 2 may play an even more important role.
Collapse
Affiliation(s)
- S Kinet
- Laboratory of Molecular Biology and Genetic Engineering, Allée du 6 Août, University of Liège, 4000 Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
75
|
|
76
|
Goffin V, Touraine P, Pichard C, Bernichtein S, Kelly PA. Should prolactin be reconsidered as a therapeutic target in human breast cancer? Mol Cell Endocrinol 1999; 151:79-87. [PMID: 10411322 DOI: 10.1016/s0303-7207(99)00023-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although prolactin (PRL) has been long suspected to be involved in the progression of human breast cancer, the failure of clinical improvement by treatment with dopamine agonists, which lower circulating levels of PRL, rapidly reduced the interest of oncologists concerning a potential role of this pituitary hormone in the development of breast cancer. Within the last few years, however, several studies reported first, that PRL is also synthesized in the mammary gland, and second that it exerts its proliferative action in an autocrine/paracrine manner. These observations have led to a reconsideration of the role of PRL as an active participant in breast cancer and are an impetus to search for alternative strategies aimed at inhibiting the proliferative effects of PRL on tumor mammary cells. In this report, we discuss the three possible levels that can be targeted for this purpose: the mammary synthesis of PRL, the interaction of the hormone with its receptor at the surface of mammary cells, and the intracellular signaling cascades triggered by the activated receptor. For each of these steps, we discuss the molecular event(s) that can be targeted, our understanding of the mechanisms involving these putative targets as well as the tools currently available for their inhibition. Besides its proliferative effect, PRL is also involved in the control of angiogenesis through one of its cleaved fragments, named PRL 16K, which has been shown to inhibit the angiogenic process. In view of this biological activity, we discuss first the cleavage of PRL with respect to the human mammary gland and, second, the hypothesis speculating that a balance between the proliferative effect of intact PRL and the anti-angiogenic activity of its 16K-like fragments might be physiologically relevant in the evolution of mammary tumors. If true, our hypothesis would suggest that the enzymatic cleavage of PRL could represent a new molecular target in the search for alternative strategies in the treatment of breast cancer.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France.
| | | | | | | | | |
Collapse
|
77
|
Lee RC, Walters JA, Reyland ME, Anderson SM. Constitutive activation of the prolactin receptor results in the induction of growth factor-independent proliferation and constitutive activation of signaling molecules. J Biol Chem 1999; 274:10024-34. [PMID: 10187780 DOI: 10.1074/jbc.274.15.10024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability to induce the oncogenic activation of the human prolactin receptor (PRLR) was examined by deleting 178 amino acids of the extracellular ligand-binding domain. Expression of this deletion mutant in the interleukin-3 (IL-3)-dependent murine myeloid cell line 32Dcl3 resulted in the induction of growth factor-independent proliferation. Parental 32Dcl3 cells proliferated only in the presence of exogenous murine IL-3 (mIL-3), while 32Dcl3 cells transfected with the long form of the human PRLR were able to proliferate in response to mIL-3, ovine prolactin, or human PRL. Cells expressing the Delta178 deletion mutant contained numerous phosphotyrosine-containing proteins in the absence of stimulation with either mIL-3 or ovine prolactin. Growth factor stimulation increased the number of proteins phosphorylated and the intensity of phosphorylation. These proteins included constitutively phosphorylated Janus kinase 2, signal transducer and activator of transcription 5, and SHC. Activated extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) were observed in unstimulated 32Dcl3 cells expressing the Delta178 mutant. Likewise, transfection of Nb2 cells with the Delta178 deletion mutant induced growth factor-independent proliferation and constitutive activation of Janus kinase 2, ERK1, and ERK2. In addition to the induction of a growth factor-independent state, the expression of the Delta178 deletion mutant also suppressed the apoptosis that occurs when 32Dcl3 cells are cultured in the absence of growth factors such as IL-3. These data suggest that the constitutive activation of the PRLR can be achieved by deletion of the ligand binding domain and that this mutation leads to the oncogenic activation of the receptor as determined by the ability of the receptor to induce growth factor-independent proliferation of factor-dependent hematopoietic cells.
Collapse
Affiliation(s)
- R C Lee
- Department of Pathology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
78
|
Hunter S, Burton EA, Wu SC, Anderson SM. Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:2097-106. [PMID: 9890970 DOI: 10.1074/jbc.274.4.2097] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have investigated the interaction between Cbl and the Src-related tyrosine kinase Fyn. Fyn was observed to be constitutively associated with Cbl in lysates of several different cell types including the interleukin-3-dependent murine myeloid cell line 32Dcl3, and the prolactin-dependent rat thymoma cell line Nb2. Binding studies indicated that Cbl could bind to glutathione S-transferase (GST) fusion proteins encoding the unique, Src homology domain 3 (SH3), and SH2 domains of Fyn, Hck, or Lyn. Fusion proteins encoding either the SH3 or SH2 domains of Fyn bound to Cbl as effectively as the fusion protein encoding the unique, SH3, and SH2 domains of Fyn. The Fyn SH2 domain bound to both tyrosine-phosphorylated and nonphosphorylated Cbl, implying that this interaction might be phosphotyrosine-independent. Binding of the Fyn SH2 domain to Cbl was not disrupted by the addition of phosphotyrosine, phosphoserine, or phosphothreonine. A GST fusion protein encoding the proline-rich region of Cbl bound to Fyn present in a total cell lysate. Far Western blot analysis also indicated that the SH3 domain of Fyn bound preferentially to the proline-rich region of Cbl. The addition of [gamma-32P]ATP to either anti-Cbl immunoprecipitates or anti-Fyn immunoprecipitates resulted in the phosphorylation of both Cbl and Fyn as demonstrated by immunoprecipitation of the phosphorylated proteins with specific antisera. Fyn directly phosphorylated a GST fusion protein containing the C-terminal region of Cbl (GST-CBL-LZIP). In contrast, immunoprecipitated JAK2 was not able to phosphorylate this same region of Cbl. The GST-CBL-LZIP fusion protein contains a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase, which mapped to Tyr731, which is present in the sequence YEAM. Mutation of Tyr731 in GST-CBL-LZIP eliminated binding of the p85 subunit of phosphatidylinositol 3-kinase and substantially reduced the phosphorylation of this fusion protein by Fyn, despite the presence of four other tyrosine residues in this fusion protein. These data are consistent with the hypothesis that Cbl represents a substrate for Src-like kinases that are activated in response to the engagement of cell surface receptors, and that Src-like kinases are responsible for the phosphorylation of a tyrosine residue in Cbl that may regulate activation of phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- S Hunter
- Department of Pathology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
79
|
|
80
|
|
81
|
Helman D, Sandowski Y, Cohen Y, Matsumoto A, Yoshimura A, Merchav S, Gertler A. Cytokine-inducible SH2 protein (CIS3) and JAK2 binding protein (JAB) abolish prolactin receptor-mediated STAT5 signaling. FEBS Lett 1998; 441:287-91. [PMID: 9883901 DOI: 10.1016/s0014-5793(98)01555-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability of five members of the cytokine-inducible SH2 protein family (CIS1-4) and JAK2 binding (JAB) protein to affect prolactin receptor (PRLR)-mediated activity was tested in human 293 embryonic kidney fibroblasts transiently transfected with rat PRLR, five concentrations of CIS/JAB Myc-tagged cDNAs and a STAT5-responsive reporter gene encoding luciferase. The protein expressions of CIS1, CIS2, CIS3 and JAB were comparable, whereas the level of CIS4 was slightly lower. PRLR-mediated luciferase activity was abolished in a dose-dependent manner in cells transfected with cDNA of CIS3 or JAB, even at concentrations below the level of protein detection by anti-Myc antibody. In contrast, CIS1, CIS2 and CIS4 had little or no effect, despite similar levels of expression. CIS1 expression in postpartum mouse mammary glands was high and changed little in the course of 3 days. CIS2 and CIS3 expression was also high and increased further, whereas JAB expression was very low. These results hint that at least in mammary gland CIS3 is likely the main physiological negative regulator of the PRLR-mediated JAK2/STAT5 pathway.
Collapse
Affiliation(s)
- D Helman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
82
|
Sohm F, Pezet A, Sandra O, Prunet P, de Luze A, Edery M. Activation of gene transcription by tilapia prolactin variants tiPRL188 and tiPRL177. FEBS Lett 1998; 438:119-23. [PMID: 9821971 DOI: 10.1016/s0014-5793(98)01285-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the tilapia species Oreochromis niloticus, the pituitary releases two forms of prolactins (tiPRL188 and tiPRL177). The binding parameters and the activation of tiPRL-induced JAK2/Stat5 signalling pathway were analysed using a mammalian cell line transiently transfected with the tiPRL receptor (tiPRLR). Our data indicate that the tiPRLR is able to mediate transcriptional activation of the PRL responsive element. At nanomolar concentrations, tiPRL188 activates gene transcription whereas at micromolar concentrations it inhibits luciferase transcription from the lactogenic responsive element. This is consistent with a model of receptor dimerisation. In contrast, the activation by tiPRL177 was only reached at high (microM) concentrations. The transcriptional activities induced by tiPRL177 and tiPRL188 are discussed in the context of the physiology of these hormones.
Collapse
Affiliation(s)
- F Sohm
- Laboratoire de Physiologie Générale et Comparée, Muséum National d'Histoire Naturelle, Unité de Recherche Associée 90, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | | | |
Collapse
|
83
|
Helman D, Staten NR, Grosclaude J, Daniel N, Nespoulous C, Djiane J, Gertler A. Novel recombinant analogues of bovine placental lactogen. G133K and G133R provide a tool to understand the difference between the action of prolactin and growth hormone receptors. J Biol Chem 1998; 273:16067-74. [PMID: 9632658 DOI: 10.1074/jbc.273.26.16067] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two new analogues of bovine placental lactogen (bPL), bPL(G133K) and bPL(G133R), were expressed in Escherichia coli, refolded, and purified to a native form. Binding experiments, which are likely to represent the binding to site 1 only, to intact FDC-P1 cells transfected with rabbit (rb) growth hormone receptor (GHR) or with human (h) GHR, to Nb2 rat lymphoma cells, or to rabbit mammary gland membranes prolactin receptor (PRLR), revealed only small or no reduction in binding capacity. The complex formation between these analogues and receptor extracellular domains (R-ECD) of various hormones was determined by gel filtration. Wild type bPL yielded 1:2 complex with hGHR-ECD, rat PRLR-ECD, and rbPRLR-ECD, whereas both analogues formed only 1:1 complexes with all R-ECDs tested. Real time kinetics experiments demonstrated that the ability of the analogues to form homodimeric complexes was compromised in both PRLR- and GHR-ECDs. The biological activity transduced through lactogenic receptors in in vitro bioassays in rabbit mammary gland acini culture and in Nb2 cells was almost fully retained, whereas the activity transduced through somatogenic receptors in FDC-P1 cells transfected with rbGHRs or with hGHRs was abolished. Both analogues exhibited antagonistic activity in the latter cells. To explain the discrepancy between the effect of the mutation on the signal transduced by PLR versus GHRs we suggest that: 1) the mutation impairs the ability of site 2 of bPL to form a stable homodimeric complex with both lactogenic and somatogenic receptors by a drastic shortening of the half-life of 2:1 complex; 2) the transient existence of the homodimeric complex is still sufficient to initiate the signal transduced through lactogenic receptors but not through somatogenic receptors; and 3) one possible reason for this difference is that JAK2, which serves as a mediator of both receptors, is already associated with lactogenic receptors prior to hormone binding-induced receptor dimerization, whereas in somatogenic receptors the JAK2 receptor association occurs subsequently to receptor dimerization.
Collapse
Affiliation(s)
- D Helman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
84
|
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998; 19:225-68. [PMID: 9626554 DOI: 10.1210/edrv.19.3.0334] [Citation(s) in RCA: 1059] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C Bole-Feysot
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | |
Collapse
|
85
|
Goffin V, Bouchard B, Ormandy CJ, Weimann E, Ferrag F, Touraine P, Bole-Feysot C, Maaskant RA, Clement-Lacroix P, Edery M, Binart N, Kelly PA. Prolactin: a hormone at the crossroads of neuroimmunoendocrinology. Ann N Y Acad Sci 1998; 840:498-509. [PMID: 9629276 DOI: 10.1111/j.1749-6632.1998.tb09588.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prolactin (PRL), secreted by the pituitary, decidua, and lymphoid cells, has been shown to have a regulatory role in reproduction, immune function, and cell growth in mammals. The effects of PRL are mediated by a membrane-bound receptor that is a member of the superfamily of cytokine receptors. Formation of a trimer, consisting of one molecule of ligand and two molecules of receptor, appears to be a necessary prerequisite for biological activity. The function of these receptors is mediated, at least in part, by two families of signaling molecules: Janus tyrosine kinases (JAKs) and signal transducers and activators of transcription (STATs). To study these receptors, we have used two approaches: mutational analysis of their cytoplasmic domains coupled with functional tests and inactivation (knockout) of the receptor gene by homologous recombination in mice. We have produced mice by gene targeting in embryonic stem cells carrying a germline null mutation of the prolactin receptor gene. Heterozygous (+/-) females show almost complete failure to lactate, following their first, but not subsequent pregnancies. Homozygous (-/-) females are infertile as a result of multiple reproductive abnormalities, including ovulation of premiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Half of the homozygous males are infertile or show reduced fertility. In view of the wide-spread distribution of PRL receptors, other phenotypes including those on the immune system, are currently being evaluated in -/- animals. This study establishes the prolactin receptor as a key regulator of mammalian reproduction and provides the first total ablation model to further study the role of the prolactin receptor and its ligands.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unit 344, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Edwards GM, Wilford FH, Liu X, Hennighausen L, Djiane J, Streuli CH. Regulation of mammary differentiation by extracellular matrix involves protein-tyrosine phosphatases. J Biol Chem 1998; 273:9495-500. [PMID: 9545277 DOI: 10.1074/jbc.273.16.9495] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix and growth factors cooperate to regulate signaling pathways and gene transcription in adherent cells. However, the mechanism of extracellular matrix signaling is poorly defined. In mammary gland, the expression of milk protein genes is controlled by cross-talk between signals derived from the basement membrane protein, laminin, and the lactogenic hormone, prolactin. Signals from basement membrane are transduced by beta1 integrins and are required for prolactin to activate DNA binding of the milk protein gene transcription factor, Stat5. Here we show that basement membrane is necessary for tyrosine phosphorylation of the prolactin receptor and thus directly affects cytokine signaling and differentiation at the level of the plasma membrane. Prolactin does not induce tyrosine phosphorylation of its receptor, Jak2, or Stat5 in nondifferentiated breast epithelia cultured on collagen I, and we show that this is due to a vanadate-sensitive activity that inhibits the prolactin pathway. We suggest that protein-tyrosine phosphatases are novel targets for regulation by extracellular matrix and in mammary cells represent an additional control to the requirement of integrins for milk protein production.
Collapse
Affiliation(s)
- G M Edwards
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
87
|
Berchtold S, Volarevic S, Moriggl R, Mercep M, Groner B. Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription. Mol Endocrinol 1998; 12:556-67. [PMID: 9544991 DOI: 10.1210/mend.12.4.0086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PRL plays a central role in the regulation of milk protein gene expression in mammary epithelial cells and in the growth and differentiation of lymphocytes. It confers its activity through binding to a specific transmembrane, class I hematopoietic receptor. Ligand binding leads to receptor dimerization and activation of the tyrosine kinase Jak (janus kinase) 2, associated with the membrane-proximal, intracellular domain of the receptor. Jak2 phosphorylates and activates Stat5, a member of the Stat (signal transducers and activators of transcription) family. PRL receptor also activates SHP-2, a cytosolic tyrosine phosphatase. We investigated the connection between these two signaling events and derived a dominant negative mutant of SHP-2 comprising the two SH2 domains [SHP-2(SH2)2]. An analogous variant of the SHP-1 phosphatase [SHP-1(SH2)2] was used as a control. The dominant negative mutant of SHP-2 was found to inhibit the induction of tyrosine phosphorylation and DNA-binding activity of m-Stat5a, m-Stat5b, and the carboxyl-terminal deletion variant m-Stat5adelta749, as well as the transactivation potential of m-Stat5a and m-Stat5b. The dominant negative mutant SHP-1(SH2)2 had no effect. The kinase activity of Jak2 is also dependent on a functional SHP-2 phosphatase. We propose that SHP-2 relieves an inhibitory tyrosine phosphorylation event in Jak2 required for Jak2 activity, Stat5 phosphorylation, and transcriptional induction.
Collapse
Affiliation(s)
- S Berchtold
- Institute for Experimental Cancer Research, Tumor Biology Center and Department of Biology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
88
|
Abstract
The diverse functionality of prolactin and the wide expression of the prolactin receptor suggest a complex system regulated by this polypeptide hormone. Different hormone and receptor forms, as well as differential signal transduction pathways, contribute to the functional diversity of prolactin's actions. The heterogeneity of rat prolactin receptor gene transcripts in their 5'-untranslated region has led to the recognition of multiple and tissue-specific utilization of prolactin receptor gene promoters in gonadal and non-gonadal tissues. These findings have provided insights into the molecular bases for the diversity of prolactin's actions. It is now clear that cellular responsiveness to prolactin can be regulated through differential promoter control of the expression of the surface receptors for prolactin in different target tissues.
Collapse
Affiliation(s)
- Z Z Hu
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
89
|
Ali S, Ali S. Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 1998; 273:7709-16. [PMID: 9516478 DOI: 10.1074/jbc.273.13.7709] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain containing signal transducers and activators of transcription (Stat proteins) are effector molecules downstream of cytokine receptors. Ligand/receptor engagement triggers Stat proteins tyrosine phosphorylation, dimerization, and translocation to the nucleus where they regulate gene transcription. Stat5, originally identified as a mammary gland growth factor, is an essential mediator of prolactin (PRL)-induced milk protein gene activation. Prolactin receptor (PRLR) is a member of the cytokine/growth hormone/PRL receptor superfamily. The mechanism through which PRLR modulates Stat5 tyrosine phosphorylation, nuclear translocation, and DNA binding was analyzed in HC11 cells, a mammary epithelial cell line, and 293-LA cells, a human kidney cell line stably overexpressing Jak2 kinase. We have found that in HC11 cells, Stat5 is specifically activated by PRL treatment, demonstrating that Stat5 is a physiological substrate downstream of PRLR. Furthermore, using different forms natural forms of the PRLR as well as receptor tyrosine to phenylalanine mutant forms, we determined that tyrosine phosphorylation of Stat5 is independent of PRLR phosphotyrosines. We established, however, that the C-terminal tyrosine of the PRLR Nb2 form, Tyr382, plays an essential positive role in PRLR-dependent Stat5 nuclear translocation and subsequently DNA binding. All together, our data propose a new model for activation of Stat5 through the PRLR, suggesting that Stat5 tyrosine phosphorylation and nuclear translocation are two separately regulated events.
Collapse
Affiliation(s)
- S Ali
- Department of Medicine, the Division of Hematology, and the Molecular Oncology Group, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
90
|
Banghart LR, Chamberlain CW, Velarde J, Korobko IV, Ogg SL, Jack LJ, Vakharia VN, Mather IH. Butyrophilin is expressed in mammary epithelial cells from a single-sized messenger RNA as a type I membrane glycoprotein. J Biol Chem 1998; 273:4171-9. [PMID: 9461613 DOI: 10.1074/jbc.273.7.4171] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the expression of butyrophilin in eukaryotic cells with a view to determining the number of mRNA species, the incorporation of the peptide chain into microsomes, and the topology of the processed protein in biological membranes. Butyrophilin is synthesized from a single sized mRNA in both bovine and murine lactating mammary tissue and associates with microsomal membranes with a type I topology (Nexo.Ccyto) via a single hydrophobic anchor in the middle of the sequence. Several isoelectric variants of the protein were detected in cellular membranes from lactating bovine mammary tissue and in the milk-fat-globule membrane. We found no evidence for soluble forms of butyrophilin in postmicrosomal supernatants. The 66-kDa protein appears to be subjected to limited proteolysis, giving rise to a 62-kDa fragment lacking the C terminus and to other more minor fragments of lower Mr in the milk-fat-globule membrane. Antipeptide antibodies to epitopes within the N- and C-terminal domains were used to show that butyrophilin retains a type I topology in plasma membranes when expressed in insect cells from a baculovirus vector, and in secreted milk-fat globules. These data do not agree with previous suggestions that butyrophilin may exist in cytoplasmic soluble forms, or be reorganized in the plane of the lipid bilayer during secretion in lipid droplets from mammary cells. The results are discussed with reference to the role butyrophilin may play as the principal scaffold for the assembly of a complex with xanthine oxidase and other proteins that functions in the budding and release of milk-fat globules from the apical surface during lactation.
Collapse
Affiliation(s)
- L R Banghart
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Ratovondrahona D, Fournier B, Odessa MF, Dufy B. Prolactin stimulation of phosphoinositide metabolism in CHO cells stably expressing the PRL receptor. Biochem Biophys Res Commun 1998; 243:127-30. [PMID: 9473492 DOI: 10.1006/bbrc.1997.7978] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PRL receptor (PRL-R) activation by PRL triggers a cascade of intracellular events including homodimerization of the receptor, activation of cytoplasmic receptor-associated tyrosine kinase and tyrosine-phosphorylation of various signal transducers. In CHO cells, transfected with the long form of PRL-R, an increase in [Ca2+]i was observed following PRL stimulation whereas Ca2+ is generally coupled with the phosphoinositide metabolism. In this study, we investigated phosphoinositide involvement in the PRL transduction pathway. We report that PRL induces rapid increases in two novel inositol phospholipids, almost certainly PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Pre-traitment of CHO cells with wortmanin, a specific PtdIns3-kinase inhibitor, considerably reduces the PRL-induced increase in PtdInd(3,4,5)P3, thus suggesting an involvement of this enzyme in the cascade of activation of cytoplasmic kinase proteins. A pathway beginning with the activation of PtdIns3-kinase, phosphorylation of PtdIns(4,5)P2 and rapid synthesis of PtdIns(3,4,5)P3 is proposed. PtIns(3,4,5)P3 may acts as a lipid second messenger, directly or indirectly responsible for some of the multiple cell changes attributed to PRL.
Collapse
|
92
|
Chang WP, Ye Y, Clevenger CV. Stoichiometric structure-function analysis of the prolactin receptor signaling domain by receptor chimeras. Mol Cell Biol 1998; 18:896-905. [PMID: 9447986 PMCID: PMC108801 DOI: 10.1128/mcb.18.2.896] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 11/19/1997] [Indexed: 02/06/2023] Open
Abstract
The intracellular domain of the prolactin (PRL) receptor (PRLr) is required for PRL-induced signaling and proliferation. To identify and test the functional stoichiometry of those PRLr motifs required for transduction and growth, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFr) and the intracellular domain of the rat PRLr were synthesized. Because the high-affinity binding of GM-CSF results from the specific pairing of one alpha- and one beta-GM-CSFr, use of GM-CSFr/PRLr chimera enabled targeted dimerization of the PRLr intracellular domain. To that end, the extracellular domains of the alpha- and beta-GM-CSFr were conjugated to one of the following mutations: (i) PRLr C-terminal truncations, termed alpha278, alpha294, alpha300, alpha322, or beta322; (ii) PRLr tyrosine replacements, termed Y309F, Y382F, or Y309+382F; or, (iii) PRLr wild-type short, intermediate, or long isoforms. These chimeras were cotransfected into the cytokine-responsive Ba/F3 line, and their expression was confirmed by ligand binding and Northern and Western blot analyses. Data from these studies revealed that heterodimeric complexes of the wild type with C-terminal truncation mutants of the PRLr intracellular domain were incapable of ligand-induced signaling or proliferation. Replacement of any single tyrosine residue (Y309F or Y382F) in the dimerized PRLr complex resulted in a moderate reduction of receptor-associated Jak2 activation and proliferation. In contrast, trans replacement of these residues (i.e., alphaY309F and betaY382F) markedly reduced ligand-driven Jak2 activation and proliferation, while cis replacement of both tyrosine residues in a single intracellular domain (i.e., alphaY309+382F) produced an inactive signaling complex. Analysis of these GM-CSFr-PRLr complexes revealed equivalent levels of Jak2 in association with the mutant receptor chains, suggesting that the tyrosine residues at 309 and 382 do not contribute to Jak association, but instead to its activation. Heterodimeric pairings of the intracellular domains from the known PRLr receptor isoforms (short-intermediate, short-long, and intermediate-long) also yielded inactive receptor complexes. These data demonstrate that the tyrosine residues at 309 and 382, as well as additional residues within the C terminus of the dimerized PRLr complex, contribute to PRL-driven signaling and proliferation. Furthermore, these findings indicate a functional requirement for the pairing of Y309 and Y382 in trans within the dimerized receptor complex.
Collapse
Affiliation(s)
- W P Chang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
93
|
Ferrag F, Pezet A, Chiarenza A, Buteau H, Nelson BH, Goffin V, Kelly PA. Homodimerization of IL-2 receptor beta chain is necessary and sufficient to activate Jak2 and downstream signaling pathways. FEBS Lett 1998; 421:32-6. [PMID: 9462834 DOI: 10.1016/s0014-5793(97)01529-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokine receptor signaling involves the Jak/Stat pathways. Heterotrimeric IL-2R (alpha, beta, gamma[c] chains) activates Jak1 and Jak3, whereas homodimeric PRLR activates Jak2. The requirements directing such specificity of Jak activation are unknown. We show that chimeric receptors containing the intracellular domain of IL-2Rbeta chain fused to the extracellular domain of either EPOR or Kit, a non-cytokine receptor, activate Jak2. This observation provides evidence that IL-2Rbeta intrinsically possesses the ability to activate Jak2, but that this property is only displayed in homodimerized complexes. Our data suggest a role for the stoichiometry of cytokine receptors in selective activation of Janus kinases.
Collapse
Affiliation(s)
- F Ferrag
- INSERM Unité 344 - Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Rui H, Xu J, Mehta S, Fang H, Williams J, Dong F, Grimley PM. Activation of the Jak2-Stat5 signaling pathway in Nb2 lymphoma cells by an anti-apoptotic agent, aurintricarboxylic acid. J Biol Chem 1998; 273:28-32. [PMID: 9417042 DOI: 10.1074/jbc.273.1.28] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biological effects of many hormones and cytokines are mediated through receptor-associated Jak tyrosine kinases and cytoplasmic Stat transcription factors, including critical physiological processes such as immunity, reproduction, and cell growth and differentiation. Pharmaceuticals that control Jak-Stat pathways are therefore of considerable interest. Here we demonstrate that a single Jak-Stat pathway can be activated by aurintricarboxylic acid (ATA), a negatively charged triphenylmethane derivative (475 Da) with anti-apoptotic properties. In prolactin (PRL)-dependent Nb2 lymphocytes, ATA sustained cell growth in the absence of hormone and mimicked rapid PRL-induced tyrosine phosphorylation of Jak2 and activation of Stat5a and Stat5b with tyrosine phosphorylation, heterodimerization, DNA binding, and induction of the Stat5-regulated pim-1 protooncogene. ATA also mimicked PRL activation of serine kinases ERK1 and ERK2. However, unlike PRL, ATA did not regulate Stat1 or Stat3. ATA also did not affect Jak3, which is activated in these cells by interleukin-2 family cytokines. Although the mechanism and specificity by which ATA activates Jak2, Stat5, and ERKs in Nb2 cells are still unclear, the present study demonstrates that certain hormone or cytokine effects on Jak-Stat pathways can be discretely imitated by a low molecular weight, non-peptide pharmaceutical. The results are also consistent with Stat5 involvement in lymphocyte growth and survival.
Collapse
Affiliation(s)
- H Rui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
Duhé RJ, Farrar WL. Structural and mechanistic aspects of Janus kinases: how the two-faced god wields a double-edged sword. J Interferon Cytokine Res 1998; 18:1-15. [PMID: 9475661 DOI: 10.1089/jir.1998.18.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Janus family of protein-tyrosine kinases has long been known to function in signal transduction pathways initiated by a host of cytokines. A brief overview of the role of Janus kinases (Jaks) in both cytokine and noncytokine signaling pathways highlights the broad physiologic importance of this kinase family. New insights into the structural and mechanistic regulatory aspects of Janus kinases are rapidly emerging. Recent mutational analyses allow the dissection of Jaks into three distinct structural domains governing receptor affiliation, autoregulation, and catalysis. A fourth domain determining substrate specificity is as yet poorly defined and is, therefore, discussed in the context of known substrates and inhibitors, a collection of molecules that have been expanded recently to include Stam and Jab. The proposed mechanism of the interconversion of Janus kinases from inactive to fully active enzymes involves three states of enzymatic activity. Additional layers of regulation can be independently superimposed on this multistate model, providing a simplified description of the behavior of Janus kinases under normal and pathologic circumstances.
Collapse
Affiliation(s)
- R J Duhé
- Intramural Research Support Program, SAIC-Frederick, MD 21702-1201, USA
| | | |
Collapse
|
96
|
Goffin V, Ferrag F, Kelly PA. Chapter 1 Molecular aspects of prolactin and growth hormone receptors. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2566(98)80009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
97
|
Fenton SE, Sheffield LG. Prolactin inhibits EGF-induced DNA synthesis in mammary epithelium via early signaling mechanisms: possible involvement of protein kinase C. Exp Cell Res 1997; 236:285-93. [PMID: 9344609 DOI: 10.1006/excr.1997.3727] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prolactin and prolactin agonists inhibited EGF-induced DNA synthesis in mammary epithelium, whereas other pituitary hormones had no effect on EGF-induced DNA synthesis. The inhibitory effect of prolactin was seen for EGF and TGF-alpha, but not for IGF-I or cholera toxin. Autoradiography indicated that prolactin decreased the ability of EGF to induce cells to progress to S phase of the cell cycle, and time course studies indicated that the effects of prolactin were not due to an altered timing of DNA synthesis induction. Prolactin addition within 30 min of adding EGF was necessary to inhibit EGF-induced DNA synthesis. Conditioned media from prolactin-treated cells from which prolactin had been neutralized with the extracellular domain of the prolactin receptor had no effect on EGF-induced DNA synthesis, suggesting that the effect was due to prolactin, not an autocrine factor induced by prolactin. Prolactin induced a rapid association of protein kinase C with the membrane fraction of NMuMG cells, as well as increased threonine phosphorylation of the EGF receptor. Protein kinase C inhibitors eliminated most of the inhibitory effect of prolactin on EGF-induced DNA synthesis. The protein kinase C inhibitor Calphostin C restored high-affinity EGF binding in prolactin-treated cells and reversed the inhibitory effect of prolactin on EGF-induced EGF receptor tyrosine phosphorylation.
Collapse
Affiliation(s)
- S E Fenton
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
98
|
Ceresa BP, Horvath CM, Pessin JE. Signal transducer and activator of transcription-3 serine phosphorylation by insulin is mediated by a Ras/Raf/MEK-dependent pathway. Endocrinology 1997; 138:4131-7. [PMID: 9322921 DOI: 10.1210/endo.138.10.5266] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently reported that insulin stimulation results in the serine phosphorylation of STAT3 (signal transducer and activator of transcription-3). In the present study, we identified serine 727 as the site of insulin-stimulated STAT3 serine phosphorylation. This phosphorylation event occurs independent of tyrosine phosphorylation. Furthermore, interleukin-6-induced tyrosine phosphorylation can occur independent of serine phosphorylation, demonstrating that these two phosphorylation pathways are mechanistically unrelated. Selective activation of the JNK and p38 family of mitogen-activated protein (MAP) kinases by anisomycin treatment did not result in the phosphorylation of STAT3. In contrast, activation of the ERK MAP kinase pathway with both insulin and osmotic shock resulted in the serine phosphorylation of STAT3. In addition, expression of a dominant-interfering Ras mutant (N17Ras) or treatment with the specific MEK inhibitor (PD98059) prevented the insulin stimulation of STAT3 serine phosphorylation. Blockade of ERK activation by expression of the MAP kinase phosphatase (MKP-1) had no effect on insulin-stimulated STAT3 serine phosphorylation. Together, these data demonstrate that the insulin-stimulated serine phosphorylation of STAT3 occurs by a MEK-dependent pathway that is independent of ERK activation.
Collapse
Affiliation(s)
- B P Ceresa
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
99
|
Helman D, Staten NR, Byatt J, Grosclaude J, McKinnie RE, Djiane J, Gertler A. Site-directed mutagenesis of recombinant bovine placental lactogen at lysine-73 leads to selective attenuation of its somatogenic activity. Endocrinology 1997; 138:4069-80. [PMID: 9322914 DOI: 10.1210/endo.138.10.5419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bovine placental lactogen (bPL) is capable of binding and transducing biological activity via somatogenic and lactogenic receptors. To modify this capability, three analogs, bPL(K73D), bPL(K73F) and bPL(K73A), mutated at position 73, and corresponding to R64 in human GH (hGH), were produced in Escherichia coli. Circular dichroic spectrum analyses indicated proper refolding in all cases. Biological activity of these analogs was tested in vitro. In a lactogenic-receptor-mediated Nb2 rat lymphoma cell bioassay, bPL and its analogs acted similarly. In another lactogenic bioassay that measures beta-casein synthesis by HC-11 mouse mammary-gland cells, the analogs were 30-40% as potent as bPL. In contrast, somatogenic receptor-mediated bioactivity in FDC-P1 cells transfected with either rabbit (rb) or hGH receptor (R) was almost completely abolished in these analogs. In receptor binding assays, the effect was more conspicuous and the mutations affected not only somatogenic but also lactogenic binding. Binding to rat (r) and rabbit PRL receptor extracellular domains (ECDs) or membrane-embedded receptors was only slightly changed, except for bPL (K73D), which displayed very low affinity. In somatogenic binding assays to intact IM-9 human lymphocytes, hGHR-ECD or bovine liver membranes, bPL (K73D) did not bind at all, and bPL(K73F) or bPL(K73A) binding was drastically reduced. Binding experiments performed in real time using a BIAcore apparatus revealed that the decreased binding could be mainly attributed to increased k(off) rather than decreased k(on) values. The complex with hGHR-ECD revealed a 2:1 stoichiometry with bPL, bPL(K73F) and bPL(K73A), although the complex with these analogs was less stable than with bPL, whereas bPL(K73D) scarcely assembled a 1:1 complex. In contrast, bPL and the three analogs formed stable 1:2 complexes with rPRL-ECD. These results suggest that position 73 in bPL is more important for somatogenic than lactogenic properties and concurs with results from other groups, which have shown that R64, the analogous amino acid in hGH holds the same differential importance with respect to somatogenic binding.
Collapse
MESH Headings
- Animals
- Caseins/analysis
- Caseins/biosynthesis
- Cattle
- Cell Line
- Chromatography, Gel
- Escherichia coli
- Female
- Humans
- Lymphocytes/chemistry
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Lymphoma/chemistry
- Lymphoma/metabolism
- Lymphoma/pathology
- Lysine/chemistry
- Mammary Glands, Animal/chemistry
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mice
- Mutagenesis, Site-Directed
- Placental Lactogen/analysis
- Placental Lactogen/genetics
- Placental Lactogen/metabolism
- Protein Binding
- Rabbits
- Rats
- Receptors, Peptide/analysis
- Receptors, Peptide/metabolism
- Receptors, Peptide/physiology
- Receptors, Prolactin/analysis
- Receptors, Prolactin/metabolism
- Receptors, Prolactin/physiology
- Receptors, Somatotropin/analysis
- Receptors, Somatotropin/metabolism
- Receptors, Somatotropin/physiology
- Recombinant Proteins/analysis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Helman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
100
|
Berlanga JJ, Garcia-Ruiz JP, Perrot-Applanat M, Kelly PA, Edery M. The short form of the prolactin (PRL) receptor silences PRL induction of the beta-casein gene promoter. Mol Endocrinol 1997; 11:1449-57. [PMID: 9280060 DOI: 10.1210/mend.11.10.9994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The PRL receptor (PRLR) is a member of the cytokine receptor superfamily. Rats and mice express two forms of PRLR, short (SPRLR) and long (LPRLR), which differ in the length and sequence of their cytoplasmic domains. We have analyzed the ability of each form of rat PRLR to transduce lactogenic signals in a bovine mammary gland epithelial cell line. The rat PRLR forms were expressed and detected by RT-PCR, indirect immunofluorescence, and cell surface ligand binding. When the biological activity of each form of PRLR was assessed by transient transfection, we found that the long form was able to activate the beta-casein gene promoter and that the short form was inactive. Interestingly, the coexpression of both forms of PRLR resulted in a block of PRL signal to the milk protein gene promoter as a function of the concentration of the SPRLR. Similar results were obtained when LPRLR was coexpressed with totally or partially inactive tyrosine mutants of either the Nb2 form or the LPRLR form. Thus, these results suggest that the SPRLR form has at least one clear biological function, i.e. to silence lactogenic signals and to contribute to a differential and acute PRL effect in rat tissues. Furthermore, the data derived from coexpression of LPRLR and PRLR mutants confirm a crucial role of the C-terminal tyrosine residue in lactogenic signaling and the dimerization of PRLRs.
Collapse
Affiliation(s)
- J J Berlanga
- Institut National de la Santé et de la Recherche Médicale, Unité 344 Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | |
Collapse
|