51
|
Cardoza E, Singh H. Involvement of CspC in response to diverse environmental stressors in Escherichia coli. J Appl Microbiol 2021; 132:785-801. [PMID: 34260797 DOI: 10.1111/jam.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
The ability of Escherichia coli surviving a cold shock lies mainly with the induction of a few Csps termed as 'Major cold shock proteins'. Regardless of high sequence similarity among the nine homologous members, CspC appears to be functionally diverse in conferring the cell adaptability to various stresses based on fundamental properties of the protein including nucleic acid binding, nucleic acid melting and regulatory activity. Spanning three different stress regulons of acid, oxidative and heat, CspC regulates gene expression and transcript stability of stress proteins and bestows upon the cell tolerance to lethal-inducing agents ultimately helping it adapt to severe environmental assaults. While its exact role in cellular physiology is still to be detailed, understanding the transcriptional and translational control will likely provide insights into the mechanistic role of CspC under stress conditions. To this end, we review the knowledge on stress protein regulation by CspC and highlight its activity in response to stressors thereby elucidating its role as a major Csp player in response to one too many environmental triggers. The knowledge presented here could see various downstream applications in engineering microbes for industrial, agricultural and research applications in order to achieve high product efficiency and to aid bacteria cope with environmentally harsh conditions.
Collapse
Affiliation(s)
- Evieann Cardoza
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
52
|
Vertti-Quintero N, Berger S, Casadevall I Solvas X, Statzer C, Annis J, Ruppen P, Stavrakis S, Ewald CY, Gunawan R, deMello AJ. Stochastic and Age-Dependent Proteostasis Decline Underlies Heterogeneity in Heat-Shock Response Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102145. [PMID: 34196492 DOI: 10.1002/smll.202102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Significant non-genetic stochastic factors affect aging, causing lifespan differences among individuals, even those sharing the same genetic and environmental background. In Caenorhabditis elegans, differences in heat-shock response (HSR) are predictive of lifespan. However, factors contributing to the heterogeneity of HSR are still not fully elucidated. Here, the authors characterized HSR dynamics in isogenic C. elegans expressing GFP reporter for hsp-16.2 for identifying the key contributors of HSR heterogeneity. Specifically, microfluidic devices that enable cross-sectional and longitudinal measurements of HSR dynamics in C. elegans at different scales are developed: in populations, within individuals, and in embryos. The authors adapted a mathematical model of HSR to single C. elegans and identified model parameters associated with proteostasis-maintenance of protein homeostasis-more specifically, protein turnover, as the major drivers of heterogeneity in HSR dynamics. It is verified that individuals with enhanced proteostasis fidelity in early adulthood live longer. The model-based comparative analysis of protein turnover in day-1 and day-2 adult C. elegans revealed a stochastic-onset of age-related proteostasis decline that increases the heterogeneity of HSR capacity. Finally, the analysis of C. elegans embryos showed higher HSR and proteostasis capacity than young adults and established transgenerational contribution to HSR heterogeneity that depends on maternal age.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Biosystems, KU Leuven, Leuven, B-3001, Belgium
| | - Cyril Statzer
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Jillian Annis
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Peter Ruppen
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Collin Y Ewald
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Rudiyanto Gunawan
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
53
|
Zhao L, Castanié-Cornet MP, Kumar S, Genevaux P, Hayer-Hartl M, Hartl FU. Bacterial RF3 senses chaperone function in co-translational folding. Mol Cell 2021; 81:2914-2928.e7. [PMID: 34107307 DOI: 10.1016/j.molcel.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/05/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Sneha Kumar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
54
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
55
|
The Mode of Action of Cyclic Monoterpenes (-)-Limoneneand (+)-α-Pinene on Bacterial Cells. Biomolecules 2021; 11:biom11060806. [PMID: 34072355 PMCID: PMC8227088 DOI: 10.3390/biom11060806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023] Open
Abstract
A broad spectrum of volatile organic compounds’ (VOCs’) biological activities has attracted significant scientific interest, but their mechanisms of action remain little understood. The mechanism of action of two VOCs—the cyclic monoterpenes (−)-limonene and (+)-α-pinene—on bacteria was studied in this work. We used genetically engineered Escherichia coli bioluminescent strains harboring stress-responsive promoters (responsive to oxidative stress, DNA damage, SOS response, protein damage, heatshock, membrane damage) fused to the luxCDABE genes of Photorhabdus luminescens. We showed that (−)-limonene induces the PkatG and PsoxS promoters due to the formation of reactive oxygen species and, as a result, causes damage to DNA (SOSresponse), proteins (heat shock), and membrane (increases its permeability). The experimental data indicate that the action of (−)-limonene at high concentrations and prolonged incubation time makes degrading processes in cells irreversible. The effect of (+)-α-pinene is much weaker: it induces only heat shock in the bacteria. Moreover, we showed for the first time that (−)-limonene completely inhibits the DnaKJE–ClpB bichaperone-dependent refolding of heat-inactivated bacterial luciferase in both E. coli wild type and mutant ΔibpB strains. (+)-α-Pinene partially inhibits refolding only in ΔibpB mutant strain.
Collapse
|
56
|
Restrepo-Pineda S, Pérez NO, Valdez-Cruz NA, Trujillo-Roldán MA. Thermoinducible expression system for producing recombinant proteins in Escherichia coli: advances and insights. FEMS Microbiol Rev 2021; 45:6223457. [PMID: 33844837 DOI: 10.1093/femsre/fuab023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recombinant protein (RP) production from Escherichia coli has been extensively studied to find strategies for increasing product yields. The thermoinducible expression system is commonly employed at the industrial level to produce various RPs which avoids the addition of chemical inducers, thus minimizing contamination risks. Multiple aspects of the molecular origin and biotechnological uses of its regulatory elements (pL/pR promoters and cI857 thermolabile repressor) derived from bacteriophage λ provide knowledge to improve the bioprocesses using this system. Here, we discuss the main aspects of the potential use of the λpL/pR-cI857 thermoinducible system for RP production in E. coli, focusing on the approaches of investigations that have contributed to the advancement of this expression system. Metabolic and physiological changes that occur in the host cells caused by heat stress and by RP overproduction are also described. Therefore, the current scenario and the future applications of systems that use heat to induce RP production is discussed to understand the relationship between the activation of the bacterial heat shock response, RP accumulation, and its possible aggregation to form inclusion bodies.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Néstor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo-Zumpahuacan SN, 52400 Tenancingo, Estado de México, México
| | - Norma A Valdez-Cruz
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
57
|
Deter HS, Hossain T, Butzin NC. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci Rep 2021; 11:6112. [PMID: 33731833 PMCID: PMC7969968 DOI: 10.1038/s41598-021-85509-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined how E. coli transcriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems.
Collapse
Affiliation(s)
- Heather S Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
58
|
Mairet F, Gouzé JL, de Jong H. Optimal proteome allocation and the temperature dependence of microbial growth laws. NPJ Syst Biol Appl 2021; 7:14. [PMID: 33686098 PMCID: PMC7940435 DOI: 10.1038/s41540-021-00172-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/15/2021] [Indexed: 11/14/2022] Open
Abstract
Although the effect of temperature on microbial growth has been widely studied, the role of proteome allocation in bringing about temperature-induced changes remains elusive. To tackle this problem, we propose a coarse-grained model of microbial growth, including the processes of temperature-sensitive protein unfolding and chaperone-assisted (re)folding. We determine the proteome sector allocation that maximizes balanced growth rate as a function of nutrient limitation and temperature. Calibrated with quantitative proteomic data for Escherichia coli, the model allows us to clarify general principles of temperature-dependent proteome allocation and formulate generalized growth laws. The same activation energy for metabolic enzymes and ribosomes leads to an Arrhenius increase in growth rate at constant proteome composition over a large range of temperatures, whereas at extreme temperatures resources are diverted away from growth to chaperone-mediated stress responses. Our approach points at risks and possible remedies for the use of ribosome content to characterize complex ecosystems with temperature variation.
Collapse
Affiliation(s)
- Francis Mairet
- Ifremer, Physiology and Biotechnology of Algae laboratory, Nantes, France.
| | - Jean-Luc Gouzé
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France
| | | |
Collapse
|
59
|
Yeom J, Groisman EA. Reduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state. Sci Signal 2021; 14:14/667/eabc4235. [PMID: 33500334 DOI: 10.1126/scisignal.abc4235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When cells run out of nutrients, the growth rate greatly decreases. Here, we report that microorganisms, such as the bacterium Salmonella enterica serovar Typhimurium, speed up the return to a rapid growth state by preventing the proteolysis of functional proteins by ATP-dependent proteases while in the slow-growth state or stationary phase. This reduction in functional protein degradation resulted from a decrease in the intracellular concentration of ATP that was nonetheless sufficient to allow the continued degradation of nonfunctional proteins by the same proteases. Protein preservation occurred under limiting magnesium, carbon, or nitrogen conditions, indicating that this response was not specific to low availability of a particular nutrient. Nevertheless, the return to rapid growth required proteins that mediate responses to the specific nutrient limitation conditions, because the transcriptional regulator PhoP was necessary for rapid recovery only after magnesium starvation. Reductions in intracellular ATP and in ATP-dependent proteolysis also enabled the yeast Saccharomyces cerevisiae to recover faster from stationary phase. Our findings suggest that protein preservation during a slow-growth state is a conserved microbial strategy that facilitates the return to a growth state once nutrients become available.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
60
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
61
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
62
|
Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, Mehrbod P, Ashrafizadeh M, Zarrabi A, McAlinden KD, Eapen MS, Sohal SS, Sharma P, Zeki AA, Ghavami S. The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life (Basel) 2020; 11:1. [PMID: 33374938 PMCID: PMC7821926 DOI: 10.3390/life11010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Medical Physics Department, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Pawan Sharma
- Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Davis School of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, UC Davis Lung Center, University of California, Davis, CA 95616, USA;
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
63
|
Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G. Microbial single-cell RNA sequencing by split-pool barcoding. Science 2020; 371:science.aba5257. [PMID: 33335020 DOI: 10.1126/science.aba5257] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.
Collapse
Affiliation(s)
- Anna Kuchina
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Leandra M Brettner
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Luana Paleologu
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Alberto Carignano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Kibler
- Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Matthew Hirano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - R William DePaolo
- Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA. .,Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
64
|
Degradation of Lon in Caulobacter crescentus. J Bacteriol 2020; 203:JB.00344-20. [PMID: 33020222 DOI: 10.1128/jb.00344-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Protein degradation is an essential process in all organisms. This process is irreversible and energetically costly; therefore, protein destruction must be tightly controlled. While environmental stresses often lead to upregulation of proteases at the transcriptional level, little is known about posttranslational control of these critical machines. In this study, we show that in Caulobacter crescentus levels of the Lon protease are controlled through proteolysis. Lon turnover requires active Lon and ClpAP proteases. We show that specific determinants dictate Lon stability with a key carboxy-terminal histidine residue driving recognition. Expression of stabilized Lon variants results in toxic levels of protease that deplete normal Lon substrates, such as the replication initiator DnaA, to lethally low levels. Taken together, results of this work demonstrate a feedback mechanism in which ClpAP and Lon collaborate to tune Lon proteolytic capacity for the cell.IMPORTANCE Proteases are essential, but unrestrained activity can also kill cells by degrading essential proteins. The quality-control protease Lon must degrade many misfolded and native substrates. We show that Lon is itself controlled through proteolysis and that bypassing this control results in toxic consequences for the cell.
Collapse
|
65
|
Harpaz D, Marks RS, Kushmaro A, Eltzov E. Environmental pollutants induce noninherited antibiotic resistance to polymyxin B in Escherichia coli. Future Microbiol 2020; 15:1631-1643. [PMID: 33251814 DOI: 10.2217/fmb-2020-0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The mechanisms behind antibiotic resistance by bacteria are important to create alternative molecules. Objective: This study focuses on the impact of environmental pollutants on bacterial resistance to antibiotics. Materials & methods: The effect of various environmental pollutants on noninherited bacterial resistance to antibiotics was examined. Results: The tolerance to the polymyxin-B antibiotic was shown to be conferred to Escherichia coli, by pretreatment with subinhibitory concentrations of environmental toxicants. The cell survival to a sublethal dosage of antibiotics was tested. Exposure to low concentrations of toxic compounds (500 ppb copper, 2% [v/v] ethanol or 0.5 μg/ml trimethoprim) stimulated the bacterial heat shock systems and led to increased tolerance to polymyxin B. Conclusion: Environmental pollutants induce a temporary bacterial noninheritable resistance to antibiotic.
Collapse
Affiliation(s)
- Dorin Harpaz
- Institute of Biochemistry, Food science & Nutrition, Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.,Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Robert S Marks
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,The Ilse Katz Center for Meso & Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ariel Kushmaro
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,The Ilse Katz Center for Meso & Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
66
|
Kim S, Kim Y, Suh DH, Lee CH, Yoo SM, Lee SY, Yoon SH. Heat-responsive and time-resolved transcriptome and metabolome analyses of Escherichia coli uncover thermo-tolerant mechanisms. Sci Rep 2020; 10:17715. [PMID: 33077799 PMCID: PMC7572479 DOI: 10.1038/s41598-020-74606-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022] Open
Abstract
Current understanding of heat shock response has been complicated by the fact that heat stress is inevitably accompanied by changes in specific growth rates and growth stages. In this study, a chemostat culture was successfully performed to avoid the physico-chemical and biological changes that accompany heatshock, which provided a unique opportunity to investigate the full range of cellular responses to thermal stress, ranging from temporary adjustment to phenotypic adaptation at multi-omics levels. Heat-responsive and time-resolved changes in the transcriptome and metabolome of a widely used E. coli strain BL21(DE3) were explored in which the temperature was upshifted from 37 to 42 °C. Omics profiles were categorized into early (2 and 10 min), middle (0.5, 1, and 2 h), and late (4, 8, and 40 h) stages of heat stress, each of which reflected the initiation, adaptation, and phenotypic plasticity steps of the stress response. The continued heat stress modulated global gene expression by controlling the expression levels of sigma factors in different time frames, including unexpected downregulation of the second heatshock sigma factor gene (rpoE) upon the heat stress. Trehalose, cadaverine, and enterobactin showed increased production to deal with the heat-induced oxidative stress. Genes highly expressed at the late stage were experimentally validated to provide thermotolerance. Intriguingly, a cryptic capsular gene cluster showed considerably high expression level only at the late stage, and its expression was essential for cell growth at high temperature. Granule-forming and elongated cells were observed at the late stage, which was morphological plasticity occurred as a result of acclimation to the continued heat stress. Whole process of thermal adaptation along with the genetic and metabolic changes at fine temporal resolution will contribute to far-reaching comprehension of the heat shock response. Further, the identified thermotolerant genes will be useful to rationally engineer thermotolerant microorganisms.
Collapse
Affiliation(s)
- Sinyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
67
|
Ireland WT, Beeler SM, Flores-Bautista E, McCarty NS, Röschinger T, Belliveau NM, Sweredoski MJ, Moradian A, Kinney JB, Phillips R. Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time. eLife 2020; 9:e55308. [PMID: 32955440 PMCID: PMC7567609 DOI: 10.7554/elife.55308] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Advances in DNA sequencing have revolutionized our ability to read genomes. However, even in the most well-studied of organisms, the bacterium Escherichia coli, for ≈65% of promoters we remain ignorant of their regulation. Until we crack this regulatory Rosetta Stone, efforts to read and write genomes will remain haphazard. We introduce a new method, Reg-Seq, that links massively parallel reporter assays with mass spectrometry to produce a base pair resolution dissection of more than a E. coli promoters in 12 growth conditions. We demonstrate that the method recapitulates known regulatory information. Then, we examine regulatory architectures for more than 80 promoters which previously had no known regulatory information. In many cases, we also identify which transcription factors mediate their regulation. This method clears a path for highly multiplexed investigations of the regulatory genome of model organisms, with the potential of moving to an array of microbes of ecological and medical relevance.
Collapse
Affiliation(s)
- William T Ireland
- Department of Physics, California Institute of TechnologyPasadenaUnited States
| | - Suzannah M Beeler
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Emanuel Flores-Bautista
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Nicholas S McCarty
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Tom Röschinger
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Nathan M Belliveau
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of TechnologyPasadenaUnited States
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of TechnologyPasadenaUnited States
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Rob Phillips
- Department of Physics, California Institute of TechnologyPasadenaUnited States
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
68
|
Yang J, Kim HE, Jung YH, Kim J, Kim DH, Walmsley AR, Kim KH. Zmo0994, a novel LEA-like protein from Zymomonas mobilis, increases multi-abiotic stress tolerance in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:151. [PMID: 32863881 PMCID: PMC7448490 DOI: 10.1186/s13068-020-01790-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pretreatment processes and subsequent enzymatic hydrolysis are prerequisites to utilize lignocellulosic sugar for fermentation. However, the resulting hydrolysate frequently hinders fermentation processes due to the presence of inhibitors and toxic products (e.g., ethanol). Thus, it is crucial to develop robust microbes conferring multi-stress tolerance. RESULTS Zmo0994, a functionally uncharacterized protein from Zymomonas mobilis, was identified and characterized for the first time. A major effect of Zmo0994 was a significant enhancement in the tolerance to abiotic stresses such as ethanol, furfural, 5'-hydroxymethylfurfural and high temperature, when expressed in Escherichia coli. Through transcriptome analysis and in vivo experiments, the cellular mechanism of this protein was revealed as due to its ability to trigger genes, involved in aerobic respiration for ATP synthesis. CONCLUSIONS These findings have significant implications that might lead to the development of robust microbes for the highly efficient industrial fermentation processes.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Eun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Adrian R. Walmsley
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
69
|
Effects of Genetic and Physiological Divergence on the Evolution of a Sulfate-Reducing Bacterium under Conditions of Elevated Temperature. mBio 2020; 11:mBio.00569-20. [PMID: 32817099 PMCID: PMC7439460 DOI: 10.1128/mbio.00569-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Improving our understanding of how previous adaptation influences evolution has been a long-standing goal in evolutionary biology. Natural selection tends to drive populations to find similar adaptive solutions for the same selective conditions. However, variations in historical environments can lead to both physiological and genetic divergence that can make evolution unpredictable. Here, we assessed the influence of divergence on the evolution of a model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough, in response to elevated temperature and found a significant effect at the genetic but not the phenotypic level. Understanding how these influences drive evolution will allow us to better predict how bacteria will adapt to various ecological constraints. Adaptation via natural selection is an important driver of evolution, and repeatable adaptations of replicate populations, under conditions of a constant environment, have been extensively reported. However, isolated groups of populations in nature tend to harbor both genetic and physiological divergence due to multiple selective pressures that they have encountered. How this divergence affects adaptation of these populations to a new common environment remains unclear. To determine the impact of prior genetic and physiological divergence in shaping adaptive evolution to accommodate a new common environment, an experimental evolution study with the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) was conducted. Two groups of replicate populations with genetic and physiological divergence, derived from a previous evolution study, were propagated in an elevated-temperature environment for 1,000 generations. Ancestor populations without prior experimental evolution were also propagated in the same environment as a control. After 1,000 generations, all the populations had increased growth rates and all but one had greater fitness in the new environment than the ancestor population. Moreover, improvements in growth rate were moderately affected by the divergence in the starting populations, while changes in fitness were not significantly affected. The mutations acquired at the gene level in each group of populations were quite different, indicating that the observed phenotypic changes were achieved by evolutionary responses that differed between the groups. Overall, our work demonstrated that the initial differences in fitness between the starting populations were eliminated by adaptation and that phenotypic convergence was achieved by acquisition of mutations in different genes.
Collapse
|
70
|
The Lon Protease Links Nucleotide Metabolism with Proteotoxic Stress. Mol Cell 2020; 79:758-767.e6. [PMID: 32755596 DOI: 10.1016/j.molcel.2020.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.
Collapse
|
71
|
Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system. MOLECULAR PLANT PATHOLOGY 2020; 21:1042-1054. [PMID: 32608174 PMCID: PMC7368122 DOI: 10.1111/mpp.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
The pathogenesis of the rice pathogenic bacterium Burkholderia glumae is under the tight regulation of the tofI/tofR quorum-sensing (QS) system. tepR, encoding a group I bacterial enhancer-binding protein, negatively regulates the production of toxoflavin, the phytotoxin acting as a major virulence factor in B. glumae. In this study, through a transcriptomic analysis, we identified the genes that were modulated by tepR and/or the tofI/tofR QS system. More than half of the differentially expressed genes, including the genes for the biosynthesis and transport of toxoflavin, were significantly more highly expressed in the ΔtepR mutant but less expressed in the ΔtofI-tofR (tofI/tofR QS-defective) mutant. In consonance with the transcriptome data, other virulence-related functions of B. glumae, extracellular protease activity and flagellum-dependent motility, were also negatively regulated by tepR, and this negative regulatory function of tepR was dependent on the IclR-type transcriptional regulator gene qsmR. Likewise, the ΔtepR mutant exhibited a higher level of heat tolerance in congruence with the higher transcription levels of heat shock protein genes in the mutant. Interestingly, tepR also exhibited its positive regulatory function on a previously uncharacterized type VI secretion system (denoted as BgT6SS-1). The survival of the both ΔtepR and ΔtssD (BgT6SS-1-defective) mutants was significantly compromised compared to the wild-type parent strain 336gr-1 in the presence of the natural rice-inhabiting bacterium, Pantoea sp. RSPAM1. Taken together, this study revealed pivotal regulatory roles of tepR in orchestrating multiple biological functions of B. glumae, including pathogenesis, heat tolerance, and bacterial interspecies competition.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Tiago Lelis
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Tropical Research and Education CenterInstitute of Food and Agriculture SciencesUniversity of FloridaHomesteadFLUSA
| | - Ruoxi Chen
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
1501 Capitol AvenueSacramentoCA95814USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Surendra Osti
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Agricultural Economics and AgribusinessLouisiana State UniversityBaton RougeLA70803USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
72
|
Interactions between DksA and Stress-Responsive Alternative Sigma Factors Control Inorganic Polyphosphate Accumulation in Escherichia coli. J Bacteriol 2020; 202:JB.00133-20. [PMID: 32341074 DOI: 10.1128/jb.00133-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. polyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacterium Escherichia coli has indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype of dksA overexpression rescuing growth of a dnaK mutant at high temperatures) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required but that none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network of E. coli IMPORTANCE Inorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation in Escherichia coli and identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.
Collapse
|
73
|
Distinct metabolic states of a cell guide alternate fates of mutational buffering through altered proteostasis. Nat Commun 2020; 11:2926. [PMID: 32522991 PMCID: PMC7286901 DOI: 10.1038/s41467-020-16804-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Metabolic changes alter the cellular milieu; can this also change intracellular protein folding? Since proteostasis can modulate mutational buffering, if change in metabolism has the ability to change protein folding, arguably, it should also alter mutational buffering. Here we find that altered cellular metabolic states in E. coli buffer distinct mutations on model proteins. Buffered-mutants have folding problems in vivo and are differently chaperoned in different metabolic states. Notably, this assistance is dependent upon the metabolites and not on the increase in canonical chaperone machineries. Being able to reconstitute the folding assistance afforded by metabolites in vitro, we propose that changes in metabolite concentrations have the potential to alter protein folding capacity. Collectively, we unravel that the metabolite pools are bona fide members of proteostasis and aid in mutational buffering. Given the plasticity in cellular metabolism, we posit that metabolic alterations may play an important role in cellular proteostasis. Changes in osmotic homeostasis alter metabolites and therefore chemical milieu of the cells. Here, the authors show that altering metabolites in E. coli also change the cellular capacity for buffering mutations that impair protein folding and influences proteostasis irrespective of molecular chaperones
Collapse
|
74
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
75
|
Sheng H, Huang J, Han Z, Liu M, Lü Z, Zhang Q, Zhang J, Yang J, Cui S, Yang B. Genes and Proteomes Associated With Increased Mutation Frequency and Multidrug Resistance of Naturally Occurring Mismatch Repair-Deficient Salmonella Hypermutators. Front Microbiol 2020; 11:770. [PMID: 32457709 PMCID: PMC7225559 DOI: 10.3389/fmicb.2020.00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10–4 to 5.46 × 10–2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinling Huang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhaoyu Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Mi Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinlei Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
76
|
Sunny JS, Mukund N, Natarajan A, Saleena LM. Identifying heat shock response systems from the genomic assembly of Ureibacillus thermophilus LM102 using protein-protein interaction networks. Gene X 2020; 737:144449. [DOI: 10.1016/j.gene.2020.144449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
|
77
|
Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, Savage V, Yeh P. Compounding Effects of Climate Warming and Antibiotic Resistance. iScience 2020; 23:101024. [PMID: 32299057 PMCID: PMC7160571 DOI: 10.1016/j.isci.2020.101024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria have evolved diverse mechanisms to survive environments with antibiotics. Temperature is both a key factor that affects the survival of bacteria in the presence of antibiotics and an environmental trait that is drastically increasing due to climate change. Therefore, it is timely and important to understand links between temperature changes and selection of antibiotic resistance. This review examines these links by synthesizing results from laboratories, hospitals, and environmental studies. First, we describe the transient physiological responses to temperature that alter cellular behavior and lead to antibiotic tolerance and persistence. Second, we focus on the link between thermal stress and the evolution and maintenance of antibiotic resistance mutations. Finally, we explore how local and global changes in temperature are associated with increases in antibiotic resistance and its spread. We suggest that a multidisciplinary, multiscale approach is critical to fully understand how temperature changes are contributing to the antibiotic crisis.
Collapse
Affiliation(s)
| | - Natalie Lozano-Huntelman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mauricio Cruz-Loya
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Van Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
78
|
Tao X, Xu T, Kempher ML, Liu J, Zhou J. Precise promoter integration improves cellulose bioconversion and thermotolerance in Clostridium cellulolyticum. Metab Eng 2020; 60:110-118. [PMID: 32294528 DOI: 10.1016/j.ymben.2020.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022]
Abstract
Lignocellulose has been used for production of sustainable biofuels and value-added chemicals. However, the low-efficiency bioconversion of lignocellulose greatly contributes to a high production cost. Here, we employed CRISPR-Cas9 editing to improve cellulose degradation efficiency by editing a regulatory element of the cip-cel gene cluster in Clostridium cellulolyticum. Insertion of a synthetic promoter (P4) and an endogenous promoter (P2) in the mspI-deficient parental strain (Δ2866) created chromosomal integrants, P4-2866 and P2-2866, respectively. Both engineered strains increased the transcript abundance of downstream polycistronic genes and enhanced in vitro cellulolytic activities of isolated cellulosomes. A high cellulose load of 20 g/L suppressed cellulose degradation in the parental strain in the first 150 h fermentation; whereas P4-2866 and P2-2866 hydrolyzed 29% and 53% of the cellulose, respectively. Both engineered strains also demonstrated a greater growth rate and a higher cell biomass yield. Interestingly, the Δ2866 parental strain demonstrated better thermotolerance than the wildtype strain, and promoter insertion further enhanced thermotolerance. Similar improvements in cell growth and cellulose degradation were reproduced by promoter insertion in the wildtype strain and a lactate production-defective mutant (LM). P2 insertion in LM increased ethanol titer by 65%. Together, the editing of regulatory elements of catabolic gene clusters provides new perspectives on improving cellulose bioconversion in microbes.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Tao Xu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jiantao Liu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
79
|
Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Purpose
The aim of this study was to identify salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains, isolated from Chinese traditional fermented food, by genomic analysis.
Methods
Tolerance of L. plantarum D31 and T9 strains was evaluated at different stress conditions (temperatures, acid, osmolality, and artificial gastrointestinal fluids). Draft genomes of the two strains were determined using the Illumina sequencing technique. Comparative genomic analysis and gene transcriptional analysis were performed to identify and validate the salt tolerance-related genes.
Results
Both L. plantarum D31 and T9 strains were able to withstand high osmotic pressure caused by 5.0% NaCl, and L. plantarum D31 even to tolerate 8.0% NaCl. L. plantarum D31 genome contained 3,315,786 bp (44.5% GC content) with 3106 predicted protein-encoding genes, while L. plantarum T9 contained 3,388,070 bp (44.1% GC content) with 3223 genes. Comparative genomic analysis revealed a number of genes involved in the maintenance of intracellular ion balance, absorption or synthesis of compatible solutes, stress response, and modulation of membrane composition in L. plantarum D31 and or T9 genomes. Gene transcriptional analysis validated that most of these genes were coupled with the stress-resistance phenotypes of the two strains.
Conclusions
L. plantarum D31 and T9 strains tolerated 5.0% NaCl, and D31 even tolerated 8.0% NaCl. The draft genomes of these two strains were determined, and comparative genomic analysis revealed multiple molecular coping strategies for the salt stress tolerance in L. plantarum D31 and T9 strains.
Collapse
|
80
|
Stirling F, Naydich A, Bramante J, Barocio R, Certo M, Wellington H, Redfield E, O’Keefe S, Gao S, Cusolito A, Way J, Silver P. Synthetic Cassettes for pH-Mediated Sensing, Counting, and Containment. Cell Rep 2020; 30:3139-3148.e4. [DOI: 10.1016/j.celrep.2020.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
|
81
|
Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, Wagner DA, West KA, Degar AJ, Brennan AM, Miller PF. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 2020; 11:11/475/eaau7975. [PMID: 30651324 DOI: 10.1126/scitranslmed.aau7975] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/08/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
The intestine is a major source of systemic ammonia (NH3); thus, capturing part of gut NH3 may mitigate disease symptoms in conditions of hyperammonemia such as urea cycle disorders and hepatic encephalopathy. As an approach to the lowering of blood ammonia arising from the intestine, we engineered the orally delivered probiotic Escherichia coli Nissle 1917 to create strain SYNB1020 that converts NH3 to l-arginine (l-arg). We up-regulated arginine biosynthesis in SYNB1020 by deleting a negative regulator of l-arg biosynthesis and inserting a feedback-resistant l-arg biosynthetic enzyme. SYNB1020 produced l-arg and consumed NH3 in an in vitro system. SYNB1020 reduced systemic hyperammonemia, improved survival in ornithine transcarbamylase-deficient spfash mice, and decreased hyperammonemia in the thioacetamide-induced liver injury mouse model. A phase 1 clinical study was conducted including 52 male and female healthy adult volunteers. SYNB1020 was well tolerated at daily doses of up to 1.5 × 1012 colony-forming units administered for up to 14 days. A statistically significant dose-dependent increase in urinary nitrate, plasma 15N-nitrate (highest dose versus placebo, P = 0.0015), and urinary 15N-nitrate was demonstrated, indicating in vivo SYNB1020 activity. SYNB1020 concentrations reached steady state by the second day of dosing, and excreted cells were alive and metabolically active as evidenced by fecal arginine production in response to added ammonium chloride. SYNB1020 was no longer detectable in feces 2 weeks after the last dose. These results support further clinical development of SYNB1020 for hyperammonemia disorders including urea cycle disorders and hepatic encephalopathy.
Collapse
Affiliation(s)
| | - Yves A Millet
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | | | | | - Eugene Antipov
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Yossi Dagon
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - David A Wagner
- Metabolic Solutions Inc., 460 Amherst Street, Nashua, NH 03063, USA
| | - Kip A West
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Paul F Miller
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
82
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|
83
|
Evaluation of adaptive response in E. coli O157:H7 to UV light and gallic acid based antimicrobial treatments. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
84
|
Xue D, Liu W, Chen Y, Liu Y, Han J, Geng X, Li J, Jiang S, Zhou Z, Zhang W, Chen M, Lin M, Ongena M, Wang J. RNA-Seq-Based Comparative Transcriptome Analysis Highlights New Features of the Heat-Stress Response in the Extremophilic Bacterium Deinococcus radiodurans. Int J Mol Sci 2019; 20:ijms20225603. [PMID: 31717497 PMCID: PMC6888292 DOI: 10.3390/ijms20225603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Deinococcus radiodurans is best known for its extraordinary resistance to diverse environmental stress factors, such as ionizing radiation, ultraviolet (UV) irradiation, desiccation, oxidation, and high temperatures. The heat response of this bacterium is considered to be due to a classical, stress-induced regulatory system that is characterized by extensive transcriptional reprogramming. In this study, we investigated the key functional genes involved in heat stress that were expressed and accumulated in cells (R48) following heat treatment at 48 °C for 2 h. Considering that protein degradation is a time-consuming bioprocess, we predicted that to maintain cellular homeostasis, the expression of the key functional proteins would be significantly decreased in cells (RH) that had partly recovered from heat stress relative to their expression in cells (R30) grown under control conditions. Comparative transcriptomics identified 15 genes that were significantly downregulated in RH relative to R30, seven of which had previously been characterized to be heat shock proteins. Among these genes, three hypothetical genes (dr_0127, dr_1083, and dr_1325) are highly likely to be involved in response to heat stress. Survival analysis of mutant strains lacking DR_0127 (a DNA-binding protein), DR_1325 (an endopeptidase-like protein), and DR_1083 (a hypothetical protein) showed a reduction in heat tolerance compared to the wild-type strain. These results suggest that DR_0127, DR_1083, and DR_1325 might play roles in the heat stress response. Overall, the results of this study provide deeper insights into the transcriptional regulation of the heat response in D. radiodurans.
Collapse
Affiliation(s)
- Dong Xue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Yun Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingying Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Xiuxiu Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Jiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Marc Ongena
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Correspondence: (M.O.); (J.W.)
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Correspondence: (M.O.); (J.W.)
| |
Collapse
|
85
|
Saltepe B, Bozkurt EU, Hacıosmanoğlu N, Şeker UÖŞ. Genetic Circuits To Detect Nanomaterial Triggered Toxicity through Engineered Heat Shock Response Mechanism. ACS Synth Biol 2019; 8:2404-2417. [PMID: 31536326 DOI: 10.1021/acssynbio.9b00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biocompatibility assessment of nanomaterials has been of great interest due to their potential toxicity. However, conventional biocompatibility tests fall short of providing a fast toxicity report. We developed a whole cell based biosensor to track biocompatibility of nanomaterials with the aim of providing fast feedback to engineer them with lower toxicity levels. We engineered promoters of four heat shock response (HSR) proteins utilizing synthetic biology approaches. As an initial design, a reporter coding gene was cloned downstream of the selected promoter regions. Initial results indicated that native heat shock protein (HSP) promoter regions were not very promising to generate signals with low background signals. Introducing riboregulators to native promoters eliminated unwanted background signals almost entirely. Yet, this approach also led to a decrease in expected sensor signal upon stress treatment. Thus, a repression based genetic circuit, inspired by the HSR mechanism of Mycobacterium tuberculosis, was constructed. These genetic circuits could report the toxicity of quantum dot nanoparticles in 1 h. Our designed nanoparticle toxicity sensors can provide quick reports, which can lower the demand for additional experiments with more complex organisms.
Collapse
Affiliation(s)
- Behide Saltepe
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eray Ulaş Bozkurt
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
86
|
Gvozdenov Z, Kolhe J, Freeman BC. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034009. [PMID: 30745291 PMCID: PMC6771373 DOI: 10.1101/cshperspect.a034009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a healthy and functional proteome in all cellular compartments is critical to cell and organismal homeostasis. Yet, our understanding of the proteostasis process within the nucleus is limited. Here, we discuss the identified roles of the major molecular chaperones Hsp90, Hsp70, and Hsp60 with client proteins working in diverse DNA-associated pathways. The unique challenges facing proteins in the nucleus are considered as well as the conserved features of the molecular chaperone system in facilitating DNA-linked processes. As nuclear protein inclusions are a common feature of protein-aggregation diseases (e.g., neurodegeneration), a better understanding of nuclear proteostasis is warranted.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801.,Department Chemie, Technische Universität München, Garching 85748, Germany
| | - Janhavi Kolhe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Brian C Freeman
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
87
|
The Hsp70 Chaperone System Stabilizes a Thermo-sensitive Subproteome in E. coli. Cell Rep 2019; 28:1335-1345.e6. [DOI: 10.1016/j.celrep.2019.06.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
|
88
|
Steenhuis M, Abdallah AM, de Munnik SM, Kuhne S, Sterk G, van den Berg van Saparoea B, Westerhausen S, Wagner S, van der Wel NN, Wijtmans M, van Ulsen P, Jong WSP, Luirink J. Inhibition of autotransporter biogenesis by small molecules. Mol Microbiol 2019; 112:81-98. [PMID: 30983025 PMCID: PMC6850105 DOI: 10.1111/mmi.14255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Disarming pathogens by targeting virulence factors is a promising alternative to classic antibiotics. Many virulence factors in Gram-negative bacteria are secreted via the autotransporter (AT) pathway, also known as Type 5 secretion. These factors are secreted with the assistance of two membrane-based protein complexes: Sec and Bam. To identify inhibitors of the AT pathway, we used transcriptomics analysis to develop a fluorescence-based high-throughput assay that reports on the stress induced by the model AT hemoglobin protease (Hbp) when its secretion across the outer membrane is inhibited. Screening a library of 1600 fragments yielded the compound VUF15259 that provokes cell envelope stress and secretion inhibition of the ATs Hbp and Antigen-43. VUF15259 also impairs β-barrel folding activity of various outer membrane proteins. Furthermore, we found that mutants that are compromised in outer membrane protein biogenesis are more susceptible to VUF15259. Finally, VUF15259 induces the release of vesicles that appear to assemble in short chains. Taken together, VUF15259 is the first reported compound that inhibits AT secretion and our data are mostly consistent with VUF15259 interfering with the Bam-complex as potential mode of action. The validation of the presented assay incites its use to screen larger compound libraries with drug-like compounds.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Abdallah M. Abdallah
- Bioscience Core LaboratoryKing Abdullah University of Science and TechnologyThuwalJeddahKingdom of Saudi Arabia
| | - Sabrina M. de Munnik
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Sebastiaan Kuhne
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Geert‐Jan Sterk
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Bart van den Berg van Saparoea
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Sibel Westerhausen
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenTübingenGermany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenTübingenGermany
- German Center for Infection Research (DZIF)TübingenGermany
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Maikel Wijtmans
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije UniversiteitAmsterdamthe Netherlands
| | - Peter van Ulsen
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Wouter S. P. Jong
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS)Vrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
89
|
Bhatia SS, Pillai SD. A Comparative Analysis of the Metabolomic Response of Electron Beam Inactivated E. coli O26:H11 and Salmonella Typhimurium ATCC 13311. Front Microbiol 2019; 10:694. [PMID: 31024484 PMCID: PMC6465604 DOI: 10.3389/fmicb.2019.00694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ionizing radiation such as Electron beam (EB) and gamma irradiation inactivate microbial cells preventing their multiplication. These cells, however, are structurally intact and appear to have residual metabolic activity. We were interested in understanding the metabolic pathways that were still functional in EB-inactivated cells. Therefore, the primary objective of this study was to compare the metabolites accumulating in EB-inactivated pathogens E. coli 026:H11 and S. Typhimurium immediately after EB inactivation and 24 h post inactivation. Defined aliquots (109 CFU/mL) of E. coli O26-H11 (TW 1597) and S. Typhimurium (ATCC 13311) suspended in phosphate-buffered saline were exposed to lethal EB doses of 3 kGy and 2 kGy, respectively. Complete inactivation (inability of cells to multiply) was confirmed by traditional plating methods. An untargeted analysis of the primary metabolites accumulating in un-irradiated (control) cells, EB-inactivated cells immediately after irradiation, and EB-inactivated cells that were incubated at room temperature for 24 h post EB inactivation was performed using gas chromatography/mass spectrometry. A total of 349 different metabolites were detected in the EB-inactivated S. Typhimurium and E. coli O26:H11 cells, out of which, only 50% were identifiable. In S. Typhimurium, 98 metabolites were expressed at statistically different concentrations (P < 0.05) between the three treatment groups. In E. coli O26:H11, 63 metabolites were expressed at statistically different concentrations (P < 0.05) between the three treatment groups. In both these pathogens, the β-alanine, alanine, aspartate, and glutamate metabolic pathways were significantly impacted (P < 0.01). Furthermore, the metabolomic changes in EB-inactivated cells were amplified significantly after 24 h storage at room temperature in phosphate-buffered saline. These results suggest that EB-inactivated cells are very metabolically active and, therefore, the term Metabolically Active yet Non-culturable is an apt term describing EB-inactivated bacterial cells.
Collapse
Affiliation(s)
| | - Suresh D. Pillai
- National Center for Electron Beam Research, International Atomic Energy Agency (IAEA), Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
90
|
Oliveira SMD, Goncalves NSM, Kandavalli VK, Martins L, Neeli-Venkata R, Reyelt J, Fonseca JM, Lloyd-Price J, Kranz H, Ribeiro AS. Chromosome and plasmid-borne P LacO3O1 promoters differ in sensitivity to critically low temperatures. Sci Rep 2019; 9:4486. [PMID: 30872616 PMCID: PMC6418193 DOI: 10.1038/s41598-019-39618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Temperature shifts trigger genome-wide changes in Escherichia coli's gene expression. We studied if chromosome integration impacts on a gene's sensitivity to these shifts, by comparing the single-RNA production kinetics of a PLacO3O1 promoter, when chromosomally-integrated and when single-copy plasmid-borne. At suboptimal temperatures their induction range, fold change, and response to decreasing temperatures are similar. At critically low temperatures, the chromosome-integrated promoter becomes weaker and noisier. Dissection of its initiation kinetics reveals longer lasting states preceding open complex formation, suggesting enhanced supercoiling buildup. Measurements with Gyrase and Topoisomerase I inhibitors suggest hindrance to escape supercoiling buildup at low temperatures. Consistently, similar phenomena occur in energy-depleted cells by DNP at 30 °C. Transient, critically-low temperatures have no long-term consequences, as raising temperature quickly restores transcription rates. We conclude that the chromosomally-integrated PLacO3O1 has higher sensitivity to low temperatures, due to longer-lasting super-coiled states. A lesser active, chromosome-integrated native lac is shown to be insensitive to Gyrase overexpression, even at critically low temperatures, indicating that the rate of escaping positive supercoiling buildup is temperature and transcription rate dependent. A genome-wide analysis supports this, since cold-shock genes exhibit atypical supercoiling-sensitivities. This phenomenon might partially explain the temperature-sensitivity of some transcriptional programs of E. coli.
Collapse
Affiliation(s)
- Samuel M D Oliveira
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Nadia S M Goncalves
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Vinodh K Kandavalli
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Leonardo Martins
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Jan Reyelt
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Jose M Fonseca
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Harald Kranz
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland.
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal.
| |
Collapse
|
91
|
Windiasti G, Feng J, Ma L, Hu Y, Hakeem MJ, Amoako K, Delaquis P, Lu X. Investigating the synergistic antimicrobial effect of carvacrol and zinc oxide nanoparticles against Campylobacter jejuni. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Susceptibility of Escherichia coli O157:H7 grown at low temperatures to the krypton-chlorine excilamp. Sci Rep 2019; 9:563. [PMID: 30679621 PMCID: PMC6346039 DOI: 10.1038/s41598-018-37060-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/27/2018] [Indexed: 11/28/2022] Open
Abstract
This study was conducted to investigate the resistance of Escherichia coli O157:H7 to 222-nm krypton-chlorine(KrCl) excilamp and 254-nm low-pressure Hg lamp (LP lamp) treatment according to growth temperature. As growth temperature decreased, lag time of E. coli O157:H7 significantly increased while the growth rate significantly decreased. Regardless of growth temperature, the KrCl excilamp showed higher disinfection capacity compared to the LP lamp at stationary growth phase. KrCl excilamp treatment showed significantly higher reduction as growth temperature decreased. Conversely, reduction levels according to growth temperature were not significantly different when the pathogen was subjected to LP lamp treatment. Inactivation mechanisms were evaluated by the thiobarbituric acid reactive substances (TBARS) assay and SYBR green assay, and we confirmed that lipid oxdiation capacity following KrCl excilamp treatment increased as growth temperature decreased, which was significantly higher than that of LP lamp treated samples regardless of growth temperature. DNA damage level was significantly higher for LP Hg lamp treated samples compared to those subjected to the KrCl excilamp, but no significant difference pursuant to growth temperature was observed. At the transcriptional level, gene expression related to several metabolic pathways was significantly higher for the pathogen grown at 15 °C compared that of 37 °C, enabling it to adapt and survive at low temperature, and membrane lipid composition became altered to ensure membrane fluidity. Consequently, resistance of E. coli O157:H7 to the KrCl excilamp decreased as growth temperature decreased because the ratio of unsaturated fatty acid composition increased at low growth temperature resulting in higher lipid oxidation levels. These results indicate that KrCl excilamp treatment should be determined carefully considering the growth temperature of E. coli O157:H7.
Collapse
|
93
|
Lv R, Wang D, Zou M, Wang W, Ma X, Chen W, Zhou J, Ding T, Ye X, Liu D. Analysis ofBacillus cereuscell viability, sublethal injury, and death induced by mild thermal treatment. J Food Saf 2018. [DOI: 10.1111/jfs.12581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Danli Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Mingming Zou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Wenjun Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Weijun Chen
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Tian Ding
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
- Fuli Institute of Food ScienceZhejiang University Zhejiang Hangzhou China
| |
Collapse
|
94
|
Catalase Expression in Azospirillum brasilense Sp7 Is Regulated by a Network Consisting of OxyR and Two RpoH Paralogs and Including an RpoE1→RpoH5 Regulatory Cascade. Appl Environ Microbiol 2018; 84:AEM.01787-18. [PMID: 30217849 DOI: 10.1128/aem.01787-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/01/2018] [Indexed: 12/19/2022] Open
Abstract
The genome of Azospirillum brasilense encodes five RpoH sigma factors: two OxyR transcription regulators and three catalases. The aim of this study was to understand the role they play during oxidative stress and their regulatory interconnection. Out of the 5 paralogs of RpoH present in A. brasilense, inactivation of only rpoH1 renders A. brasilense heat sensitive. While transcript levels of rpoH1 were elevated by heat stress, those of rpoH3 and rpoH5 were upregulated by H2O2 Catalase activity was upregulated in A. brasilense and its rpoH::km mutants in response to H2O2 except in the case of the rpoH5::km mutant, suggesting a role for RpoH5 in regulating inducible catalase. Transcriptional analysis of the katN, katAI, and katAII genes revealed that the expression of katN and katAII was severely compromised in the rpoH3::km and rpoH5::km mutants, respectively. Regulation of katN and katAII by RpoH3 and RpoH5, respectively, was further confirmed in an Escherichia coli two-plasmid system. Regulation of katAII by OxyR2 was evident by a drastic reduction in growth, KatAII activity, and katAII::lacZ expression in an oxyR2::km mutant. This study reports the involvement of RpoH3 and RpoH5 sigma factors in regulating oxidative stress response in alphaproteobacteria. We also report the regulation of an inducible catalase by a cascade of alternative sigma factors and an OxyR. Out of the three catalases in A. brasilense, those corresponding to katN and katAII are regulated by RpoH3 and RpoH5, respectively. The expression of katAII is regulated by a cascade of RpoE1→RpoH5 and OxyR2.IMPORTANCE In silico analysis of the A. brasilense genome showed the presence of multiple paralogs of genes involved in oxidative stress response, which included 2 OxyR transcription regulators and 3 catalases. So far, Deinococcus radiodurans and Vibrio cholerae are known to harbor two paralogs of OxyR, and Sinorhizobium meliloti harbors three catalases. We do not yet know how the expression of multiple catalases is regulated in any bacterium. Here we show the role of multiple RpoH sigma factors and OxyR in regulating the expression of multiple catalases in A. brasilense Sp7. Our work gives a glimpse of systems biology of A. brasilense used for responding to oxidative stress.
Collapse
|
95
|
Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde. Appl Environ Microbiol 2018; 84:AEM.01616-18. [PMID: 30217837 DOI: 10.1128/aem.01616-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 01/05/2023] Open
Abstract
Thymol, carvacrol, and trans-cinnamaldehyde are essential oil (EO) compounds with broad-spectrum antimicrobial activities against foodborne pathogens, including Escherichia coli O157:H7. However, little is known regarding direct resistance and cross-resistance development in E. coli O157:H7 after adaptation to sublethal levels of these compounds, and information is scarce on microbial adaptive responses at a molecular level. The present study demonstrated that E. coli O157:H7 was able to grow in the presence of sublethal thymol (1/2T), carvacrol (1/2C), or trans-cinnamaldehyde (1/2TC), displaying an extended lag phase duration and a lower maximum growth rate. EO-adapted cells developed direct resistance against lethal EO treatments and cross-resistance against heat (58°C) and oxidative (50 mM H2O2) stresses. However, no induction of acid resistance (simulated gastric fluid, pH 1.5) was observed. RNA sequencing revealed a large number (310 to 338) of differentially expressed (adjusted P value [Padj ], <0.05; fold change, ≥5) genes in 1/2T and 1/2C cells, while 1/2TC cells only showed 27 genes with altered expression. In accordance with resistance phenotypes, the genes related to membrane, heat, and oxidative stress responses and genes related to iron uptake and metabolism were upregulated. Conversely, virulence genes associated with motility, biofilm formation, and efflux pumps were repressed. This study demonstrated the development of direct resistance and cross-resistance and characterized whole-genome transcriptional responses in E. coli O157:H7 adapted to sublethal thymol, carvacrol, or trans-cinnamaldehyde. The data suggested that caution should be exercised when using EO compounds as food antimicrobials, due to the potential stress resistance development in E. coli O157:H7.IMPORTANCE The present study was designed to understand transcriptomic changes and the potential development of direct and cross-resistance in essential oil (EO)-adapted Escherichia coli O157:H7. The results demonstrated altered growth behaviors of E. coli O157:H7 during adaptation in sublethal thymol, carvacrol, and trans-cinnamaldehyde. Generally, EO-adapted bacteria showed enhanced resistance against subsequent lethal EO, heat, and oxidative stresses, with no induction of acid resistance in simulated gastric fluid. A transcriptomic analysis revealed the upregulation of related stress resistance genes and a downregulation of various virulence genes in EO-adapted cells. This study provides new insights into microbial EO adaptation behaviors and highlights the risk of resistance development in adapted bacteria.
Collapse
|
96
|
Tomoyasu T, Tsuruno K, Tanatsugu R, Miyazaki A, Kondo H, Tabata A, Whiley RA, Sonomoto K, Nagamune H. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK. Microbiol Immunol 2018; 62:681-693. [PMID: 30239035 DOI: 10.1111/1348-0421.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022]
Abstract
Streptococcus intermedius DnaK complements the temperature-sensitive phenotype of an Escherichia coli dnaK null mutant only when co-chaperones DnaJ and GrpE are co-expressed. Therefore, whether S. intermedius DnaK and E. coli DnaK can recognize heterologous co-chaperones in vitro was examined. Addition of heterologous GrpE to DnaK and DnaJ partially stimulated adenosine triphosphatase (ATPase) activity, and almost completely stimulated luciferase refolding activity. Addition of heterologous DnaJ to GrpE and DnaK also stimulated ATPase activity; however, significant luciferase refolding activity was not observed. Moreover, E. coli DnaJ had a negative effect on the luciferase refolding activity of the S. intermedius DnaK chaperone system. In E. coli chaperone mutants, with the exception of E. coli DnaJ, stronger expression of the heterologous co-chaperones partially or almost completely complemented the temperature-sensitive-phenotype. These results indicate that all heterologous co-chaperones can at least partially recognize DnaK of a distantly related species. A region of the ATPase domain that is present in the DnaK of gram-negative bacteria is absent from the DnaK of gram-positive bacteria. This region is believed to be important for recognition of co-chaperones from gram-negative bacteria. However, insertion of this segment into S. intermedius DnaK failed to increase its ability to recognize E. coli co-chaperones, implying that this region is unnecessary or insufficient for the recognition of E. coli co-chaperones. Thus, our data suggest that a basic structural similarity is conserved among the components of the S. intermedius and E. coli DnaK chaperone systems, allowing weak associations between heterologous components.
Collapse
Affiliation(s)
- Toshifumi Tomoyasu
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| | - Keigo Tsuruno
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ryosuke Tanatsugu
- Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506, Japan
| | - Aya Miyazaki
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hiroyuki Kondo
- Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506, Japan
| | - Atsushi Tabata
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| | - Robert A Whiley
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Kenji Sonomoto
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hideaki Nagamune
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
97
|
Yoo NG, Dogra S, Meinen BA, Tse E, Haefliger J, Southworth DR, Gray MJ, Dahl JU, Jakob U. Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble Amyloid-like Oligomers. J Mol Biol 2018; 430:4195-4208. [PMID: 30130556 DOI: 10.1016/j.jmb.2018.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023]
Abstract
Inorganic polyphosphate (polyP) constitutes one of the most conserved and ubiquitous molecules in biology. Recent work in bacteria demonstrated that polyP increases oxidative stress resistance by preventing stress-induced protein aggregation and promotes biofilm formation by stimulating functional amyloid formation. To gain insights into these two seemingly contradictory functions of polyP, we investigated the effects of polyP on the folding model lactate dehydrogenase. We discovered that the presence of polyP during the thermal unfolding process stabilizes folding intermediates of lactate dehydrogenase as soluble micro-β-aggregates with amyloid-like properties. Size and heterogeneity of the oligomers formed in this process were dependent on the polyP chain length, with longer chains forming smaller, more homogenous complexes. This ability of polyP to stabilize thermally unfolded proteins even upon exposure to extreme temperatures appears to contribute to the observed resistance of uropathogenic Escherichia coli toward severe heat shock treatment. These results suggest that the working mechanism of polyP is the same for both soluble and amyloidogenic proteins, with the ultimate outcome likely being determined by a combination of polyP chain length and the client protein itself. They help to explain how polyP can simultaneously function as general stress-protective chaperone and instigator of amyloidogenic processes in vivo.
Collapse
Affiliation(s)
- Nicholas G Yoo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States; Biological Chemistry Department, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States
| | - Siddhant Dogra
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States; Biological Chemistry Department, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States
| | - Ben A Meinen
- Howard Hughes Medical Institute, University of Michigan, 2256 Biological Sciences Science Building, 1105 North University Ave, Ann Arbor, MI 48109, United States
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158, United States
| | - Janine Haefliger
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States; Biological Chemistry Department, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158, United States
| | - Michael J Gray
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States; Biological Chemistry Department, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States
| | - Jan-Ulrik Dahl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States; Biological Chemistry Department, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States; Biological Chemistry Department, University of Michigan, 830 N University Ave, Ann Arbor, MI 48109, United States.
| |
Collapse
|
98
|
Lou H, Wang X, Chen J, Wang B, Wang W. Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites. Can J Microbiol 2018; 64:816-825. [PMID: 29852076 DOI: 10.1139/cjm-2018-0094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To develop efficient biocontrol agents, it is essential to investigate the response of soil-borne plant pathogens to such agents. For example, the response of Ralstonia solanacearum, the tomato wilt pathogen, to antimicrobial metabolites of Pseudomonas fluorescens is unknown. Thus, we assessed the effects of P. fluorescens SN15-2 fermentation broth on R. solanacearum by transmission electron microscopy and transcriptome technology. RNA sequencing identified 109 and 155 genes that are significantly upregulated and downregulated, respectively, in response to P. fluorescens metabolites, many of which are associated with the cell membrane and cell wall, and with nucleotide acid metabolism, iron absorption, and response to oxidative stress. This study highlights the effectiveness of P. fluorescens metabolites against the tomato wilt pathogen and helps clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Haibo Lou
- a State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaobing Wang
- a State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Chen
- a State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bozhi Wang
- b School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Wei Wang
- a State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
99
|
Troxell B. A type 6 secretion system (T6SS) encoded gene within Salmonella enterica serovar Enteritidis contributes to virulence. Virulence 2018; 9:585-587. [PMID: 29380670 PMCID: PMC7000193 DOI: 10.1080/21505594.2017.1421829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria interact with their host through protein secretion systems and surface structures. Pathogenic bacteria encode protein secretion systems that promote the invasion of the host's tissue, the evasion of the host's immune response, the thwarting microbial competitors, and ultimately survival within the host. For motile bacteria, the presence of extracellular flagella provides the host with a structural motif used for activation of the immune system. Within this issue of Virulence, the article "Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated protein expression" describes the contribution of a gene, SEN1005, toward host-pathogen interaction. The authors demonstrate the contribution of SEN1005 to cell culture bioassays and infection in a mouse model of colitis. In each tested scenario, deletion of SEN1005 results in a phenotypic defect that was complemented by providing the SEN1005 gene in trans. SEN1005 contributes to the expression of known virulence factors within SPI-1, flagellar and chemotaxis genes, and heat shock/chaperone genes. Although much work is needed to fully elucidate the function of SEN1005, this work contributes toward our understanding of the genetic factors used by Salmonella to cause foodborne illnesses.
Collapse
Affiliation(s)
- Bryan Troxell
- a Alcami Corporation, Biotechnology department , Durham , North Carolina , USA
| |
Collapse
|
100
|
Sundaram A, Appathurai S, Plumb R, Mariappan M. Dynamic changes in complexes of IRE1α, PERK, and ATF6α during endoplasmic reticulum stress. Mol Biol Cell 2018; 29:1376-1388. [PMID: 29851562 PMCID: PMC5994896 DOI: 10.1091/mbc.e17-10-0594] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) localized unfolded protein response (UPR) sensors, IRE1α, PERK, and ATF6α, are activated by the accumulation of misfolded proteins in the ER. It is unclear how the endogenous UPR sensors are regulated by both ER stress and the ER luminal chaperone BiP, which is a negative regulator of UPR sensors. Here we simultaneously examined the changes in the endogenous complexes of UPR sensors by blue native PAGE immunoblotting in unstressed and stressed cells. We found that all three UPR sensors exist as preformed complexes even in unstressed cells. While PERK complexes shift to large complexes, ATF6α complexes are reduced to smaller complexes on ER stress. In contrast, IRE1α complexes were not significantly increased in size on ER stress, unless IRE1α is overexpressed. Surprisingly, depletion of BiP had little impact on the endogenous complexes of UPR sensors. In addition, overexpression of BiP did not significantly affect UPR complexes, but suppressed ER stress mediated activation of IRE1α, ATF6α and, to a lesser extent, PERK. Furthermore, we captured the interaction between IRE1α and misfolded secretory proteins in cells, which suggests that the binding of unfolded proteins to preformed complexes of UPR sensors may be crucial for activation.
Collapse
Affiliation(s)
- Arunkumar Sundaram
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT 06516
| | - Suhila Appathurai
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT 06516
| | - Rachel Plumb
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT 06516
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT 06516
| |
Collapse
|