51
|
Kikusui T, Aoyagi A, Kaneko T. Spatial working memory is independent of hippocampal CA1 long-term potentiation in rats. Behav Neurosci 2000. [DOI: 10.1037/0735-7044.114.4.700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
52
|
Pizzo DP, Waite JJ, Thal LJ, Winkler J. Intraparenchymal infusions of 192 IgG-saporin: development of a method for selective and discrete lesioning of cholinergic basal forebrain nuclei. J Neurosci Methods 1999; 91:9-19. [PMID: 10522820 DOI: 10.1016/s0165-0270(99)00057-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The immunotoxin 192 IgG-saporin has a high degree of selectivity for cholinergic neurons within the basal forebrain (CBF). Intracerebroventricular delivery of 192 IgG-saporin results in a diffuse and massive depletion of choline acetyltransferase (ChAT) activity in projections of the CBF, and non-selective loss of Purkinje cells. To dissociate the basal-cortical and septo-hippocampal cholinergic systems and to minimize non-specific effects, we developed intraparenchymal parameters to deliver 192 IgG-saporin discretely to either the nucleus basalis magnocellularis (NBM) or the medial septum (MS). Intraparenchymal administration of the immunotoxin into the NBM or MS resulted in a dose-dependent depletion of ChAT activity in the corresponding projection areas and a concomitant loss of ChAT immunoreactive neurons in both nuclei. Both lesions were regionally restricted, having a minimal diffusion into adjacent CBF nuclei. Control infusions did not result in non-specific parenchymal damage. In addition, immunotoxic infusions had no effect on monoamine neurotransmitter systems. By optimizing the dosages for both CBF nuclei, we maximized ChAT depletion while minimizing diffusion into the adjacent CBF nuclei. This study delineated injection parameters enabling a selective dissociation of two cholinergic subpopulations in the basal forebrain for further functional characterization.
Collapse
Affiliation(s)
- D P Pizzo
- Department of Neurosciences, University of California San Diego, La Jolla 92093-0624, USA
| | | | | | | |
Collapse
|
53
|
Abstract
During the last two decades, a number of methods have been developed for in vivo collection, separation and characterization of biological samples and analytes. The capability and reliability of the microdialysis technique for measuring endogenous substances (such as neurotransmitters and their metabolites) as well as exogenous therapeutic agents in various tissue systems have brought it to the forefront of the in vivo tissue sampling methods. The usability of this technique is demonstrated by its application as reported in almost 3600 scientific papers (as of January 1998). This paper describes the general aspects and various applications of this fast growing technique. Emphasis has been given to analytical considerations with regards to microdialysis probe recovery and newer HPLC techniques.
Collapse
Affiliation(s)
- C S Chaurasia
- Division of Bioequivalence, Food and Drug Administration, MPN II, Rm 123E, 7500 Standish Place, Rockville, MD 20855, USA
| |
Collapse
|
54
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
55
|
Détári L, Rasmusson DD, Semba K. The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol 1999; 58:249-77. [PMID: 10341363 DOI: 10.1016/s0301-0082(98)00084-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The basal forebrain and in particular its cholinergic projections to the cerebral cortex have long been implicated in the maintenance of cortical activation. This review summarizes evidence supporting a close link between basal forebrain neuronal activity and the cortical electroencephalogram (EEG). The anatomy of basal forebrain projections and effects of acetylcholine on cortical and thalamic neurons are discussed along with the modulatory inputs to basal forebrain neurons. As both cholinergic and GABAergic basal forebrain neurons project to the cortex, identification of the transmitter specificity of basal forebrain neurons is critical for correlating their activity with the activity of cortical neurons and the EEG. Characteristics of the different basal forebrain neurons from in vitro and in vivo studies are summarized which might make it possible to identify different neuronal types. Recent evidence suggests that basal forebrain neurons activate the cortex not only tonically, as previously shown, but also phasically. Data on basal forebrain neuronal activity are presented, clearly showing that there are strong tonic and phasic correlations between the firing of individual basal forebrain cells and the cortical activity. Close analysis of temporal correlation indicates that changes in basal forebrain neuronal activity precede those in the cortex. While correlational, these data, together with the anatomical and pharmacological findings, suggest that the basal forebrain has an important role in regulating both the tonic and the phasic functioning of the cortex.
Collapse
Affiliation(s)
- L Détári
- Department of Comparative Physiology, Eötvös Loránd University, Budapest, Hungary.
| | | | | |
Collapse
|
56
|
Privou C, Li JS, Hasenöhrl RU, Huston JP. Enhanced learning by posttrial injection of H1-but not H2-histaminergic antagonists into the nucleus basalis magnocellularis region. Neurobiol Learn Mem 1999; 71:308-24. [PMID: 10196109 DOI: 10.1006/nlme.1998.3885] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to examine the effects of histaminergic antagonists on memory upon injection into the region of the nucleus basalis magnocellularis (NBM). In experiment 1, rats with chronically implanted cannulae were trained on the uphill avoidance task, which involves a punishment of a high-probability turning response on a tilted platform (negative geotaxis). Immediately after the training trial, that is, after a tail shock was administered upon performing the response, rats received one microinjection (0.5 microliter) of H1-receptor blocker chlorpheniramine (dose range 0.1 to 20 microgram) or the H2-receptor blocker ranitidine (same dose range) or saline into the NBM region. When tested 24 h later, rats treated with chlorpheniramine (20 micrograms) had significantly longer uphill latencies than vehicle controls and ranitidine-treated animals, indicative of superior learning of the avoidance response. In experiment 2, a test for possible proactive effects of posttrial chlorpheniramine on performance during the retention trial was performed. Animals were injected with either 20 micrograms chlorpheniramine or saline immediately after the training trial of the uphill task. One chlorpheniramine control group was treated with a delay of 5 h. Additional groups which received chlorpheniramine or vehicle after the training trial but no trail shock were included. When tested 24 h later, rats injected with 20 micrograms chlorpheniramine again exhibited significantly longer uphill latencies than did vehicle-injected rats. Retention latencies for the rats of the chlorpheniramine 5-h delayed group did not differ from those of the vehicle-injected rats, ruling out proactive effects of chlorpheniramine on performance. In summary, the histaminergic H1-blocker chlorpheniramine can enhance mnemonic functioning in addition to its reinforcing effects upon NBM injection as reported previously.
Collapse
Affiliation(s)
- C Privou
- Institute of Physiological Psychology I and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, D-40225, Germany.
| | | | | | | |
Collapse
|
57
|
Rouse ST, Marino MJ, Potter LT, Conn PJ, Levey AI. Muscarinic receptor subtypes involved in hippocampal circuits. Life Sci 1999; 64:501-9. [PMID: 10069516 DOI: 10.1016/s0024-3205(98)00594-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Muscarinic receptors modulate hippocampal activity in two main ways: inhibition of synaptic activity and enhancement of excitability of hippocampal cells. Due to the lack of pharmacological tools, it has not been possible to identify the individual receptor subtypes that mediate the specific physiological actions that underlie these forms of modulation. Light and electron microscopic immunocytochemistry using subtype-specific antibodies was combined with lesioning techniques to examine the pre- and postsynaptic location of m1-m4 mAChR at identified hippocampus synapses. The results revealed striking differences among the subtypes, and suggested different ways that the receptors modulate excitatory and inhibitory transmission in distinct circuits. Complementary physiological studies using m1-toxin investigated the modulatory effects of this subtype on excitatory transmission in more detail. The implications of these data for understanding the functional roles of these subtypes are discussed.
Collapse
Affiliation(s)
- S T Rouse
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- D Y von Cramon
- Max-Planck-Institute of Cognitive Neuroscience, Department of Neurology, Leipzig, Germany
| | | |
Collapse
|
59
|
Mason KI, Mallet PE, Jhamandas K, Boegman RJ, Beninger RJ. Nucleus basalis injections of N-methyl-D-aspartate enhance memory of rats in the double Y-maze. Brain Res Bull 1999; 48:65-71. [PMID: 10210169 DOI: 10.1016/s0361-9230(98)00146-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors have been implicated in learning and memory. Many findings show that NMDA receptor antagonists impair memory. Few studies, however, have investigated the role of NMDA receptor agonists in mnemonic function. The present study examined the effects of nucleus basalis magnocellularis (nbm) injections of NMDA on memory. Rats were trained in a two-component double Y-maze task consisting of a spatial discrimination and a delayed alternation. Rats (n = 7) were surgically implanted with bilateral cannulae in the nbm prior to maze training. Once trained, animals received bilateral nbm injections (0.5 microl) of saline (0.9%), NMDA (50, 75, and 100 ng/side), and the benzodiazepine receptor partial inverse agonist N-methyl-beta-carboline-3-carboxamide (FG 7142; 200 ng/side), in a counterbalanced order. During testing, delays (0, 30, 60 s) were introduced. Nbm FG 7142 or NMDA (50 ng/side) produced an improvement in the delayed alternation task. Results support the hypothesis that nbm NMDA receptors are involved in cognitive processes mediating memory.
Collapse
Affiliation(s)
- K I Mason
- Department of Psychology, Queen's University, Kingston, Canada
| | | | | | | | | |
Collapse
|
60
|
|
61
|
Pavía J, de Ceballos ML, Sanchez de la Cuesta F. Alzheimer's disease: relationship between muscarinic cholinergic receptors, beta-amyloid and tau proteins. Fundam Clin Pharmacol 1998; 12:473-81. [PMID: 9794144 DOI: 10.1111/j.1472-8206.1998.tb00975.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Senile dementia is one of the most important health problems in developed countries. The main disease causing dementia is Alzheimer's disease that is characterized by the progressive deterioration of the cholinergic system, beta-amyloid production and deposition, and neurofibrillary tangle formation. Most of the reviewed data, along with data from experiments performed in our laboratory, suggest that there are no changes in the number of muscarinic receptors between Alzheimer and control brains, although the receptors expressed in Alzheimer's disease brains can be anomalous in their function. The muscarinic receptor-G-protein interaction also seems to be impaired in Alzheimer's disease compared with control brains, as well as the G-protein system, with an important decrease in the function of the Gq/11, the most important G-protein stimulating phosphoinositide hydrolysis in human brain; in addition, the second messenger system is also impaired, with a decrease in the synthesis of phosphoinositides and in the number of IP3 receptors. Muscarinic cholinergic receptors are also linked to beta-amyloid production, stimulation of the M1 subtype with agonists results in the processing of the beta-amyloid precursor protein to non-amyloidogenic products and administration of a fraction of the beta-amyloid (beta-amyloid 25-35) to rats, results in a decrease in the number of muscarinic receptors in brain. M1 agonists also decrease the phosphorylation of tau proteins, playing again a modulatory role in the pathogenesis of Alzheimer's disease. The existence of a link between beta-amyloid and tau proteins also has been reported; treatment of hippocampal neurones with beta-amyloid, or the 25-35 residue fragment, resulted in an increase in tau protein phosphorylation. The particular contribution of muscarinic receptors, beta-amyloid and tau proteins in the pathogenesis of Alzheimer's disease remains still unclear. Probably Alzheimer's disease could be due to a progressive degeneration in the relationship between the three components covered in this review.
Collapse
Affiliation(s)
- J Pavía
- Department of Pharmacology, Malaga School of Medicine, Malaga University, Madrid, Spain
| | | | | |
Collapse
|
62
|
Gibbs RB, Aggarwal P. Estrogen and basal forebrain cholinergic neurons: implications for brain aging and Alzheimer's disease-related cognitive decline. Horm Behav 1998; 34:98-111. [PMID: 9799621 DOI: 10.1006/hbeh.1998.1451] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies suggest that estrogen replacement therapy can reduce the risk and severity of Alzheimer's disease (AD)-related dementia in postmenopausal women. Many different mechanisms by which estrogen therapy may help to reduce the risk and severity of AD-related pathophysiology have been proposed. Recent animal studies suggest that one way in which estrogen replacement may help to reduce cognitive deficits associated with aging and AD is by enhancing the functional status of cholinergic projections to the hippocampus and cortex. Here we review the evidence that estrogen is important in the maintenance of cholinergic neurons projecting to the hippocampus and cortex and that estrogen replacement can enhance the functional status of these neurons, as well as reduce cognitive deficits associated with muscarinic cholinergic impairment. Based on these studies, we conclude that, in animals, short-term treatment with physiological levels of estrogen, or estrogen and progesterone, has significant positive effects on cholinergic neurons in the medial septum and nucleus basalis magnocellularis and on their projections to the hippocampus and cortex. We hypothesize that similar effects in humans may help delay the decline in basal forebrain cholinergic function associated with aging and AD and thereby reduce the risk and severity of AD-related dementia in postmenopausal women.
Collapse
Affiliation(s)
- R B Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
63
|
Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A 1998; 95:11465-70. [PMID: 9736760 PMCID: PMC21666 DOI: 10.1073/pnas.95.19.11465] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Indexed: 11/18/2022] Open
Abstract
Evidence suggests that cholinergic input to the hippocampus plays an important role in learning and memory and that degeneration of cholinergic terminals in the hippocampus may contribute to the memory loss associated with Alzheimer's disease. One of the more prominent effects of cholinergic agonists on hippocampal physiology is the potentiation of N-methyl-D-aspartate (NMDA)-receptor currents by muscarinic agonists. Here, we employ traditional pharmacological reagents as well as m1-toxin, an m1 antagonist with unprecedented selectivity, to demonstrate that this potentiation of NMDA-receptor currents in hippocampal CA1 pyramidal cells is mediated by the genetically defined m1 muscarinic receptor. Furthermore, we demonstrate the colocalization of the m1 muscarinic receptor and the NR1a NMDA receptor subunit at the electron microscopic level, indicating a spatial relationship that would allow for physiological interactions between these two receptors. This work demonstrates that the m1-muscarinic receptor gene product modulates excitatory synaptic transmission, and it has important implications in the study of learning and memory as well as the design of drugs to treat neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- M J Marino
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
64
|
DiCamillo AM, Neff NT, Carswell S, Haun FA. Chronic sparing of delayed alternation performance and choline acetyltransferase activity by CEP-1347/KT-7515 in rats with lesions of nucleus basalis magnocellularis. Neuroscience 1998; 86:473-83. [PMID: 9881862 DOI: 10.1016/s0306-4522(98)00060-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Peripheral injection of the indolocarbazole CEP-1347/KT-7515 into rats that have sustained ibotenic acid lesions of the nucleus basalis magnocellularis has been shown to prevent the loss of cortically-projecting neurons in that basal forebrain region. The present study tested whether this neuroprotective activity would lead to chronic sparing of a behaviour known to be impaired by that lesion, as well as to chronic maintenance of cholinergic activity in cortical target regions of the nucleus basalis. CEP-1347/KT-7515 was injected into adult rats that had sustained bilateral ibotenic acid lesions of the nucleus basalis magnocellularis; the first injection occurred 18-24 h after lesioning, with subsequent injections of CEP-1347/KT-7515 occurring every other day over 12 days. One day following the last injection the animals were tested for retention of a previously-learned delayed alternation task. Animals that received CEP-1347/KT-7515 committed significantly fewer errors than lesioned animals receiving vehicle. These same animals were tested again eight to 10 weeks later (which was 10-12 weeks post-dosing), without receiving further drug or behaviour training during the test-retest interval. The animals that had received CEP-1347/KT-7515 continued to commit significantly fewer errors than vehicle animals. Furthermore their performance at this time point was indistinguishable from normal controls. Analysis of errors showed that CEP-1347/KT-7515 prevented a lesion-induced increase in perseverative errors, suggesting the drug improved attention in the lesioned animals. Choline acetyltransferase activity in the frontal cortex of the behaviourally tested animals that received CEP-1347/KT-7515 three months previously showed a significant 40% recovery of the lesion-induced loss seen in the vehicle animals. These results demonstrate that treatment with CEP-1347/KT-7515 over 12 days following excitotoxic damage to the nucleus basalis magnocellularis produces long-term sparing of an attention-demanding behaviour.
Collapse
|
65
|
Sabbatini M, Coppi G, Maggioni A, Olgiati V, Panocka I, Amenta F. Effect of lesions of the nucleus basalis magnocellularis and of treatment with posatirelin on cholinergic neurotransmission enzymes in the rat cerebral cortex. Mech Ageing Dev 1998; 104:183-94. [PMID: 9792196 DOI: 10.1016/s0047-6374(98)00066-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of 4 and 8 weeks of treatment with the thyrotropin releasing hormone (TRH), analogue posatirelin (L-6-ketopiperidine-2-carbonyl-L-leucyl-proline amide), on the changes of cholinergic neurotransmission enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), caused by lesions of the nucleus basalis magnocellularis (NBM), was investigated in the rat frontal cortex. ChAT and AChE were demonstrated with immunohistochemical and histochemical techniques, respectively associated with image analysis and microdensitometry. Monolateral and bilateral lesions of NBM area caused a significant loss of ChAT-immunoreactive nerve cell bodies in the NBM, as well as a remarkable decrease of ChAT-immunoreactive fibres and of AChE reactivity in the frontal cortex ipsilateral to the lesion or of both sides, respectively. The number of ChAT-immunoreactive nerve cell bodies in the lesioned NBM was higher in posatirelin-treated rats for 8 weeks in comparison with control NBM-lesioned rats. Moreover, the compound increased the number of ChAT-immunoreactive fibres in the frontal cortex of monolaterally and bilaterally NBM-lesioned rats at 8 weeks after lesion, but was without effect on these fibres in sham-operated rats. The same is true for AChE reactivity, developed in the neuropil of the frontal cortex, which was restored in part by an 8-week treatment with posatirelin in NBM-lesioned rats. These findings suggest that treatment with posatirelin rescues cholinergic neurons of the NBM and cholinergic projections to the cerebral cortex affected by lesioning of the NBM. The functional relevance of these observations and their possible applications should be evaluated in future studies.
Collapse
Affiliation(s)
- M Sabbatini
- Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Italy
| | | | | | | | | | | |
Collapse
|
66
|
Gu Z, Yu J, Perez-Polo JR. Long term changes in brain cholinergic markers and nerve growth factor levels after partial immunolesion. Brain Res 1998; 801:190-7. [PMID: 9729378 DOI: 10.1016/s0006-8993(98)00579-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There are deficits in cholinergic basal forebrain neurons (CBFNs) in the aged brain and patients suffering Alzheimer's disease associated with a partial loss of the CBFNs. To mimic this partial loss and assess its long term effects on residual cholinergic activity and resultant target-derived nerve growth factor (NGF) levels, we produced a partial immunolesion to CBFNs with 192 IgG-saporin, an immunotoxin selectively taken up by p75NTR-bearing neurons. We measured two cholinergic markers, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity, and NGF protein levels at 10 days, 1, 6 and 12 months postlesion. There were no significant changes in the cholinergic markers and the NGF protein levels in the sham-treated animal controls during the one year experiment. Ten days after 192 IgG-saporin treatment, ChAT activity decreased to 35-50% of controls in the olfactory bulb, hippocampus, and cortex. There was a minor but significant recovery of ChAT activity one year after the immunolesion in the hippocampus. Changes in AChE activity mirrored the ChAT changes but were less robust. There were transient increases in NGF protein levels in the hippocampus and cortex that returned to basal levels at 6 months and 12 months postlesion, respectively. In summary, partial immunolesions resulted in partial region-specific and time-dependent recoveries of cholinergic activity in the target areas of the basal forebrain after a partial elimination of CBFNs and a return to basal levels of NGF protein consistent with the hypothesis that the remaining CBFNs compensated for losses of ChAT and NGF due to changes in cholinergic innervation of basal forebrain target areas.
Collapse
Affiliation(s)
- Z Gu
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch at Galveston, 301 University Blvd. , Galveston, TX 77555-0652, USA
| | | | | |
Collapse
|
67
|
Oda S, Kuroda M, Ger YC, Ojima H, Chen S, Kishi K. An ultrastructural study of p75 neurotrophin receptor-immunoreactive fiber terminals in the reticular thalamic nucleus of young rats. Brain Res 1998; 801:116-24. [PMID: 9729322 DOI: 10.1016/s0006-8993(98)00570-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reticular thalamic nucleus (RT) receives cholinergic fibers from both the basal forebrain and the brainstem. Recent studies have shown that the p75 neurotrophin receptor (p75NTR) is synthesized in cholinergic neurons in the basal forebrain but not in those in the brainstem. In this study, to identify cholinergic fibers originating from the basal forebrain, we used a monoclonal antibody against p75NTR (192-IgG) and characterized the ultrastructure of the immunoreactive fiber terminals in the rostral part of the RT in 3-week-old rats. Light microscopy revealed that p75NTR-immunoreactive fine fibers and varicosities were distributed throughout the nucleus. From electron micrographs, three types of labeled terminals were identified. The first type of labeled fiber terminals (63 out of 106) was consistently small, contained densely packed vesicles, and established asymmetrical synaptic contacts with heavy and bushy postsynaptic thickening on distal dendritic profiles; the second type (18 out of 106) established asymmetrical synaptic contacts with very slight postsynaptic thickening; and the third type (25 out of 106) of labeled terminals contained pleomorphic vesicles and established symmetrical synaptic contacts with more proximal dendritic surfaces than the first two types. In addition to the above, labeled dendritic profiles receiving non-labeled asymmetrical and symmetrical synaptic contacts were identified. These findings suggest that the basal forebrain cholinergic system establishes a variety of synaptic connections in the RT and influences cortical activity indirectly via thalamocortical pathways, as well as via direct projections to the cortex.
Collapse
Affiliation(s)
- S Oda
- Department of Anatomy, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | | | | | | | | | | |
Collapse
|
68
|
Privou C, Knoche A, Hasenöhrl RU, Huston JP. The H1- and H2-histamine blockers chlorpheniramine and ranitidine applied to the nucleus basalis magnocellularis region modulate anxiety and reinforcement related processes. Neuropharmacology 1998; 37:1019-32. [PMID: 9833631 DOI: 10.1016/s0028-3908(98)00087-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study examined the effects of the H1-antagonist chlorpheniramine and the H2-antagonist ranitidine on reinforcement and anxiety-parameters following unilateral injection into the vicinity of the nucleus basalis magnocellularis (NBM). In Experiment 1, rats with chronically implanted cannulae were injected with chlorpheniramine or ranitidine (each at doses of 0.1, 1, 10 and 20 microg) and were placed into one of four restricted quadrants of a circular open field (closed corral) for a single conditioning trial. During the test for conditioned corral preference, when provided a choice between the four quadrants, only those rats injected with 10 or 20 microg chlorpheniramine spent more time in the treatment corral, indicative of a positively reinforcing action. None of the other doses of chlorpheniramine or of the H2-antagonist influenced rats' preference behavior. In Experiment 2, the elevated plus-maze (EPM) was used to gauge possible anxiolytic or anxiogenic effects of intra-basalis injection of chlorpheniramine or ranitidine (each at doses of 0.1, 1, 10 and 20 microg). A single injection of chlorpheniramine at 0.1 or 20 microg as well as ranitidine at 20 microg was found to exert anxiolytic-like effects in the EPM. Both compounds elevated the time spent on the open arms and increased scanning over the edge of an open arm. None of the other doses of the H1- and H2-antagonist influenced rats' behavior in the EPM. In sum, these findings show that H1- and H2-receptor antagonists differentially modulate reinforcement and fear-related processes in the NBM and thus, provide the first evidence for a behavioral relevance for the histaminergic innervation of this brain site.
Collapse
Affiliation(s)
- C Privou
- Institute of Physiological Psychology I and Center for Biological and Medical Research, University of Düsseldorf, Germany.
| | | | | | | |
Collapse
|
69
|
Tashiro Y, Drake JM. Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus. J Neurosurg 1998; 88:709-17. [PMID: 9525718 DOI: 10.3171/jns.1998.88.4.0709] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Intellectual impairment has been related to alteration of neuronal innervation in the following regions: cholinergic basal forebrain nuclei (Ch1-Ch6, learning and memory), dopaminergic ventral tegmental area (emotional control), and noradrenergic locus ceruleus (cognition). Recent studies have implicated neuronal injury in the pathogenesis of hydrocephalus. OBJECT The authors used immunohistochemical techniques to investigate functional injury in these regions in animals with progressive hydrocephalus, following shunt placement for cerebrospinal fluid (CSF) drainage. METHODS Hydrocephalus was induced in 20 Wistar rats by intracisternal injection of 0.05 ml of 25% kaolin solution. Four control animals (Group 1) received the same volume of saline. Ventriculoperitoneal shunts were inserted in eight rats at 2 and 4 weeks after kaolin injection and the animals were killed at 8 weeks (Group 2). The other 12 hydrocephalic animals were killed at 2, 4, and 8 weeks without undergoing shunt placement (Group 3). Immunoreactive (IR) neurons to choline acetyltransferase (ChAT) in Ch1-Ch6, tyrosine hydroxylase (TH) in the ventral tegmental area, and dopamine B-hydroxylase (DBH) in the locus ceruleus, as well as IR projection fibers in the terminal areas, were compared between groups. The number of ChAT- and TH-IR neurons in rats with and without shunt placement was counted for quantitative analysis. The number of ChAT-IR neurons was progressively reduced during the development of hydrocephalus in Ch1, Ch2, Ch3, and Ch4 (p < 0.05). Tyrosine-hydroxylase-immunoreactive neurons were also reduced in number, and demonstrated decreased projection fibers and terminals. Early shunting (at 2 weeks) restored ChAT and TH immunoreactivity to control levels, but late shunting (at 4 weeks) did not (p < 0.05). The DBH-IR neurons in the locus ceruleus were remarkably compressed by the dilated fourth ventricle, and diminished immunoreactivity was observed in the terminal areas. Shunt placement for CSF also restored the immunoreactivity in this system. CONCLUSIONS These findings indicate that a progressive functional injury occurs in the cholinergic, dopaminergic, and noradrenergic systems as a result of hydrocephalus. This may contribute to intellectual impairment and might be prevented by early treatment with shunt placement.
Collapse
Affiliation(s)
- Y Tashiro
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
70
|
Bhattacharya SK, Kumar A. Effect of Trasina, an ayurvedic herbal formulation, on experimental models of Alzheimer's disease and central cholinergic markers in rats. J Altern Complement Med 1998; 3:327-36. [PMID: 9449054 DOI: 10.1089/acm.1997.3.327] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trasina is a herbal formulation of some Indian medicinal plants classified in Ayurveda, the classic Indian system of medicine, as Medhyarasayanas or drugs reputed to improve memory and intellect. Earlier experimental and clinical investigations have indicated that the formulation has a memory-facilitating action. In this investigation, the effect of Trasina, after subchronic administration for 21 days, was assessed on two rodent models simulating some biochemical features known to be associated with Alzheimer's disease (AD). The models, in rats, included intracerebroventricularly (i.c.v.) administered colchicine (15 micrograms/rat) and lesioning of nucleus basalis magnocellularis (nbm) by ibotenic acid (10 micrograms/rat). Retention of an active avoidance response was used as the memory parameter. In addition, the effect of Trasina was evaluated on i.c.v. colchicine-induced depletion of acetylcholine (ACh) concentrations, reduction in choline acetyltransferase (ChAT) activity, and decrease in muscarinic cholinergic receptor (MCR) binding in rat brain frontal cortex and hippocampus. The behavioral and biochemical investigations were done 7, 14, and 21 days after colchicine or ibotenic acid lesioning. Trasina (200 and 500 mg/kg) was administered orally (p.o.) once daily for 21 days, the first drug administration being given just prior to lesioning. Colchicine and ibotenic acid induced marked retention deficit of active avoidance learning that was attenuated in a dose-dependent manner by Trasina after 14 and 21 days of treatment. Frontal cortical and hippocampal ACh concentrations, ChAT activity and MCR binding was significantly reduced after colchicine treatment. Trasina (200 and 500 mg/kg) reversed these deficits after 14 and 21 days of treatment. The findings indicate that the herbal formulation exerts a significant nootropic effect after subchronic treatment that may be due to reversal of perturbed cholinergic function.
Collapse
Affiliation(s)
- S K Bhattacharya
- Department of Pharmacology, Banaras Hindu University, Varnasi, India
| | | |
Collapse
|
71
|
Butt AE, Hodge GK. Simple and configural association learning in rats with bilateral quisqualic acid lesions of the nucleus basalis magnocellularis. Behav Brain Res 1997; 89:71-85. [PMID: 9475616 DOI: 10.1016/s0166-4328(97)00062-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We hypothesized that bilateral quisqualic acid lesions of the nucleus basalis magnocellularis (NBM) in rats would impair configural but not simple association learning. In experiment 1, rats were tested in a negative patterning operant discrimination where they were food-reinforced for responding to a light or a tone (L+, T+) but not for responding to the configural stimulus consisting of the light and tone presented simultaneously (LT-). Consistent with our hypothesis, NBM-lesioned rats showed a transient but significant impairment, responding normally to L+ and T+ but responding more often to LT-, in addition to responding more often during the inter-trial interval (ITI) than controls. In experiment 2, rats were tested in a simple operant discrimination where rats were food-reinforced for responding to a light (L+) but not for responding to a tone (T-). Although NBM-lesioned rats again responded normally to L+ as predicted, NBM-lesioned rats were transiently impaired, making more T- responses and more ITI responses than controls. Together, these results suggest that the NBM is involved in both configural and simple association learning but that this involvement is limited to learning to withhold responding to non-reinforced contextual or discrete stimuli. Finally, rats from experiment 2 underwent extinction trials, where results showed no difference between NBM-lesioned and control groups, suggesting that the NBM is not involved in the extinction of conditioned responding to previously reinforced stimuli.
Collapse
Affiliation(s)
- A E Butt
- Department of Psychology, University of New Mexico, Albuquerque 87131, USA.
| | | |
Collapse
|
72
|
Gattu M, Pauly JR, Boss KL, Summers JB, Buccafusco JJ. Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. I. Brain Res 1997; 771:89-103. [PMID: 9383012 DOI: 10.1016/s0006-8993(97)00793-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Both human essential hypertension and genetically induced hypertension in rats have been associated with a range of impairments of cognitive ability. The spontaneous hypertensive rat (SHR) previously has been shown to exhibit a decrease in the expression of brain nicotinic acetylcholine receptors, a factor that could play a role in the impaired ability of this strain in the performance of learning and memory-related tasks. The purpose of this study was to help determine whether task impairment by SHR was related to the reduced expression of central nicotinic acetylcholine receptors. Twelve-week-old SHR were tested in two phases of a water maze (spatial memory) task, and their performance was compared with that of two age-matched normotensive strains, Wistar Kyoto (WKY) and Wistar rats. During Phase 1, SHR exhibited significantly increased latencies to locate a hidden platform as compared with either WKY or Wistar rats. During Phase 2 (subsequent series of trials after a 4-day inter-phase period), where rats were required to find a new platform location, SHR again exhibited significantly impaired performance compared to the normotensive strains. In a single trial passive avoidance paradigm, SHR again displayed significantly reduced avoidance behavior as compared with both WKY and Wistar rats. In consecutive coronal sections, the density of [3H]cytisine binding sites was decreased in SHR by up to 25% in about half of the brain regions examined, with the deficits particularly apparent in cephalic regions. The binding of [125I]alpha-bungarotoxin to brain sections also was decreased in SHR; however, only certain brain areas exhibited significant interstrain differences. These alterations in the expression of putative nicotinic receptor subtypes in SHR were not due to changes in the density of cholinergic neurons since there were no interstrain differences in the binding densities for [3H]vesamicol, which labels the vesicular acetylcholine transporter. Moreover, the magnitude of nicotine-stimulated rubidium efflux from cortical and striatal synaptosomes in vitro was significantly reduced in samples derived from SHR as compared with those from normotensive rats. These results are consistent with the possibility that a reduction in the expression of cortical nicotinic receptors in SHR plays a role in this strain's impaired performance of both spatial and non-spatial learning and memory-related tasks.
Collapse
Affiliation(s)
- M Gattu
- Department of Pharmacology and Toxicology / Alzheimer's Research Center, Medical College of Georgia, Augusta 30912-2300, USA
| | | | | | | | | |
Collapse
|
73
|
Pike BR, Hamm RJ. Chronic administration of a partial muscarinic M1 receptor agonist attenuates decreases in forebrain choline acetyltransferase immunoreactivity following experimental brain trauma. Exp Neurol 1997; 147:55-65. [PMID: 9294403 DOI: 10.1006/exnr.1997.6582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lu 25-109-T is a partial muscarinic M1 receptor agonist with antagonistic effects at presynaptic M2 autoreceptors and has been shown to improve cognitive function following traumatic brain injury (TBI) in rats. This investigation examined the effects of TBI on basal forebrain choline acetyltransferase immunoreactivity (ChAT-IR) following daily administration of saline or 15 mumol/kg Lu 25-109-T. Rats received a moderate (2.1 +/- 0.1 atm) level of central fluid percussion TBI or were surgically prepared but not injured and were injected (sc) with saline or drug on Days 1-15 postinjury. Rats were sacrificed following the last daily injection, and sections were collected through the basal forebrain and processed for ChAT-IR. TBI caused a significant reduction in ChAT-IR neuronal density in saline- and Lu 25-109-T-treated rats with a 13% and 5% decrease in the medial septal nucleus (MSN), a 48 and 23% decrease in the vertical limb nucleus of the diagonal band (VDB), and a 51 and 28% decrease in the nucleus basalis magnocellularis (NBM), respectively. However, Lu 25-109-T significantly attenuated the injury-induced reductions in ChAT-IR. Loss in ChAT-IR neuronal density is not thought to result from cell death as parallel cresyl violet-stained sections indicated no decrease in neuronal cell density in the MSN, VDB, or NBM. These results support the hypothesis that increasing cholinergic tone during the recovery period after TBI will restore cholinergic function impaired by brain trauma.
Collapse
Affiliation(s)
- B R Pike
- Department of Psychology, Virginia Commonwealth University, Richmond 23284-2018, USA
| | | |
Collapse
|
74
|
Fulop ZL, Lescaudron L, Geller HM, Sutton R, Stein DG. Astrocytes grafted into rat nucleus basalis magnocellularis immediately after ibotenic acid injection fail to survive and have no effect on functional recovery. Int J Neurosci 1997; 90:203-22. [PMID: 9352428 DOI: 10.3109/00207459709000639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to determine if the "trophic" properties of astrocytes makes them appropriate for use as a therapeutic agent to excitotoxic brain damage, adult male rats received grafts of cultured cerebral cortical astrocytes into the NBM immediately after infusion of ibotenic acid into the same structure. Twenty four hours after grafting and every other day for 11 days post surgery, the animals were tested for locomotor activity and habituation in an open field. Animals with NBM lesions had significantly reduced rearing activity as compared to counterparts with no lesions. Nine days after surgery, rats with NBM lesions and astrocyte grafts were as impaired in the acquisition of passive avoidance (PA) as their untreated counterparts. All animals with ibotenic lesions were impaired on PA retention compared to rats with no lesions. There was no difference between animals that had received grafts and those that had not. Fourteen days after grafting, all brains were processed for Nissl stain, acetylcholinesterase (AChE) histochemistry, GFAP immunocytochemistry, and bisbenzamide fluorescent microscopy. Decreases in the number of neurons in the NBM as well as decreases in the density of AChE staining in the ipsilateral cortex (the area of innervation of the NBM cholinergic neurons) was evident in all animals with NBM lesions. In addition, a large number of host reactive astrocytes were seen within the NBM, its vicinity, and in the ipsilateral neocortex. Grafted astrocytes survived and integrated into the host tissue when they were grafted into the brain of intact animals but no living grafted astrocytes were found in animals injected with ibotenate. In this latter case, two weeks after grafting, instead of surviving astrocytes only fluorescent tissue 'masses' were seen in the NBM, surrounded by a cavity. Grafted astrocytes did not have any effect on the extension of the lesion caused by ibotenic acid infusion. These results suggest that the concentration of ibotenic acid used to injure the NBM killed not only the host cholinergic neurons but also the grafted astrocytes. The failure of astrocytes to ameliorate the behavioral deficits caused by ibotenic acid lesions of the NBM may be due to the ibotenic acid creating a lethal environment for the grafted and freshly dissociated, cultured astrocytes.
Collapse
Affiliation(s)
- Z L Fulop
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
75
|
Camarini R, Benedito MA. Chronic imipramine treatment-induced changes in acetylcholinesterase (EC 3.1.1.7) activity in discrete rat brain regions. Braz J Med Biol Res 1997; 30:955-60. [PMID: 9361724 DOI: 10.1590/s0100-879x1997000800007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cholinergic as well as monoaminergic neurotransmission seems to be involved in the etiology of affective disorders. Chronic treatment with imipramine, a classical antidepressant drug, induces adaptive changes in monoaminergic neurotransmission. In order to identify possible changes in cholinergic neurotransmission we measured total, membrane-bound and soluble acetylcholinesterase (Achase) activity in several rat brain regions after chronic imipramine treatment. Changes in Achase activity would indicate alterations in acetylcholine (Ach) availability to bind to its receptors in the synaptic cleft. Male rats were treated with imipramine (20 mg/kg, i.p.) for 21 days, once a day. Twenty-four hours after the last dose the rats were sacrificed and homogenates from several brain regions were prepared. Membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) after chronic imipramine treatment was significantly decreased in the hippocampus (control = 188.8 +/- 19.4, imipramine = 154.4 +/- 7.5, P < 0.005) and striatum (control = 850.9 +/- 59.6, imipramine = 742.5 +/- 34.7, P < 0.005). A small increase in total Achase activity was observed in the medulla oblongata and pons. No changes in enzyme activity were detected in the thalamus or total cerebral cortex. Since the levels of Achase seem to be enhanced through the interaction between Ach and its receptors, a decrease in Achase activity may indicate decreased Ach release by the nerve endings. Therefore, our data indicate that cholinergic neurotransmission is decreased after chronic imipramine treatment which is consistent with the idea of an interaction between monoaminergic and cholinergic neurotransmission in the antidepressant effect of imipramine.
Collapse
Affiliation(s)
- R Camarini
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brasil
| | | |
Collapse
|
76
|
Himmelheber AM, Sarter M, Bruno JP. Operant performance and cortical acetylcholine release: role of response rate, reward density, and non-contingent stimuli. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1997; 6:23-36. [PMID: 9395847 DOI: 10.1016/s0926-6410(97)00014-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relationship between acetylcholine (ACh) efflux in medial prefrontal cortex (mPFC) and performance in a visual discrimination task and a variable interval (VI) schedule of reinforcement was studied in rats. Animals were pretrained in one of the two tasks and then unilaterally implanted with microdialysis guide cannula into the mPFC. Animals were then dialyzed, during 12 min collection intervals, in the operant chambers prior to task onset and during and after task performance. Each animal was dialyzed for a total of four sessions: two standard task sessions, one session in which a houselight was flashed at 0.5 Hz during the third 12 min block, and an extinction session (always the last session) in which reinforcement was withheld during the final three blocks. Response accuracy in the discrimination task was very high (> 95% correct) and stable across the four blocks with a progressive increase in omissions. The flashing houselight did not affect performance whereas the loss of reinforcement led to an increase in omissions. VI performance was associated with a high number of lever presses and a high reward rate that declined over the four blocks. Again, the flashing houselight did not affect VI performance whereas lever pressing declined markedly during the extinction session. ACh efflux did not change, relative to baseline, during performance in either task, or with the presentation of the flashing houselight or the loss of reinforcement. These data contrast with the changes in cortical ACh efflux observed in situations characterized by the presentation of novel stimuli or changing demands on attentional processing and, therefore, assist in the specification of hypotheses on the cognitive functions of cortical ACh.
Collapse
Affiliation(s)
- A M Himmelheber
- Department of Psychology and Neuroscience Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
77
|
Dornan WA, McCampbell AR, Tinkler GP, Hickman LJ, Bannon AW, Decker MW, Gunther KL. Comparison of site specific injections into the basal forebrain on water maze and radial arm maze performance in the male rat after immunolesioning with 192 IgG saporin. Behav Brain Res 1997; 86:181-9. [PMID: 9134153 DOI: 10.1016/s0166-4328(96)02264-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study we investigated the effects of 192 IgG saporin injections into the medial septal area (MSA), or nucleus basalis magnocellularis (NBM), and combined injections into the MSA and NBM, on the water maze and radial arm maze performance in the male rat. The results of the present study reveal a dissociation between the effects of 192 IgG saporin injections into the basal forebrain on the performance of two tasks of spatial learning in the rat. Bilateral injections of 192 IgG saporin into the NBM, MSA or combined MSA/NBM failed to disrupt water maze performance when compared to controls. In contrast, injections of 192 IgG saporin into the MSA, NBM or MSA/NBM induced mild impairments on a radial arm maze task. Overall, the disruption of spatial learning observed in this study however was relatively mild compared to deficits in spatial learning reported using less selective lesions of the cholinergic basal forebrain. Consequently, the results of this study suggest that a selective reduction in cholinergic transmission in the basal forebrain is by itself, insufficient to account for the functional impairments observed in spatial learning in the rat. Although our data does support the use of 192 IgG saporin as a selective cholinergic toxin in the basal forebrain, it further suggests that assessment of spatial learning in the rat following 192 IgG saporin lesions of the basal forebrain in combination with lesions to other neurotransmitter systems, may be a more viable approach to the elucidation of the neuropathological mechanisms that are associated with the cognitive deficits seen in Alzheimer's Disease.
Collapse
Affiliation(s)
- W A Dornan
- Department of Psychology, Illinois Wesleyan University, Bloomington 61701, USA.
| | | | | | | | | | | | | |
Collapse
|
78
|
Haroutunian V, Greig N, Pei XF, Utsuki T, Gluck R, Acevedo LD, Davis KL, Wallace WC. Pharmacological modulation of Alzheimer's beta-amyloid precursor protein levels in the CSF of rats with forebrain cholinergic system lesions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:161-8. [PMID: 9191090 DOI: 10.1016/s0169-328x(96)00297-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abnormal deposition and accumulation of Alzheimer's amyloid beta-protein (A beta) and degeneration of forebrain cholinergic neurons are among the principal features of Alzheimer's disease. Studies in rat model systems have shown that forebrain cholinergic deficits are accompanied by induction of cortical beta-amyloid precursor protein (beta-APP) mRNAs and increased levels of secreted beta-APP in the CSF. The studies reported here determined whether the CSF levels of secreted beta-APP could be altered pharmacologically. In different experiments, rats with lesions of the forebrain cholinergic system received injections of vehicle, a muscarinic receptor antagonist scopolamine, or one of two cholinesterase inhibitors - diisopropyl phosphorofluoridate (DFP) or phenserine. Scopolamine was administered to determine whether the levels of beta-APP in the CSF could be increased by anticholinergic agents. The cholinesterase inhibitors were administered to determine whether the forebrain cholinergic system lesion-induced increases in CSF beta-APP could be reduced by cholinergic augmentation. Scopolamine administration led to a significant increase in the CSF levels of secreted beta-APP in sham-lesioned rats. Phenserine, a novel, reversible acetyl-selective cholinesterase inhibitor, significantly decreased the levels of secreted beta-APP in the CSF of forebrain cholinergic system-lesioned rats whereas DFP, a relatively non-specific cholinesterase inhibitor, failed to affect CSF levels of secreted beta-APP. These results suggest that the levels of secreted beta-APP in the CSF can be pharmacologically modulated but that this modulation is dependent upon the status of the forebrain cholinergic system and the pharmacological properties of the drugs used to influence it.
Collapse
Affiliation(s)
- V Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine and Bronx VA Medical Center, NY 10468, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Camarini R, Benedito MA. Rapid eye movement (REM) sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7) activity. Braz J Med Biol Res 1997; 30:641-7. [PMID: 9283633 DOI: 10.1590/s0100-879x1997000500012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 +/- 5.7, large platform group 152.7 +/- 24.9 and REM sleep-deprived group 127.9 +/- 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 +/- 21.5, large platform group 127.8 +/- 20.4, REM sleep-deprived group 102.8 +/- 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity.
Collapse
Affiliation(s)
- R Camarini
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brasil
| | | |
Collapse
|
80
|
Shoham S, Norris PJ, Baker WA, Emson PC. Nitric oxide synthase in ventral forebrain grafts and in early ventral forebrain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:155-66. [PMID: 9125469 DOI: 10.1016/s0165-3806(96)00214-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Embryonic ventral forebrain (VFB) grafts to cortex contain neurons that synthesize acetylcholine and partially ameliorate behavioral deficits caused by excitotoxic damage to the nucleus basalis magnocelullaris in rats. An additional neurotransmitter, nitric oxide (NO), is synthesized by a subset of cholinergic neurons in rat ventral forebrain. If this neurotransmitter is expressed also by grafted cholinergic neurons (which include the embryonic medial septum and diagonal band), its functional contribution should be considered. Six to twelve months after transplantation of embryonic VFB tissue rats were sacrificed. Brain tissue was processed either for in situ hybridization of nNOS and neuropeptide Y (NPY) or for immunohistochemistry of choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS). Quantification of messenger ribonucleic acid (mRNA) for nNOS was performed with radioactively labeled probes (silver grains were counted) and a preliminary comparison was made of graft sections to sections of the ventral forebrain of developing rats. Plots of silver grain counts against cell size revealed similar patterns in the grafts and in the ventral forebrain of developing rats. The rates of expression of mRNA for nNOS in the grafts were intermediate between those of the ventral forebrain of postnatal day 19 and those of postnatal day 12. Double immunohistochemical labeling revealed that 45.87 + 8.26% of cells expressing ChAT also expressed nNOS in the grafts, significantly higher than 33.16 + 3.9% which was the rate of co-expression observed in the adult ventral forebrain. This study suggests that possible contribution of NO to graft-associated modulation of behavior should be examined.
Collapse
Affiliation(s)
- S Shoham
- Department of Research, Herzog Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
81
|
Calamandrei G, Ricceri L, Valanzano A. Neonatal cocaine alters behavioural responsiveness to scopolamine and cholinergic development in mice. Pharmacol Biochem Behav 1997; 56:557-63. [PMID: 9130277 DOI: 10.1016/s0091-3057(96)00482-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD-1 mice received daily subcutaneous injections of either cocaine (20 mg/kg or 40 mg/kg) or saline solution (0.9% NaCl) from postnatal days 2 to 15. Pups were tested on days 16-17 for learning and 24-h retention of a passive avoidance task, where entering a dark compartment was punished with a mild foot shock. Locomotor activity and general behaviour in an open field arena were assessed on day 21, following administration of either the muscarinic blocker scopolamine (0.8 mg/kg) or saline solution. In addition, immunostaining for the enzyme choline acetyltransferase (ChAT) was measured in different basal forebrain areas (medial septum, striatum, and nucleus basalis) on day 30. Cocaine treatment failed to affect either learning or retention capabilities. Nonetheless, neophobic behaviour during the learning session was enhanced in control nonpunished mice exposed to the 20-mg/kg dose. In the open field test, although baseline activity levels were unaffected by cocaine exposure, the 40-mg/kg cocaine-treated pups showed decreased sensitivity to the hyperkinetic effects of scopolamine. ChAT immunocytochemistry revealed a significant reduction of the number of ChAT-immunopositive neurons in the nucleus basalis but not in the other cholinergic basal forebrain regions.
Collapse
Affiliation(s)
- G Calamandrei
- Section of Comparative Psychology, Istituto Superiore di Sanità, Roma, Italy.
| | | | | |
Collapse
|
82
|
Givens B, Sarter M. Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behav Brain Res 1997; 84:1-22. [PMID: 9079768 DOI: 10.1016/s0166-4328(96)00146-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Each of the neurotransmitter-specific afferents to the basal forebrain (BF) carry different types of information which converge to regulate the activity of cholinergic projections to telencephalic areas. Brainstem monoaminergic and cholinergic inputs are critical for context-dependent arousal. GABAergic afferents are gated by a variety of ascending and descending systems, and in addition provide an intrinsic control of BF output excitability. Corticofugal glutamatergic inputs represent reciprocal connections from sites to which BF afferents project, and carry information about the current level of cortical processing intensity and capacity. Peptidergic inputs arise from hypothalamic sources and locally modulate BF output as a function of motivational and homeostatic processes. The significance of these afferent systems can be studied by examining the behavioral consequences of infusion into the BF of drugs that act on the specific receptor systems. Although traditional analyses suggest that the BF has many behavioral functions that can be subdivided regionally, an analysis of studies employing transsynaptic approaches lead to the conceptualization of the BF as having a uniform function, that of maximizing cortical processing efficiency. The BF is conditionally active during specific episodes of acquisition and processing of behaviorally significant, externally-derived information, and drives cortical targets into a state of readiness by reducing interference and amplifying the processing of relevant stimuli and associations, thus allowing for more efficient processing. This paper describes the transsynaptic approach to studying BF function, reviews the neurobiological and behavioral consequences of altering neurotransmitter-specific inputs to the BF, and explores the functional significance of the BF.
Collapse
Affiliation(s)
- B Givens
- The Ohio State University, Department of Psychology, Columbus 43210, USA
| | | |
Collapse
|
83
|
John ER, Easton P, Isenhart R. Consciousness and cognition may be mediated by multiple independent coherent ensembles. Conscious Cogn 1997; 6:3-39; discussion 40-1, 50-5, 65-6. [PMID: 9170558 DOI: 10.1006/ccog.1996.0287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Short-term or working memory (WM) provides temporary storage of information in the brain after an experience and is associated with conscious awareness. Neurons sensitive to the multiple stimulus attributes comprising an experience are distributed within many brain regions. Such distributed cell assemblies, activated by an event, are the most plausible system to represent the WM of that event. Studies with a variety of imaging technologies have implicated widespread brain regions in the mediation of WM for different categories of information. Each kind of WM may thus be expected to involve many brain regions rather than a local, uniquely dedicated set of cells. Neurons in a distributed "cell assembly" may be self-selected by their temporally coherent activations. The process by which this fragmented representation of the recent past is reassembled to accomplish essentially automatic and reliable recognition of a recurrent event constitutes an important problem. One plausible mechanism to achieve the identification of past with previous events would require that the representational system mediating WM must coexist in spatial extent and somehow overlap in temporal activation with cell ensembles registering input from subsequent events. The detection of such a postulated mechanism required an experimental approach which would focus upon spatial patterns of coherent activation while information about different events was stored in WM and retrieved, rather than focusing upon the temporal sequences of activation in localized regions of interest. For this purpose, the familiar delayed matching from sample (DMS) task was modified. A series of information-free flashes, or "noncontingent probes," was presented before an initial series of visual information items, the Priming Sample, which were to be held in WM during a Delay Period. A second series of visual information items were then presented, the Matching Sample. The task required detection of any item in the second series which had been absent from the initial series. Thirty such trials with a particular category of visual information constituted a single task. Several DMS tasks with this standardized design, but with different categories of visual information, were presented within each test session. The information categories included letters of the alphabet, single digit numbers, or faces from a school yearbook. Event-related potentials (ERPs), were computed from 21 standardized electrode placements, separately for information-free probes and for information items in each interval of the trials within a task. Because each electrode is particularly sensitive to coherent activation of neurons in the immediately underlying brain regions, topographic maps were constructed and interpolated across the surface of the scalp. The momentary fluctuations of the resulting voltage "landscapes" throughout the task were then subjected to quantitative analysis. Distinctive landscapes sometimes persisted for prolonged periods, implying sustained engagement of very large populations of neurons. "Difference landscapes" were constructed by subtraction of topographic maps evoked by noncontingent probes during the Delay Period from maps of probe ERPs before the presentation of the initial information in the Priming Sample. Such probe difference landscapes displayed recurrent high similarity to momentary landscapes elicited during subsequent presentation of the information items in the Matching Sample. It seemed as if the distributed cell assembly continuously engaged by mediation of WM of the diverse attributes of the initial stimuli was being dynamically compared to the ensembles engaged by registration of the subsequent stimuli. Spatial Principal Component Analysis was applied to the sequences of momentary voltage landscapes observed throughout trials of each task. This method sought a small number of spatial patterns with which these large sets of inhomogeneous spatial distributions of voltage co
Collapse
Affiliation(s)
- E R John
- New York University Medical Center, Department of Psychiatry, New York 10016, USA
| | | | | |
Collapse
|
84
|
Gibbs RB, Hashash A, Johnson DA. Effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult rats. Brain Res 1997; 749:143-6. [PMID: 9070640 DOI: 10.1016/s0006-8993(96)01375-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo microdialysis techniques were used to examine the effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult, ovariectomized rats. Estrogen treatment resulted in a significant increase in the percent change in acetylcholine release induced by potassium relative to controls, particularly after prolonged (90 min) exposure to high potassium. The data suggest that estrogen may help to maintain cholinergic function under conditions where cholinergic afferents to the hippocampal formation and cortex are challenged or impaired.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, PA 15261, USA.
| | | | | |
Collapse
|
85
|
Sarter M, Bruno JP. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 23:28-46. [PMID: 9063585 DOI: 10.1016/s0165-0173(96)00009-4] [Citation(s) in RCA: 505] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous efforts aimed at attributing discrete behavioral functions to cortical cholinergic afferents have not resulted in a generally accepted hypothesis about the behavioral functions mediated by this system. Moreover, attempts to develop such a unifying hypothesis have been presumed to be unproductive considering the widespread innervation of the cortex by basal forebrain cholinergic neurons. In contrast to previous descriptions of the role of cortical acetylcholine (ACh) in specific behavioral phenomena (e.g., mediation of the behavioral effects of reward loss) or mnemonic entities (e.g., working or reference memory), cortical ACh is hypothesized to modulate the general efficacy of the cortical processing of sensory or associational information. Specifically, cortical cholinergic inputs mediate the subjects' abilities to detect and select stimuli and associations for extended processing and to allocate the appropriate processing resources to these functions. In addition to evidence from electrophysiological and behavioral studies on the role of cortical ACh in sensory information processing and attention, this hypothesis is consistent with proposed functions of the limbic and paralimbic networks in regulating the activity of the basal forebrain cholinergic neurons. Finally, while the proposed hypothesis implies that changes in activity in cortical ACh simultaneously occur throughout the cortex, the selectivity and precision of the functions of cholinergic function is due to its coordinated interactions with the activity of converging sensory or associational inputs. Finally, the dynamic, escalating consequences of alterations in the activity of cortical ACh (hypo- and hyperactivity) on cognitive functions are evaluated.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
86
|
Meier E, Frederiksen K, Nielsen M, Lemb�l HL, Pedersen H, Hyttel J. Pharmacological in vitro characterization of the arecoline bioisostere, Lu 25-109-T, a muscarinic compound with M1-agonistic and M2/M3-antagonistic properties. Drug Dev Res 1997. [DOI: 10.1002/(sici)1098-2299(199701)40:1<1::aid-ddr1>3.0.co;2-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
87
|
Weinstock M. Possible role of the cholinergic system and disease models. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1997; 49:93-102. [PMID: 9266418 DOI: 10.1007/978-3-7091-6844-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Memory impairment associated with the loss of cortical cholinergic neurons in AD has stimulated the development of animal models based on blockade or destruction of these systems. Strategies include mechanical lesions, local injection of excitotoxic amino acids or ethylcholine aziridinium (AF 64A), which disrupt reference and working memory in rats, but lack specificity for cholinergic systems. Other models involving, reduction in cerebral blood flow and interference with oxidative metabolism of glucose, mimic those found in AD, and also interfere with working and long-term memory in the rat. Memory impairments can be reversed by acetylcholinesterase inhibitors and cholinergic agonists but beneficial effects of these agents in AD patients are small and inconsistent. This may be partly due to unfavorable pharmacokinetics and dose-limiting side effects of existing drugs. Newer, brain specific acetylcholinesterase inhibitors and M1 muscarinic agonists with a lower incidence of unwanted effects are currently being evaluated.
Collapse
Affiliation(s)
- M Weinstock
- Department of Pharmacology, School of Pharmacy, Hebrew University Hadassah Medical Centre, Jerusalem, Israel
| |
Collapse
|
88
|
Allain H, Bentué-Ferrer D, Belliard S, Derouesné C. 1 Pharmacology of Alzheimer's Disease. PROGRESS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0079-6468(08)70104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
89
|
Shoham S, Emson P. Effects of combined ventral forebrain grafts to neocortex and amygdala on behavior of rats with damage to the nucleus basalis magnocellularis. Brain Res Bull 1997; 43:381-92. [PMID: 9241441 DOI: 10.1016/s0361-9230(97)00024-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In rats with damage to the nucleus basalis magnocellularis, transplantation of the embryonic ventral forebrain to the neocortex improves behavioral performance in some behavioral tasks. The present investigation focuses on improvement of behavioral performance by combined graft placement to both neocortex and amygdala. Male rats received unilateral microinjections of quisqualate to the nucleus basalis magnocellularis to produce cell damage. Embryonic ventral forebrain cell suspensions were placed in one group of rats in the frontal and parietal neocortex, in a second group in the amygdala, and in a third group in the frontal and parietal neocortex and in the amygdala. These groups were compared to a group of nonoperated rats and a group of rats with damage but with no grafts. Quisqualate-induced damage to the nucleus basalis magnocellularis reduced cholinergic innervation in the ipsilateral cortical hemisphere, impaired performance in the one-trial training version of passive avoidance, an increased motility and time spent in the open arms of the elevated plus maze. Combined graft placement to neocortex and amygdala normalized performance of passive avoidance and restored the normal time spent in the open arms of an elevated plus maze. These results suggest that after damage to the nucleus basalis magnocellularis, modulation of function in multiple brain regions may be necessary for optimization of adaptive behavior in situations involving induction of fear.
Collapse
Affiliation(s)
- S Shoham
- Department of Research, Herzog Hospital, Jerusalem, Israel
| | | |
Collapse
|
90
|
Dornan WA, McCampbell AR, Tinkler GP, Hickman LJ, Bannon AW, Decker MW, Gunther KL. Comparison of site-specific injections into the basal forebrain on water maze and radial arm maze performance in the male rat after immunolesioning with 192 IgG saporin. Behav Brain Res 1996; 82:93-101. [PMID: 9021074 DOI: 10.1016/s0166-4328(97)81112-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated the effects of 192 IgG saporin injections into the medial septal area (MSA), or nucleus basalis magnocellularis (NBM), and combined injections into the MSA and NBM, on water maze and radial arm maze performance in the male rat. The results of the present study reveal a dissociation between the effects of 192 IgG saporin injections into the basal forebrain on the performance of two tasks of spatial learning in the rat. Bilateral injections of 192 IgG saporin into the NBM, MSA or combined MSA/NBM failed to disrupt water maze performance when compared to controls. In contrast, injections of 192 IgG saporin into the MSA, NBM or MSA/NBM induced mild impairments on a radial arm maze task. Overall, the disruption of spatial learning observed in this study was, however, relatively mild compared to deficits in spatial learning reported using less selective lesions of the cholinergic basal forebrain. Consequently, the results of this study suggest that a selective reduction in cholinergic transmission in the basal forebrain is, by itself, insufficient to account for the functional impairments observed in spatial learning in the rat. Although our data do support the use of 192 IgG saporin as a selective cholinergic toxin in the basal forebrain, they further suggests that assessment of spatial learning in the rat following 192 IgG saporin lesions of the basal forebrain in combination with lesions to other neurotransmitter systems, may be a more viable approach to the elucidation of the neuropathological mechanisms that are associated with the cognitive deficits seen in Alzheimer's disease.
Collapse
Affiliation(s)
- W A Dornan
- Department of Psychology, Illinois Wesleyan University, Bloomington 61701, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Rouse ST, Levey AI. Expression of m1-m4 muscarinic acetylcholine receptor immunoreactivity in septohippocampal neurons and other identified hippocampal afferents. J Comp Neurol 1996; 375:406-16. [PMID: 8915839 DOI: 10.1002/(sici)1096-9861(19961118)375:3<406::aid-cne5>3.0.co;2-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Muscarinic cholinergic transmission plays an important role in modulating hippocampal activity and many higher brain functions. Many of the modulatory effects of acetylcholine on hippocampal function result from direct effects in the hippocampus or from actions on the hippocampal afferent neurons. At each site, the differential expression of a family of five distinct but related receptor subtypes governs the nature of the response. The aim of the present study was to identify the subtypes expressed in the hippocampal afferent neurons by combining retrograde tracing with immunocytochemistry. The retrograde tracer, wheat germ agglutinin conjugated to horseradish peroxidase, was injected into the hippocampus unilaterally to label afferent neurons, and was combined with muscarinic (m) acetylcholine (ACh) receptors (mAChRs) with immunocytochemistry to identify the m1-m4 subtypes expressed. The retrogradely labeled cells in the basal forebrain that contribute to the septohippocampal pathway were found to express m2, m3, and, to a lesser extent, m1. Commissural/associational pathway neurons, which were identified by retrogradely labeled cells in the ipsi- and contralateral dentate gyrus, expressed m1, m3, and m4. The retrogradely labeled cells in the entorhinal cortex of the perforant pathway expressed predominantly m1 and m3, with fewer neurons expressing m2 and m4. Raphe-hippocampal cells were found to express m1. Thus, this study provides evidence for the diversity of mAChR subtypes expressed in neurons that project to the hippocampus. The complex modulation by acetylcholine of hippocampal function, therefore, is governed not only by the variety of mAChRs expressed in the hippocampus but also by their differential expression in extrinsic hippocampal afferents.
Collapse
Affiliation(s)
- S T Rouse
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
92
|
Gaykema RP, Zaborszky L. Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic neurons. J Comp Neurol 1996; 374:555-77. [PMID: 8910735 DOI: 10.1002/(sici)1096-9861(19961028)374:4<555::aid-cne6>3.0.co;2-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous observations indicate that the basal forebrain receives dopaminergic input from the ventral midbrain. The present study aimed at determining the topographic organization of these projections in the rat, and whether this input directly terminates on cholinergic neurons. Injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) into discrete parts of the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNC) labeled axons and terminals in distinct parts of the basal forebrain, including medial and lateral septum, diagnoal band nuclei, ventral pallidum, globus pallidus, substantia innominata, globus pallidus, and internal capsule, where PHA-L-labeled terminals abutted cholinergic (choline acetyltransferase = ChAT-containing) profiles. Three-dimensional (3-D) computerized reconstruction of immunostained sections clearly revealed distinct, albeit overlapping, subpopulations of ChAT-immunoreactive neurons apposed by PHA-L-labeled input from medial VTA (mainly in vertical and horizontal diagonal band nuclei), lateral VTA and medial SNC (ventral pallidum and anterior half of substantia innominata), and lateral SNC (caudal half of the substantia innominata and globus pallidus). At the ultrastructural level, about 40% of the selected PHA-L-labeled presynaptic terminals in the ventral pallidum and substantia innominata were found to establish synaptic specializations with ChAT-containing profiles, most of which on the cell body and proximal dendritic shafts. Convergent synaptic input of unlabeled terminals that formed asymmetric synapses with the ChAT-immunoreactive profiles were often found in close proximity to the PHA-L-labeled terminals. These observations show that the cholinergic neurons in the basal forebrain are targets of presumably dopaminergic SNC/VTA neurons, and suggest a direct modulatory role of dopamine in acetylcholine release in the cerebral cortical mantle.
Collapse
Affiliation(s)
- R P Gaykema
- Center for Molecular and Behavioral Neurosciences, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
93
|
Waite JJ, Thal LJ. Lesions of the cholinergic nuclei in the rat basal forebrain: excitotoxins vs. an immunotoxin. Life Sci 1996; 58:1947-53. [PMID: 8637423 DOI: 10.1016/0024-3205(96)00184-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Infusion of the excitotoxins, ibotenic acid, quisqualic acid, or AMPA, into the medial septal nucleus, diagonal band, and the nucleus basalis magnocellularis of rats produced less cholinergic cell loss as assessed by choline acetyltransferase activity in the projection fields, cortex and hippocampus, than that obtainable by intraventricular administration of the immunotoxin, 192 IgG-saporin. All excitotoxins produced reductions in tissue levels of some monoamines, while no decreases were found for the immunotoxin. All toxins produced acquisitional impairment in the hidden platform water maze. This behavioral deficit was slightly greater for the excitotoxic-lesioned rats than for those given 192 IgG-saporin at a dose which produced ChAT depletions similar to the most potent excitotoxin (AMPA). This supports the idea that some of the behavioral effects produced by excitotoxic lesions are due to the cholinergic basal forebrain lesion and some are due to noncholinergic damage.
Collapse
Affiliation(s)
- J J Waite
- Department of Neurosciences, University of California, San Diego 92093, USA
| | | |
Collapse
|
94
|
Camacho F, Smith CP, Vargas HM, Winslow JT. Alpha 2-adrenoceptor antagonists potentiate acetylcholinesterase inhibitor effects on passive avoidance learning in the rat. Psychopharmacology (Berl) 1996; 124:347-54. [PMID: 8739550 DOI: 10.1007/bf02247440] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cholinergic hypothesis of Alzheimer's disease (AD) has strongly influenced research on learning and memory over the last decade. However, there has been limited success treating AD dementia with cholinomimetics. Furthermore, there are indications that other neurotransmitter systems affected by this disease may be involved in cognitive processes. Animal studies have suggested that norepinephrine and acetylcholine may interact in learning and memory. The current experiments investigate this interaction in a step-down passive avoidance paradigm after coadministration of acetylcholinesterase inhibitors and alpha 2-adrenoceptor antagonists. Administration of acetylcholinesterase inhibitors heptylphysostigmine (0.625-5.0 mg/kg, IP), tacrine (2.5-10.0 mg/kg, PO), velnacrine (0.312-2.5 mg/kg, SC), and galanthamine (0.312-2.5 mg/kg IP) each enhanced retention of a passive avoidance response at selected moderate doses administered 30-60 min prior to training. The alpha 2-adrenoceptor antagonists idazoxan (0.312-2.5 mg/kg, IP), yohimbine (0.078-0.312 mg/kg, IP) and P86 7480 (0.156-0.625 mg/kg, IP) alone failed to enhance learning in this paradigm. Coadministration of a subthreshold dose of heptylphysostigmine (0.625 mg/kg, IP) with doses of idazoxan, yohimbine or P86 7480 enhanced passive avoidance learning. This synergistic interaction may represent effects of antagonism of presynaptic alpha 2-adrenoceptor since coadministration of heptylphysostigmine and the selective postsynaptic alpha 2-adrenoceptor antagonist SKF 104856 did not result in enhanced learning. Taken together these data suggest noradrenergic activation through pre-synaptic alpha 2-adrenoceptor blockade may potentiate cholinergic activity in the formation of a long-term memory trace. These observations may have implications for the treatment of AD with cholinergic and adrenergic agents.
Collapse
Affiliation(s)
- F Camacho
- Neuroscience Therapeutic Domain, Somerville, NJ 08876-1258, USA
| | | | | | | |
Collapse
|
95
|
Socci DJ, Arendash GW. Chronic nicotine treatment prevents neuronal loss in neocortex resulting from nucleus basalis lesions in young adult and aged rats. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 27:285-305. [PMID: 9147414 DOI: 10.1007/bf02815110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In both young adult and aged rats, we tested the ability of chronically administered nicotine to rescue neocortical neurons from transneuronal degeneration resulting 5 mo after ibotenic acid (IBO) lesioning of the nucleus basalis magnocellularis (NBM). Young adult (2-3 mo-old) and aged (20-22-mo-old) rats were given unilateral infusions of IBO (5 mu g/1 mu L) at two sites within the NBM. Following surgery, animals began receiving either daily ip injections of nicotine (0.2 mg/kg) or saline vehicle. Treatment continued for 5 mo, at which time all animals were sacrificed and their brains processed histologically. For each brain, computer-assisted image analysis was then used to analyze the unlesioned (left) and lesioned (right) side of five non-consecutive brain sections from parietal cortex Layers II-IV and V. NBM lesioning in both young adult and aged vehicle-treated rats resulted in a significant 16-21% neuronal loss ipsilateral to NBM lesioning in neocortical Layers II-IV. Aged NBM-lesioned rats also exhibited a significant 12% neuronal loss in neocortical Layer V ipsilaterally. By contrast, those NBM-lesioned young adult and aged rats that received daily nicotine treatment postsurgery did not show any ipsilateral neuronal loss in the same parietal cortex areas, indicating that chronic nicotine treatment prevented the transneuronal degeneration of neocortical neurons resulting 5 mo afer NBM lesioning.
Collapse
Affiliation(s)
- D J Socci
- Department of Biology and Institute on Aging, University of South Florida, Tampa, 33620, USA
| | | |
Collapse
|
96
|
Brioni JD, Decker MW, Sullivan JP, Arneric SP. The pharmacology of (-)-nicotine and novel cholinergic channel modulators. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 37:153-214. [PMID: 8891102 DOI: 10.1016/s1054-3589(08)60950-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Advances in the understanding of the molecular biology and pharmacology of nAChRs may provide targets for the development of novel and selective modulators of nAChRs in the brain. This contention is supported by the dissimilar behavioral effects observed following systemic administration of currently available nicotinic ligands. The concept of multiple subtypes of nAChRs is not unique, as evidenced by the pharmacology of other ligand-gated ion channels, such as GABA-A receptor, which also exist in multiple subtypes. At present, with respect to the nAChRs, relatively few of the subtypes identified have been cloned from human tissue and pharmacologically evaluated, but several groups are focusing their research efforts in this direction. With a thorough understanding of the pharmacological and functional characteristics of more of the putative human nAChR subtypes, this knowledge will facilitate the discovery of more efficacious and less toxic ChCMs that may provide potential novel therapeutic agents for a variety of CNS conditions.
Collapse
Affiliation(s)
- J D Brioni
- Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | |
Collapse
|
97
|
Cuello AC. Effects of trophic factors on the CNS cholinergic phenotype. PROGRESS IN BRAIN RESEARCH 1996; 109:347-58. [PMID: 9009722 DOI: 10.1016/s0079-6123(08)62117-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A C Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
98
|
Affiliation(s)
- L J Thal
- Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla 92093-0624, USA
| |
Collapse
|
99
|
Abstract
Because VIP is known to be neurotrophic in vitro, the present study tested whether peptide T (PT), an octapeptide with a pentapeptide sequence homologous to VIP, could prevent nucleus basalis (NBM)-induced degenerative changes in the parietal neocortex of aged rats. Aged (20-21 months old) Sprague-Dawley rats were given bilateral neurotoxic lesions of the NBM, and injected daily with PT (1 mg, IP) or vehicle solution for 5 months. Compared to unoperated controls, vehicle-treated NBM lesioned animals had: 1) a significant 17% decrease in overall cortical thickness, 2) significant decreases of 13-29% in the thickness of cortical layers II-IV, V, and VI, and 3) significant neuronal and glial cell loss in layer V. PT treatment prevented or attenuated these lesion-induced decreases in cortical thickness and attenuated the accompanying loss of large neurons in layer V. These results provide evidence that PT1 perhaps acting via VIP receptor stimulation, is neurotrophic and important for the integrity of brain tissue following denervation.
Collapse
Affiliation(s)
- D J Socci
- Department of Biology and Institute on Aging, University of South Florida, Tampa 33620, USA
| | | | | | | |
Collapse
|
100
|
Schliebs R, Bigl V. Animal Models to Produce Cortical Cholinergic Dysfunction. METHODS IN NEUROSCIENCES 1996. [DOI: 10.1016/s1043-9471(96)80108-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|