51
|
Bindari YR, Gerber PF. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult Sci 2021; 101:101612. [PMID: 34872745 PMCID: PMC8713025 DOI: 10.1016/j.psj.2021.101612] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Maintenance of "gut health" is considered a priority in commercial chicken farms, although a precise definition of what constitutes gut health and how to evaluate it is still lacking. In research settings, monitoring of gut microbiota has gained great attention as shifts in microbial community composition have been associated with gut health and productive performance. However, microbial signatures associated with productivity remain elusive because of the high variability of the microbiota of individual birds resulting in multiple and sometimes contradictory profiles associated with poor or high performance. The high costs associated with the testing and the need for the terminal sampling of a large number of birds for the collection of gut contents also make this tool of limited use in commercial settings. This review highlights the existing literature on the chicken digestive system and associated microbiota; factors affecting the gut microbiota and emergence of the major chicken enteric diseases coccidiosis and necrotic enteritis; methods to evaluate gut health and their association with performance; main issues in investigating chicken microbial populations; and the relationship of microbial profiles and production outcomes. Emphasis is given to emerging noninvasive and easy-to-collect sampling methods that could be used to monitor gut health and microbiological changes in commercial flocks.
Collapse
Affiliation(s)
- Yugal Raj Bindari
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
52
|
Evaluation of immunoprotective effects of recombinant proteins and DNA vaccines derived from Eimeria tenella surface antigen 6 and 15 in vivo. Parasitol Res 2021; 121:235-243. [PMID: 34816300 DOI: 10.1007/s00436-021-07364-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Coccidiosis is an intestinal parasitic disease that causes huge economic losses to the poultry industry globally. Eimeria tenella belonging to protozoon is the causative agent of cecal coccidiosis in chicken, and it causes enormous damage to poultry industry. The surface antigens (SAGs) of apicomplexan parasites have functions of attachment and invasion in host-parasite interaction. As a result of parasitic invasion, host immune response is triggered. However, the immunogenicity and potency of E. tenella surface antigen 6 and 15 (EtSAG 6 and 15), as vaccinal candidate antigen, remain largely unknown. Therefore, gene fragments of E. tenella EtSAG 6 and 15 were amplified and transformed to pET28a prokaryotic vector for recombinant protein expression. The pEGFP-N1 eukaryotic vectors with EtSAG 6 and 15 amplification fragments (pEGFP-N1-EtSAG 5 and 16) were transformed into 293 T cell line. The results of reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis revealed successful expressions of EtSAG 6 and 15 in Escherichia coli and 293 T cells. Subsequently, animal experiments of 49 cobb broilers were performed to evaluate immunoprotection of recombinant proteins and DNA vaccines derived from E. tenella EtSAG 5 and 16 with an immunizing dose of 100 μg, respectively. Chickens vaccinated with rEtSAG 6 protein, rEtSAG 15 protein, pEGFP-N1-EtSAG 6 plasmid, or pEGFP-N1-EtSAG 15 plasmid showed no significant increase in IFN-γor interleukin-4 (IL-4) level compared with control groups. Chickens vaccinated with protein rEtSAG 6, protein rEtSAG 15, pEGFP-N1-EtSAG 6 plasmid, or pEGFP-N1-EtSAG 15 exhibited higher weight gains, lower oocyst output, and lower mean lesion scores, compared with infection control group. Among the four immunized groups, plasmid EGFP-N1-EtSAG 6 (100 μg) group exhibited the highest anticoccidial index (ACI) value (150.20). Overall, plasmids EGFP-N1-EtSAG 6 and 15, as DNA vaccines, provided a more effective immunoprotection for chickens against E. tenella than protein rEtSAG 6 and protein rEtSAG 15 as subunit vaccines. EtSAG 6 and 15 are promising candidate antigen genes for developing coccidiosis vaccine.
Collapse
|
53
|
Lauxmann MA, Vazquez DS, Schilbert HM, Neubauer PR, Lammers KM, Dodero VI. From celiac disease to coccidia infection and vice-versa: The polyQ peptide CXCR3-interaction axis. Bioessays 2021; 43:e2100101. [PMID: 34705290 DOI: 10.1002/bies.202100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/04/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Zonulin is a physiological modulator of intercellular tight junctions, which upregulation is involved in several diseases like celiac disease (CeD). The polyQ gliadin fragment binds to the CXCR3 chemokine receptor that activates zonulin upregulation, leading to increased intestinal permeability in humans. Here, we report a general hypothesis based on the structural connection between the polyQ sequence of the immunogenic CeD protein, gliadin, and enteric coccidian parasites proteins. Firstly, a novel interaction pathway between the parasites and the host is described based on the structural similarities between polyQ gliadin fragments and the parasite proteins. Secondly, a potential connection between coccidial infections as a novel environmental trigger of CeD is hypothesized. Therefore, this report represents a promising breakthrough for coccidian research and points out the potential role of coccidian parasites as a novel trigger of CeD that might define a preventive strategy for gluten-related disorders in general. Also see the video abstract here: https://youtu.be/oMaQasStcFI.
Collapse
Affiliation(s)
- Martin A Lauxmann
- Institute for Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Germany.,Department of Nephrology, Campus Clinic Brandenburg, Brandenburg Medical School (MHB) Theodor Fontane, Germany
| | - Diego S Vazquez
- Grupo de Biología Estructural y Biotecnología (GBEyB-IMBICE), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Hanna M Schilbert
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany.,Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Pia R Neubauer
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany
| | | | - Veronica I Dodero
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany
| |
Collapse
|
54
|
Lu C, Yan Y, Jian F, Ning C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front Cell Infect Microbiol 2021; 11:751481. [PMID: 34660347 PMCID: PMC8517481 DOI: 10.3389/fcimb.2021.751481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
As a common parasitic disease in animals, coccidiosis substantially affects the health of the host, even in the absence of clinical symptoms and intestinal tract colonization. Gut microbiota is an important part of organisms and is closely related to the parasite and host. Parasitic infections often have adverse effects on the host, and their pathogenic effects are related to the parasite species, parasitic site and host-parasite interactions. Coccidia-microbiota-host interactions represent a complex network in which changes in one link may affect the other two factors. Furthermore, coccidia-microbiota interactions are not well understood and require further research. Here, we discuss the mechanisms by which coccidia interact directly or indirectly with the gut microbiota and the effects on the host. Understanding the mechanisms underlying coccidia-microbiota-host interactions is important to identify new probiotic strategies for the prevention and control of coccidiosis.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
55
|
Yuan X, Liu J, Wang F, Hu XF, Wen F, Tang XE, Yang SS, Zhong SW, Zhou ZH, Li Y. Pathological changes and antigen localization in the small intestine of rabbits infected with Eimeria magna. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.15254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
<p>Coccidiosis is a major disease caused by various <em>Eimeria</em> species in rabbits. The aim of the present study was to investigate the haematological and pathological changes in rabbits infected with <em>E. magna</em>. Moreover, the localisation of coccidial antigens was examined in the intestines of rabbits with two kinds of serum as primary antibodies. In the present study, forty-five 28-day-old weaned rabbits were randomly divided into three groups and reared in three separate places. Group A was infected with 20×10<sup>3</sup> sporulated oocysts of <em>E. magna</em>, group B was only used to produce anti-<em>E. intestinalis</em> serum by infecting them with 3×10<sup>3</sup> sporulated oocysts of <em>E. intestinalis</em>, and group C was designated as the control group. According to histopathological evaluation of group A, the epithelial cells of the jejunum and ileum were parasitised with a large number of oocysts and other stages of <em>E. magna</em>. The haematological results showed that red blood cell counts, haemoglobin counts, haematocrit levels and the percentage of lymphocytes were significantly decreased in group A compared with group C (<em>P</em><0.01), but white blood cell counts and the percentage of neutrophils were significantly increased (<em>P</em><0.01). The weight of group A began to decrease on the 5<sup>th</sup> day after infection, and this decrease continued until the 9th day. Immunohistochemistry staining revealed that two kinds of coccidial antigens were basically located at the same sites of the intestine when anti-<em>E. intestinalis</em> serum and anti-<em>E. magna</em> serum were used as primary antibodies. Most likely, <em>E. magna</em> and <em>E. intestinalis</em> antigens have some similar antigenic determinants; this finding provides a theoretical basis for screening for common antigens of these two coccidian species.</p>
Collapse
|
56
|
Attree E, Sanchez-Arsuaga G, Jones M, Xia D, Marugan-Hernandez V, Blake D, Tomley F. Controlling the causative agents of coccidiosis in domestic chickens; an eye on the past and considerations for the future. CABI AGRICULTURE AND BIOSCIENCE 2021; 2:37. [PMID: 34604790 PMCID: PMC8475900 DOI: 10.1186/s43170-021-00056-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/06/2021] [Indexed: 05/07/2023]
Abstract
Coccidiosis is a potentially severe enteritis caused by species of obligate intracellular parasites of the genus Eimeria. These parasites cause significant economic losses to the poultry industry, predominantly due to compromised efficiency of production as well as the cost of control. These losses were recently estimated to cost chicken producers approximately £10.4 billion worldwide annually. High levels of Eimeria infection cause clinical coccidiosis which is a significant threat to poultry welfare, and a pre-disposing contributory factor for necrotic enteritis. Control of Eimeria parasites and coccidiosis is therefore an important endeavour; multiple approaches have been developed and these are often deployed together. This review summarises current trends in strategies for control of Eimeria, focusing on three main areas: good husbandry, chemoprophylaxis and vaccination. There is currently no "perfect solution" and there are advantages and limitations to all existing methods. Therefore, the aim of this review is to present current control strategies and suggest how these may develop in the future.
Collapse
Affiliation(s)
- Elizabeth Attree
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Gonzalo Sanchez-Arsuaga
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Michelle Jones
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Dong Xia
- Department of Clinical Science and Services, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Damer Blake
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Fiona Tomley
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
- UKRI GCRF One Health Poultry Hub, Ahmedabad, India
| |
Collapse
|
57
|
Genetic Diversity of Microneme Protein 2 and Surface Antigen 1 of Eimeria tenella. Genes (Basel) 2021; 12:genes12091418. [PMID: 34573400 PMCID: PMC8470435 DOI: 10.3390/genes12091418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Avian coccidiosis is a disease caused by members of the genus Eimeria. Huge economic losses incurred by the global poultry industry due to coccidiosis have increased the need for cost-effective and easily available recombinant vaccines. Microneme protein 2 (MIC2) and surface antigen 1 (SAG1) of E. tenella have been recognised as potential vaccine candidates. However, the genetic diversity of the antigens in field isolates, which affects vaccine efficacy, has yet to be largely investigated. Here, we analysed genetic diversity and natural selection of etmic2 and etsag1 in Korean E. tenella isolates. Both genes exhibited low levels of genetic diversity in Korean isolates. However, the two genes showed different patterns of nucleotide diversity and amino acid polymorphism involving the E. tenella isolates obtained from different countries including China and India. These results underscore the need to investigate the genetic diversity of the vaccine candidate antigens and warrant monitoring of genetic heterogeneity and evolutionary aspects of the genes in larger numbers of E. tenella field isolates from different geographical areas to design effective coccidial vaccines.
Collapse
|
58
|
Jeni RE, Dittoe DK, Olson EG, Lourenco J, Seidel DS, Ricke SC, Callaway TR. An overview of health challenges in alternative poultry production systems. Poult Sci 2021; 100:101173. [PMID: 34058563 PMCID: PMC8170424 DOI: 10.1016/j.psj.2021.101173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Due to consumer demand and changing welfare standards on health, ecology, equity, and safety concepts, poultry production has changed markedly over the past 20 y. One of the greatest changes to poultry production standards is now offering poultry limited access to the outdoors in alternative and organic poultry production operations. Although operations allowing access to the outdoors are still only a small portion of commercial poultry production, it may impact the gastrointestinal (GIT) health of the bird in different ways than birds raised under conventional management systems. The present review describes current research results in alternative systems by identifying how different poultry production operations (diet, environmental disruptive factors, diseases) impact the ecology and health of the GIT. Various research efforts will be discussed that illustrate the nutritional value of free-range forages and how forages could be beneficial to animal health and production of both meat and eggs. The review also highlights the need for potential interventions to limit diseases without using antibiotics. These alternatives could enhance both economics and sustainability in organic and free-range poultry production.
Collapse
Affiliation(s)
- Rim El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI
| | - Elena G Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Darren S Seidel
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA.
| |
Collapse
|
59
|
Blake DP, Marugan-Hernandez V, Tomley FM. Spotlight on avian pathology: Eimeria and the disease coccidiosis. Avian Pathol 2021; 50:1-5. [PMID: 33823695 DOI: 10.1080/03079457.2021.1912288] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Coccidiosis, caused by Eimeria species parasites, remains a major threat to poultry production, undermining economic performance and compromising welfare. The recent characterization of three new Eimeria species that infect chickens has highlighted that many gaps remain in our knowledge of the biology and epidemiology of these parasites. Concerns about the use of anticoccidial drugs, widespread parasite drug resistance, the need for vaccines that can be used across broiler as well as layer and breeder sectors, and consumer preferences for "clean" farming, all point to the need for novel control strategies. New research tools including vaccine delivery vectors, high throughput sequencing, parasite transgenesis and sensitive molecular assays that can accurately assess parasite development in vitro and in vivo are all proving helpful in the ongoing quest for improved cost-effective, scalable strategies for future control of coccidiosis.
Collapse
Affiliation(s)
- Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, UK
| | | | - Fiona M Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, UK
| |
Collapse
|
60
|
The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family. Commun Biol 2021; 4:376. [PMID: 33742128 PMCID: PMC7979774 DOI: 10.1038/s42003-021-01904-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
Collapse
|
61
|
Wang Y, Zhou X, Wang H, Sun L, Wang B, Jiang Y, Li H, Zhang X, Li H, Zhao X. The role of Eimeria tenella EtCab protein in the attachment and invasion of host cells. Vet Parasitol 2021; 292:109415. [PMID: 33780830 DOI: 10.1016/j.vetpar.2021.109415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 01/12/2023]
Abstract
Calcium-binding proteins (CaBPs) containing the specific calcium-binding motif (EF-hand) play a crucial role in important physiological events such as secretion, storage and signal transduction of cells. Recently, CaBPs have been found to be associated with host cell invasions in some parasites. In this study, an Eimeria tenella membrane-associated calcium-binding protein (EtCab) was cloned and its expression at different developmental stages, adhesive functions and host cell invasion in vitro were investigated. The results of the sequence analysis showed that EtCab contains six EF-hand motifs and the HDEL ER-retention signal belonging to the CREC (45 kDa calcium-binding protein, reticulocalbin, ER calcium-binding protein of 55 kDa, and calumenin) family. An indirect immunofluorescence assay (IFA) using specific polyclonal antibodies under permeabilized and nonpermeabilized conditions labeled EtCab on the surface of sporozoites. Quantitative real-time PCR and western blotting indicated that EtCab was highly transcribed and expressed in sporozoites. The attachment assay using a yeast surface display model showed that the adherence rates of EtCab expressed on the surfaces of yeasts to host cells were 2.5-fold greater than the control. Invasion inhibition assays revealed that specific polyclonal antibodies against EtCab significantly reduced the invasion rate of sporozoites on host cells compared to the control group (P < 0.01). These results suggest that EtCab plays an important role in the attachment and invasion of E. tenella to host cells.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Xue Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hanzhu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yingying Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China.
| |
Collapse
|
62
|
Genetic and biological characterisation of three cryptic Eimeria operational taxonomic units that infect chickens (Gallus gallus domesticus). Int J Parasitol 2021; 51:621-634. [PMID: 33713650 PMCID: PMC8186487 DOI: 10.1016/j.ijpara.2020.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022]
Abstract
Biology and genetics suggest cryptic Eimeria Operational Taxonomic Units (OTUs) from chickens are new species. New Eimeria spp. that infect chickens are pathogenic and require control. Anticoccidial vaccination of chickens does not control three new Eimeria spp.
More than 68 billion chickens were produced globally in 2018, emphasising their major contribution to the production of protein for human consumption and the importance of their pathogens. Protozoan Eimeria spp. are the most economically significant parasites of chickens, incurring global costs of more than UK £10.4 billion per annum. Seven Eimeria spp. have long been recognised to infect chickens, with three additional cryptic operational taxonomic units (OTUs) first described more than 10 years ago. As the world’s farmers attempt to reduce reliance on routine use of antimicrobials in livestock production, replacing drugs that target a wide range of microbes with precise species- and sometimes strain-specific vaccines, the breakthrough of cryptic genetic types can pose serious problems. Consideration of biological characteristics including oocyst morphology, pathology caused during infection and pre-patent periods, combined with gene-coding sequences predicted from draft genome sequence assemblies, suggest that all three of these cryptic Eimeria OTUs possess sufficient genetic and biological diversity to be considered as new and distinct species. The ability of these OTUs to compromise chicken bodyweight gain and escape immunity induced by current commercially available anticoccidial vaccines indicates that they could pose a notable threat to chicken health, welfare, and productivity. We suggest the names Eimeria lata n. sp., Eimeria nagambie n. sp. and Eimeria zaria n. sp. for OTUs x, y and z, respectively, reflecting their appearance (x) or the origins of the first isolates of these novel species (y, z).
Collapse
|
63
|
Zhao P, Wang C, Ding J, Zhao C, Xia Y, Hu Y, Zhang L, Zhou Y, Zhao J, Fang R. Evaluation of immunoprotective effects of recombinant protein and DNA vaccine based on Eimeria tenella surface antigen 16 and 22 in vivo. Parasitol Res 2021; 120:1861-1871. [PMID: 33689009 PMCID: PMC7943400 DOI: 10.1007/s00436-021-07105-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/05/2022]
Abstract
Coccidiosis triggered by Eimeria tenella is accompanied by haemorrhagic caecum and high morbidity. Vaccines are preferable choices to replace chemical drugs against coccidiosis. Surface antigens of apicomplexan parasites can adhere to host cells during the infection process. Therefore, truncated fragments coding E. tenella surface antigen 16 (EtSAG16) and 22 (EtSAG22) were cloned into pET-28a prokaryotic vector to express recombinant protein 16 (rEtSAG16) and 22 (rEtSAG22), respectively. Likewise, pEGFP-N1-EtSAG16 and pEGFP-N1-EtSAG22 plasmids were constructed using pEGFP-N1 eukaryotic vector. Further, pEGFP-N1-EtSAG4-16-22 multiple gene plasmid carrying EtSAG4, 16 and 22 were designed as cocktail vaccines to study integral immunoprotective effects. Western blot and RT-PCR (reverse transcription) assay were performed to verify expressions of EtSAG16 and 22 genes. Immunoprotective effects of recombinant protein or DNA vaccine were evaluated using different doses (50 or 100 μg) in vivo. All chickens in the vaccination group showed higher cytokine concentration (IFN-γ and IL-17), raised IgY antibody level, increased weight gain, lower caecum lesion score and reduced oocyst shedding compared with infection control groups (p < 0.05). The highest anticoccidial index (ACI) value 173.11 was from the pEGFP-N1-EtSAG4-16-22 plasmid (50 μg) group. In conclusion, EtSAG16 and 22 might be alternative candidate genes for generating vaccines against E. tenella infection.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chaofei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jun Ding
- Animal Disease Prevention and Control Center, Jingshan, 431800 Hubei China
| | - Chengfeng Zhao
- Animal Disease Prevention and Control Center, Anlu, 432600 Hubei China
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yanli Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Li Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
64
|
Huang J, Chen S, Zhou Z, Sun X, Haseeb M, Lakho SA, Zhang Y, Liu J, Shah MAA, Song X, Xu L, Yan R, Li X. Poly (D, L-lactide-co-glycolide) delivery system improve the protective efficacy of recombinant antigen TA4 against Eimeria tenella infection. Poult Sci 2021; 100:101083. [PMID: 33799117 PMCID: PMC8044688 DOI: 10.1016/j.psj.2021.101083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/23/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
Eimeria tenella is a protozoan parasite endemic in chickens and is one of the causative agents of avian coccidiosis. The aim of this research was to determine if poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles carrying recombinant TA4 protein of E. tenella (rEtTA4) could improve the level of protective immunity against E. tenella challenge. Recombinant TA4 protein was expressed and purified. Poly (D, L-lactide-co-glycolide) loaded with rEtTA4 (PLGA-rEtTA4) nanoparticles was prepared and was delivered to 2-week-old layer chickens via intramuscular inoculation. Chickens injected with PBS and PLGA nanoparticles were served as control groups. The rEtTA4 and PLGA-rEtTA4 nanoparticles induced changes of serum cytokines, IgY levels, and T lymphocytes subpopulation, and the protective efficacy against E. tenella challenge was evaluated. Results showed that both rEtTA4 and PLGA-rEtTA4 vaccination groups induced significantly higher levels of specific EtTA4 IgY antibody and IL-17 and higher proportion of CD8+ T lymphocytes. However, no significant differences were observed in the proportion of CD4+ T lymphocytes compared with the PBS control. Chickens immunized with rEtTA4 and PLGA-rEtTA4 prominently increased the BW gains and decreased oocyst output compared with chickens immunized with PBS and PLGA after oral challenge with E. tenella. Poly (D, L-lactide-co-glycolide) encapsulated rEtTA4 nanoparticles–immunized chickens significantly induced higher levels of interferon gamma, IL-6, and IL-17 and a little bit higher proportion of CD8+ T lymphocytes compared with rEtTA4 subunit vaccine–immunized chickens. Thus, PLGA encapsulated rEtTA4 nanoparticles appeared to have great potential to enhance the immune response and improved the protective efficacy against E. tenella infection. Our results provided available protective subunit vaccine rEtTA4 and PLGA loaded with rEtTA4 nanoparticles against coccidiosis and suggested that PLGA nanoparticles could be an effective adjuvant to enhance the protective efficacy of rEtTA4 subunit vaccine.
Collapse
Affiliation(s)
- Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Siying Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhouyang Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaoting Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jiabin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Muhammad Ali A Shah
- Departure of Parasitology and Microbiology, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
65
|
Ma C, Li G, Chen W, Jia Z, Yang X, Pan X, Ma D. Eimeria tenella: IMP1 protein delivered by Lactococcus lactis induces immune responses against homologous challenge in chickens. Vet Parasitol 2021; 289:109320. [PMID: 33248421 DOI: 10.1016/j.vetpar.2020.109320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
Avian coccidiosis leads to severe economic losses on the global poultry industry. Immune mapped protein-1 (IMP1) is a novel membrane protein, and was reported to be a candidate protective antigen. However, production and utilization modes of IMP1 using Lactococcus lactis as delivery vector were not reported untill now. In the present study, Eimeria tenella IMP1 (EtIMP1) protein was expressed in L. lactis under the nisin-inducible promoter, and EtIMP1 protein was produced in cytoplasmic, cell wall-anchored and secreted forms. Each chicken was orally immunized with one of the three live EtIMP1-expressing lactococci three times at 2 weeks intervals (immunized group), or with live bacteria harboring empty vector (immunized control group). Chickens in immunized and immunized control group were challenged with E. tenella sporulated oocysts to assess the immune responses. The results showed that proliferative responses of peripheral blood T lymphocytes, mRNA expression levels of IL-2, IL-4, IL-10 and IFN-γ in spleen tissues, levels of serum IgG and secretory IgA (sIgA) in cecal lavage fluids from chickens in immunized group were all significantly elevated compared to that in immunized control group. All three the live EtIMP1-expressing lactococci significantly decreased oocyst shedding, alleviated pathological damage in cecum and improved weight gain compared with bacteria harboring empty vector. These results suggested EtIMP1 protein delivered by L. lactis might be a promising candidate in developing novel vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Chunli Ma
- Food College, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China
| | - Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xuelian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
66
|
Kareem SM, Kawan MH. Traditional Diagnosis of Eimeria spp. in Fallow Deer at Middle Parts of Iraq. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i(e0).1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Eimeria is an apicomplex protozoon which affects many species of birds, domestic and wild animals including deer. This is the first study in Iraq that was designed for diagnosis Eimeria spp. in deer using traditional methods. Eighty fecal samples of Fallow deer (Damadama) were collected in different provinces in the middle part of Iraq during December 2018 to the end of September 2019. Samples were examined by direct smear and flotation with Sheather's solution. The total infection rate with Eimeria spp. was 70% (56/80), in which higher infection rate was observed in female deer (78%, 39/50). The results also showed that Fawn at age<3-11 months recorded higher rate of infection (86.3%, 19/22). Eimeria infection was more prevalent in Karbala and Baghdad provinces where recorded (73.3% and 72%) respectively, sharp increase of infection recorded during March (87.5%, 7/8). In addition, four species of Eimeria (E. crandalis, E. intricate, E. parva, and E. sordida) were detected in Iraqi deer according to morphological characterization of oocysts. This study highlighted the distribution of some Eimeria species in deer and revealed the effect of some epidemiological factors on prevalence in different middle Iraq provinces.
Collapse
|
67
|
Cha JO, Belal SA, Kim SJ, Shim KS. Quality traits, fatty acids, mineral content of meat and blood metabolites changes of broiler chickens after artificial infection with sporulated Eimeria tenella oocysts. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1848462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jang Ock Cha
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Shah Ahmed Belal
- Department of Poultry Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shang Jin Kim
- Department of Veterinary Pharmacology and Toxicology, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, Republic of Korea
- Department of Agricultural Covergence Technology, Jeonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|
68
|
Guo L, Huang W, Tong F, Chen X, Cao S, Xu H, Luo W, Li Z, Nie Q. Whole Transcriptome Analysis of Chicken Bursa Reveals Candidate Gene That Enhances the Host's Immune Response to Coccidiosis. Front Physiol 2020; 11:573676. [PMID: 33192575 PMCID: PMC7662072 DOI: 10.3389/fphys.2020.573676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis is a major hazard to the chicken industry, but the host’s immune response to coccidiosis remains unclear. Here, we performed Eimeria coccidia challenge in 28-day-old ROSS 308 broilers and selected the bursa from the three most severely affected individuals and three healthy individuals for RNA sequencing. We obtained 347 DEGs from RNA-seq and found that 7 upregulated DEGs were enriched in Cytokine-cytokine receptor interaction pathway. As the DEGs with the highest expression abundance in these 7 genes, TNFRSF6B was speculated to participate in the process of host’s immune response to coccidiosis. It is showed that TNFRSF6B can polarize macrophages to M1 subtype and promote inflammatory cytokines expression. In addition, the expression of TNFRSF6B suppressed HD11 cells apoptosis by downregulating Fas signal pathway. Besides, TNFRSF6B-mediated macrophages immunity activation can be reversed by apoptosis. Overall, our study indicates that TNFRSF6B upregulated in BAE, is capable of aggravating the inflammatory response by inhibiting macrophages apoptosis via downregulating Fas signal pathway, which may participate in host’s immune response to coccidiosis.
Collapse
Affiliation(s)
- Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Feng Tong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Sen Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
69
|
Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TT, Sukumaran AT. Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions. Microorganisms 2020; 8:E1533. [PMID: 33036173 PMCID: PMC7599686 DOI: 10.3390/microorganisms8101533] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
United States is the largest producer and the second largest exporter of broiler meat in the world. In the US, broiler production is largely converting to antibiotic-free programs which has caused an increase in morbidity and mortality within broiler farms. Escherichia coli and Clostridium perfringens are two important pathogenic bacteria readily found in the broiler environment and result in annual billion-dollar losses from colibacillosis, gangrenous dermatitis, and necrotic enteritis. The broiler industry is in search of non-antibiotic alternatives including novel vaccines, prebiotics, probiotics, and housing management strategies to mitigate production losses due to these diseases. This review provides an overview of the broiler industry and antibiotic free production, current challenges, and emerging research on antibiotic alternatives to reduce pathogenic microbial presence and improve bird health.
Collapse
Affiliation(s)
- Courtney A. Fancher
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Aaron S. Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Pratima A. Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Thu T.N. Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| |
Collapse
|
70
|
Blake DP, Knox J, Dehaeck B, Huntington B, Rathinam T, Ravipati V, Ayoade S, Gilbert W, Adebambo AO, Jatau ID, Raman M, Parker D, Rushton J, Tomley FM. Re-calculating the cost of coccidiosis in chickens. Vet Res 2020; 51:115. [PMID: 32928271 PMCID: PMC7488756 DOI: 10.1186/s13567-020-00837-2] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/27/2020] [Indexed: 11/12/2022] Open
Abstract
Coccidiosis, caused by Eimeria species parasites, has long been recognised as an economically significant disease of chickens. As the global chicken population continues to grow, and its contribution to food security intensifies, it is increasingly important to assess the impact of diseases that compromise chicken productivity and welfare. In 1999, Williams published one of the most comprehensive estimates for the cost of coccidiosis in chickens, featuring a compartmentalised model for the costs of prophylaxis, treatment and losses, indicating a total cost in excess of £38 million in the United Kingdom (UK) in 1995. In the 25 years since this analysis the global chicken population has doubled and systems of chicken meat and egg production have advanced through improved nutrition, husbandry and selective breeding of chickens, and wider use of anticoccidial vaccines. Using data from industry representatives including veterinarians, farmers, production and health experts, we have updated the Williams model and estimate that coccidiosis in chickens cost the UK £99.2 million in 2016 (range £73.0-£125.5 million). Applying the model to data from Brazil, Egypt, Guatemala, India, New Zealand, Nigeria and the United States resulted in estimates that, when extrapolated by geographical region, indicate a global cost of ~ £10.4 billion at 2016 prices (£7.7-£13.0 billion), equivalent to £0.16/chicken produced. Understanding the economic costs of livestock diseases can be advantageous, providing baselines to evaluate the impact of different husbandry systems and interventions. The updated cost of coccidiosis in chickens will inform debates on the value of chemoprophylaxis and development of novel anticoccidial vaccines.
Collapse
Affiliation(s)
- Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA UK
| | - Jolene Knox
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA UK
| | - Ben Dehaeck
- Huvepharma N.V, Uitbreidingstraat 80, 2600 Antwerp, Belgium
| | - Ben Huntington
- Liverpool Science Park, Innovation Centre 2, 146 Brownlow Hill, Liverpool, L3 5RF UK
| | - Thilak Rathinam
- Huvepharma Inc, 525 Westpark Dr, Ste 230, Peachtree City, GA 30259 USA
| | - Venu Ravipati
- Department of Veterinary Parasitology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh India
| | - Simeon Ayoade
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - Will Gilbert
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX UK
| | - Ayotunde O. Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - Isa Danladi Jatau
- Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Muthusamy Raman
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051 India
| | - Daniel Parker
- Slate Hall Veterinary Practice, Unit 28 Moorlands Trading Estate, Moor Lane, Metheringham, Lincolnshire, LN4 3 HX UK
| | - Jonathan Rushton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX UK
| | - Fiona M. Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA UK
| |
Collapse
|
71
|
Zhang Z, Huang HB, Jiang YL, Liu J, Gao X, Liu Y, Yang WT, Shi CW, Wang D, Wang JZ, Kang YH, Wang CF, Yang GL. Immunological evaluation of invasive Lactobacillus plantarum co-expressing EtMIC2 and chicken interleukin-18 against Eimeria tenella. Parasitol Res 2020; 119:2885-2895. [PMID: 32715344 PMCID: PMC7382971 DOI: 10.1007/s00436-020-06745-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
Chicken coccidiosis is a protozoan parasitic disease that leads to considerable economic losses in the poultry industry. In this study, we used invasive Lactobacillus plantarum (L.P) expressing the FnBPA protein as a novel bacterial carrier for DNA delivery into epithelial cells to develop a live oral DNA vaccine. A fusion DNA vaccine co-expressing EtMIC2 and chicken IL-18 (chIL-18) was constructed and then delivered to the host by invasive L.P. Its efficacy against Eimeria tenella challenge was evaluated in chickens by examining the relative weight gain rate; caecal lesion score; OPG; anti-coccidial index (ACI); levels of EtMIC2 antibody, FnBPA, IL-4, IL-18, IFN-γ and SIgA; and proliferation ability and percentages of CD4+ and CD8+ splenocytes. The experimental results showed that chickens immunized with invasive L.P carrying the eukaryotic expression vector pValac-EtMIC2 (pValac-EtMIC2/pSIP409-FnBPA) had markedly improved immune protection against challenge compared with that of chickens immunized with non-invasive L.P (pValac-EtMIC2/pSIP409). However, invasive L.P co-expressing EtMIC2 with the chIL-18 vector exhibited the highest protection efficiency against E. tenella. These results indicate that invasive Lactobacillus-expressing FnBPA improved humoural and cellular immunity and enhanced resistance to E. tenella. The DNA vaccine delivered by invasive Lactobacillus provides a new concept and method for the prevention of E. tenella.
Collapse
Affiliation(s)
- Zan Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xing Gao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yang Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Dan Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
72
|
Wang S, Suo X. Still naïve or primed: Anticoccidial vaccines call for memory. Exp Parasitol 2020; 216:107945. [PMID: 32615133 DOI: 10.1016/j.exppara.2020.107945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/15/2023]
Abstract
Despite decades of investigation to clarify protective mechanisms of anticoccidial responses, one crucial field is neglected, that is, protective memory responses in primed birds. Protective memory immunity is critical for host resistance to reinfection and is the basis of modern vaccinology, especially in developing successful subunit vaccines. There are important differences between the immune responses induced by infections and antigens delivered either as killed, recombinant proteins or as live, replicating vector vaccines or as DNA vaccines. Animals immunized with these vaccines may fail to develop protective memory immunity, and is still naïve to Eimeria infection. This may explain why limited success is achieved in developing next-generation anticoccidial vaccines. In this review, we try to decipher the protective memory responses against Eimeria infection, assess immune responses elicited by various anticoccidial vaccine candidates, and propose possible approaches to develop rational vaccines that can induce a protective memory response to chicken coccidiosis.
Collapse
Affiliation(s)
- Si Wang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
73
|
Recombinant invasive Lactobacillus plantarum expressing the Eimeria tenella fusion gene TA4 and AMA1 induces protection against coccidiosis in chickens. Vet Parasitol 2020; 283:109161. [PMID: 32526607 DOI: 10.1016/j.vetpar.2020.109161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/29/2023]
Abstract
Coccidiosis is an intestinal parasitic disease that is caused by Eimeria tenella and other species, and it seriously restricts the economic development of the broiler breeding industry. In this study, a recombinant Lactobacillus plantarum with an invasive effect was constructed, and it expressed the TA4-AMA1 protein of E. tenella. After oral immunization with recombinant L. plantarum, specific humoral and mucosal immune levels were measured by indirect ELISA, and the differentiation of T cells was analysed by flow cytometry. After challenge with sporulated oocysts, the body weight, oocyst shedding and cecum lesions of the chicken were evaluated. The results indicated that chickens immunized with recombinant invasive L. plantarum produced higher levels of specific antibodies in the serum than did the non-immunized controls, and the secretory IgA (sIgA) levels were increased in the intestinal washes compared to those of the controls (P < 0.05). Flow cytometry showed that recombinant invasive L. plantarum significantly stimulated T cell differentiation compared to the PBS group (P < 0.01, P < 0.001), and a higher proportion of CD4+ and CD8+ T cells were detected in peripheral blood. Moreover, the lesion scores and histopathological caecum sections showed that immunizing chickens with recombinant invasive L. plantarum can significantly relieve pathological damage in the cecum (P < 0.01), and the relative body weight gain was 89.64 %, which was higher than the 79.83 % gain in the chickens immunized with non-invasive L. plantarum. After the challenge, faeces from ten chickens in each group were collected between 4 and 7 days, and the oocysts per gram (OPG) was determined by the McMaster technique. The data indicated that oocysts in the faeces of chickens immunized with the recombinant invasive L. plantarum were significantly lower than those of the controls (P < 0.01). The results suggest that recombinant invasive L. plantarum effectively activated immune responses against E. tenella infection and can be used as a candidate vaccine against E. tenella infection.
Collapse
|
74
|
Towards Innovative Design and Application of Recombinant Eimeria as a Vaccine Vector. Infect Immun 2020; 88:IAI.00861-19. [PMID: 32094255 DOI: 10.1128/iai.00861-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Efficient delivery of antigenic cargo to trigger protective immune responses is critical to the success of vaccination. Genetically engineered microorganisms, including virus, bacteria, and protozoa, can be modified to carry and deliver heterologous antigens to the host immune system. The biological vectors can induce a broad range of immune responses and enhance heterologous antigen-specific immunological outcomes. The protozoan genus Eimeria is widespread in domestic animals, causing serious coccidiosis. Eimeria parasites with strong immunogenicity are potent coccidiosis vaccine candidates and offer a valuable model of live vaccines against infectious diseases in animals. Eimeria parasites can also function as a vaccine vector. Herein, we review recent advances in design and application of recombinant Eimeria as a vaccine vector, which has been a topic of ongoing research in our laboratory. By recapitulating the establishment of an Eimeria transfection platform and its application, it will help lay the foundation for the future development of effective parasite-based vaccine delivery vectors and beyond.
Collapse
|
75
|
Panebra A, Lillehoj HS. Eimeria tenella Elongation Factor-1α (EF-1α) Coadministered with Chicken IL-7 (chIL-7) DNA Vaccine Emulsified in Montanide Gel 01 Adjuvant Enhanced the Immune Response to E. acervulina Infection in Broiler Chickens. Avian Dis 2020; 63:342-350. [PMID: 31251536 DOI: 10.1637/11976-092418-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 11/05/2022]
Abstract
The current study was undertaken to assess the vaccine efficacy of Eimeria tenella EF-1α/chicken IL-7 (chIL-7) DNA vaccine when administered with Montanide Gel 01 adjuvant against live Eimeria acervulina challenge in commercial broiler chickens. The criteria used for the evaluation of vaccine efficacy were weight gain, duodenal lesion scores, oocyst counts, humoral antibody response, and duodenal proinflammatory cytokine gene expression. Chickens vaccinated with EF-1α (100 µg)/chIL-7 (20 µg) in Gel 01 PR adjuvant showed body weight gain similar to the uninfected control and higher oocyst shedding, a lower gut lesion score, and higher proinflammatory cytokine gene expression than did the infected controls. Moreover, chickens vaccinated with chIL-7 (20 µg) in Gel 01 PR adjuvant shed fewer oocysts with reduced gut lesion scores and produced higher levels of anti-EF-1α serum antibody than did the infected control. Chickens vaccinated with EF-1α (50 µg)/chIL-7 (20 µg) in Gel 01 PR adjuvant showed higher weight gains than did the infected control and shed significantly fewer oocysts than the infected control. Furthermore, chickens vaccinated with EF-1α (100 µg) in Gel 01 PR adjuvant demonstrated the lowest anti-EF-1α serum antibody levels. This study demonstrated the beneficial effects of using EF-1α and/or host cytokine chIL-7 DNA vaccine together with Gel 01 PR adjuvant to improve T-cell-mediated effector function in broiler chickens challenged with live E. acervulina.
Collapse
Affiliation(s)
- Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705,
| |
Collapse
|
76
|
Matsubayashi M, Kinoshita M, Kobayashi A, Tsuchida S, Shibahara T, Hasegawa M, Nakamura H, Sasai K, Ushida K. Parasitic development in intestines and oocyst shedding patterns for infection by Eimeria uekii and Eimeria raichoi in Japanese rock ptarmigans, Lagopus muta japonica, protected by cages in the Southern Japanese Alps. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:19-24. [PMID: 32368488 PMCID: PMC7186262 DOI: 10.1016/j.ijppaw.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/02/2023]
Abstract
The population of Japanese rock ptarmigan (Lagopus muta japonica), an endangered species with a habitat above the timberline of the southern Japanese Alps, has declined. As one of the recent conservation strategies for this species, cage protection for broods (hens and chicks) has been introduced in their habitats. Two species of Eimeria have frequently been detected in these birds, but little is known about the parasitic circulation in the region, including among birds and in the environment. Here, we conducted histopathology examinations of dead chicks collected under cage protection in 2018, and examined the feces of the hens and chicks of three broods and environmental soils for parasites in 2019 in order to assess the potential sources of infection and pathogenicity. Developmental zoites were found in the epithelial mucosa and/or the submucosa from the duodenum to the colon of all dead chicks. Fecal examination revealed oocysts of E. uekii and/or E. raichoi in all hens and chicks. Oocysts of Eimeria spp. per gram of feces in chicks increased within 2 weeks after hatching and then gradually deceased. Following infection of the chicks, oocysts could accumulate within the cage areas, and oocyst density exceeded more than 1000 oocysts per gram of cage soils. Based on having sporulated morphologies, oocysts could be infective and therefore, be direct or indirect potential sources of infection. However, based on our findings that not all chicks were clinically affected by the infections, other factors such as microbial flora in the chicks established by coprophagy or from the habitat environment, including climate, might be associated with the pathogenicity of Eimeria spp., although further studies are needed to assess these correlations. Cage protection is effective on conservation of Japanese rock ptarmigans. Hens caring chicks were highly infected with Eimeria spp. and shedded the oocysts. Potential sources of the infection could be contaminated soils but not coprophagy behaviors of chicks. Pathogenicity of Eimeria might be also associated with factors like establishment of gut microbiota or habitat conditions.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, 545-8585, Japan
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia
| | - Moemi Kinoshita
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Atsushi Kobayashi
- Department of Biology, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Sayaka Tsuchida
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Tomoyuki Shibahara
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masami Hasegawa
- Department of Biology, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Hiroshi Nakamura
- General Foundation Hiroshi Nakamura International Institute for Ornithology, Nakagosho, Nagano, 380-0934, Japan
| | - Kazumi Sasai
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Kazunari Ushida
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan
- Corresponding author. Academy of Emerging Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
77
|
Diagnosis of sub-clinical coccidiosis in fast growing broiler chickens by MicroRNA profiling. Genomics 2020; 112:3218-3225. [PMID: 32198064 DOI: 10.1016/j.ygeno.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Coccidiosis in broiler chickens, caused by infection with Eimeria spp. remains one of the most economically important production diseases. Development of a genetic biomarker panel of sub-clinical infection would be an important biological tool for the management of broiler flocks. We analysed expression of MicroRNAs (miRNAs) to determine the potential for these in diagnosing coccidiosis in broiler flocks. miRNA expression, in the ilea of Ross 308 broilers, was compared between chickens naturally clinically or sub-clinically infected with Eimeria maxima and Eimeria acervulina using NextSeq 500 sequencing. 50 miRNAs with greatest coefficient of variance were determined and principal component analysis showed that these miRNAs clustered within the clinical and sub-clinical groups much more closely than uninfected controls. Following false detection rate analysis and quantitative PCR we validated 3 miRNAs; Gallus gallus (gga)-miR-122-5p, gga-miR-205b and gga-miR-144-3p, which may be used to diagnose sub-clinical coccidiosis.
Collapse
|
78
|
Liu TL, Fan XC, Wang Y, Wang YX, Wang JW, Song JK, Zhao GH. Micro-RNA expression profile of chicken small intestines during Eimeria necatrix infection. Poult Sci 2020; 99:2444-2451. [PMID: 32359579 PMCID: PMC7597538 DOI: 10.1016/j.psj.2019.12.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023] Open
Abstract
Eimeria necatrix is a high pathogenic pathogen second to Eimeria tenella causing chicken coccidiosis. However, the precise underlying molecular mechanisms of interaction between E. necatrix and chickens are not fully understood. Accumulating evidences suggest that micro-RNAs (miRNAs) play pivotal regulatory roles in various diseases, including parasitic diseases. In the present study, the expression profile of miRNAs in Hy-line variety white chicken small intestines infected with E. necatrix was studied by using deep sequencing. A total of 35 miRNAs (including 16 significantly upregulated and 19 significantly downregulated miRNAs) were significantly differentially expressed (DE) in infected tissues at 108 h post-infection (pi). Real-time polymerase chain of 10 miRNAs (including 5 upregulated and 5 downregulated) randomly selected successfully confirmed the effectiveness of deep sequencing. Target prediction showed that 4,568 mRNAs could be regulated by 21 (including 12 upregulated and 9 downregulated) of 35 differentially expressed miRNAs. Functional analysis indicated that target genes of these differentially expressed miRNAs would be involved in pathways related to infection of E. necatrix, including cell differentiation, adhesion, proliferation, and apoptosis (e.g., MAPK signaling pathway and PPAR signaling pathway). To our best knowledge, this is the first study on the miRNA expression profile of small intestines during E. necatrix infection, and the findings in the present study suggested that these DE miRNAs would play important regulatory role in the interaction between E. necatrix and chicken intestines.
Collapse
Affiliation(s)
- Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yi Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun-Wei Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
79
|
Li G, Ma C, Wang D, Chen W, Ma D. Recombinant Lactococcus lactis co-expressing dendritic cell target peptide and E. tenella 3-1E protein: immune response and efficacy against homologous challenge. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1733495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Dian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
80
|
Zhao N, Lv J, Lu Y, Jiang Y, Li H, Liu Y, Zhang X, Zhao X. Prolonging and enhancing the protective efficacy of the EtMIC3-C-MAR against eimeria tenella through delivered by attenuated salmonella typhimurium. Vet Parasitol 2020; 279:109061. [PMID: 32143014 DOI: 10.1016/j.vetpar.2020.109061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
The microneme adhesive repeats (MAR) of Eimeria tenella microneme protein 3 (EtMIC3) are associated with binding to and invasion of host cells. Adhesion and invasion-related proteins or domains are often strongly immunogenic, immune responses mounted against these factors that play a key role in blocking invasion. In the present study, an oral live vaccine consisting of attenuated Salmonella typhimurium X4550 carrying two MAR domains fragment (St-X4550-MAR) was constructed and its protective efficacies were evaluated. The results showed that St-X4550-MAR was more immunogenic and conferred a higher degree of protection than recombinant MAR polypeptide as reflected by increased body weight, decreased oocyst shedding and lesion scores, increased serum IgG and cecal sIgA antibody production, and increasing levels of interferon-γ and interleukin-10. Thus, MAR domains are highly immunogenic and St-X4550-MAR had moderate activity against E. tenella infection by stimulating humoral, mucosal and cellular immunity. Chickens immunized with our constructed live vaccine provided considerable protections as early as at 10 d post-immunization (ACI: 155.17), and maintained higher protection levels at 20 d post-immunization (ACI: 173.66), and at 30 d post-immunization (ACI: 162.4). While the protective efficacy of chickens immunized with the recombinant MAR peptides showed a decreased trend as the post immunization time prolonging. Thus, using live-attenuated S. typhimurium X4550 as a vaccine expression and delivery system can significantly improve the protective efficacy and duration of protective immunity of MAR of EtMIC3.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Junfeng Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yingying Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yumin Liu
- Shandong Huamutianyuan Agriculture and Animal Husbandry Co., Ltd., 1 Gangxing 3 Road, Jinan, Shandong Province, 250101, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
81
|
Liu J, Tuo W, Wu X, Xiong J, Yu E, Yin C, Ma Z, Liu L. Immunoproteomic and mass spectrometric analysis of Eimeria acervulina antigens recognized by antisera from chickens infected with E. acervulina, E. tenella or E. necatrix. Parasit Vectors 2020; 13:93. [PMID: 32085718 PMCID: PMC7035704 DOI: 10.1186/s13071-020-3965-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Coccidiosis is caused by Eimeria spp. and can result in severe economic losses to the global poultry industry. Due to anticoccidial drug resistance rapidly developing in the parasites and drug residues in poultry products, efficacious and safe alternative coccidia control measures are needed. The objective of the present study was to identify common protective antigens which may be used as vaccine candidates in the development of subunit, multivalent, cross-protective vaccines against most of the economically important Eimeria species. Methods Whole sporozoite proteins of Eimeria acervulina were prepared and analyzed by 2-dimensional gel electrophoresis (2-DE) followed by western blotting using immune sera specific to E. tenella, E. acervulina, or E. necatrix. The protein spots detected by all three immune sera were then excised from the preparative gel and protein ID was performed by MALDI-TOF-MS/MS. Results Approximately 620 E. acervulina sporozoite protein spots were demonstrated by 2-DE with silver staining, among which 23 protein spots were recognized by immune sera specific to all three Eimeria species. The results showed that 21 putative E. acervulina proteins were identified, which include proteins with known enzymatic properties, and those which are involved in protein translation, transport and trafficking, and ribosomal biogenesis and functions. There is one protein which may be involved in transcription and one heat-shock protein. Two proteins contain predicted domains, but with no apparent functions known. There were 2 protein spots which had no detectable proteins. None of the proteins has a predicted signal peptide or a transmembrane domain; however, 6 of the 21 putative proteins were predicted to be potentially secretory through the non-classical pathway. Conclusions Our study identified a diverse group of antigens immunologically common to all three Eimeria species, none of which was previously characterized and tested as a vaccine candidate. Further research on immunogenicity and cross-protective potential of these individual proteins as vaccine candidates will aid the development of vaccines against the most common and pathogenic Eimeria spp.![]()
Collapse
Affiliation(s)
- Jin Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xiangdong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jiaming Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Enchao Yu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chao Yin
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Zhiwu Ma
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Liheng Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
82
|
Chen HL, Zhao XY, Zhao GX, Huang HB, Li HR, Shi CW, Yang WT, Jiang YL, Wang JZ, Ye LP, Zhao Q, Wang CF, Yang GL. Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasit Vectors 2020; 13:56. [PMID: 32046772 PMCID: PMC7014781 DOI: 10.1186/s13071-020-3897-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background Eimeria spp. are responsible for chicken coccidiosis which is the most important enteric protozoan disease resulting in tremendous economic losses in the poultry industry. Understanding the interaction between the avian cecal microbiota and coccidia is of interest in the development of alternative treatments that do not rely on chemotherapeutics and do not lead to drug resistance. Methods We utilized 16S rRNA gene sequencing to detect the dynamics of the cecal microbial community in AA broilers challenged with Eimeria tenella. Histopathological analysis of the cecum was also conducted. Results We found that microbial shifts occur during the infection. Lactobacillus, Faecalibacterium, Ruminococcaceae UCG-013, Romboutsia and Shuttleworthia decreased in abundance. However, the opportunistic pathogens Enterococcus and Streptococcus increased in abundance over time in response to the infection. Conclusions Eimeria tenella disrupts the integrity of the cecal microbiota and could promote the establishment and growth of potentially pathogenic bacteria. Defining bacterial populations affected by coccidial infection might help identify bacterial markers for intestinal disease as well as populations or species that could be beneficial in maintaining and restoring gut homeostasis during and after infection with E. tenella.
Collapse
Affiliation(s)
- Hong-Liang Chen
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin-Yu Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guang-Xun Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hao-Rui Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Quan Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
83
|
In vivo immunoprotective comparison between recombinant protein and DNA vaccine of Eimeria tenella surface antigen 4. Vet Parasitol 2020; 278:109032. [PMID: 31981858 DOI: 10.1016/j.vetpar.2020.109032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
Eimeria tenella, belonging to protozoon, is the causative agent of cecal coccidiosis in chicken and causes enormous impacts for poultry industry. The surface antigens of apicomplexan parasites function as attachment and invasion in host-parasite interaction. Meanwhile, host immune response is triggered as a result of parasitic invasion. Immunogenicity and potency as a vaccinal candidate antigen of E. tenella surface antigen 4 (EtSAG4) have been unknown. Therefore, a gene segment of E. tenella EtSAG4 was amplified and transplanted to pET28a prokaryotic vector for recombinant protein expression. Similarly, pEGFP-N1 eukaryotic vectors with EtSAG4 gene segment (pEGFP-N1-EtSAG4) amplified in 293 T cells as DNA vaccines. Reverse transcription-polymerase chain reaction (RT-PCR) assay and western blot analysis were used to demonstrate successful expressions of EtSAG4 in Escherichia coli or 293 T cells. Subsequently, animal experiments (72 cobb broilers) were performed to evaluate immunoprotective between recombinant protein and DNA vaccine of E. tenella EtSAG4 using different immunizing doses (50 or 100 μg), respectively. Serum from chickens infected with E. tenella identified recombinant EtSAG4 (rEtSAG4) protein. Chickens vaccinated with either rEtSAG4 protein or pEGFP-N1-EtSAG4 plasmids both shown a significant increase in concentration of IFN-γ (p < 0.05) compared with control groups indicating production of cell-mediated immunity. Besides, pEGFP-N1-EtSAG4 plasmids motivated more intense immune responses for immunoglobulin Y (IgY) and interleukin 17 (IL-17) (p < 0.05) contrast to control groups. However, there was no increase in concentration of interleukin 10 (IL-10) and interleukin 4 (IL-4) for both rEtSAG4 protein and pEGFP-N1-EtSAG4 plasmids. Chickens vaccinated with rEtSAG4 protein or pEGFP-N1-EtSAG4 plasmids both show higher weight, lower oocyst output and mean lesion scores compared with infection control groups. The highest anticoccidial index (ACI) value of immunized groups was 168.24 from EGFP-N1-EtSAG4 plasmids (100 μg) group. Generally, EGFP-N1-EtSAG4 plasmids as DNA vaccines provided a more effective immunoprotective for chickens against E. tenalla than that of rEtSAG4 protein as subunit vaccines. EtSAG4 is a promising candidate antigen gene for development of coccidiosis vaccine.
Collapse
|
84
|
Kiarie EG, Leung H, Akbari Moghaddam Kakhki R, Patterson R, Barta JR. Utility of Feed Enzymes and Yeast Derivatives in Ameliorating Deleterious Effects of Coccidiosis on Intestinal Health and Function in Broiler Chickens. Front Vet Sci 2019; 6:473. [PMID: 31921926 PMCID: PMC6933770 DOI: 10.3389/fvets.2019.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis induced necrotic lesions impair digestive capacity and barrier function in concurrence with increased risks for secondary bacterial infections. The industry has been successful in controlling coccidiosis with anticoccidials and vaccination. However, concerns over Eimeria species resistant to anticoccidials, gaps in vaccination and restriction on antibiotics is stimulating research and application of alternative and/or complimentary strategies for coccidiosis control. The aim of this paper is to appraise literature on the utility of feed enzymes and yeast derivatives in modulating coccidiosis. Feed enzymes can complement endogenous enzymes (protease, amylase, and lipase) that may become insufficient in coccidiosis afflicted birds. Coccidiosis in the upper small intestine creates conditions that enhances efficacy of phytase and there are reports indicating supplemental phytase can mitigate the negative impact of coccidiosis on bone quality. Increase in intestinal short chain fatty acids due supplemental fiber degrading enzymes has been linked with reduced survivability of Eimeria. There is evidence whole yeast (live or dead) and derivatives can modulate coccidiosis. Immunomudulation properties of the yeast derivatives have been shown to enhance cellular and humoral immunity in Eimeria challenge models which is critical for effectiveness of coccidial vaccination. Moreover, yeast nucleotides have been shown to be beneficial in stimulating healing of intestinal mucosal surface. Other novel work has shown that certain yeast cells can produce derivatives with anticoccidial compounds effective in attenuating oocysts shedding. Yeast cell surface has also been shown to be an effective oral Eimeria vaccine delivery vehicle. Overall, while further refinement research is warranted to address inconsistencies in responses and commercial application, there is evidence feed enzymes and yeast derivatives could complement strategies for maintaining intestinal function to bolster growth performance in broilers compromised with coccidiosis. However, broilers receive diets containing several feed additives with distinct mode of actions and yet there is dearth of empirical data on the expected responses.Future evaluations should consider combinations of additives to document animal responses and potential synergies.
Collapse
Affiliation(s)
- Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Haley Leung
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Rob Patterson
- Department of Technical Services and Innovation, Canadian Bio-Systems Inc., Calgary, AL, Canada
| | - John R. Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
85
|
Duff A, Vuong C, Searer K, Briggs W, Wilson K, Hargis B, Berghman L, Bielke L. Preliminary studies on development of a novel subunit vaccine targeting Clostridium perfringens mucolytic enzymes for the control of necrotic enteritis in broilers. Poult Sci 2019; 98:6319-6325. [PMID: 31392320 PMCID: PMC8913755 DOI: 10.3382/ps/pez448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 01/27/2023] Open
Abstract
Necrotic enteritis (NE) is a pervasive enteric disease responsible for large scale economic losses within the global poultry industry. The etiologic agent of NE is Clostridium perfringens (CP), an opportunistic pathogen that utilizes numerous extracellular toxins and glycoside hydrolases (GH) as key virulence and nutrient acquisition factors. Notably, some GH, mucinases, degrade components of mucin in the gastrointestinal tract as an energy source. Targeting this mechanism may serve to reduce the incidence of disease associated with CP. Two experiments were completed that evaluated mucinase vaccine targets sourced from conserved peptide sequences of carbohydrate binding module 32 of CP mucinases. In experiment 1, 37 antigen peptides were synthetically generated and used to produce hyper-immune sera, which was then evaluated for ability to obstruct CP growth in vitro. Total CFU of CP were measured at 4, 6, and 8 h incubation to determine growth rate. Peptides 4, 5, 22, 24, and 30 were selected for further in vivo testing based on conservation or the ability to inhibit CP growth by over 50% at 6 and 8 h. In experiment 2, the aforementioned peptides were conjugated to an agonistic, CD40-targetting antibody and evaluated in vivo. Broilers were given an Eimeria maxima and CP in order to induce NE and assess vaccine efficacy. Treatments included a non-vaccinated non-inoculated control, non-vaccinated inoculated control (NVIC), vaccination with peptide 4, 5, 22, 24, or 30 (VP4-VP30), or a combination of all 5 peptides (MC). There was a significant increase (P < 0.05) in the percent change in BWG relative to NVIC for vaccination with peptide 22 and MC of 18.54 and 17.43%, respectively. MC vaccinated group had the lowest lesions with a mean score of 0.63 ± 0.18. These results suggest the MC combination was the most successful in alleviating overall performance losses associated with NE-infected broilers and encourage future testing of MC in the development of an NE vaccine.
Collapse
Affiliation(s)
- A.F. Duff
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - C.N. Vuong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701
| | - K.L. Searer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - W.N. Briggs
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - K.M. Wilson
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - B.M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701
| | - L.R. Berghman
- Department of Veterinary Pathology, Texas A&M University, College Station, TX 77840
- Department of Poultry Science, Texas A&M University, College Station, TX 77840
| | - L.R. Bielke
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
86
|
Optimization of Immunization Procedure for Eimeria tenella DNA Vaccine pVAX1-pEtK2-IL-2 and Its Stability. Acta Parasitol 2019; 64:745-752. [PMID: 31165990 DOI: 10.2478/s11686-019-00090-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE To seek for the optimal immunization procedure of DNA vaccine pVAX1-pEtK2-IL-2 which was produced via cloning pEtK2 antigen gene of Eimeria tenella (E. tenella) and chicken IL-2 (chIL-2) gene into expression vector pVAX1. METHODS The doses, routes, times of inoculation and ages of the first inoculation of chickens were optimized. The stability of the vaccine, including store temperature and time, was also explored. The effects of the protective immunity against challenge infection were assessed according to average body weight gain, survival rate, oocyst output, lesion score and the anti-coccidial index (ACI). RESULTS The results suggested that intramuscular inoculation was the most efficient route to elicit immune response and 80 μg was the optimal immune dose. Two time injections induced more effective protection compared to single injection, the effect of the first injection at 14 days old was optimal. The immune efficacy of the vaccine stored at different time and temperature was very stable. CONCLUSIONS The optimal immunization procedure for Eimeria tenella DNA vaccine pVAX1-pEtK2-IL-2 is 80 μg DNA, two time injections at 14 and 21 days old, respectively, by intramuscular inoculation.
Collapse
|
87
|
Abstract
Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.
Collapse
|
88
|
Zhao N, Ming S, Lu Y, Wang F, Li H, Zhang X, Zhao X. Identification and Application of Epitopes in EtMIC1 of Eimeria tenella Recognized by the Monoclonal Antibodies 1-A1 and 1-H2. Infect Immun 2019; 87:e00596-19. [PMID: 31427452 PMCID: PMC6803336 DOI: 10.1128/iai.00596-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Eimeria tenella microneme-1 protein (EtMIC1) has been proposed to be a transmembrane protein, but this characteristic has not yet been confirmed experimentally. Furthermore, despite EtMIC1 being an important candidate antigen, its key epitope has not been reported. Here, two linear B-cell epitopes of EtMIC1, 91LITFATRSK99 and 698ESLISAGE705, were identified by Western blotting using specific monoclonal antibodies (MAbs) and were named epitope I (located in the I-domain) and epitope CTR (located in the CTR domain), respectively. Sequence comparative analyses of these epitopes among Eimeria species that infect chickens showed that epitope I differs greatly across species, whereas epitope CTR is relatively conserved. Point mutation assay results indicate that all the amino acid residues of the epitopes recognized by MAb 1-A1 or 1-H2 are key amino acids involved in recognition. Comparative analyses of indirect immunofluorescence assay (IFA) results for MAbs 1-A1 and 1-H2 under both nonpermeabilization and permeabilization conditions indicate that epitope I is located on the outer side of the sporozoite surface membrane whereas epitope CTR is located on the inner side, together providing experimental evidence that EtMIC1 is a transmembrane protein. IFA also labeled the EtMIC1 protein on the parasitophorous vacuole membrane and on the surface of schizonts, which suggests that the EtMIC1 protein may play an important role in parasitophorous vacuole formation and E. tenella development. Immunoprotective efficacy experiments revealed that epitope I has good immunogenicity, as evidenced by its induction of high serum antibody levels, blood lymphocyte proliferation, and CD4+ blood lymphocyte percentage.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Shuzhen Ming
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
89
|
Aggrey SE, Milfort MC, Fuller AL, Yuan J, Rekaya R. Effect of host genotype and Eimeria acervulina infection on the metabolome of meat-type chickens. PLoS One 2019; 14:e0223417. [PMID: 31618222 PMCID: PMC6795442 DOI: 10.1371/journal.pone.0223417] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Objective A study was conducted to identify metabolic biochemical differences between two chicken genotypes infected with Eimeria acervulina and to ascertain the underlying mechanisms for these metabolic alterations and to further delineate genotype-specific effects during merozoite formation and oocyst shedding. Methods Fourteen day old chicks of an unimproved (ACRB) and improved (COBB) genotype were orally infected with 2.5 x 105 sporulated E. acervulina oocysts. At 4 and 6 day-post infection, 5 birds from each treatment group and their controls were bled for serum. Global metabolomic profiles were assessed using ultra performance liquid chromatography/tandem mass spectrometry (metabolon, Inc.,). Statistical analyses were based on analysis of variance to identify which biochemicals differed significantly between experimental groups. Pathway enrichment analysis was conducted to identify significant pathways associated with response to E. acervulina infection. Results A total of 752 metabolites were identified across genotype, treatment and time post infection. Altered fatty acid (FA) metabolism and β-oxidation were identified as dominant metabolic signatures associated with E. acervulina infection. Key metabolite changes in FA metabolism included stearoylcarnitine, palmitoylcarnitine and linoleoylcarnitine. The infection induced changes in nucleotide metabolism and elicited inflammatory reaction as evidenced by changes in thromboxane B2, 12-HHTrE and itaconate. Conclusions Serum metabolome of two chicken genotypes infected with E. acervulina demonstrated significant changes that were treatment-, time post-infection- and genotype-dependent. Distinct metabolic signatures were identified in fatty acid, nucleotide, inflammation and oxidative stress biochemicals. Significant microbial associated product alterations are likely to be associated with malabsorption of nutrients during infection.
Collapse
Affiliation(s)
- Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, Peoples Republic of China
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
90
|
El-Ashram SA, Aboelhadid SM, Gadelhaq SM, Arafa WM, Abdel-Razik ARH, Abohamra S, Abdelaziz KT. Oral inoculation of ultraviolet-irradiated Eimeria species oocysts protects chickens against coccidiosis. Parasitol Res 2019; 118:3173-3183. [PMID: 31606835 DOI: 10.1007/s00436-019-06455-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Abstract
Prevention of coccidiosis is one of the best ways of controlling disease. Therefore, the present study was carried out to evaluate the protective effect of ultraviolet (UV)-irradiated sporulated oocysts of Eimeria species against coccidiosis in layer chickens. One hundred forty-four one-day-old layer chicks were randomly divided into 4 groups (n = 36), including non-immunized/non-challenged negative control group (NC group), non-immunized/challenged control group (NIC group), non-irradiated sporulated oocyst/challenged group (CA group), and UV-irradiated sporulated oocyst/challenged (UV group). At the age of 4 days, chickens in groups UV and CA were both orally inoculated with 1.0 × 104 UV-irradiated and non-irradiated sporulated oocysts of Eimeria species, respectively. Chickens in groups NIC and NC were served as positive and negative controls, respectively. Chickens in all groups were orally challenged with 7.5 × 104 sporulated oocysts of Eimeria species except the NC group at the age of 21 days. The results revealed that chicks receiving UV-irradiated sporulated oocysts had no signs of illness with minimal or no changes in the cecal integrity and a significantly lower oocyst shedding (OPG) than in the NIC group. Additionally, the cytokine gene expression profiles were evaluated. Expression levels of IL-2, IL-12, and IFN-γ were significantly higher in the spleen of chicks in the UV and CA groups than in the NC group post-challenge. As expected, treatment with irradiated oocysts resulted in a significant reduction in oocyst shedding and maintenance of cecal mucosal integrity. Furthermore, the body weight was higher in chickens inoculated with UV-irradiated oocysts than their non-irradiated counterparts. In conclusion, our results demonstrate that inoculation with UV-irradiated sporulated oocysts of Eimeria species can produce a substantial reduction in infection symptoms.
Collapse
Affiliation(s)
- Saeed A El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong Province, China.
- Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Salama Abohamra
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Khaled T Abdelaziz
- Department of pathology, Ontario Veterinary College, University of Guelph, Ontario, N1G 2W1, Canada
- Department of pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
91
|
Nutrition as a modulatory factor of the efficacy of live anticoccidial vaccines in broiler chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933914000075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
92
|
Hassan YI, Kosir V, Yin X, Ross K, Diarra MS. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9705-9718. [PMID: 31393722 DOI: 10.1021/acs.jafc.9b02861] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance is among the most urgent global challenges facing sustainable animal production systems. The use of antibiotics as growth promoters and for infectious disease prevention in intensive animal-farming practices has translated into the selection and spread of antimicrobial resistance genes in an unprecedented fashion. Several multi-resistant bacterial strains have been isolated from food-producing animals, thus constituting an alarming food-safety issue. Many industrial byproducts with potential antimicrobial properties are currently being investigated to identify empirical and affordable solutions/alternatives that can potentially be used in feed for animals. Grape pomace is among such byproducts that gained the attention as a result of its low cost, abundance, and, most importantly, its bioactive and antibacterial properties. This review discusses the recently reported studies with regard to exploring the use of grape pomace (and its extracts) in animal production to control pathogens, along with the promotion of beneficial bacterial species in the gut to ultimately alleviate antibacterial resistance. The review further summarizes realistic expectations connected with grape pomace usage and lists the still-to-be-addressed concerns about its application in animal agriculture.
Collapse
Affiliation(s)
- Yousef I Hassan
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Veronika Kosir
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Xianhua Yin
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Kelly Ross
- Summerland Research and Development Centre , Agriculture and Agri-Food Canada , Summerland , British Columbia V0H 1Z0 , Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
93
|
Molecular characterization of surface antigen 10 of Eimeria tenella. Parasitol Res 2019; 118:2989-2999. [PMID: 31473858 DOI: 10.1007/s00436-019-06437-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/22/2019] [Indexed: 01/26/2023]
Abstract
Chicken coccidiosis is caused by the apicomplexan parasite Eimeria spp. At present, drug resistance of Eimeria is common because of the indiscriminate use of anticoccidial drugs. The gene encoding surface antigen 10 of Eimeria tenella (EtSAG10) is differentially expressed between drug-resistant and drug-sensitive strains. RNA-seq analysis indicated that this gene was downregulated in strains resistant to maduramicin and diclazuril compared to susceptible strains. EtSAG10 DNA sequence alignment revealed that they contained one and ten mutations in MRR and DZR, compared with DS, respectively. A full-length EtSAG10 cDNA was successfully cloned and expressed, and the polyclonal antibody was prepared. The transcription and translation levels of EtSAG10 were analyzed by quantitative real-time PCR (qPCR) and Western blotting. The localization of EtSAG10 in Spz, Mrz, and parasites in the first asexual stage was determined by indirect immunofluorescence. The potential association of EtSAG10 with sporozoite invasion of host cells was assessed by invasion inhibition assays. The results showed that EtSAG10 had a predicted transmembrane domain at the C-terminal end and a predicted signal peptide at the N-terminal end. EtSAG10 was downregulated in drug-resistant strains, which is consistent with the RNA-seq results. The EtSAG10 protein was localized to the parasite surface and parasitophorous vacuole membrane. This protein was shown to play a role in the infection of chicken intestine by sporozoites.
Collapse
|
94
|
El-Ashram S, Aboelhadid SM, Arafa WM, Gadelhaq SM, Abdel-Razik ARH. Protective potential of diclazuril-treated oocysts against coccidiosis in layer chicks. Vet Parasitol 2019; 273:105-111. [PMID: 31473449 DOI: 10.1016/j.vetpar.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023]
Abstract
Diclazuril, which is widely used for the prevention of coccidiosis in chickens, has a lethal effect on asexual and sexual stages of Eimeria spp. However, little is known about its effect on the exogenous stages of Eimeria spp. In this study, we evaluated the effect of in vitro treatment with 0.2% diclazuril on unsporulated and sporulated oocysts of Eimeria spp. For this purpose, a total of 180 male layer chicks aged one day were randomly divided into 5 experimental groups. Each group was divided into 3 replicates of 12 chicks each. Group 1 (G1) and Group 2 (G2) were negative (non-immunized and non-challenged) and positive (non-immunized and challenged) controls, respectively. Group 3 (G3) was immunized per os with 1.0 × 104 non-diclazuril treated-sporulated oocysts. Groups 4 (G4) was immunized per os with 0.2% diclazuril treated-unsporulated oocysts (1.0 × 104) in which diclazzuril didn't affect sporulation. Group 5 (G5) was immunized per os with 0.2% diclazuril treated-sporulated oocysts (1.0 × 104). Chicks of G2, G3, G4, and G5 were challenged with 7.5 × 104 untreated sporulated oocysts at the age of 21 days, while the group 1 chicks remained unchallenged. G4 and G5 animals immunized with 0.2% diclazuril-treated oocysts showed a significant decrease in bloody diarrhea severity, lesion scores, and oocyst counts in comparison to those immunized with untreated oocysts. Furthermore, histopathologic findings showed a low number of parasitic stages in cecal tissues in G4 and G5. A significant increased body weight gain was observed in Gs 4 and 5 in comparison to G2. In addition, expression levels of IL-2, IL-12, and IFN-γ were significantly increased in G4 and G5. In conclusion, diclazuril is effective in attenuating Eimeria oocysts and thus provides an alternative approach for using diclazuril-treated oocysts to protect chicks against Eimeria challenge.
Collapse
Affiliation(s)
- Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
95
|
Matsubayashi M, Yamaguchi H, Hatta T, Kawahara F, Hatabu T, Iseki H, Yamagishi J, Isobe T, Teramoto I, Kaneko A, Kita K, Tsuji N, Sasai K. Transitions in morphological forms and rapid development of the asexual schizonts of Eimeria tenella through serial passaging in chicks. INFECTION GENETICS AND EVOLUTION 2019; 75:103993. [PMID: 31394291 DOI: 10.1016/j.meegid.2019.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
Attenuated strains of avian Eimeria parasites, generated by the selection of precocious lines through serial passaging in chicks, have been used widely as live vaccines. Detailed morphological transitions including their life cycle depending on the passages remain poorly understood. Here, we showed early development and acceleration of transitions in morphological forms of the asexual schizonts of E. tenella that had been attenuated for virulence by serial passaging. Our results may be helpful in understanding parasitism, facilitating further molecular analyses such as comparative genomic or transcriptomic tests.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan; Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Osaka 545-8585, Japan.
| | - Hiroki Yamaguchi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Hatta
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | | | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Hiroshi Iseki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Takashi Isobe
- Japan Livestock Technology Association, Bunkyo, Tokyo 113-0034, Japan
| | - Isao Teramoto
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Osaka 545-8585, Japan
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Osaka 545-8585, Japan; Department of Parasitology and Research Centre for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Osaka, 545-8585, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Kazumi Sasai
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
96
|
Tang X, Wang C, Liang L, Hu D, Zhang S, Duan C, Suo J, Liu X, Suo X, Cui S. Co-immunization with two recombinant Eimeria tenella lines expressing immunoprotective antigens of E. maxima elicits enhanced protection against E. maxima infection. Parasit Vectors 2019; 12:347. [PMID: 31300007 PMCID: PMC6626336 DOI: 10.1186/s13071-019-3605-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/06/2019] [Indexed: 01/23/2023] Open
Abstract
Background Live anticoccidial vaccines have been a tremendous success for disease prevention. The establishment of the reverse genetic manipulation platform has enabled the development of Eimeria parasites, the live anticoccidial vaccine strains, as vaccine vectors. In our previous study, recombinant E. tenella expressing a single immunodominant antigen of E. maxima (Et-EmIMP1) was able to protect chickens against challenge infection with E. maxima. This promising result encouraged us to further explore strategies to improve the protection efficacy of recombinant Eimeria and develop it as a vaccine vector. Results We constructed a novel recombinant Eimeria line expressing apical membrane antigen 1 of E. maxima (Et-EmAMA1) and then immunized chickens with Et-EmAMA1 and/or Et-EmIMP1. We found that the E. maxima soluble antigen-specific cell-mediated immunity was much stronger in the birds that were co-immunized with Et-EmAMA1 and Et-EmIMP1 than in those that were immunized with Et-EmAMA1 or Et-EmIMP1 alone. The oocyst production after E. maxima infection was significantly reduced in the recombinant Eimeria-immunized birds compared with the wild-type-immunized and naïve birds. The oocyst production in the birds co-immunized with Et-EmAMA1 and Et-EmIMP1 was consistently the lowest among the treatment groups after E. maxima infection. Conclusions These results demonstrated that Eimeria is an effective vaccine vector that can carry and deliver heterologous Eimeria antigens to the host immune system and trigger specific immune responses. Our results also suggested that increasing the number of recombinant Eimeria lines is an effective approach to enhance protective immunity against infections with heterologous pathogens.
Collapse
Affiliation(s)
- Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoyue Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lin Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Scientific Observation and Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, China
| | - Dandan Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhui Duan
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shangjin Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China. .,Beijing Scientific Observation and Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
97
|
Jarquín-Díaz VH, Balard A, Jost J, Kraft J, Dikmen MN, Kvičerová J, Heitlinger E. Detection and quantification of house mouse Eimeria at the species level - Challenges and solutions for the assessment of coccidia in wildlife. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:29-40. [PMID: 31360634 PMCID: PMC6637263 DOI: 10.1016/j.ijppaw.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022]
Abstract
Detection and quantification of coccidia in studies of wildlife can be challenging. Therefore, prevalence of coccidia is often not assessed at the parasite species level in non-livestock animals. Parasite species – specific prevalences are especially important when studying evolutionary questions in wild populations. We tested whether increased host population density increases prevalence of individual Eimeria species at the farm level, as predicted by epidemiological theory. We studied free-living commensal populations of the house mouse (Mus musculus) in Germany, and established a strategy to detect and quantify Eimeria infections. We show that a novel diagnostic primer targeting the apicoplast genome (Ap5) and coprological assessment after flotation provide complementary detection results increasing sensitivity. Genotyping PCRs confirm detection in a subset of samples and cross-validation of different PCR markers does not indicate bias towards a particular parasite species in genotyping. We were able to detect double infections and to determine the preferred niche of each parasite species along the distal-proximal axis of the intestine. Parasite genotyping from tissue samples provides additional indication for the absence of species bias in genotyping amplifications. Three Eimeria species were found infecting house mice at different prevalences: Eimeria ferrisi (16.7%; 95% CI 13.2–20.7), E. falciformis (4.2%; 95% CI 2.6–6.8) and E. vermiformis (1.9%; 95% CI 0.9–3.8). We also find that mice in dense populations are more likely to be infected with E. falciformis and E. ferrisi. We provide methods for the assessment of prevalences of coccidia at the species level in rodent systems. We show and discuss how such data can help to test hypotheses in ecology, evolution and epidemiology on a species level. Flotation and PCR provide complementary results for Eimeria detection in house mice. Genotyping PCRs confirm detections. E. ferrisi, E. falciformis, and E. vermiformis infect natural populations of M. musculus. Double infections and preferentially infected tissues could be identified using qPCR. Potential virulence prevalence trade-off for Eimeria of house mice.
Collapse
Affiliation(s)
- Víctor Hugo Jarquín-Díaz
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Im Forschungsverbund Berlin e.V. Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Alice Balard
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Im Forschungsverbund Berlin e.V. Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Jenny Jost
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Julia Kraft
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Mert Naci Dikmen
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Jana Kvičerová
- Department of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Im Forschungsverbund Berlin e.V. Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
98
|
Pastor-Fernández I, Pegg E, Macdonald SE, Tomley FM, Blake DP, Marugán-Hernández V. Laboratory Growth and Genetic Manipulation of Eimeria tenella. ACTA ACUST UNITED AC 2019; 53:e81. [PMID: 30811108 DOI: 10.1002/cpmc.81] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eimeria is a genus of apicomplexan parasites that contains a large number of species, most of which are absolutely host-specific. Seven species have been recognized to infect chickens. Infection of susceptible chickens results in an intestinal disease called coccidiosis, characterized by mucoid or hemorrhagic enteritis, which is associated with impaired feed conversion or mortality in severe cases. Intensive farming practices have increased the significance of coccidiosis since parasite transmission is favored by high-density housing of large numbers of susceptible chickens. Routine chemoprophylaxis and/or vaccination with live parasite vaccines provides effective control of Eimeria, although the emergence of drug resistance and the relative cost and production capacity of current vaccine lines can prove limiting. As pressure to reduce drug use in livestock production intensifies, novel vaccination strategies are needed. Development of effective protocols supporting genetic complementation of Eimeria species has until recently been hampered by their inability to replicate efficiently in vitro. Now, the availability of such protocols has raised the prospect of generating transgenic parasite lines that function as vaccine vectors to express and deliver heterologous antigens. For example, this technology has the potential to streamline the production of live anticoccidial vaccines through the generation of parasite lines that co-express immunoprotective antigens derived from multiple Eimeria species. In this paper we describe detailed protocols for genetic manipulation, laboratory growth, and in vivo propagation of Eimeria tenella parasites, which will encourage future work from other researchers to expand biological understanding of Eimeria through reverse genetics. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Iván Pastor-Fernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Elaine Pegg
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Sarah E Macdonald
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Virginia Marugán-Hernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| |
Collapse
|
99
|
Sander VA, Corigliano MG, Clemente M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front Vet Sci 2019; 6:20. [PMID: 30809529 PMCID: PMC6379251 DOI: 10.3389/fvets.2019.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
Coccidial parasites cause medical and veterinary diseases worldwide, frequently leading to severe illness and important economic losses. At present, drugs, chemotherapeutics and prophylactic vaccines are still missing for most of the coccidial infections. Moreover, the development and administration of drugs and chemotherapeutics against these diseases would not be adequate in livestock, since they may generate unacceptable residues in milk and meat that would avoid their commercialization. In this scenario, prophylactic vaccines emerge as the most suitable approach. Subunit vaccines have proven to be biologically safe and economically viable, allowing researchers to choose among the best antigens against each pathogen. However, they are generally poorly immunogenic and require the addition of adjuvant compounds to the vaccine formulation. During the last decades, research involving plant immunomodulatory compounds has become an important field of study based on their potential pharmaceutical applications. Some plant molecules such as saponins, polysaccharides, lectins and heat shock proteins are being explored as candidates for adjuvant/carriers formulations. Moreover, plant-derived immune stimulatory compounds open the possibility to attain the main goal in adjuvant research: a safe and non-toxic adjuvant capable of strongly boosting and directing immune responses that could be incorporated into different vaccine formulations, including mucosal vaccines. Here, we review the immunomodulatory properties of several plant molecules and discuss their application and future perspective as adjuvants in the development of vaccines against coccidial infections.
Collapse
Affiliation(s)
- Valeria A Sander
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Mariana G Corigliano
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
100
|
Effect of Cocciban herbal coccidiostats on hematobiochemical, fecal parameters and cecal histopathology of broiler chicken. Trop Anim Health Prod 2019; 51:1375-1381. [PMID: 30729387 DOI: 10.1007/s11250-019-01831-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to investigate the comparative efficacy of recommended dose of selected anticoccidial drugs Salinomycin and Dinitolmide, while Cocciban at three dose levels on the hematobiochemical, fecal parameters and histopathology of broilers. For this purpose, 420-day-old commercial male broiler chicks were randomly divided into 7 treatment groups with 10 replications of 6 birds each and reared in battery brooders up to 42 days of age. Groups were designated as uninfected unmedicated (T1), infected unmedicated (T2), Cocciban 500 g/ton and infected (T3), Cocciban 750 g/ton and infected (T4), Cocciban 1000 g/ton and infected (T5), Salinomycin 500 g/ton and infected (T6), and Dinitolmide and infected (T7). Groups T2, T3, T4, T5, T6, and T7 were experimentally infected at 21-day-old by 50,000 oocysts of Eimeria species. The mean fecal, lesion scores and oocyst per gram of feces were significantly (p < 0.05) highest in infected unmedicated group, while lowest in the herbal Cocciban 1000 g/ton group than all other infected medicated groups. The hematological studies revealed a reduction in TEC, Hb, and PCV from 0 to 5th day of P.I. in all infected groups except healthy control group. The birds of all the infected groups improved in the values of TEC, Hb, PCV, blood glucose, and total serum protein on 7th day of P.I., but, the improvement was significantly (p < 0.05) better in herbal Cocciban 1000 g/ton treated birds than all other infected groups. Whereas, the TWBC counts were raised from 0 to 7th day of P.I. in all the infected groups compared to healthy control and no significant (p < 0.05) difference was observed in between the infected groups. The histopathological changes consisting of desquamation of epithelial cells, cellular infiltration, hemorrhages, edema, fibrous tissue proliferation, and developing stages of E. tenella at various depths of cecal wall were higher in all the infected groups when compared to Cocciban 1000 g/ton group.
Collapse
|