51
|
Mahmood A, Wu H, Qu C, Mahmood S, Xiong Y, Kaplan DL, Chopp M. Suppression of neurocan and enhancement of axonal density in rats after treatment of traumatic brain injury with scaffolds impregnated with bone marrow stromal cells. J Neurosurg 2014; 120:1147-55. [PMID: 24460490 DOI: 10.3171/2013.12.jns131362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECT Neurocan is a major form of growth-inhibitory molecule (growth-IM) that suppresses axonal regeneration after neural injury. Bone marrow stromal cells (MSCs) have been shown to inhibit neurocan expression in vitro and in animal models of cerebral ischemia. Therefore, the present study was designed to investigate the effects of treatment of MSCs impregnated with collagen scaffolds on neurocan expression after traumatic brain injury (TBI). METHODS Adult male Wistar rats were injured with controlled cortical impact and treated with saline, human MSCs (hMSCs) (3 × 10(6)) alone, or hMSCs (3 × 10(6)) impregnated into collagen scaffolds (scaffold + hMSCs) transplanted into the lesion cavity 7 days after TBI (20 rats per group). Rats were sacrificed 14 days after TBI, and brain tissues were harvested for immunohistochemical studies, Western blot analyses, laser capture microdissections, and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) to evaluate neurocan protein and gene expressions after various treatments. RESULTS Animals treated with scaffold + hMSCs after TBI showed increased axonal and synaptic densities compared with the other groups. Scaffold + hMSC treatment was associated with reduced TBI-induced neurocan protein expression and upregulated growth-associated protein 43 (GAP-43) and synaptophysin expression in the lesion boundary zone. In addition, animals in the scaffold + hMSC group had decreased neurocan transcription in reactive astrocytes after TBI. Reduction of neurocan expression was significantly greater in the scaffold + hMSC group than in the group treated with hMSCs alone. CONCLUSIONS The results of this study show that transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal plasticity in TBI rats. This enhanced axonal plasticity may partially be attributed to the downregulation of neurocan expression by hMSC treatment after injury.
Collapse
|
52
|
Soleman S, Filippov MA, Dityatev A, Fawcett JW. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013; 253:194-213. [PMID: 24012743 DOI: 10.1016/j.neuroscience.2013.08.050] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 01/15/2023]
Abstract
The extracellular matrix (ECM) is known to regulate important processes in neuronal cell development, activity and growth. It is associated with the structural stabilization of neuronal processes and synaptic contacts during the maturation of the central nervous system. The remodeling of the ECM during both development and after central nervous system injury has been shown to affect neuronal guidance, synaptic plasticity and their regenerative responses. Particular interest has focused on the inhibitory role of chondroitin sulfate proteoglycans (CSPGs) and their formation into dense lattice-like structures, termed perineuronal nets (PNNs), which enwrap sub-populations of neurons and restrict plasticity. Recent studies in mammalian systems have implicated CSPGs and PNNs in regulating and restricting structural plasticity. The enzymatic degradation of CSPGs or destabilization of PNNs has been shown to enhance neuronal activity and plasticity after central nervous system injury. This review focuses on the role of the ECM, CSPGs and PNNs; and how developmental and pharmacological manipulation of these structures have enhanced neuronal plasticity and aided functional recovery in regeneration, stroke, and amblyopia. In addition to CSPGs, this review also points to the functions and potential therapeutic value of these and several other key ECM molecules in epileptogenesis and dementia.
Collapse
Affiliation(s)
- S Soleman
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
53
|
Akyüz N, Rost S, Mehanna A, Bian S, Loers G, Oezen I, Mishra B, Hoffmann K, Guseva D, Laczynska E, Irintchev A, Jakovcevski I, Schachner M. Dermatan 4-O-sulfotransferase1 ablation accelerates peripheral nerve regeneration. Exp Neurol 2013; 247:517-30. [PMID: 23360803 DOI: 10.1016/j.expneurol.2013.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) proteoglycans are major components of the extracellular matrix implicated in neural development, plasticity and regeneration. While it is accepted that CS are major inhibitors of neural regeneration, the contributions of DS to regeneration have not been assessed. To enable a novel approach in studies on DS versus CS roles during development and regeneration, we generated a mouse deficient in the dermatan 4-O-sulfotransferase1 (Chst14(-/-)), a key enzyme in the synthesis of iduronic acid-containing modules found in DS but not CS. In wild-type mice, Chst14 is expressed at high levels in the skin and in the nervous system, and is enriched in astrocytes and Schwann cells. Ablation of Chst14, and the assumed failure to produce DS, resulted in smaller body mass, reduced fertility, kinked tail and increased skin fragility compared with wild-type (Chst14(+/+)) littermates, but brain weight and gross anatomy were unaffected. Neurons and Schwann cells from Chst14(-/-) mice formed longer processes in vitro, and Chst14(-/-) Schwann cells proliferated more than Chst14(+/+) Schwann cells. After femoral nerve transection/suture, functional recovery and axonal regrowth in Chst14(-/-) mice were initially accelerated but the final outcome 3months after injury was not better than that in Chst14(+/+) littermates. These results suggest that while Chst14 and its enzymatic products might be of limited importance for neural development, they may contribute to the regeneration-restricting environment in the adult mammalian nervous system.
Collapse
Affiliation(s)
- Nuray Akyüz
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Infarct-derived chondroitin sulfate proteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury. J Neurosci 2013; 33:7175-83. [PMID: 23616527 DOI: 10.1523/jneurosci.5866-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathetic nerves can regenerate after injury to reinnervate target tissues. Sympathetic regeneration is well documented after chronic cardiac ischemia, so we were surprised that the cardiac infarct remained denervated following ischemia-reperfusion (I-R). We used mice to ask if the lack of sympathetic regeneration into the scar was due to blockade by inhibitory extracellular matrix within the infarct. We found that chondroitin sulfate proteoglycans (CSPGs) were present in the infarct after I-R, but not after chronic ischemia, and that CSPGs caused inhibition of sympathetic axon outgrowth in vitro. Ventricle explants after I-R and chronic ischemia stimulated sympathetic axon outgrowth that was blocked by nerve growth factor antibodies. However, growth in I-R cocultures was asymmetrical, with axons growing toward the heart tissue consistently shorter than axons growing in other directions. Growth toward I-R explants was rescued by adding chondroitinase ABC to the cocultures, suggesting that I-R infarct-derived CSPGs prevented axon extension. Sympathetic ganglia lacking protein tyrosine phosphatase sigma (PTPRS) were not inhibited by CSPGs or I-R explants in vitro, suggesting PTPRS is the major CSPG receptor in sympathetic neurons. To test directly if infarct-derived CSPGs prevented cardiac reinnervation, we performed I-R in ptprs-/- and ptprs+/- mice. Cardiac infarcts in ptprs-/- mice were hyperinnervated, while infarcts in ptprs+/- littermates were denervated, confirming that CSPGs prevent sympathetic reinnervation of the cardiac scar after I-R. This is the first example of CSPGs preventing sympathetic reinnervation of an autonomic target following injury, and may have important consequences for cardiac function and arrhythmia susceptibility after myocardial infarction.
Collapse
|
55
|
Barbizan R, Castro MV, Rodrigues AC, Barraviera B, Ferreira RS, Oliveira ALR. Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom. PLoS One 2013; 8:e63260. [PMID: 23667596 PMCID: PMC3646764 DOI: 10.1371/journal.pone.0063260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/01/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. METHODOLOGY/PRINCIPAL FINDINGS Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. CONCLUSIONS/SIGNIFICANCE In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and increased mRNA levels to neurotrophins and anti-inflammatory cytokines that may in turn, contribute to improving recovery of motor function.
Collapse
Affiliation(s)
- Roberta Barbizan
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Anatomy, Campinas, Brazil
| | - Mateus V. Castro
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Anatomy, Campinas, Brazil
| | | | | | | | - Alexandre L. R. Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Anatomy, Campinas, Brazil
| |
Collapse
|
56
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
57
|
Maroto M, Fernández-Morales JC, Padín JF, González JC, Hernández-Guijo JM, Montell E, Vergés J, de Diego AMG, García AG. Chondroitin sulfate, a major component of the perineuronal net, elicits inward currents, cell depolarization, and calcium transients by acting on AMPA and kainate receptors of hippocampal neurons. J Neurochem 2013; 125:205-13. [PMID: 23350646 DOI: 10.1111/jnc.12159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/08/2012] [Accepted: 01/15/2013] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage- and current-clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole-cell Na(+)-dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca(2+)]c). Those effects were similar to those elicited by α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and kainate, were completely blocked by NBQX and CNQX, were partially blocked by GYKI, and were unaffected by MK801 and D-APV. Furthermore, ICS and AMPA currents were similarly potentiated by cyclothiazide, a positive allosteric modulator of AMPA receptors. Because CSPGs have been attributed Ca(2) (+) -dependent roles, such as neural network development, axon pathfinding, plasticity and regeneration after CNS injury, CS action after ECM degradation could be contributing to the mediation of these effects through its interaction with AMPA and kainate receptors.
Collapse
Affiliation(s)
- Marcos Maroto
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - José-Carlos Fernández-Morales
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Fernando Padín
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - José C González
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús M Hernández-Guijo
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eulalia Montell
- Pre-Clinical R&D Area, Pharmascience Division, Bioibérica, Barcelona, Spain
| | - Josep Vergés
- Pre-Clinical R&D Area, Pharmascience Division, Bioibérica, Barcelona, Spain
| | - Antonio M G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa. Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
58
|
Cui H, Freeman C, Jacobson GA, Small DH. Proteoglycans in the central nervous system: role in development, neural repair, and Alzheimer's disease. IUBMB Life 2013; 65:108-20. [PMID: 23297096 DOI: 10.1002/iub.1118] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
Abstract
Proteoglycans (PGs) are major components of the cell surface and extracellular matrix and play critical roles in development and maintenance of the central nervous system (CNS). PGs are a family of proteins, all of which contain a core protein to which glycosaminoglycan side chains are covalently attached. PGs possess diverse physiological roles, particularly in neural development, and are also implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). The main functions of PGs in the CNS are reviewed as are the roles of PGs in brain injury and in the development or treatment of AD.
Collapse
Affiliation(s)
- Hao Cui
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | |
Collapse
|
59
|
Tuinstra HM, Ducommun MM, Briley WE, Shea LD. Gene delivery to overcome astrocyte inhibition of axonal growth: an in vitro model of the glial scar. Biotechnol Bioeng 2012; 110:947-57. [PMID: 23055330 DOI: 10.1002/bit.24750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 01/31/2023]
Abstract
After injury to the central nervous system, a glial scar develops that physically and biochemically inhibits axon growth. In the scar, activated astrocytes secrete inhibitory extracellular matrix, of which chondroitin sulfate proteoglycans (CSPGs) are considered the major inhibitory component. An inhibitory interface of CSPGs forms around the lesion and prevents axons from traversing the injury, and decreasing CSPGs can enhance axon growth. In this report, we established an in vitro interface model of activated astrocytes and subsequently investigated gene delivery as a means to reduce CSPG levels and enhance axon growth. In the model, a continuous interface of CSPG producing astrocytes was created with neurons seeded opposite the astrocytes, and neurite crossing, stopping, and turning were evaluated as they approached the interface. We investigated the efficacy of lentiviral delivery to degrade or prevent the synthesis of CSPGs, thereby removing CSPG inhibition of neurite growth. Lentiviral delivery of RNAi targeting two key CSPG synthesis enzymes, chondroitin polymerizing factor and chondroitin synthase-1, decreased CSPGs, and reduced inhibition by the interface. Degradation of CSPGs by lentiviral delivery of chondroitinase also resulted in less inhibition and more neurites crossing the interface. These results indicate that the interface model provides a tool to investigate interventions that reduce inhibition by CSPGs, and that gene delivery can be effective in promoting neurite growth across an interface of CSPG producing astrocytes.
Collapse
Affiliation(s)
- Hannah M Tuinstra
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
60
|
Mouse brain PSA-NCAM levels are altered by graded-controlled cortical impact injury. Neural Plast 2012; 2012:378307. [PMID: 22848850 PMCID: PMC3403363 DOI: 10.1155/2012/378307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/28/2012] [Accepted: 06/03/2012] [Indexed: 01/28/2023] Open
Abstract
Traumatic brain injury (TBI) is a worldwide endemic that results in unacceptably high morbidity and mortality. Secondary injury processes following primary injury are composed of intricate interactions between assorted molecules that ultimately dictate the degree of longer-term neurological deficits. One comparatively unexplored molecule that may contribute to exacerbation of injury or enhancement of recovery is the posttranslationally modified polysialic acid form of neural cell adhesion molecule, PSA-NCAM. This molecule is a critical modulator of central nervous system plasticity and reorganization after injury. In this study, we used controlled cortical impact (CCI) to produce moderate or severe TBI in the mouse. Immunoblotting and immunohistochemical analysis were used to track the early (2, 24, and 48 hour) and late (1 and 3 week) time course and location of changes in the levels of PSA-NCAM after TBI. Variable and heterogeneous short- and long-term increases or decreases in expression were found. In general, alterations in PSA-NCAM levels were seen in the cerebral cortex immediately after injury, and these reductions persisted in brain regions distal to the primary injury site, especially after severe injury. This information provides a starting point to dissect the role of PSA-NCAM in TBI-related pathology and recovery.
Collapse
|
61
|
Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 2012; 349:169-80. [PMID: 22362507 PMCID: PMC3375417 DOI: 10.1007/s00441-012-1336-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
Traumatic damage to the central nervous system (CNS) destroys the blood–brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.
Collapse
Affiliation(s)
- Hitoshi Kawano
- Laboratory of Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya City, Tokyo 156-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kwok JCF, Yuen YL, Lau WK, Zhang FX, Fawcett JW, Chan YS, Shum DKY. Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons. Neural Dev 2012; 7:6. [PMID: 22305371 PMCID: PMC3295737 DOI: 10.1186/1749-8104-7-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet formed. Among the early-born neurons, the vestibular nucleus (VN) neurons initiate commissural projections soon after generation at E12.5 and reach the contralateral target by E15.5 in the rat hindbrain. We therefore exploited 24-hour cultures (1 day in vitro (DIV)) of the rat embryos and chondroitinase ABC treatment of the hindbrain matrix to reveal the role of CS moieties in axonal initiation and projection in the early hindbrain. Results DiI tracing from the VN at E12.5(+1 DIV) showed contralaterally projecting fibers assuming fascicles that hardly reached the midline in the controls. In the enzyme-treated embryos, the majority of fibers were unfasciculated as they crossed the midline at 90°. At E13.5(+1 DIV), the commissural projections formed fascicles and crossed the midline in the controls. Enzyme treatment apparently did not affect the pioneer axons that had advanced as thick fascicles normal to the midline and beyond, towards the contralateral VN. Later projections, however, traversed the enzyme-treated matrix as unfasciculated fibers, deviated from the normal course crossing the midline at various angles and extending beyond the contralateral VN. This suggests that CSs also limit the course of the later projections, which otherwise would be attracted to alternative targets. Conclusions CS moieties in the early hindbrain therefore control the course and fasciculation of axonal projections and the timing of axonal arrival at the target.
Collapse
Affiliation(s)
- Jessica C F Kwok
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Nazari-Robati M, Khajeh K, Aminian M, Fathi-Roudsari M, Golestani A. Co-solvent mediated thermal stabilization of chondroitinase ABC I form Proteus vulgaris. Int J Biol Macromol 2012; 50:487-92. [PMID: 22274395 DOI: 10.1016/j.ijbiomac.2012.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 11/29/2022]
Abstract
Chondroitinase ABC I (cABC I) from Proteus vulgaris cleaves glycosaminoglycan chains which are responsible for most of the inhibition of axon regrowth in spinal cord injury. The clinical utilization of this enzyme is mainly limited by its thermal instability. This study has been undertaken to determine the effects of glycerol, sorbitol and trehalose on cABC I activity and thermal stability. The results indicated that the enzyme catalytic activity and intrinsic fluorescence intensity increased in the presence of these cosolvents whereas no considerable conformational changes observed in far-UV CD spectra. Thermal CD experiment revealed an increase in T(m) of cABC I in the presence of cosolvents which was significant for trehalose. Our results support the idea that cABC I has stabilized in the presence of glycerol, sorbitol and trehalose. Therefore, the use of these cosolvents seems to be promising for improvement in shelf-life and clinical applications of this drug enzyme.
Collapse
Affiliation(s)
- Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
64
|
Abstract
Spinal cord injury (SCI) has multiple consequences, ranging from molecular imbalances to glial scar formation to functional impairments. It is logical to think that a combination of single treatments implemented in the right order and at the right time will be required to repair the spinal cord. However, the single treatments that compose the combination therapy will need to be chosen with caution as many have multiple outcomes that may or may not be synergistic. Single treatments may also elicit unwanted side-effects and/or effects that would decrease the repair potential of other components and/or the entire combination therapy. In this chapter a number of single treatments are discussed with respect to their multiplicity of action. These include strategies to boost growth and survival (such as neurotrophins and cyclic AMP) and strategies to reduce inhibitory factors (such as antimyelin-associated growth inhibitors and digestion of glial scar-associated inhibitors). We also present an overview of combination therapies that have successfully or unsuccessfully been tested in the laboratory using animal models. To effectively design a combination therapy a number of considerations need to be made such as the nature and timing of the treatments and the method for delivery. This chapter discusses these issues as well as considerations related to chronic SCI and the logistics of bringing combination therapies to the clinic.
Collapse
Affiliation(s)
- M Oudega
- Departments of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
65
|
Li Y, Li D, Ibrahim A, Raisman G. Repair involves all three surfaces of the glial cell. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186716 DOI: 10.1016/b978-0-444-59544-7.00010-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We propose that severed adult CNS axons are intrinsically capable of regeneration and reestablishing lost functions and that the key to repair lies in reconfiguring the scarring response of the astrocytic network. Astrocytes are multifunctional cells with three distinct surfaces: a glia to glial surface, providing the junctions needed to incorporate the astrocytes into the network; a glia to mesodermal surface, at which astrocytes collaborate with the meningeal fibroblasts to maintain the protective covering of the CNS; and a glia to neuronal surface, which provides the routes along which axons travel. After injury, the astrocytes collaborate with the meningeal fibroblasts to form a scar, which provides the necessary defensive sealing of the opened surface of the CNS, but which also has the detrimental effect of closing off the pathways along which axons could regenerate. Incorporation of glial cells transplanted from the olfactory system into a CNS injury causes a re-arrangement of the scarred astrocyte/fibroblast complex so as to produce the alignment of the glia to neuronal surfaces needed to provide a pathway for the regeneration of severed axons. Olfactory ensheathing cells certainly have a direct stimulatory effect on axons, but without concomitant reorganization of the glial scar, this could not in itself lead to regeneration of severed axons to their targets.
Collapse
Affiliation(s)
- Ying Li
- Institute of Neurology, University College London, London, UK
| | | | | | | |
Collapse
|
66
|
Brown A, Weaver LC. The dark side of neuroplasticity. Exp Neurol 2011; 235:133-41. [PMID: 22116043 DOI: 10.1016/j.expneurol.2011.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 10/04/2011] [Accepted: 11/07/2011] [Indexed: 12/19/2022]
Abstract
Whether dramatic or modest, recovery of neurological function after spinal cord injury (SCI) is greatly due to neuroplasticity--the process by which the nervous system responds to injury by establishing new synaptic connections or by altering the strength of existing synapses. However, the same neuroplasticity that allows locomotor function to recover also produces negative consequences such as pain and dysfunction of organs controlled by the autonomic nervous system. In this review we focus specifically on structural neuroplasticity (the growth of new synaptic connections) after SCI and on the consequent development of pain and autonomic dysreflexia, a condition of episodic hypertension. Neuroplasticity after SCI is stimulated by the deafferentation of spinal neurons below the lesion and by the expression of growth-promoting neurotrophins such as nerve growth factor (NGF). A broad range of therapeutic strategies that affect neuroplasticity is being developed for the treatment of SCI. At one end of the spectrum are therapeutic strategies that directly or indirectly increase NGF in the injured spinal cord, and have the most robust effects on neuroplasticity. At the other end of the spectrum are neuroprotective strategies focused on supporting and rescuing uninjured, or partially injured, axons; these might limit the deafferentation stimulus for neuroplasticity. In the middle of this spectrum are strategies that block axon growth inhibitors without necessarily providing a growth stimulus. The literature supports the view that the negative consequences of neuroplasticity develop more commonly with therapies that directly stimulate nerve growth than they develop in the untreated injured cord. Compared to these conditions, neuroplasticity with negative outcomes is less prevalent after treatments that that neutralize axon growth inhibitors, and least apparent after strategies that promote neuroprotection.
Collapse
Affiliation(s)
- Arthur Brown
- Spinal Cord Injury Laboratory, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
67
|
Zhang ZW, Zhang JP, Zhou TT, Feng WH, Jiao BH. Does the expression of versican isoforms contribute to the pathogenesis of neurodegenerative diseases? Arch Med Res 2011; 42:258-60. [PMID: 21722824 DOI: 10.1016/j.arcmed.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/24/2011] [Indexed: 01/31/2023]
Abstract
Classical neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's are most commonly seen in older persons. The incidence rate increases as life expectancy increases. Even though neuronal loss, neuronal death and accumulated toxic proteins are well investigated, the mechanism(s) of neurodegenerative disorders is not yet fully understood. Versican is a large extracellular matrix proteoglycan. Its isoforms are aberrantly expressed in central nervous system injuries. Diverse lines of evidence suggest that versican isoforms play a vital role in regulating neuronal differentiation, maturation, neurite outgrowth, and synaptic transmission. Some toxic proteins may be increased and less sensitive to degeneration due to the chondroitin sulfate (CS) chains of versicans. We propose that the patterns of versican V1 and V2 isoforms act as a fine-tuned mechanism for guiding the change of neural microenvironment, and the unbalanced expression of V1 and V2 isoforms may contribute to the pathogenesis of neurodegenerative diseases. The emergence of versican isoforms indicates that it may explain the pathogenesis of the common sporadic forms of complex diseases.
Collapse
Affiliation(s)
- Zhen-wei Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
68
|
Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JCF. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS One 2011; 6:e21499. [PMID: 21747937 PMCID: PMC3128591 DOI: 10.1371/journal.pone.0021499] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/30/2011] [Indexed: 11/23/2022] Open
Abstract
Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.
Collapse
Affiliation(s)
- Rachel Lin
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Thomas W. Rosahl
- The Neuroscience Research Centre, Merck, Sharpe and Dohme, Harlow, United Kingdom
| | - Paul J. Whiting
- The Neuroscience Research Centre, Merck, Sharpe and Dohme, Harlow, United Kingdom
| | - James W. Fawcett
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C. F. Kwok
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
69
|
Barreto GE, Gonzalez J, Torres Y, Morales L. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 2011; 71:107-13. [PMID: 21693140 DOI: 10.1016/j.neures.2011.06.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The older neurocentric view of the central nervous system (CNS) has changed radically with the growing understanding of the many essential functions of astrocytes. Advances in our understanding of astrocytes include new observations about their structure, organization, function and supportive actions to other cells. Although the contribution of astrocytes to the process of brain injury has not been clearly defined, it is thought that their ability to provide support to neurons after cerebral damage is critical. Astrocytes play a fundamental role in the pathogenesis of brain injury-associated neuronal death, and this secondary injury is primarily a consequence of the failure of astrocytes to support the essential metabolic needs of neurons. These needs include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and the modulation of neuronal excitability. In this review, we will focus on astrocytic activities that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve the outcome following brain injury.
Collapse
Affiliation(s)
- George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.
| | | | | | | |
Collapse
|
70
|
Abstract
This review focuses on recent developments in the use of natural products as therapeutics for Alzheimer's disease. The compounds span a diverse array of structural classes and are organized according to their mechanism of action, with the focus primarily on the major hypotheses. Overall, the review discusses more than 180 compounds and summarizes 400 references.
Collapse
Affiliation(s)
- Philip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
71
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
72
|
Donnelly EM, Strappe PM, McGinley LM, Madigan NN, Geurts E, Rooney GE, Windebank AJ, Fraher J, Dockery P, O'Brien T, McMahon SS. Lentiviral vector-mediated knockdown of the NG2 [corrected] proteoglycan or expression of neurotrophin-3 promotes neurite outgrowth in a cell culture model of the glial scar. J Gene Med 2010; 12:863-72. [PMID: 21105148 DOI: 10.1002/jgm.1509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/06/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Following spinal cord injury, a highly inhibitory environment for axonal regeneration develops. One of the main sources of this inhibition is the glial scar that is formed after injury by reactive astrocytes. The inhibitory environment is mainly a result of chondroitin sulphate proteoglycans (CSPGs). NG2, [corrected] one of the main inhibitory CSPGs, is up-regulated following spinal cord injury. METHODS Small interfering RNA (siRNA) was designed to target NG2 and this short hairpin RNA (shRNA) was cloned into a lentiviral vector (LV). The neurotrophic factor neurotrophin-3 (NT-3) promotes the growth and survival of developing neurites and has also been shown to aid regeneration. NT-3 was also cloned into a LV. In vitro assessment of these vectors using a coculture system of dorsal root ganglia (DRG) neurones and Neu7 astrocytes was carried out. The Neu7 cell line is a rat astrocyte cell line that overexpresses NG2, thereby mimicking the inhibitory environment following spinal cord injury. RESULTS AND DISCUSSION These experiments show that both the knockdown of NG2 via shRNA and over-expression of NT-3 can significantly increase neurite growth, although a combination of both vectors did not confer any additional benefit over the vectors used individually. These LVs show promising potential for growth and survival of neurites in injured central nervous system tissue (CNS).
Collapse
|
73
|
Zaverucha-do-Valle C, Gubert F, Bargas-Rega M, Coronel JLL, Mesentier-Louro LA, Mencalha A, Abdelhay E, Santiago MF, Mendez-Otero R. Bone marrow mononuclear cells increase retinal ganglion cell survival and axon regeneration in the adult rat. Cell Transplant 2010; 20:391-406. [PMID: 20719093 DOI: 10.3727/096368910x524764] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The central nervous system (CNS) of adult mammals generally does not regenerate, and many studies have attempted to identify factors that could increase neuroprotection and/or axonal outgrowth after CNS lesions. Using the optic nerve crush of rats as a model for CNS injury, we investigated the effect of intravitreal transplantation of syngeneic bone-marrow mononuclear cells (BMMCs) on the survival of retinal ganglion cells (RGC) and on the regeneration of optic axons. Control animals received intravitreal saline injections after lesion. Injections of BMMCs resulted in a 1.6-fold increase in the number of RGCs surviving 14 days after injury. The BMMC-treated animals also had increased numbers of axons, which grew up to 1.5 mm from the crush site, and also had reduced Müller glia activation. Analysis of mRNAs in all conditions revealed an increase in levels of fibroblast growth factor 2 (FGF-2) mRNA in treated animals 14 days after injury. To investigate whether the regenerated axons could reach the brain, we retrograde labeled the RGCs by injecting a lipophilic tracer into the superior colliculus. We also analyzed the expression of NGFI-A in the superficial layers of the superior colliculus as a possible marker of synaptic input from RGC axons. We found evidence that more RGCs were able to reach the brain after treatment and we showed that NGFI-A expression was higher in the treated animals 60 days after injury. These results demonstrate that transplant of BMMCs can increase neuroprotection and neuroregeneration after injury in a model of optic nerve crush, and these effects could be mediated by FGF-2.
Collapse
Affiliation(s)
- Camila Zaverucha-do-Valle
- Programa de Terapia Celular and Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Dou F, Huang L, Yu P, Zhu H, Wang X, Zou J, Lu P, Xu XM. Temporospatial expression and cellular localization of oligodendrocyte myelin glycoprotein (OMgp) after traumatic spinal cord injury in adult rats. J Neurotrauma 2010; 26:2299-311. [PMID: 19580419 DOI: 10.1089/neu.2009.0954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to permanent neurological deficits, which, in part, is due to the inability of mature axons to regenerate in the mammalian central nervous system (CNS). The oligodendrocyte myelin glycoprotein (OMgp) is one of the myelin-associated inhibitors of neurite outgrowth in the CNS. To date, limited information is available concerning its expression following SCI, possibly due to the lack of a reliable antibody against it. Here we report the generation of a highly specific OMgp polyclonal antibody from the rabbit. Using this antibody, we found that OMgp was almost exclusively expressed in the CNS. Following a moderately contusive SCI using a New York University impactor (10 g rod dropped from a height of 12.5 mm), both OMgp mRNA and protein levels were elevated at 1 and 7 days post-SCI, respectively, and peaked at 28 days compared to those of the sham-operated controls. Spatially, OMgp was expressed throughout the entire rostrocaudal extension of a 10 mm long spinal segment with the highest expression seen at the injury epicenter. OMgp was exclusively localized in neurons and oligodendrocytes in the normal and sham-operated controls with an increased expression found in these cells following SCI. OMgp was not expressed in astrocytes or microglia in all groups. Thus, our study has provided evidence for temporospatial expression and cellular localization of OMgp following SCI and suggested that this molecule may contribute to the overall inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Fangfang Dou
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Leung YKJ, Pankhurst M, Dunlop SA, Ray S, Dittmann J, Eaton ED, Palumaa P, Sillard R, Chuah MI, West AK, Chung RS. Metallothionein induces a regenerative reactive astrocyte phenotype via JAK/STAT and RhoA signalling pathways. Exp Neurol 2010; 221:98-106. [PMID: 19837066 DOI: 10.1016/j.expneurol.2009.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 01/10/2023]
Affiliation(s)
- Y K J Leung
- Menzies Research Institute, University of Tasmania, Private Bag 58, Tasmania, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Gao Q, Lu J, Huo Y, Baby N, Ling E, Dheen S. NG2, a member of chondroitin sulfate proteoglycans family mediates the inflammatory response of activated microglia. Neuroscience 2010; 165:386-94. [DOI: 10.1016/j.neuroscience.2009.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 02/06/2023]
|
77
|
Kimura-Kuroda J, Teng X, Komuta Y, Yoshioka N, Sango K, Kawamura K, Raisman G, Kawano H. An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Mol Cell Neurosci 2009; 43:177-87. [PMID: 19897043 DOI: 10.1016/j.mcn.2009.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/15/2009] [Accepted: 10/29/2009] [Indexed: 02/06/2023] Open
Abstract
After central nervous system (CNS) injury, meningeal fibroblasts migrate in the lesion center to form a fibrotic scar which is surrounded by end feet of reactive astrocytes. The fibrotic scar expresses various axonal growth-inhibitory molecules and creates a major impediment for axonal regeneration. We developed an in vitro model of the scar using coculture of cerebral astrocytes and meningeal fibroblasts by adding transforming growth factor-beta1 (TGF-beta1), a potent fibrogenic factor. Addition of TGF-beta1 to this coculture resulted in enhanced proliferation of fibroblasts and the formation of cell clusters which consisted of fibroblasts inside and surrounded by astrocytes. The cell cluster in culture densely accumulated the extracellular matrix molecules and axonal growth-inhibitory molecules similar to the fibrotic scar, and remarkably inhibited the neurite outgrowth of cerebellar neurons. Therefore, this culture system can be available to analyze the inhibitory property in the lesion site of CNS.
Collapse
Affiliation(s)
- Junko Kimura-Kuroda
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 2009; 4:e5871. [PMID: 19517014 PMCID: PMC2690693 DOI: 10.1371/journal.pone.0005871] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study. METHODS AND FINDINGS Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = -0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery. CONCLUSIONS Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant.
Collapse
Affiliation(s)
- Mitra J. Hooshmand
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Christopher J. Sontag
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | - Stan Tamaki
- StemCells, Inc., Palo Alto, California, United States of America
| | - Aileen J. Anderson
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Brian J. Cummings
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
79
|
Teng X, Nagata I, Li HP, Kimura-Kuroda J, Sango K, Kawamura K, Raisman G, Kawano H. Regeneration of nigrostriatal dopaminergic axons after transplantation of olfactory ensheathing cells and fibroblasts prevents fibrotic scar formation at the lesion site. J Neurosci Res 2009; 86:3140-50. [PMID: 18615647 DOI: 10.1002/jnr.21767] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fibrotic scar formed after central nervous system injury has been considered an obstacle to axonal regeneration. The present study was designed to examine whether cell transplantation into a damaged central nervous system can reduce fibrotic scar formation and promote axonal regeneration. Nigrostriatal dopaminergic axons were unilaterally transected in rats and cultures of olfactory-ensheathing cells (OECs), and olfactory nerve fibroblasts were transplanted into the lesion site. In the absence of transplants, few tyrosine hydroxylase-immunoreactive axons extended across the lesion 2 weeks after the transection. Reactive astrocytes increased around the lesion, and a fibrotic scar containing type IV collagen deposits developed in the lesion center. The immunoreactivity of chondroitin sulfate side chains and core protein of NG2 proteoglycan increased in and around the lesion. One and 2 weeks after transection and simultaneous transplantation, dopaminergic axons regenerated across the transplanted tissues, which consisted of p75-immunoreactive OECs and fibronectin-immunoreactive fibroblasts. Reactive astrocytes and chondroitin sulfate immunoreactivity increased around the transplants, whereas the deposition of type IV collagen and fibrotic scar formation were completely prevented at the lesion site. Transplantation of meningeal fibroblasts similarly prevented the formation of the fibrotic scar, although its effect on regeneration was less potent than transplantation of OECs and olfactory nerve fibroblasts. The present results suggest that elimination of the inhibitory fibrotic scar is important for neural regeneration.
Collapse
Affiliation(s)
- Xichuan Teng
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Wanner IB, Deik A, Torres M, Rosendahl A, Neary JT, Lemmon VP, Bixby JL. A new in vitro model of the glial scar inhibits axon growth. Glia 2008; 56:1691-709. [PMID: 18618667 PMCID: PMC3161731 DOI: 10.1002/glia.20721] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes respond to central nervous system (CNS) injury with reactive astrogliosis and participate in the formation of the glial scar, an inhibitory barrier for axonal regeneration. Little is known about the injury-induced mechanisms underlying astrocyte reactivity and subsequent development of an axon-inhibitory scar. We combined two key aspects of CNS injury, mechanical trauma and co-culture with meningeal cells, to produce an in vitro model of the scar from cultures of highly differentiated astrocytes. Our model displayed widespread morphological signs of astrocyte reactivity, increases in expression of glial fibrillary acidic protein (GFAP), and accumulation of GFAP in astrocytic processes. Expression levels of scar-associated markers, phosphacan, neurocan, and tenascins, were also increased. Importantly, neurite growth from various CNS neuronal populations was significantly reduced when neurons were seeded on the scar-like cultures, compared with growth on cultures of mature astrocytes. Quantification of neurite growth parameters on the scar model demonstrated significant reductions in neuronal adhesion and neurite lengths. Interestingly, neurite outgrowth of postnatal neurons was reduced to a greater extent than that of embryonic neurons, and outgrowth inhibition varied among neuronal populations. Scar-like reactive sites and neurite-inhibitory patches were found throughout these cultures, creating a patchwork of growth-inhibitory areas mimicking a CNS injury site. Thus, our model showed relevant aspects of scar formation and produced widespread inhibition of axonal regeneration; it should be useful both for examining mechanisms underlying scar formation and to assess various treatments for their potential to improve regeneration after CNS injury. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ina B Wanner
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Teng FYH, Hor CHH, Tang BL. Emerging cues mediating astroglia lineage restriction of progenitor cells in the injured/diseased adult CNS. Differentiation 2008; 77:121-7. [PMID: 19281771 DOI: 10.1016/j.diff.2008.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/30/2008] [Accepted: 08/04/2008] [Indexed: 12/16/2022]
Abstract
Other than specific neurogenic regions, the adult central nervous system (CNS) is not conducive for neuronal regeneration and neurogenesis, particularly at sites of injury or neurodegeneration. Engraftment of neural stem/progenitor cells into non-neurogenic regions or sites of injury/disease invariably results mainly in astroglia differentiation. The reasons for such a lineage restriction have not been well defined. Recent findings have brought to light some underlying novel mechanistic basis for this preferential differentiation into astroglia. The more oxidized state of pathological brain tissue leads to upregulation of the protein deacetylase sirtuin 1 (Sirt1). Sirt1 appears to stabilize a co-repressor complex of Hairy/enhancer of split (Hes)1, thereby suppressing expression of the proneuronal transcription factor Mash1, and directs progenitor cell differentiation towards the glia lineage. Sirt1 upregulated by CNS inflammation may also inhibit neuronal differentiation. Myelin-associated inhibitors such as Nogo, acting through the Nogo-66 receptor (NgR), also appear to promote neural stem/progenitor cell differentiation into astrocytes. Understanding the molecular basis of glia lineage restriction of neural progenitors in the injured or diseased CNS would provide handles to improving the success of stem cell-based transplantation therapy.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | | | | |
Collapse
|
82
|
Cho KS, Chen DF. Promoting optic nerve regeneration in adult mice with pharmaceutical approach. Neurochem Res 2008; 33:2126-33. [PMID: 18473168 PMCID: PMC2638988 DOI: 10.1007/s11064-008-9736-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 04/29/2008] [Indexed: 12/23/2022]
Abstract
Our previous research has suggested that lack of Bcl-2-supported axonal growth mechanisms and the presence of glial scarring following injury are major impediments of optic nerve regeneration in postnatal mice. Mice overexpressing Bcl-2 and simultaneously carrying impairment in glial scar formation supported robust optic nerve regeneration in the postnatal stage. To develop a therapeutic strategy for optic nerve damage, the combined effects of chemicals that induce Bcl-2 expression and selectively eliminate mature astrocytes--scar forming cells--were examined in mice. Mood-stabilizer, lithium, has been shown to induce Bcl-2 expression and stimulate axonal outgrowth in retinal ganglion cells in culture and in vivo. Moreover, astrotoxin (alpha-aminoadipate), a glutamate analogue, selectively kills astrocytes while has minimal effects on surrounding neurons. In the present study, we sought to determine whether concurrent applications of lithium and astrotoxin were sufficient to induce optic nerve regeneration in mice. Induction of Bcl-2 expression was detected in the ganglion cell layer (GCL) of mice that received a lithium diet in compared with control-treated group. Moreover, efficient elimination of astrocytes and glial scarring was observed in the optic nerve of mice treated with astrotoxin. Simultaneous application of lithium and astrotoxin, but not any of the drugs alone, induced robust optic nerve regeneration in adult mice. These findings further support that a combinatorial approach of concurrent activation of Bcl-2-supported growth mechanism and suppression of glial scarring is required for successful regeneration of the severed optic nerve in adult mice. They suggest a potential therapeutic strategy for treating optic nerve and CNS damage.
Collapse
Affiliation(s)
- Kin-Sang Cho
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Dong Feng Chen
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
83
|
Schäfer R, Dehn D, Burbach GJ, Deller T. Differential regulation of chondroitin sulfate proteoglycan mRNAs in the denervated rat fascia dentata after unilateral entorhinal cortex lesion. Neurosci Lett 2008; 439:61-5. [PMID: 18511192 DOI: 10.1016/j.neulet.2008.04.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/25/2022]
Abstract
Following brain trauma, chondroitin sulphate proteoglycans (CSPGs) are enriched at injury sites and in denervated areas. At injury sites, CSPGs are regarded as inhibitors of axonal regeneration because of their growth inhibitory properties. In areas of denervation their role is less clear, since they are enriched in zones of sprouting, i.e. zones of axonal growth. To identify CSPGs expressed in a denervated brain area and to quantify changes in their mRNA expression, neurocan, brevican, NG2, phosphacan and aggrecan mRNA were analyzed in the rat fascia dentata following entorhinal denervation. Laser microdissection was combined with quantitative RT-PCR to measure mRNA changes specifically within the denervated portion of the molecular layer (1h, 6h, 10h, 12h, 1d, 2d, 3d, 4d, 7d and 14d post-lesion). Changes in glial fibrillary protein mRNA were measured at the same time points and used as lesion control. This approach revealed a differential regulation of CSPG mRNAs in the denervated zone: neurocan, brevican and NG2 mRNA were upregulated with a maximum around 2 days post-lesion. In contrast, aggrecan mRNA levels reached a maximum 7 days post-lesion and phosphacan mRNA levels were not significantly altered. Taken together, our data reveal a temporal pattern in CSPG mRNA expression in the denervated fascia dentata. This suggests specific biological functions for CSPGs during the denervation-induced reorganization process: whereas the early increase in CSPGs in the denervated zone could influence the pattern of sprouting, the late increase of aggrecan mRNA suggests a different role during the late phase of reorganization.
Collapse
Affiliation(s)
- Ruth Schäfer
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
84
|
García-Alías G, Lin R, Akrimi SF, Story D, Bradbury EJ, Fawcett JW. Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol 2008; 210:331-8. [PMID: 18158149 DOI: 10.1016/j.expneurol.2007.11.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/08/2007] [Accepted: 11/08/2007] [Indexed: 11/17/2022]
Abstract
Rats with a crush in the dorsal funiculi of the C4 segment of the spinal cord were treated with chondroitinase ABC delivered to the lateral ventricle, receiving 6 intraventricular injections on alternate days. In order to investigate the time window of efficacy of chondroitinase, treatment was begun at the time of injury or after a 2, 4 or 7 days delay. Behavioural testing over 6 weeks showed that acutely treated animals showed improved skilled forelimb reaching compared to penicillinase controls. Forelimb contact placing recovered in treated animals but not controls, and gait analysis showed recovery towards normal forelimb stride length in treated animals but not controls. Chondroitinase-treated animals showed greater axon regeneration than controls. The treatment effect on contact placing, stride length and axon regeneration was not dependent on the timing of the start of treatment, but in skilled paw reaching acutely treated animals recovered better function. The area of chondroitinase ABC digestion visualized by stub antibody staining included widespread digestion around the lateral ventricles and partial digestion of cervical spinal cord white matter, but not grey matter.
Collapse
Affiliation(s)
- Guillermo García-Alías
- Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0PY, UK
| | | | | | | | | | | |
Collapse
|
85
|
Coulson-Thomas YM, Coulson-Thomas VJ, Filippo TR, Mortara RA, da Silveira RB, Nader HB, Porcionatto MA. Adult bone marrow-derived mononuclear cells expressing chondroitinase AC transplanted into CNS injury sites promote local brain chondroitin sulphate degradation. J Neurosci Methods 2008; 171:19-29. [PMID: 18417222 DOI: 10.1016/j.jneumeth.2008.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Injury to the CNS of vertebrates leads to the formation of a glial scar and production of inhibitory molecules, including chondroitin sulphate proteoglycans. Various studies suggest that the sugar component of the proteoglycan is responsible for the inhibitory role of these compounds in axonal regeneration. By degrading chondroitin sulphate chains with specific enzymes, denominated chondroitinases, the inhibitory capacity of these proteoglycans is decreased. Chondroitinase administration involves frequent injections of the enzyme at the lesion site which constitutes a rather invasive method. We have produced a vector containing the gene for Flavobacterium heparinum chondroitinase AC for expression in adult bone marrow-derived cells which were then transplanted into an injury site in the CNS. The expression and secretion of active chondroitinase AC was observed in vitro using transfected Chinese hamster ovarian and gliosarcoma cells and in vivo by immunohistochemistry analysis which showed degraded chondroitin sulphate coinciding with the location of transfected bone marrow-derived cells. Immunolabelling of the axonal growth-associated protein GAP-43 was observed in vivo and coincided with the location of degraded chondroitin sulphate. We propose that bone marrow-derived mononuclear cells, transfected with our construct and transplanted into CNS, could be a potential tool for studying an alternative chondroitinase AC delivery method.
Collapse
|
86
|
Lemons ML, Condic ML. Integrin signaling is integral to regeneration. Exp Neurol 2008; 209:343-52. [PMID: 17727844 DOI: 10.1016/j.expneurol.2007.05.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 12/16/2022]
Abstract
The inability of the adult injured mammalian spinal cord to successfully regenerate is not well understood. Studies suggest that both extrinsic and intrinsic factors contribute to regeneration failure. In this review, we focus on intrinsic factors that impact regeneration, in particular integrin receptors and their downstream signaling pathways. We discuss studies that address the impact of integrins and integrin signaling pathways on growth cone guidance and motility and how lessons learned from these studies apply to spinal cord regeneration in vivo.
Collapse
Affiliation(s)
- Michele L Lemons
- Department of Natural Sciences, Assumption College, Worcester, MA 01609, USA.
| | | |
Collapse
|
87
|
Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0804581d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs). In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.
Collapse
|
88
|
Lin R, Kwok JCF, Crespo D, Fawcett JW. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J Neurochem 2007; 104:400-8. [PMID: 18005340 DOI: 10.1111/j.1471-4159.2007.05066.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are axon growth inhibitory molecules present in the glial scar that play a part in regeneration failure after damage to the CNS and which restrict CNS plasticity. Removal of chondroitin sulphate glycosaminoglycan (GAG) chains with chondroitinase-ABC (chABC) in models of CNS injury promotes both axon regeneration and plasticity. We have analysed the immediate and long-term effects of a single injection of chABC on CSPGs, GAGs and axon regeneration. We made unilateral nigrostriatal lesions in adult rats accompanied by an adjacent infusion of either chABC or a bacterial-derived control enzyme (penicillinase). Within 24 h of chABC treatment there was digestion of GAGs, including hyaluronan, and a reduction in neurocan in an area extending 1.5 mm around the injection site. Around 50% of GAG is inaccessible to chABC digestion, even in tissue digested in vitro, which probably represents intracellular stores. In control penicillinase treated animals, total GAGs recovered from the lesioned brains were up-regulated by 4-fold 7 days after injury and gradually decreased to normal at 28 days post-lesion. In chondroitinase-treated animals, the total GAG remained at low level throughout the 28-day experimental period. This suggests the persistence of active chABC for at least 10 days after injection which is able to digest CSPGs released from cells during this time. This was confirmed by immunological detection of enzyme for 10 days and by retrieval of active enzyme from the brain at 10 days after injection. Our results suggest that a single injection of chABC can produce an environment conducive to CNS repair for over 10 days.
Collapse
Affiliation(s)
- Rachel Lin
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
89
|
Iaci JF, Vecchione AM, Zimber MP, Caggiano AO. Chondroitin Sulfate Proteoglycans in Spinal Cord Contusion Injury and the Effects of Chondroitinase Treatment. J Neurotrauma 2007; 24:1743-59. [DOI: 10.1089/neu.2007.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
90
|
Patz TM, Doraiswamy A, Narayan RJ, He W, Zhong Y, Bellamkonda R, Modi R, Chrisey DB. Three-dimensional direct writing of B35 neuronal cells. J Biomed Mater Res B Appl Biomater 2007; 78:124-30. [PMID: 16333853 DOI: 10.1002/jbm.b.30473] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have demonstrated two-dimensional and three-dimensional transfer of B35 neuronal cells onto and within polymerized Matrigel substrates, using matrix-assisted pulsed laser evaporation-direct write (MDW). The B35 cells were transferred from a quartz ribbon to depths of up to 75 microm by systematically varying the fluence emitted from the ArF (lambda = 193 nm) laser source. MDW-transferred cells were examined using terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI), and alpha-tubulin staining. Confocal microscopy has shown that the transferred B35 cells extended their axons outward in three dimensions within the polymerized Matrigel substrate. The B35 cells made axonal connections and formed a three-dimensional neural network within 72 h after MDW transfer. In addition, TUNEL staining demonstrated that only 3% of the B35 cells underwent apoptosis after being transferred using the MDW process. MDW and other emergent direct write processes may provide unique approaches for creating layered, heterogeneous, three-dimensional cell-seeded scaffolds for use in peripheral nerve repair.
Collapse
Affiliation(s)
- T M Patz
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Benowitz LI, Yin Y. Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state. Dev Neurobiol 2007; 67:1148-65. [PMID: 17514713 DOI: 10.1002/dneu.20515] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In general, neurons in the mature mammalian central nervous system (CNS) are unable to regenerate injured axons, and neurons that remain uninjured are unable to form novel connections that might compensate for ones that have been lost. As a result of this, victims of CNS injury, stroke, or certain neurodegenerative diseases are unable to fully recover sensory, motor, cognitive, or autonomic functions. Regenerative failure is related to a host of inhibitory signals associated with the extracellular environment and with the generally low intrinsic potential of mature CNS neurons to regenerate. Most research to date has focused on extrinsic factors, particularly the identification of inhibitory proteins associated with myelin, the perineuronal net, glial cells, and the scar that forms at an injury site. However, attempts to overcome these inhibitors have resulted in relatively limited amounts of CNS regeneration. Using the optic nerve as a model system, we show that with appropriate stimulation, mature neurons can revert to an active growth state and that when this occurs, the effects of overcoming inhibitory signals are enhanced dramatically. Similar conclusions are emerging from studies in other systems, pointing to a need to consider combinatorial treatments in the clinical setting.
Collapse
Affiliation(s)
- Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery and Neurobiology Program, Children's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
92
|
Tan EYM, Law JWS, Wang CH, Lee AYW. Development of a cell transducible RhoA inhibitor TAT-C3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons. Pharm Res 2007; 24:2297-308. [PMID: 17899323 DOI: 10.1007/s11095-007-9454-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE Neurons in post-traumatized mammalian central nervous system show only limited degree of regeneration, which can be attributed to the presence of neurite outgrowth inhibitors in damaged myelin and glial scar, and to the apoptosis of severed central neurons and glial cells during secondary Wallerian degeneration. RhoA GTPase has been implicated as the common denominator in these counter-regeneration events, which shows significant and persistent up-regulation for weeks in injured spinal cord and cerebral infarct after stroke. While the exoenzyme C3 transferase is a potent RhoA inhibitor, its extremely low efficiency of cell entry and degradation in vivo has restricted the therapeutic value. This study aims to circumvent these problems by developing a membrane-permeating form of C3 transferase and a biopolymer-based microsphere depot system for sustainable controlled release of the protein. MATERIALS AND METHODS A membrane-permeating form of C3 transferase was developed by fusing a Tat (trans-activating transcription factor) transduction domain of human immunodeficiency virus to its amino terminal using standard molecular cloning techniques. After confirming efficient cell entry into epithelial and neuroblastoma cells, the resulting recombinant protein TAT-C3 was encapsulated in biocompatible polymer poly(D,L -lactide-co-glycolide) in the form of microspheres by a water-in-oil-in-water (W/O/W) emulsion method. By blending capped and uncapped form of the polymer at different ratios, TAT-C3 protein release profile was modified to suit the expression pattern of endogenous RhoA during CNS injuries. Bioactivity of TAT-C3 released from microspheres was assessed by RhoA ribosylation assay. RESULTS In contrast to wild-type C3 transferase, the modified TAT-C3 protein was found to efficiently enter NIH3T3 and N1E-115 neuroblastoma cells as early as 6 hours of incubation. The fusion of TAT sequence to C3 transferase imposed no appreciable effects on its biological activity in promoting neurite outgrowth through RhoA inhibition. Characterization of TAT-C3 encapsulation in various blends of capped/uncapped PLGA polymer revealed the 30:70 formulation to be optimal in attaining a mild initial burst release of 25%, followed by a subsequent average daily release of 2.3% of encapsulated protein over one month, matching the change in RhoA level in severed brain and spinal cord. Importantly, TAT-C3 released from the microspheres remained active up to the first three weeks of incubation. CONCLUSION Enhanced cell entry of TAT-C3 circumvents the need to administer high dose of the protein to site of injury. The encapsulation of TAT-C3 in different blends of capped/uncapped PLGA microspheres allows adjustment of protein release profile to suit the pattern of RhoA expression in injured CNS.
Collapse
Affiliation(s)
- Elaine Y M Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
93
|
Comparison of Extraction Methods of Chondroitin Sulfate from Meat By-products. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2007. [DOI: 10.5187/jast.2007.49.4.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
94
|
Abstract
Numerous studies in the last two decades have resulted in significant progress in our understanding of the role of inhibitors on axonal regeneration and conditions that influence mature neurons to regrow in an inhibitory environment. These studies have revealed putative therapeutic targets and strategies to interfere in the inhibitory signaling cascade and promote axonal regeneration. Some agents that were successful in animal models are now being tested in human patients. All of these advances have raised hope of a cure for an injury that was once thought to be 'an ailment for which nothing is done' (Quote from Edwin Smith surgical papyrus, 1600BC).
Collapse
|
95
|
Ishii K, Nakamura M, Dai H, Finn TP, Okano H, Toyama Y, Bregman BS. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res 2007; 84:1669-81. [PMID: 17044031 DOI: 10.1002/jnr.21079] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplantation of neural stem cells (NSC) into lesioned spinal cord offers the potential to increase regeneration by replacing lost neurons or oligodendrocytes. The majority of transplanted NSC, however, typically differentiate into astrocytes that may exacerbate glial scar formation. Here we show that blocking of ciliary neurotrophic factor (CNTF) with anti-CNTF antibodies after NSC transplant into spinal cord injury (SCI) resulted in a reduction of glial scar formation by 8 weeks. Treated animals had a wider distribution of transplanted NSC compared with the control animals. The NSC around the lesion coexpressed either nestin or markers for neurons, oligodendrocytes, or astrocytes. Approximately 20% fewer glial fibrillary acidic protein-positive/bromodeoxyuridine (BrdU)-positive cells were seen at 2, 4, and 8 weeks postgrafting, compared with the control animals. Furthermore, more CNPase(+)/BrdU(+) cells were detected in the treated group at 4 and 8 weeks. These CNPase(+) or Rip(+) mature oligodendrocytes were seen in close proximity to host corticospinal tract (CST) and 5HT(+) serotonergic axon. We also demonstrate that the number of regenerated CST fibers both at the lesion and at caudal sites in treated animals was significantly greater than that in the control animals at 8 weeks. We suggest that the blocking of CNTF at the beginning of SCI provides a more favorable environment for the differentiation of transplanted NSC and the regeneration of host axons.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Deller T, Haas CA, Freiman TM, Phinney A, Jucker M, Frotscher M. Lesion-Induced Axonal Sprouting in the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:101-21. [PMID: 16955706 DOI: 10.1007/0-387-30128-3_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Injury or neuronal death often come about as a result of brain disorders. Inasmuch as the damaged nerve cells are interconnected via projections to other regions of the brain, such lesions lead to axonal loss in distal target areas. The central nervous system responds to deafferentation by means of plastic remodeling processes, in particular by inducing outgrowth of new axon collaterals from surviving neurons (collateral sprouting). These sprouting processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented brain regions. Lesioning of the entorhinal cortex is an established model system for studying the phenomenon of axonal sprouting. Using this model system, it could be shown that the sprouting process respects the pre-existing lamination pattern of the deafferented fascia dentata, i. e., it is layer-specific. A variety of different molecules are involved in regulating this reorganization process (extracellular matrix molecules, cell adhesion molecules, transcription factors, neurotrophic factors, growth-associated proteins). It is proposed here that molecules of the extracellular matrix define the boundaries of the laminae following entorhinal lesioning and in so doing limit the sprouting process to the deafferented zone. To illustrate the role of axonal sprouting in disease processes, special attention is given to its significance for neurodegenerative disorders, particularly Alzheimer's disease (AD), and temporal lobe epilepsy. Finally, we discuss both the beneficial as well as disadvantageous functional implications of axonal sprouting for the injured organism in question.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goether-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
97
|
Fawcett JW. The Glial Response to Injury and Its Role in the Inhibition of CNS Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:11-24. [PMID: 16955702 DOI: 10.1007/0-387-30128-3_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
98
|
Hermanns S, Klapka N, Gasis M, Müller HW. The collagenous wound healing scar in the injured central nervous system inhibits axonal regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:177-90. [PMID: 16955711 DOI: 10.1007/0-387-30128-3_11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following traumatic injuries of the central nervous system (CNS) a wound healing scar, resembling the molecular structure of a basement membrane and mainly composed of Collagen type IV and associated glycoproteins and proteoglycans, is formed. It is well known that CNS fibers poorly regenerate after traumatic injuries. In this article we summarize data showing that prevention of collagen scar formation enables severed axons in brain and spinal cord to regrow across the lesion site and to elongate in uninjured CNS tissue. We observed that regenerating fibers grow back to their former target where they develop chemical synapses, become remyelinated by resident oligodendrocytes and conduct action potentials.
Collapse
|
99
|
Scarisbrick IA, Sabharwal P, Cruz H, Larsen N, Vandell AG, Blaber SI, Ameenuddin S, Papke LM, Fehlings MG, Reeves RK, Blaber M, Windebank AJ, Rodriguez M. Dynamic role of kallikrein 6 in traumatic spinal cord injury. Eur J Neurosci 2006; 24:1457-69. [PMID: 16987227 DOI: 10.1111/j.1460-9568.2006.05021.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Kallikrein 6 (K6) is a member of the kallikrein gene family that comprises 15 structurally and functionally related serine proteases. In prior studies we showed that, while this trypsin-like enzyme is preferentially expressed in neurons and oligodendroglia of the adult central nervous system (CNS), it is up-regulated at sites of injury due to expression by infiltrating immune and resident CNS cells. Given this background we hypothesized that K6 is a key contributor to the pathophysiology of traumatic spinal cord injury (SCI), influencing neural repair and regeneration. Examination of K6 expression following contusion injury to the adult rat cord, and in cases of human traumatic SCI, indicated significant elevations at acute and chronic time points, not only at the injury site but also in cord segments above and below. Elevations in K6 were particularly prominent in macrophages, microglia and reactive astrocytes. To determine potential effects of elevated K6 on the regeneration environment, the ability of neurons to adhere to and extend processes on substrata which had been exposed to recombinant K6 was examined. Limited (1 h) or excess (24 h) K6-mediated proteolytic digestion of a growth-facilitatory substrate, laminin, significantly decreased neurite outgrowth. By contrast, similar hydrolysis of a growth-inhibitory substrate, aggrecan, significantly increased neurite extension and cell adherence. These data support the hypothesis that K6 enzymatic cascades mediate events secondary to spinal cord trauma, including dynamic modification of the capacity for axon outgrowth.
Collapse
Affiliation(s)
- I A Scarisbrick
- Program for Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Bausch SB. Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience 2006; 143:339-50. [PMID: 16949761 DOI: 10.1016/j.neuroscience.2006.07.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/23/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
The most well-documented synaptic rearrangement associated with temporal lobe epilepsy is mossy fiber sprouting (MFS). MFS is a pronounced expansion of granule cell mossy fiber axons into the inner dentate molecular layer. The recurrent excitatory network formed by MFS is hypothesized to play a critical role in epileptogenesis, which is the transformation of the normal brain into one that is prone to recurrent spontaneous seizures. While many studies have focused on the functional consequences of MFS, relatively few have investigated the molecular mechanisms underlying the increased propensity of mossy fibers to invade the inner molecular layer. We hypothesized that changes in two components of the extracellular matrix, hyaluronan and its primary receptor, CD44, contribute to MFS. Hyaluronan contributes to laminar-specificity in the hippocampus and increases in hyaluronan and CD44 are associated with temporal lobe epilepsy. We tested our hypothesis in an in vitro model of MFS using a combination of histological and biochemical approaches. Application of kainic acid (KA) to organotypic hippocampal slice cultures induced robust MFS into the inner dentate molecular layer compared with vehicle-treated controls. Degradation of hyaluronan with hyaluronidase significantly reduced but did not eliminate KA-induced MFS, suggesting that hyaluronan played a permissive role in MFS, but that loss of hyaluronan signaling alone was not sufficient to block mossy fiber reorganization. Comparison of CD44 expression with MFS revealed that when CD44 expression in the molecular layers was high, MFS was minimal and when CD44 expression/function was reduced following KA treatment or with function blocking antibodies, MFS was increased. The time course of KA-induced reductions in CD44 expression was identical to the temporal progression of KA-induced MFS reported previously in hippocampal slice cultures, suggesting that reduced CD44 expression may help promote MFS. Understanding the molecular mechanisms underlying MFS may lead to therapeutic interventions that limit epileptogenesis.
Collapse
Affiliation(s)
- S B Bausch
- Department of Pharmacology, Uniformed Services University, Room C2007, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| |
Collapse
|