51
|
Abstract
Mice are increasingly being used in behavioral neuroscience, largely replacing rats as the behaviorist's animal of choice. Before aspects of behavior such as emotionality or cognition can be assessed, however, it is vital to determine whether the motor capabilities of e.g. a mutant or lesioned mouse allow such an assessment. Performance on a maze task requiring strength and coordination, such as the Morris water maze, might well be impaired in a mouse by motor, rather than cognitive, impairments, so it is essential to selectively dissect the latter from the former. For example, sensorimotor impairments caused by NMDA antagonists have been shown to impair water maze performance2. Motor coordination has traditionally been assessed in mice and rats by the rotarod test, in which the animal is placed on a horizontal rod that rotates about its long axis; the animal must walk forwards to remain upright and not fall off. Both set speed and accelerating versions of the rotarod are available. The other three tests described in this article (horizontal bar, static rods and parallel bars) all measure coordination on static apparatus. The horizontal bar also requires strength for adequate performance, particularly of the forelimbs as the mouse initially grips the bar just with the front paws. Adult rats do not perform well on tests such as the static rods and parallel bars (personal observations); they appear less well coordinated than mice. I have only tested male rats, however, and male mice seem generally less well coordinated than females. Mice appear to have a higher strength:weight ratio than rats; the Latin name, Mus musculus, seems entirely appropriate. The rotarod, the variations of the foot fault test12 or the Catwalk (Noldus)15 apparatus are generally used to assess motor coordination in rats.
Collapse
|
52
|
Keck TM, Suchland KL, Jimenez CC, Grandy DK. Dopamine D4 receptor deficiency in mice alters behavioral responses to anxiogenic stimuli and the psychostimulant methylphenidate. Pharmacol Biochem Behav 2013; 103:831-41. [DOI: 10.1016/j.pbb.2012.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/30/2012] [Accepted: 12/08/2012] [Indexed: 12/31/2022]
|
53
|
Social investigation and long-term recognition memory performance in 129S1/SvImJ and C57BL/6JOlaHsd mice and their hybrids. PLoS One 2013; 8:e54427. [PMID: 23342157 PMCID: PMC3546984 DOI: 10.1371/journal.pone.0054427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
When tested for their behavioural performance, the mixed genetic background of transgenic mice is a critical, but often ignored, issue. Such issues can arise because of the significant differences in defined behavioural parameters between embryonic stem cell donor and recipient strains. In this context, the commonly used stem cell donor strain '129' shows 'deficits' in different paradigms for learning and long-term memory. We investigated the long-term social recognition memory performance and the investigative behaviour in commercially available 129S1/SvImJ and C57BL/6JOlaHsd mice and two F1-hybrids (129S1/SvImJ×C57BL/6JOlaHsd) by using the social discrimination procedure and its modification, the volatile fraction cage (VFC). Our data revealed an unimpaired olfactory long-term recognition memory not only in female and male 129S1/SvImJ and C57BL/6JOlaHsd mice but also in the two hybrid lines (129S1/SvImJxC57BL/6JOlaHsd) when the full 'olfactory signature' of the 'to-be-recognized' conspecific was presented. Under these conditions we also failed to detect differences in the long-term recognition memory between male and female mice of the tested strains and revealed that the oestrus cycle did not affect the performance in this memory task. The performance in the VFC, based only on the volatile components of the 'olfactory signature' of the 'to-be-recognized' conspecific, was similar to that observed under direct exposure except that females of one F1 hybrid group failed to show an intact long-term memory. Thus, the social discrimination procedure allowing direct access between the experimental subject and the stimulus animal(s) is highly suitable to investigate the impact of genetic manipulations on long-term memory in male and female mice of the strain 129S1/SvImJ, C57BL/6JOlaHsd and 129S1/SvImJxC57BL/6JOlaHsd hybrids.
Collapse
|
54
|
Maternal deprivation in early ontogeny impairs olfactory learning with mother's grooming imitation in 129Sv mice. Bull Exp Biol Med 2012; 153:761-3. [PMID: 23113279 DOI: 10.1007/s10517-012-1820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Early experience, mediated by mother's care, exerts long-term effects on the formation of behavioral phenotype. However, there are no published data on the effects of such experience on the results of early learning. We investigated the effects of maternal deprivation associated with handling in 129Sv mice during postnatal days 3-6 on the results of olfactory learning with mother's grooming imitation used as the reinforcement on postnatal day 8. Mother deprivation and handling procedure are shown to impair early olfactory learning.
Collapse
|
55
|
Chavan SS, Huerta PT, Robbiati S, Valdes-Ferrer SI, Ochani M, Dancho M, Frankfurt M, Volpe BT, Tracey KJ, Diamond B. HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med 2012; 18:930-7. [PMID: 22634723 DOI: 10.2119/molmed.2012.00195] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/16/2012] [Indexed: 11/06/2022] Open
Abstract
Severe sepsis, a syndrome that complicates infection and injury, affects 750,000 annually in the United States. The acute mortality rate is approximately 30%, but, strikingly, sepsis survivors have a significant disability burden: up to 25% of survivors are cognitively and physically impaired. To investigate the mechanisms underlying persistent cognitive impairment in sepsis survivors, here we developed a murine model of severe sepsis survivors following cecal ligation and puncture (CLP) to study cognitive impairments. We observed that serum levels of high mobility group box 1 (HMGB1), a critical mediator of acute sepsis pathophysiology, are increased in sepsis survivors. Significantly, these levels remain elevated for at least 4 wks after CLP. Sepsis survivors develop significant, persistent impairments in learning and memory, and anatomic changes in the hippocampus associated with a loss of synaptic plasticity. Administration of neutralizing anti-HMGB1 antibody to survivors, beginning 1 wk after onset of peritonitis, significantly improved memory impairments and brain pathology. Administration of recombinant HMGB1 to naïve mice recapitulated the memory impairments. Together, these findings indicate that elevated HMGB1 levels mediate cognitive decline in sepsis survivors, and suggest that it may be possible to prevent or reverse cognitive impairments in sepsis survivors by administration of anti-HMGB1 antibodies.
Collapse
Affiliation(s)
- Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York 11030, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Anxious, hypoactive phenotype combined with motor deficits in Gtf2ird1 null mouse model relevant to Williams syndrome. Behav Brain Res 2012; 233:458-73. [DOI: 10.1016/j.bbr.2012.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 01/07/2023]
|
57
|
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by antibodies that bind target autoantigens in multiple organs in the body. In peripheral organs, immune complexes engage the complement cascade, recruiting blood-borne inflammatory cells and initiating tissue inflammation. Immune complex-mediated activation of Fc receptors on infiltrating blood-borne cells and tissue resident cells amplifies an inflammatory cascade with resulting damage to tissue function, ultimately leading to tissue destruction. This pathophysiology appears to explain tissue injury throughout the body, except in the central nervous system. This review addresses a paradigm we have developed for autoantibody-mediated brain damage. This paradigm suggests that antibody-mediated brain disease does not depend on immune complex formation but rather on antibody-mediated alterations in neuronal activation and survival. Moreover, antibodies only access brain tissue when blood-brain barrier integrity is impaired, leading to a lack of concurrence of brain disease and tissue injury in other organs. We discuss the implications of this model for lupus and for identifying other antibodies that may contribute to brain disease.
Collapse
Affiliation(s)
- Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, USA.
| | | |
Collapse
|
58
|
Hart AD, Wyttenbach A, Hugh Perry V, Teeling JL. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 2012; 26:754-65. [PMID: 22155499 PMCID: PMC3381227 DOI: 10.1016/j.bbi.2011.11.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.
Collapse
Affiliation(s)
- Adam D. Hart
- Corresponding author. Address: Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK. Fax: +44(0) 2380 795332.
| | | | | | | |
Collapse
|
59
|
Pratte M, Jamon M. Differences in social approach in two inbred strains of mice. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2011.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Harms LR, Cowin G, Eyles DW, Kurniawan ND, McGrath JJ, Burne THJ. Neuroanatomy and psychomimetic-induced locomotion in C57BL/6J and 129/X1SvJ mice exposed to developmental vitamin D deficiency. Behav Brain Res 2012; 230:125-31. [PMID: 22343129 DOI: 10.1016/j.bbr.2012.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 01/03/2023]
Abstract
Evidence from epidemiology suggests that developmental vitamin D (DVD) deficiency is associated with an increased risk of schizophrenia. DVD deficiency in rats is associated with altered brain morphology and enhanced hyperlocomotion in response to MK-801 and amphetamine. The aim of this study was to determine if similar phenotypes were associated with DVD deficiency in two strains of mice (C57BL/6J, 129/X1SvJ). Brains from neonatal (P0) and adult (P70) mice were imaged using MRI and the volumes of the cerebrum, hippocampus, striatum, septum, cortex and ventricles measured, as well as the widths of white matter tracts. Locomotor sensitivity to 5mg/kg d-amphetamine, 0.5mg/kg MK-801 or saline was examined in a separate group of mice in an open field. DVD deficiency altered brain morphology in C57BL6/J mice, such that C57BL/6J female DVD-deficient neonatal mice had a smaller hippocampus compared to female controls. In addition, adult C57BL/6J male DVD-deficient mice had smaller lateral ventricles compared to controls, which may have been compressed by the enlarged striatum seen in these DVD-deficient mice. However, in contrast to the behavioural phenotypes found in DVD-deficient rats, there was no significant effect of maternal diet on amphetamine or MK-801-induced locomotion in either strain. These data indicate that not only species, but also strain of mouse, moderates the impact of DVD deficiency on neuroanatomical and behavioural phenotypes in rodent animal models.
Collapse
Affiliation(s)
- Lauren R Harms
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
61
|
Kennard JA, Woodruff-Pak DS. Age sensitivity of behavioral tests and brain substrates of normal aging in mice. Front Aging Neurosci 2011; 3:9. [PMID: 21647305 PMCID: PMC3103996 DOI: 10.3389/fnagi.2011.00009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022] Open
Abstract
Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena.
Collapse
Affiliation(s)
- John A. Kennard
- Systems Neuroscience Laboratory, Neuroscience Program and Department of Psychology, Temple UniversityPhiladelphia, PA, USA
| | - Diana S. Woodruff-Pak
- Systems Neuroscience Laboratory, Neuroscience Program and Department of Psychology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
62
|
Abstract
Before the present day, when fast-acting and potent rodenticides such as alpha-chloralose were not yet in use, the work of pest controllers was often hampered by a phenomenon known as "bait shyness". Mice and rats cannot vomit, due to the tightness of the cardiac sphincter of the stomach, so to overcome the problem of potential food toxicity they have evolved a strategy of first ingesting only very small amounts of novel substances. The amounts ingested then gradually increase until the animal has determined whether the substance is safe and nutritious. So the old rat-catchers would first put a palatable substance such as oatmeal, which was to be the vehicle for the toxin, in the infested area. Only when large amounts were being readily consumed would they then add the poison, in amounts calculated not to affect the taste of the vehicle. The poisoned bait, which the animals were now readily eating in large amounts, would then swiftly perform its function. Bait shyness is now used in the behavioural laboratory as a way of measuring anxiety. A highly palatable but novel substance, such as sweet corn, nuts or sweetened condensed milk, is offered to the mice (or rats) in a novel situation, such as a new cage. The latency to consume a defined amount of the new food is then measured. Robert M.J. Deacon can be reach at robert.deacon@psy.ox.ac.uk
Collapse
Affiliation(s)
- Rob M J Deacon
- Department of Experimental Psychology, University of Oxford, UK.
| |
Collapse
|
63
|
The passive transfer of immunoglobulin G serum antibodies from patients with longstanding Complex Regional Pain Syndrome. Eur J Pain 2010; 15:504.e1-6. [PMID: 21075025 DOI: 10.1016/j.ejpain.2010.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aetiology of Complex Regional Pain Syndrome (CRPS) is unknown. Recent evidence suggests that there may be autoantibodies directed against peripheral nerves, but it is unclear whether such autoantibodies are merely biomarkers or whether they cause or contribute to the underlying pathology. The transfer of disease after injection of a patient's serum or IgG fraction into mice ('passive transfer') is the classic way to demonstrate a functional role of autoantibodies. AIMS Based on previous preliminary results, we wished to investigate whether the transfer of IgG antibodies affected mouse behaviour or produced signs of CRPS. METHODS We injected purified serum-IgG from 12 patients and 12 controls into groups of 6-10 mice (∼ 17 mg/mouse intraperitoneally) on 2 consecutive days and looked for any evidence for altered behaviour or signs of CRPS. The observer, blinded as to test or control group, measured behaviour in the open field, stimulus-evoked pain and motor coordination, and inspected limbs for autonomic CRPS signs. RESULTS Stimulus-evoked pain and autonomic signs were not detected, but CRPS-IgG induced significant depression of rearing behaviour (17.9 rears/3 min (n = 84) vs. 22.1 rears/3 min (n = 83), p = 0.0004), confirming previous observations in a single case study. Moreover, motor impairment, one of the four cardinal signs of CRPS, was evident in the three CRPS-IgG injected groups tested with a sensitive rota-rod protocol (p < 0.0001 vs. control-IgG injected groups). CONCLUSIONS These results lend support to a pathophysiological role for IgG autoantibodies in CRPS.
Collapse
|
64
|
Deakin IH, Law AJ, Oliver PL, Schwab MH, Nave KA, Harrison PJ, Bannerman DM. Behavioural characterization of neuregulin 1 type I overexpressing transgenic mice. Neuroreport 2009; 20:1523-8. [PMID: 19829162 PMCID: PMC2880453 DOI: 10.1097/wnr.0b013e328330f6e7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuregulin 1 (NRG1) is a pleiotropic growth factor involved in diverse aspects of brain development and function. In schizophrenia, expression of the NRG1 type I isoform is selectively increased. However, virtually nothing is known about the roles of this isoform in brain. We have studied transgenic mice overexpressing type I NRG1(NRG1type 1-tg) using a series of behavioural tests. NRG1(type 1-tg) mice have a tremor, are impaired on the accelerating rotarod, and have reduced prepulse inhibition in the context of an increased baseline startle response. There is no overall anxiety or activity phenotype, although female NRG(1type 1-tg) mice show mild increases in anxiety on some measures. The pattern of results shows both similarities and differences to those reported in hypomorphic NRG1 mice, and may be relevant for interpreting the increased NRG1 type I expression observed in schizophrenia.
Collapse
Affiliation(s)
- Inga H. Deakin
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | - Amanda J. Law
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peter L. Oliver
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Markus H. Schwab
- Department of Neurogenetics, Max-Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Klaus Armin Nave
- Department of Neurogenetics, Max-Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Paul J. Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | | |
Collapse
|
65
|
Carter RN, Paterson JM, Tworowska U, Stenvers DJ, Mullins JJ, Seckl JR, Holmes MC. Hypothalamic-pituitary-adrenal axis abnormalities in response to deletion of 11beta-HSD1 is strain-dependent. J Neuroendocrinol 2009; 21:879-87. [PMID: 19602102 PMCID: PMC2810446 DOI: 10.1111/j.1365-2826.2009.01899.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) has previously been shown to influence HPA axis activity. 129/MF1 mice null for 11beta-HSD1 (129/MF1 HSD1(-/-)) have greatly increased adrenal gland size and altered HPA activity, consistent with reduced glucocorticoid negative feedback. On this background, concentrations of plasma corticosterone and adrenocorticotrophic hormone (ACTH) were elevated in unstressed mice, and showed a delayed return to baseline after stress in HSD1-null mice with reduced sensitivity to exogenous glucocorticoid feedback compared to same-background genetic controls. In the present study, we report that the genetic background can dramatically alter this pattern. By contrast to HSD1(-/-) mice on a 129/MF1 background, HSD1(-/-) mice congenic on a C57Bl/6J background have normal basal plasma corticosterone and ACTH concentrations and exhibit normal return to baseline of plasma corticosterone and ACTH concentrations after stress. Furthermore, in contrast to 129/MF1 HSD1(-/-) mice, C57Bl/6J HSD1(-/-) mice have increased glucocorticoid receptor expression in areas of the brain involved in glucocorticoid negative feedback (hippocampus and paraventricular nucleus), suggesting this may be a compensatory response to normalise feedback control of the HPA axis. In support of this hypothesis, C57Bl/6J HSD1(-/-) mice show increased sensitivity to dexamethasone-mediated suppression of peak corticosterone. Thus, although 11beta-HSD1 appears to contribute to regulation of the HPA axis, the genetic background is crucial in governing the response to (and hence the consequences of) its loss. Similar variations in plasticity may underpin inter-individual differences in vulnerability to disorders associated with HPA axis dysregulation. They also indicate that 11beta-HSD1 inhibition does not inevitably activate the HPA axis.
Collapse
Affiliation(s)
- R N Carter
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
66
|
Oliver PL, Davies KE. Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Hum Mol Genet 2009; 18:4576-89. [PMID: 19729413 PMCID: PMC2773274 DOI: 10.1093/hmg/ddp425] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To understand the pathophysiology of neuropsychiatric disorders such as schizophrenia requires consideration of multiple genetic and non-genetic factors. However, very little is known about the consequences of combining models of synaptic dysfunction with controlled environmental manipulations. Therefore, to generate new insights into gene–environment interactions and complex behaviour, we examined the influence of variable prenatal stress (PNS) on two mouse lines with mutations in synaptosomal-associated protein of 25 kDa (Snap-25): the blind-drunk (Bdr) point mutant and heterozygous Snap-25 knockout mice. Neonatal development was analysed in addition to an assessment of adult behavioural phenotypes relevant to the psychotic, cognitive and negative aspects of schizophrenia. These data show that PNS influenced specific anxiety-related behaviour in all animals. In addition, sensorimotor gating deficits previously noted in Bdr mutants were markedly enhanced by PNS; significantly, these effects could be reversed with the application of anti-psychotic drugs. Moreover, social interaction abnormalities were observed only in Bdr animals from stressed dams but not in wild-type littermates or mutants from non-stressed mothers. These results show for the first time that combining a synaptic mouse point mutant with a controlled prenatal stressor paradigm produces both modified and previously unseen phenotypes, generating new insights into the interactions between genetics and the environment relevant to the study of psychiatric disease.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
67
|
Bolivar VJ. Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis. Neurobiol Learn Mem 2009; 92:206-14. [PMID: 19496240 PMCID: PMC2772117 DOI: 10.1016/j.nlm.2009.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When placed in a novel environment, mice tend to explore for a period of time, and then reduce the level of exploration. This reduction in locomotor or exploratory behavior is known as habituation and can occur within a single session or across sessions, respectively, termed intrasession and intersession habituation. Recent research indicates that there is a genetic component to habituation behavior and that some of the genes involved differ between the two types of habituation. The genetic evidence also suggests that intrasession habituation and intersession habituation are measuring somewhat different conceptual entities and with more such evidence may eventually help us understand the different pathways involved. Some of the genetic methods and tools used to unravel the roles of specific genes in both types of habituation are outlined here, with examples from the literature, as well as new data, to illustrate that this seemingly simple behavior is actually very complicated in terms of genetics. Evidence to date suggests that a number of genetic regions play roles in one or both types of habituation, and further research will be necessary to determine the specific genes involved.
Collapse
Affiliation(s)
- Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
68
|
Sanderson DJ, Cunningham C, Deacon RM, Bannerman DM, Perry VH, Rawlins JNP. A double dissociation between the effects of sub-pyrogenic systemic inflammation and hippocampal lesions on learning. Behav Brain Res 2009; 201:103-11. [DOI: 10.1016/j.bbr.2009.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/22/2009] [Accepted: 01/31/2009] [Indexed: 10/21/2022]
|
69
|
Pratte M, Jamon M. Detection of social approach in inbred mice. Behav Brain Res 2009; 203:54-64. [PMID: 19379777 DOI: 10.1016/j.bbr.2009.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
An experiment was designed to automatically assess the relative level of social interaction during encounters involving trios of inbred mice consisting of two familiar cage mate males plus an unfamiliar third male. The automation of the spatial positioning was obtained by using a video-tracking program. In addition social behaviours were manually scored. To evaluate the influence of basic motor properties on the evaluation of the level of social interaction, we analysed two strains (C57BL/6J and 129S2/Sv) that are frequently employed in transgenic research, and show very different levels of motor activity. Correlations between manual and automated parameters showed that spatial parameters correctly fitted the level of social interaction between mice. In both strains C57BL/6J and 129S2/Sv, a proximity parameter (duration of bouts during which two individuals were close to each other) defined the social approach and correctly assessed the discrimination of social novelty.
Collapse
Affiliation(s)
- Michel Pratte
- Inserm S910 (Functional Genomics, Pathology and Behavior), Faculté de Médecine de la Timone, Marseille, France.
| | | |
Collapse
|
70
|
Chang EH, Rigotti A, Huerta PT. Age-related influence of the HDL receptor SR-BI on synaptic plasticity and cognition. Neurobiol Aging 2009; 30:407-19. [PMID: 17719144 PMCID: PMC2665297 DOI: 10.1016/j.neurobiolaging.2007.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 07/03/2007] [Accepted: 07/13/2007] [Indexed: 01/11/2023]
Abstract
Dysregulated cholesterol metabolism is a major risk factor for atherosclerosis and other late-onset disorders, such as Alzheimer's disease. The scavenger receptor, class B, type I (SR-BI) is critical in maintaining the homeostasis of cholesterol and alpha-tocopherol. SR-BI binds high-density lipoproteins (HDL) and mediates the selective transfer of cholesteryl esters and alpha-tocopherol from circulating HDL to cells. SR-BI is also involved in reverse cholesterol transport from peripheral tissues into the liver. Previous studies using SR-BI genetic knockout mice indicated that the deletion of SR-BI resulted in an accelerated onset of atherosclerosis. We hypothesized that SR-BI-dependent lipid dysregulation might disrupt brain function leading to cognitive impairment. Here, we report that very old SR-BI knockout mice show deficient synaptic plasticity (long-term potentiation) in the CA1 region of the hippocampus. Very old SR-BI KO mice also display selective impairments in recognition memory and spatial memory. Thus, SR-BI influences neural and cognitive processes, a finding that highlights the contribution of cholesterol and alpha-tocopherol homeostasis in proper cognitive function.
Collapse
Affiliation(s)
- Eric H. Chang
- Burke/Cornell Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, White Plains, NY 10605, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Attilio Rigotti
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Patricio T. Huerta
- Burke/Cornell Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, White Plains, NY 10605, USA
| |
Collapse
|
71
|
Allenbach Y, Solly S, Grégoire S, Dubourg O, Salomon B, Butler-Browne G, Musset L, Herson S, Klatzmann D, Benveniste O. Role of regulatory T cells in a new mouse model of experimental autoimmune myositis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:989-98. [PMID: 19218348 DOI: 10.2353/ajpath.2009.080422] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymyositis is a rare and severe inflammatory muscle disorder. Treatments are partially efficacious but have many side effects. New therapeutic approaches must be first tested in a relevant animal model. Regulatory CD4+CD25+ T cells (Tregs) have been rediscovered as a pivotal cell population in the control of autoimmunity, but the connection between polymyositis and Tregs is currently unknown. To develop a reproducible experimental autoimmune myositis model of polymyositis, mice were immunized once a week for 3 weeks with 1 mg of partially purified myosin emulsified in complete Freund's adjuvant. All mice injected with myosin and complete Freund's adjuvant developed myositis. The infiltrates were composed of CD4(+) and CD8(+) cells, as well as macrophages, but did not contain B lymphocytes. In mice that were depleted of Tregs, the myositis was more severe, as determined by quantitative scoring of muscle inflammation (2.36 +/- 0.9 vs. 1.64 +/- 0.8, P = 0.019). In contrast, injection of in vitro expanded polyclonal Tregs at the time of immunization significantly improved the disease (quantitative score of inflammation 0.87 +/- 1.06 vs. 2.4 +/- 0.67, P = 0.047). Transfer of sensitized or CD4(+)-sorted cells from the lymph nodes of experimental autoimmune myositis mice induced myositis in naïve, irradiated, recipient mice. Thus, experimental autoimmune myositis is a reproducible, transferable disease in mice, both aggravated by Treg depletion and improved by polyclonal Treg injection.
Collapse
Affiliation(s)
- Yves Allenbach
- UMR 7087, Université Pierre et Marie Curie, University of Paris 06, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6. Behav Brain Res 2009; 201:59-65. [PMID: 19428617 DOI: 10.1016/j.bbr.2009.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 11/23/2022]
Abstract
The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.
Collapse
|
73
|
Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 2008; 19:385-402. [PMID: 18690100 DOI: 10.1097/fbp.0b013e32830c3658] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last 15 years, genetically modified mice have added important data to our knowledge on psychiatric diseases including anxiety. This has produced many behavioural publications, partially by non-behaviourists, in which differences between mutants and normal wild-type animals were described. The popularity of these novel tools allowing the study of new mechanisms also, however, led to observations that could not be confirmed. This review attempts to summarize various factors that can lead to difficult and partially incorrect interpretation of data collected in anxiety-related paradigms. These pitfalls are explained by using virtual data. Our analysis illustrates that determining anxiety in rodents is more complicated than measuring a single parameter in a particular paradigm. It is important to use proper controls such as additional measures in the same or other procedures, as well as a conservative estimation of the chance of finding an actual effect. In this way, it is possible to enhance confidence in the findings. Alternative explanations for findings, like side effects or main effects in a different domain, such as cognition, should always be taken into account. Finally, several examples from the literature are presented as illustrations of the theoretical issues discussed. We believe that considering the pitfalls presented here will help researchers to design optimized experiments that can be more readily interpreted and replicated across laboratories.
Collapse
|
74
|
Nishimune H, Valdez G, Jarad G, Moulson CL, Müller U, Miner JH, Sanes JR. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J Cell Biol 2008; 182:1201-15. [PMID: 18794334 PMCID: PMC2542479 DOI: 10.1083/jcb.200805095] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/19/2008] [Indexed: 01/11/2023] Open
Abstract
A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the alpha4, alpha5, and beta2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at the NMJ. Topological maturation of AChR clusters was delayed in targeted mutant mice lacking laminin alpha5 and arrested in mutants lacking both alpha4 and alpha5. Analysis of chimeric laminins in vivo and of mutant myotubes cultured aneurally demonstrated that the laminins act directly on muscle cells to promote postsynaptic maturation. Immunohistochemical studies in vivo and in vitro along with analysis of targeted mutants provide evidence that laminin-dependent aggregation of dystroglycan in the postsynaptic membrane is a key step in synaptic maturation. Another synaptically concentrated laminin receptor, Bcam, is dispensable. Together with previous studies implicating laminins as organizers of presynaptic differentiation, these results show that laminins coordinate post- with presynaptic maturation.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience 2008; 157:29-39. [PMID: 18804150 DOI: 10.1016/j.neuroscience.2008.07.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 11/20/2022]
Abstract
Recently evidence has accumulated that schizophrenia can arise from primary synaptic defects involving structural proteins particularly, microtubule associated proteins. Previous experiments have demonstrated that a STOP (stable tubule only peptide) gene deletion in mice leads to a phenotype mimicking some aspects of positive symptoms classically observed in schizophrenic patients. In the current study, we determined if STOP null mice demonstrate behavioral abnormalities related to the social and cognitive impairments of schizophrenia. Compared with wild-type mice, STOP null mice exhibited deficits in the non-aggressive component of social recognition, short term working memory and social and spatial learning. As described in humans, learning deficits in STOP null mice were poorly sensitive to long term treatment with typical neuroleptics. Since social and cognitive dysfunction have consistently been considered as central features of schizophrenia, we propose that STOP null mice may provide a useful model to understand the neurobiological correlates of social and cognitive defects in schizophrenia and to develop treatments that better target these symptoms.
Collapse
|
76
|
Crabbe JC, Cameron AJ, Munn E, Bunning M, Wahlsten D. Overview of mouse assays of ethanol intoxication. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.26. [PMID: 18428672 DOI: 10.1002/0471142301.ns0926s42] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are many behavioral assays to assess sensitivity to ethanol intoxication in mice. Most are simple to implement, and are sensitive to a particular dose range of ethanol. Most reflect genetic influences, and each test appears to reflect the contribution of a relatively distinct collection of genes. This genetic heterogeneity implies that no single test can claim to capture the construct "ethanol intoxication" completely. Depending on the test, and when measurements are made, acute functional tolerance to even a single dose of ethanol must be considered as a contributing factor. Whether or not a test is conducted in naïve mice or as part of a test battery can influence sensitivity, and do so in a strain-dependent manner. This unit reviews existing tests and recommends several.
Collapse
|
77
|
Age-dependent and -independent behavioral deficits in Tg2576 mice. Behav Brain Res 2008; 189:126-38. [DOI: 10.1016/j.bbr.2007.12.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 12/27/2022]
|
78
|
Mathiasen LS, Mirza NR, Rodgers RJ. Strain- and model-dependent effects of chlordiazepoxide, L-838,417 and zolpidem on anxiety-like behaviours in laboratory mice. Pharmacol Biochem Behav 2008; 90:19-36. [PMID: 18321566 DOI: 10.1016/j.pbb.2008.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/10/2008] [Accepted: 01/22/2008] [Indexed: 01/23/2023]
Abstract
The promise of subtype-selective GABA(A) receptor drugs with anxiolytic properties but with a much reduced side-effect burden (compared to benzodiazepines) is an attainable goal. However, its achievement necessitates the availability of in vivo preclinical assays capable of demonstrating differences as well as similarities between subtype-selective agents and non-selective benzodiazepines. In this study, we have compared three mouse strains (NMRI, C57BL/6J and DBA/2) in four models of anxiety-like behaviour (plus-maze, zero-maze, light-dark, and Vogel conflict). Furthermore, in each model, we have contrasted in detail the behavioural responses of each strain to the non-selective benzodiazepine chlordiazepoxide (CDP; 5-20 mg/kg), and the subtype-selective agents L-838,417 (GABA(A)-alpha(2/3/5); 3-30 mg/kg) and zolpidem (GABA(A)-alpha1; 0.3-3.0 mg/kg). The data show a complex mouse strainxmodelxpharmacological agent interaction. Most importantly, not all mouse strainxmodel test systems showed a positive response to CDP or predicted the response to L-838,417. This dissociation between CDP and L-838,417 opens up opportunities for preclinical test systems that differentiate subtype-selective and non-selective GABA(A) receptor agents, an attribute that might well be important in providing the necessary confidence for further drug development. Present findings suggest the need for a much greater focus on defining test systems appropriate for screening novel chemical entities, rather than self-selection of models or genotypes based on responses to known pharmacological agents. For example, if current data with L-838,417 are confirmed with compounds showing similar selectivity profiles, such agents may in future be best identified and characterised using test systems comprising NMRI mice in the zero-maze and/or C57 mice in the Vogel conflict and/or light-dark tests.
Collapse
Affiliation(s)
- L S Mathiasen
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, Leeds University, Leeds LS2 9JT, Leeds, UK
| | | | | |
Collapse
|
79
|
Abstract
A powerful tool to investigative gene function is the ability to create mice with targeted gene mutations. Analysis of the resulting phenotype is sometimes difficult, however, because individual genes have more than one function, and observed effects on complex behaviors are often a result of abnormalities of any of a number of individual processes. One way to address this issue is by examining mice in a battery of behavioral tests to assess the specificity of any observed differences among genotypes. This chapter describes a test battery used to examine metabolic and behavioral phenotypes in mice with mutations in specific glycan-binding proteins and glycosyltransferases genes. Because the potential consequences of these genetic deletions are varied, a large number of assays across a variety of domains was included in the battery. The power and usefulness of this approach is in discovering areas for more detailed investigation.
Collapse
Affiliation(s)
- Jeffrey M Long
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
80
|
Oliver PL, Keays DA, Davies KE. Behavioural characterisation of the robotic mouse mutant. Behav Brain Res 2007; 181:239-47. [PMID: 17532061 DOI: 10.1016/j.bbr.2007.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 04/12/2007] [Accepted: 04/19/2007] [Indexed: 11/19/2022]
Abstract
The ataxic mouse mutant robotic is characterised by progressive adult-onset Purkinje cell loss that occurs in a distinctive region-specific pattern. We report the first behavioural characterisation of this mutant and quantify its performance on tests of motor function, locomotor and exploratory activity over a time course that reflects specific stages of cell loss in the cerebellum. Robotic mutants are significantly impaired on the rotarod and static rod tests of coordination and their performance declined during aging. In addition, gait analysis revealed an increase in the severity of the ataxia displayed by mutants over time. Interestingly, spontaneous alternation testing in a T-maze was not significantly affected in robotic mice, unlike other ataxic mutants with more rapid and extensive cerebellar degeneration; robotic therefore provides an opportunity to investigate the necessity of specific Purkinje cell populations for various behavioural tasks.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
81
|
Chen GH, Wang C, Yangcheng HY, Liu RY, Zhou JN. Age-related changes in anxiety are task-specific in the senescence-accelerated prone mouse 8. Physiol Behav 2007; 91:644-51. [PMID: 17481677 DOI: 10.1016/j.physbeh.2007.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 03/10/2007] [Accepted: 03/26/2007] [Indexed: 11/18/2022]
Abstract
In the senescence-accelerated prone mouse 8 (SAMP8), an excellent model of brain aging, aged individuals have impairments in learning and memory. One study has indicated that the anxiety is also reduced in those mice. However, increased anxiety with aging has been observed in other models, such as C57BL mice and rats. Altered emotion is linked to impairments in learning and memory. Thus, we were interested in further characterizing the pattern of age-related changes in anxiety in this strain. In the present study, a battery of tasks (i.e., elevated plus maze, open field, black-white alley, food neophobia and hole-board) was used to determine the age-related alterations in anxiety in the SAMP8 mice. Three age groups (2, 6, and 10 months of age) of SAMP8 mice and their control SAMR1 (senescence-accelerated resistant mouse 1) mice were used. The results showed that the effect of age was significant only in the elevated plus maze and black-white alley tasks. The SAMP8 showed a tendency toward increased anxiety with age as measured by the time spent on the open arms of elevated plus maze. When the sexes were separated for analysis, the increased anxiety was significant in the old (10-month-old) male SAMP8. In the black-white alley task, however, anxiety levels in the old male SAMP8 mice were lower than those of the middle-aged (6-month-old) mice, but similar to those in the young (2-month-old) mice. These results suggested that the age-related anxiety levels of SAMP8 mice are sex- and task-specific.
Collapse
Affiliation(s)
- Gui-Hai Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | | | | | | | | |
Collapse
|
82
|
Abstract
This protocol details a method for using a T-maze to assess the cognitive ability of rodents. The T-maze is an elevated or enclosed apparatus in the form of a T placed horizontally. Animals are started from the base of the T and allowed to choose one of the goal arms abutting the other end of the stem. If two trials are given in quick succession, on the second trial the rodent tends to choose the arm not visited before, reflecting memory of the first choice. This is called 'spontaneous alternation'. This tendency can be reinforced by making the animal hungry and rewarding it with a preferred food if it alternates. Both spontaneous and rewarded alternation are very sensitive to dysfunction of the hippocampus, but other brain structures are also involved. Each trial should be completed in under 2 min, but the total number of trials required will vary according to statistical and scientific requirements.
Collapse
Affiliation(s)
- Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| | | |
Collapse
|
83
|
Abstract
Virtually all rodents display burrowing behavior, yet measurement of this behavior has not yet been standardized or formalized. Previously, parameters such as the latency to burrow and the complexity of the burrow systems in substrate-filled boxes in the laboratory or naturalistic outdoor environments have been assessed. We describe here a simple protocol that can quantitatively measure burrowing in laboratory rodents, using a simple apparatus that can be placed in the home cage. The test is very cheap to run and requires minimal experimenter training, yet seems sensitive to a variety of treatments, such as the early stages of prion disease in mice, mouse strain differences, lesions of the hippocampus and prefrontal cortex in mice, also effects of lipopolysaccharide and IL-1beta in rats. Other species such as hamsters, gerbils and Egyptian spiny mice also burrow in this apparatus, and with suitable size modification probably almost any burrowing animal could be tested in it. The simplicity, sensitivity and robustness of burrowing make it ideal for assessing genetically modified animals, which in most cases would be mice. The test is run from late afternoon until the next morning, but only two measurements need to be taken.
Collapse
Affiliation(s)
- Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
84
|
Abstract
This protocol details a method to perform appetitively motivated tasks in rodents to test cognitive ability. When testing cognition in animals, the simplest paradigms can potentially yield quick results with minimal investment from the experimenter. Although appetitively motivated tasks are generally learnt more slowly than aversively motivated ones, they may be essential for distinguishing the effects of a treatment on learning from its effects on aversive motivation per se. For example, if a treatment improves learning in both types of paradigm, this is better evidence that it affects cognition rather than sensorimotor processes. Rats and mice easily learn position discriminations in a T-maze, especially if multiple cues, such as different objects and floor textures in the goal arms, are provided. To start, the rodent is placed in the maze and it chooses an arm. This Trial 1, however, is the only one on which this arm will be rewarded. From now on, it must always choose the other arm. The rule is simple: for example, always turn left into the arm with diagonal black stripes on the walls and gravel glued to the floor. High levels of correct responding can be achieved within 20-40 trials. The test may therefore be particularly useful with animals of low cognitive ability, such as transgenic mice derived from some 129 or SJL strains. Once the animals are habituated, each trial should take approximately 1 min. Thus, to test ten animals for 40 trials would take around 7 h.
Collapse
Affiliation(s)
- Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
85
|
Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412-24. [PMID: 17514509 PMCID: PMC1998876 DOI: 10.1007/s00335-007-9014-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/23/2022]
Abstract
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.
Collapse
Affiliation(s)
- Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
86
|
Deacon RMJ, Thomas CL, Rawlins JNP, Morley BJ. A comparison of the behavior of C57BL/6 and C57BL/10 mice. Behav Brain Res 2007; 179:239-47. [PMID: 17339058 DOI: 10.1016/j.bbr.2007.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/09/2007] [Indexed: 11/23/2022]
Abstract
Selection of an appropriate animal model is a crucial first step in many research programs. The C57BL/6 (B6) mouse is the most widely used inbred mouse strain in biomedical research; this is particularly so in behavioral studies. However, there are several C57BL substrains, all derived from common ancestors. C57BL/10 (B10) mice are superficially almost identical to B6 mice in appearance and behavior and widely used in inflammation and immunology research, yet rarely in behavioral studies. The present study assessed the comparability of behavioral results from these two strains, to determine whether they could be used interchangeably in future behavioral experiments. The results showed that the behavior of B6 mice clearly differed from that of B10 mice: in tests of cognition, species-typical behaviors, and motor coordination the B6 strain performed better. Consequently, B6 mice will probably remain the preferred choice for behavioral studies. Interpretation of results derived from the B10 strain should take into account its particular behavioral characteristics.
Collapse
Affiliation(s)
- R M J Deacon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
87
|
Serradj N, Jamon M. Age-related changes in the motricity of the inbred mice strains 129/sv and C57BL/6j. Behav Brain Res 2007; 177:80-9. [PMID: 17126421 DOI: 10.1016/j.bbr.2006.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The development of motor skills was studied at different stages in the life of the mouse, focusing on three key aspects of motor development: early rhythmic motor activities prior to the acquisition of quadruped locomotion, motor skills in young adults, and the effect of aging on motor skills. The age-related development pattern was analysed and compared in two strains of major importance for genomic studies (C57Bl6/j and 129/sv). Early rhythmic air-stepping activities by l-dopa injected mice showed similar overall development in both strains; differences were observed with greater beating frequency and less inter-limb coordination in 129/sv, suggesting that 129/sv had a different maturation process. Performance on the rotarod by young adult C57Bl6/j gradually improved between 1 and 3 months, but then declined with age; performance on the treadmill also declined with an age-related increase in fatigability. Overall performance by 129/sv mice was lower than C57Bl6/j, and the age-related pattern of change was different, with 129/sv having relatively stable performance over time. Inter-strain differences and their possible causes, in particular the role of dopaminergic pathways, are discussed together with repercussions affecting mutant phenotyping procedures.
Collapse
Affiliation(s)
- Najet Serradj
- CNRS, GFCP/P3M, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
88
|
Kalueff AV, Keisala T, Minasyan A, Tuohimaa P. Influence of paternal genotypes on F1 behaviors: Lessons from several mouse strains. Behav Brain Res 2007; 177:45-50. [PMID: 17141884 DOI: 10.1016/j.bbr.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Revised: 10/30/2006] [Accepted: 11/02/2006] [Indexed: 11/21/2022]
Abstract
F1 and F2 mouse hybrids derived from different parental strains are becoming a useful tool in behavioral research, underlining the importance of their in-depth behavioral phenotyping. 129S1/SvImJ (S1), C57BL/6 (B6), NMRI (N) and BALB/c (BC) mice are commonly used in behavioral neuroscience, demonstrating marked behavioral differences. Here, we assess behavioral phenotypes of male mice of S1 and several hybrid strains (S1B6, S1N, S1BC) in a battery of behavioral tests, including the open field, novel odor exposure, novelty-induced grooming, horizontal rod (Suok) and the elevated plus maze tests. In addition, we assessed aggression and social barbering in these strains. Overall, the substantial differences observed here between these strains allow us to determine the influence of different genetic backgrounds on mouse behaviors, and more fully understand how different strain-specific behaviors overlap in the F1 progeny. Our results imply complex interplay between parental genotypes in anxiety, activity, grooming, aggression and barbering of their F1 progeny, further confirming the utility of F1 hybrids in behavioral neurogenetics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland.
| | | | | | | |
Collapse
|
89
|
Abstract
Most animals used in research are rodents, mainly mice because of their predominance in genetics and molecular biology. This article attempts to provide an introduction to mice and rats: health considerations (of the experimenter); choice of species, age, strain and sex; housing and environmental enrichment; and animal identification, handling and dosing. These considerations apply to animal work in general; the rest of the article focuses on the preliminary aspects of behavioral testing, including a protocol for an open field test. This procedure is traditionally associated with activity measurements, and although automated versions are readily available these days, the latter are expensive and may be unavailable in many non-behavioral departments. Moreover, particularly when testing novel genetically modified animals or pharmacological agents, there is no substitute for direct visual observation to detect abnormal signs in the animals: for example, ptosis, piloerection, tremor, ataxia or exophthalmos. The open field test can be adapted in several ways: to assess general behavior and activity (similar to a primary screen in the pharmaceutical industry) or to measure memory (habituation) or anxiety.
Collapse
Affiliation(s)
- Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
90
|
Skallová A, Kodym P, Frynta D, Flegr J. The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology 2006; 133:525-35. [PMID: 16882355 DOI: 10.1017/s0031182006000886] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 11/07/2022]
Abstract
Toxoplasma gondii, a cosmopolitan protozoan parasite, is known to induce behavioural alterations in rodents and may exert an effect on human personality and behaviour. The mechanism of parasite-induced alterations in host behaviour has not been described, but it was hypothesized that development of Toxoplasma tissue cysts in the brain could affect the dopaminergic neuromodulatory system. In this study, we tested the effect of latent Toxoplasma infection on mouse behaviour associated with activity of the dopaminergic system, i.e. locomotion in a novel environment and exploration test. Additionally, we examined the behavioural response of Toxoplasma-infected mice to a selective dopamine uptake inhibitor, GBR 12909. In both genders, Toxoplasma infection decreased locomotion in the open field. Infected females displayed an increased level of exploration in the holeboard test. GBR 12909 induced suppression in holeboard-exploration in the infected males, but had an opposite effect on the controls. These results suggest an association between Toxoplasma gondii infection and changes in the dopaminergic neuromodulatory system.
Collapse
Affiliation(s)
- A Skallová
- Department of Parasitology, Faculty of Science, Charles University, Vinicná 7, Prague 128 44, Czech Republic
| | | | | | | |
Collapse
|
91
|
Rodgers RJ, Augar R, Berryman N, Hansom CJ, O'Mahony ML, Palmer RM, Stevens A, Tallett AJ. Atypical anxiolytic-like response to naloxone in benzodiazepine-resistant 129S2/SvHsd mice: role of opioid receptor subtypes. Psychopharmacology (Berl) 2006; 187:345-55. [PMID: 16802164 DOI: 10.1007/s00213-006-0435-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/26/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Mice of many 129 substrains respond to environmental novelty with behavioural suppression and high levels of anxiety-like behaviour. Although resistant to conventional anxiolytics, this behavioural phenotype may involve stress-induced release of endogenous opioids. OBJECTIVES To assess the effects of opioid receptor blockade on behavioural reactions to novelty stress in a chlordiazepoxide-resistant 129 substrain. MATERIALS AND METHODS Experiment 1 contrasted the effects of the broad-spectrum opioid receptor antagonist naloxone (1.0-10.0 mg/kg) in C57BL/6JOlaHsd and 129S2/SvHsd mice exposed to the elevated plus-maze. Experiments 2-4 examined the responses of 129S2/SvHsd mice to the mu-selective opioid receptor antagonist beta-funaltrexamine (2.5-10.0 mg/kg), the delta-selective antagonist naltrindole (2.5-10.0 mg/kg) and the kappa-selective antagonist nor-binaltorphimine (2.5-5.0 mg/kg). RESULTS 129 mice displayed higher levels of anxiety-like behaviour and lower levels of general exploration relative to their C57 counterparts. Although naloxone failed to alter the behaviour of C57 mice, both doses of this antagonist produced behaviourally selective reductions in open-arm avoidance in 129 mice. Surprisingly, none of the more selective opioid receptor antagonists replicated this effect of naloxone: beta-funaltrexamine was devoid of behavioural activity, naltrindole suppressed rearing (all doses) and increased immobility (10 mg/kg), while nor-binaltorphimine (5 mg/kg) nonspecifically increased percent open arm entries. CONCLUSIONS Recent evidence suggests differential involvement of opioid receptor subtypes in the anxiolytic efficacy of diverse compounds including conventional benzodiazepines. The insensitivity of 129 mice to the anxiolytic action of chlordiazepoxide, coupled with their atypical anxiolytic response to naloxone (but not more selective opioid receptor antagonists), suggests an abnormality in anxiety-related neurocircuitry involving opioid-GABA interactions.
Collapse
Affiliation(s)
- R J Rodgers
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds, LS2 9JT, UK,
| | | | | | | | | | | | | | | |
Collapse
|
92
|
van der Staay FJ. Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. ACTA ACUST UNITED AC 2006; 52:131-59. [PMID: 16529820 DOI: 10.1016/j.brainresrev.2006.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 12/31/2022]
Abstract
In behavioral neurosciences, such as neurobiology and biopsychology, animal models make it possible to investigate brain-behavior relations, with the aim of gaining insight into normal and abnormal human behavior and its underlying neuronal and neuroendocrinological processes. Different types of animal models of behavioral dysfunctions are reviewed in this article. In order to determine the precise criteria that an animal model should fulfill, experts from different fields must define the desired characteristics of that model at the neuropathologic and behavioral level. The list of characteristics depends on the purpose of the model. The phenotype-abnormal behavior or behavioral dysfunctions-has to be translated into testable measures in animal experiments. It is essential to standardize rearing, housing, and testing conditions, and to evaluate the reliability, validity (primarily predictive and construct validity), and biological or clinical relevance of putative animal models of human behavioral dysfunctions. This evaluation, guided by a systematic strategy, is central to the development of a model. The necessity of animal models and the responsible use of animals in research are discussed briefly.
Collapse
Affiliation(s)
- F Josef van der Staay
- Wageningen University and Research Center, Animal Sciences Group, PO Box 65, 8200 AB Lelystad, The Netherlands.
| |
Collapse
|
93
|
Metz AV, Chynoweth J, Allan AM. Influence of genetic background on alcohol drinking and behavioral phenotypes of 5-HT3 receptor over-expressing mice. Pharmacol Biochem Behav 2006; 84:120-7. [PMID: 16765427 DOI: 10.1016/j.pbb.2006.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/13/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Behavioral effects of genetic manipulations are influenced by the background genetics of mouse strains used for the creation of transgenic mice. One strategy to address whether background genes may compromise interpretation of phenotype is the production of congenics. 5-HT3 receptor over-expressing mice have been behaviorally characterized on a B6SJL/F2 background (B6SJL/F2-OE mice), and were found to consume less ethanol failed to develop conditioned place preference to moderate doses of cocaine and demonstrate improved hippocampal-dependent learning. To assess the contribution of parental strain genetics to these behaviors, we bred the transgene onto two well-defined backgrounds that differ in ethanol consumption and contextual fear conditioning, C57Bl/6J (B6) and DBA/2J (D2) strains. The behavioral phenotype of B6SJL/F2-OE was recapitulated in C57Bl/6J-OE mice. However, the effect of transgene over-expression on behavior was only apparent for one aspect of the novelty test using DBA/2J-OE mice. Results underscore the need to consider the genetic environment conferred by strain selection on the effects of genetic manipulation in mice.
Collapse
Affiliation(s)
- Amber V Metz
- University of New Mexico, School of Medicine, Department of Neurosciences, Albuquerque NM 87131, USA
| | | | | |
Collapse
|
94
|
Deacon RMJ, Brook RC, Meyer D, Haeckel O, Ashcroft FM, Miki T, Seino S, Liss B. Behavioral phenotyping of mice lacking the K ATP channel subunit Kir6.2. Physiol Behav 2006; 87:723-33. [PMID: 16530794 DOI: 10.1016/j.physbeh.2006.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 12/19/2005] [Accepted: 01/19/2006] [Indexed: 01/27/2023]
Abstract
ATP-sensitive potassium (K(ATP)) channels are expressed in various tissues and cell-types where they act as so-called metabolic sensors that couple metabolic state to cellular excitability. The pore of most K(ATP) channel types is built by Kir6.2 subunits. Analysis of a general Kir6.2 knockout (KO) mouse has identified a variety of different functional roles for central and peripheral K(ATP) channels in situations of metabolic demand. However, the widespread distribution of these channels suggests that they might influence cellular physiology and animal behavior under metabolic control conditions. As a comprehensive behavioral description of Kir6.2 KO mice under physiological control conditions has not yet been carried out, we subjected Kir6.2 KO and corresponding wild-type (WT) mice to a test battery to assess emotional behavior, motor activity and coordination, species-typical behaviors and cognition. The results indicated that in these test situations Kir6.2 KO mice were less active, had impaired motor coordination, and appeared to differ from controls in their emotional reactivity. Differences between KO and WT mice were generally attenuated in test situations that resembled the home cage environment. Moreover, in their home cages KO mice were more active than WT mice. Thus, our results suggest that loss of Kir6.2-containing K(ATP) channels does affect animal behavior under metabolic control conditions, especially in novel situations. These findings assign novel functional roles to K(ATP) channels beyond those previously described. However, according to the widespread expression of K(ATP) channels, these effects are complex, being dependent on details of test apparatus, procedure and prior experience.
Collapse
Affiliation(s)
- R M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
van Bogaert MJV, Groenink L, Oosting RS, Westphal KGC, van der Gugten J, Olivier B. Mouse strain differences in autonomic responses to stress. GENES BRAIN AND BEHAVIOR 2006; 5:139-49. [PMID: 16507005 DOI: 10.1111/j.1601-183x.2005.00143.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In humans, anxiety disorders are often accompanied by an overactive autonomic nervous system, reflected in increased body temperature (BT) and heart rate (HR). In rodents, comparable effects are found after exposure to stress. These autonomic parameters can give important information on stress and anxiety responses in mice. In the present experiments, stress reactivity of three frequently used mouse strains [129 Sv/Ev, Swiss Webster (SW) and C57 BL/6] was assessed using their autonomic stress responses. BT, HR and activity were telemetrically measured. Undisturbed circadian rhythms already showed clear differences between the mouse strains. Hereafter, autonomic responses to stressors with increasing intensity were measured. Strain differences were found in magnitude and duration of the stress responses, especially after high-intensity stressors. Generally, C57BL/6 mice showed the largest autonomic response, SW the lowest and the 129Sv/Ev the intermediate response. Interestingly, the observed ranking in autonomic stress response does not match the behavioral stress responsivity of these strains. Finally, sensitivity to the anxiolytic diazepam (0, 1, 2, 4 and 8 mg/kg) was tested using the stress-induced hyperthermia paradigm. Pharmacological sensitivity to diazepam differed between the strains with the 129Sv/Ev being most sensitive. These studies show that simultaneous measurement of behavioral and autonomic parameters under stressful conditions contributes considerably to a better interpretation of anxiety and stress levels in mice.
Collapse
Affiliation(s)
- M J V van Bogaert
- Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Behavioural Genomics Section, Rudolf Magnus Institute of Neuroscience, the Netherlands.
| | | | | | | | | | | |
Collapse
|
96
|
Raud S, Innos J, Abramov U, Reimets A, Kõks S, Soosaar A, Matsui T, Vasar E. Targeted invalidation of CCK2 receptor gene induces anxiolytic-like action in light-dark exploration, but not in fear conditioning test. Psychopharmacology (Berl) 2005; 181:347-57. [PMID: 15830228 DOI: 10.1007/s00213-005-2255-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Evidence suggests that gamma-aminobutyric acid (GABA) and cholecystokinin (CCK) have opposite roles in the regulation of anxiety. OBJECTIVES The aim of our work was to study the behaviour of CCK(2) receptor deficient mice in light-dark exploration and fear conditioning tests. Moreover, the action of diazepam and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), having the opposite effect on GABA(A) receptors, was evaluated on the exploratory behaviour in these mice. Expression levels of GABA(A) receptor subunit genes were also measured. METHODS Light-dark exploration and fear conditioning tests were used to determine changes in anxiety of mice. The action of diazepam (0.5-2 mg/kg i.p.) and DMCM (0.25-1 mg/kg i.p.) was studied in the light-dark box. The effect of DMCM was also evaluated in the motor activity test to demonstrate that its anti-exploratory action was not related to motor suppression. Expression levels of GABA(A) receptor subunit genes were determined by means of real-time polymerase chain reaction (qRT-PCR). RESULTS Female mice lacking CCK(2) receptors displayed increased exploratory activity in the light-dark box compared to their wild-type (+/+) littermates. Locomotor activity in the motility boxes and the intensity of freezing did not differ in wild-type (+/+) and homozygous (-/-) mice. Treatment with diazepam (0.5 mg/kg) increased the number of transitions in wild-type (+/+) animals, whereas in homozygous (-/-) mice diazepam (0.5-2 mg/kg) reduced exploratory activity. Administration of DMCM (0.25-1 mg/kg) induced an anxiogenic-like effect in homozygous (-/-) mice, but did not change their locomotor activity. Gene expression analysis established a 1.6-fold increase in the expression of the alpha2 subunit of GABA(A) receptors in the frontal cortex of homozygous (-/-) mice. CONCLUSION Genetic invalidation of CCK(2) receptors induced an anxiolytic-like action in exploratory, but not in conditioned models of anxiety. The observed reduction in anxiety in homozygous (-/-) mice is probably related to an increased function of GABAergic system in the brain.
Collapse
Affiliation(s)
- Sirli Raud
- Department of Physiology, Biomedicum, University of Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Bearzatto B, Servais L, Cheron G, Schiffmann SN. Age dependence of strain determinant on mice motor coordination. Brain Res 2005; 1039:37-42. [PMID: 15781044 DOI: 10.1016/j.brainres.2005.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/11/2005] [Accepted: 01/12/2005] [Indexed: 11/21/2022]
Abstract
Evaluation of motor coordination and motor learning in mice remains a challenge as many factors may interact with the different tests used. Among these factors, genetic background has been reported to be a major determinant of mice performances in motor coordination tests. However, it is not known if the strain dependence of motor coordination and motor learning remains constant through life. In order to assess this point, we tested during 5 days male and female mice of three different strains (NMRI, C57BL/6J, and C57BL/6J x 129OlaHsd) in runway, rotarod, and thin rod tests at juvenile (first day of testing = postnatal day 19) and adult (3 months) age. We found a strong strain effect on motor performances and motor learning at juvenile age (C57BL/6J performing more poorly than the two other strains), whatever the tests used. Interestingly, the C57BL/6J mice were the best performing mice at the adult age. These strain rankings were observed either in male and female groups. These results demonstrate that the strain determinant on mice performances and motor learning is highly age dependent.
Collapse
Affiliation(s)
- Bertrand Bearzatto
- Laboratory Neurophysiology CP601, Université Libre de Bruxelles, route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|
98
|
Kalueff AV, Tuohimaa P. Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Res 2005; 1028:75-82. [PMID: 15518644 DOI: 10.1016/j.brainres.2004.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 11/23/2022]
Abstract
Since C57 and 129 mice are the commonly used background strains, a better knowledge of all their behavioural characteristics is important in neuroscience research. Grooming is a complex and essential ritual in the rodent behavioural repertoire, normally proceeding in a cephalocaudal progression (paws-nose-face-body-legs-tail and genitals). Various stressors as well as genetic manipulations have been reported to alter mouse grooming and its patterning, underlying the importance of analysis of grooming behaviours in detail. Although strain differences between C57BL/6 and 129S1/SvImJ substrains have been assessed in many studies, no ethological analyses of their grooming have been performed. Here we show strain differences between these mice in spontaneous (novelty-induced) and artificial (water-induced) grooming. Overall, 129S1/SvImJ mice demonstrated less grooming activity, more interrupted and incomplete bouts, and more incorrect transitions (contrary to the cephalocaudal rule) between patterns, accompanied by lower vertical activity and higher defecation/urination in both tests. These results are consistent with general hypoactive anxious phenotype in 129S1/SvImJ mice and suggest that ethological analysis of mouse grooming may be used in neurobehavioural stress research, including behavioural phenotyping of both mutant and background mice.
Collapse
Affiliation(s)
- Allan V Kalueff
- Department of Anatomy, Medical School, University of Tampere, Tampere 33014, Finland.
| | | |
Collapse
|
99
|
Fee JR, Sparta DR, Knapp DJ, Breese GR, Picker MJ, Thiele TE. Predictors of high ethanol consumption in RIIbeta knock-out mice: assessment of anxiety and ethanol-induced sedation. Alcohol Clin Exp Res 2005; 28:1459-68. [PMID: 15597077 PMCID: PMC1360241 DOI: 10.1097/01.alc.0000141809.53115.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genetic and pharmacological evidence suggests that the cyclic adenosine monophosphate-dependent protein kinase A pathway modulates neurobiological responses to ethanol. Mutant mice lacking the RIIbeta subunit of protein kinase A (RIIbeta(-/-)) are resistant to ethanol-induced sedation and drink significantly more ethanol than littermate wild-type mice (RIIbeta(+/+)). We determined whether high ethanol intake by the RIIbeta(-/-) mice on alternate genetic backgrounds is reliably predicted by high basal levels of anxiety or resistance to the sedative effects of ethanol. METHODS Two-bottle choice procedures and a battery of behavioral tests (elevated plus maze, open-field activity, and zero maze) were used to assess voluntary ethanol consumption and basal levels of anxiety in RIIbeta(-/-) and RIIbeta(+/+) mice on either a C57BL/6J or a 129/SvEv x C57BL/6J genetic background. Additionally, ethanol-induced sedation and blood ethanol levels were determined in RIIbeta(-/-) and RIIbeta(+/+) mice after intraperitoneal injection of ethanol (3.8 g/kg). RESULTS RIIbeta(-/-) mice on both genetic backgrounds consumed more ethanol and had a greater preference for ethanol relative to RIIbeta(+/+) mice. However, RIIbeta(-/-) mice showed reduced basal levels of anxiety when maintained on the C57BL/6J background but showed increased anxiety when maintained on the 129/SvEv x C57BL/6J background. Consistent with prior research, RIIbeta(-/-) mice were resistant to the sedative effects of ethanol, regardless of the genetic background. Finally, RIIbeta(-/-) and RIIbeta(+/+) mice showed similar blood ethanol levels. CONCLUSIONS These results indicate that high ethanol consumption is associated with resistance to the sedative effects of ethanol but that basal levels of anxiety, as well as ethanol metabolism, do not reliably predict high ethanol drinking by RIIbeta(-/-) mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Todd E. Thiele
- Reprint requests: Todd E. Thiele, PhD, Department of Psychology, University of North Carolina, Davie Hall, CB# 3270, Chapel Hill, NC 27599-3270; Fax: 919-962-2537; E-mail:
| |
Collapse
|
100
|
Weitzdoerfer R, Hoeger H, Engidawork E, Engelmann M, Singewald N, Lubec G, Lubec B. Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide 2005; 10:130-40. [PMID: 15158692 DOI: 10.1016/j.niox.2004.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/25/2004] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) plays a role in a series of neurobiological functions, underlying behavior and memory. The functional role of nNOS derived NO in cognitive functions, however, is elusive. We decided to study cognitive functions in the Morris water maze (MWM) and the multiple T-maze (MTM) in 3-month-old male nNOS-knock-out mice (nNOS KO). To study the influence of neurology and behavior, we performed tests in an observational battery, the rota-rod, the elevated plus maze (EPM), the open field (OF), and a social interaction test. In the memory and relearning task of the MWM, most nNOS KO failed whereas performing better in the MTM. nNOS KO displayed significantly increased frequency of grooming, center crossings, and entries into the center in the OF. The observational battery revealed significantly increased scores for touch-escape reaction, body position, locomotion, and pelvic- and tail-elevation together with reduced vocalization. In the EPM, the time spent in the closed arm and the grooming frequency were significantly increased whereas urination was absent. We conclude that nNOS KO show impaired spatial performance in the MWM and herewith confirm the role of nNOS in cognitive functions such as processing, maintenance, and recall of memory. It must be taken into account that the major behavioral findings of increased grooming and anxiety-related behaviors may have led to impaired function in the MWM. The fact that nNOS KO performed well in the MTM, reflecting a low stress situation points to the interpretation that nNOS inhibition affects cognitive functions under stressful conditions (MWM) only.
Collapse
|