51
|
Recognition of the 3' splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc Natl Acad Sci U S A 2016; 113:E7169-E7175. [PMID: 27799531 DOI: 10.1073/pnas.1605873113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3' splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3' splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein-RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3' splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants.
Collapse
|
52
|
Hartmann S, Weidlich D, Klostermeier D. Single-Molecule Confocal FRET Microscopy to Dissect Conformational Changes in the Catalytic Cycle of DNA Topoisomerases. Methods Enzymol 2016; 581:317-351. [PMID: 27793284 DOI: 10.1016/bs.mie.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular machines undergo large-scale conformational changes during their catalytic cycles that are linked to their biological functions. DNA topoisomerases are molecular machines that interconvert different DNA topoisomers and resolve torsional stress that is introduced during cellular processes that involve local DNA unwinding. DNA gyrase catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. During its catalytic cycle, gyrase undergoes large-scale conformational changes that drive the supercoiling reaction. These conformational changes can be followed by single-molecule Förster resonance energy transfer (FRET). Here, we use DNA gyrase from Bacillus subtilis as an illustrative example to present strategies for the investigation of conformational dynamics of multisubunit complexes. We provide a brief introduction into single-molecule FRET and confocal microscopy, with a focus on practical considerations in sample preparation and data analysis. Different strategies in the preparation of donor-acceptor-labeled molecules suitable for single-molecule FRET experiments are outlined. The insight into the mechanism of DNA supercoiling by gyrase gained from single-molecule FRET experiment is summarized. The general strategies described here can also be applied to investigate conformational changes and their link to biological function of other multisubunit molecular machines.
Collapse
Affiliation(s)
- S Hartmann
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany
| | - D Weidlich
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany
| | - D Klostermeier
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany.
| |
Collapse
|
53
|
Hohlbein J, Kapanidis AN. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET. Methods Enzymol 2016; 581:353-378. [PMID: 27793286 DOI: 10.1016/bs.mie.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open and closed conformations of DNA polymerases, our smFRET assays utilizing doubly labeled variants of Escherichia coli DNA polymerase I were pivotal in identifying and characterizing a partially closed conformation as a primary checkpoint for nucleotide selection. Here, we provide a comprehensive overview of the methods we used for the conformational analysis of wild-type DNA polymerase and some of its low-fidelity derivatives; these methods include strategies for protein labeling and our procedures for solution-based single-molecule fluorescence data acquisition and data analysis. We also discuss alternative single-molecule fluorescence strategies for analyzing the conformations of DNA polymerases in vitro and in vivo.
Collapse
Affiliation(s)
- J Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands; Microspectroscopy Centre, Wageningen University and Research, Wageningen, The Netherlands.
| | - A N Kapanidis
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
54
|
Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments. Biophys J 2016; 110:26-33. [PMID: 26745406 DOI: 10.1016/j.bpj.2015.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license.
Collapse
Affiliation(s)
- Antonino Ingargiola
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California.
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Robert Boutelle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
55
|
Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci Rep 2016; 6:33257. [PMID: 27641327 PMCID: PMC5027553 DOI: 10.1038/srep33257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 01/24/2023] Open
Abstract
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.
Collapse
|
56
|
Aznauryan M, Delgado L, Soranno A, Nettels D, Huang JR, Labhardt AM, Grzesiek S, Schuler B. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A 2016; 113:E5389-98. [PMID: 27566405 PMCID: PMC5027429 DOI: 10.1073/pnas.1607193113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei City 112, Taiwan
| | | | | | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
57
|
Sutin J, Zimmerman B, Tyulmankov D, Tamborini D, Wu KC, Selb J, Gulinatti A, Rech I, Tosi A, Boas DA, Franceschini MA. Time-domain diffuse correlation spectroscopy. OPTICA 2016; 3:1006-1013. [PMID: 28008417 PMCID: PMC5166986 DOI: 10.1364/optica.3.001006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Physiological monitoring of oxygen delivery to the brain has great significance for improving the management of patients at risk for brain injury. Diffuse correlation spectroscopy (DCS) is a rapidly growing optical technology able to non-invasively assess the blood flow index (BFi) at the bedside. The current limitations of DCS are the contamination introduced by extracerebral tissue and the need to know the tissue's optical properties to correctly quantify the BFi. To overcome these limitations, we have developed a new technology for time-resolved diffuse correlation spectroscopy. By operating DCS in the time domain (TD-DCS), we are able to simultaneously acquire the temporal point-spread function to quantify tissue optical properties and the autocorrelation function to quantify the BFi. More importantly, by applying time-gated strategies to the DCS autocorrelation functions, we are able to differentiate between short and long photon paths through the tissue and determine the BFi for different depths. Here, we present the novel device and we report the first experiments in tissue-like phantoms and in rodents. The TD-DCS method opens many possibilities for improved non-invasive monitoring of oxygen delivery in humans.
Collapse
Affiliation(s)
- Jason Sutin
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Bernhard Zimmerman
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Danil Tyulmankov
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Davide Tamborini
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano, Milano, Italy
| | - Kuan Cheng Wu
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Juliette Selb
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Angelo Gulinatti
- Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano, Milano, Italy
| | - Ivan Rech
- Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano, Milano, Italy
| | - Alberto Tosi
- Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano, Milano, Italy
| | - David A. Boas
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Maria Angela Franceschini
- Optics Division at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Corresponding author:
| |
Collapse
|
58
|
Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET. PLoS One 2016; 11:e0160716. [PMID: 27532626 PMCID: PMC4988647 DOI: 10.1371/journal.pone.0160716] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/22/2016] [Indexed: 12/04/2022] Open
Abstract
Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to customize the analysis for their own needs. By bundling analysis description, code and results in a single document, FRETBursts allows to seamless share analysis workflows and results, encourages reproducibility and facilitates collaboration among researchers in the single-molecule community.
Collapse
Affiliation(s)
- Antonino Ingargiola
- Dept. Chemistry and Biochemistry, Univ. of California Los Angeles, Los Angeles, CA, United States of America
- * E-mail:
| | - Eitan Lerner
- Dept. Chemistry and Biochemistry, Univ. of California Los Angeles, Los Angeles, CA, United States of America
| | - SangYoon Chung
- Dept. Chemistry and Biochemistry, Univ. of California Los Angeles, Los Angeles, CA, United States of America
| | - Shimon Weiss
- Dept. Chemistry and Biochemistry, Univ. of California Los Angeles, Los Angeles, CA, United States of America
| | - Xavier Michalet
- Dept. Chemistry and Biochemistry, Univ. of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
59
|
Lerner E, Ploetz E, Hohlbein J, Cordes T, Weiss S. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET). J Phys Chem B 2016; 120:6401-10. [PMID: 27184889 PMCID: PMC4939467 DOI: 10.1021/acs.jpcb.6b03692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Single-molecule,
protein-induced fluorescence enhancement (PIFE)
serves as a molecular ruler at molecular distances inaccessible to
other spectroscopic rulers such as Förster-type resonance energy
transfer (FRET) or photoinduced electron transfer. In order to provide
two simultaneous measurements of two distances on different molecular
length scales for the analysis of macromolecular complexes, we and
others recently combined measurements of PIFE and FRET (PIFE-FRET)
on the single molecule level. PIFE relies on steric hindrance of the
fluorophore Cy3, which is covalently attached to a biomolecule of
interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate.
In this work, we provide a theoretical framework that accounts for
relevant photophysical and kinetic parameters of PIFE-FRET, show how
this framework allows the extraction of the fold-decrease in isomerization
mobility from experimental data, and show how these results provide
information on changes in the accessible volume of Cy3. The utility
of this model is then demonstrated for experimental results on PIFE-FRET
measurement of different protein–DNA interactions. The proposed
model and extracted parameters could serve as a benchmark to allow
quantitative comparison of PIFE effects in different biological systems.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.,Microspectroscopy Centre, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
60
|
Abstract
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.
Collapse
|
61
|
Kapanidis A, Majumdar D, Heilemann M, Nir E, Weiss S. Alternating Laser Excitation for Solution-Based Single-Molecule FRET. Cold Spring Harb Protoc 2015; 2015:979-987. [PMID: 26527772 DOI: 10.1101/pdb.top086405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) has been widely applied to the study of fluorescently labeled biomolecules on surfaces and in solution. Sorting single molecules based on fluorescent dye stoichiometry provides one with further layers of information and also enables "filtering" of unwanted molecules from the analysis. We accomplish this sorting by using alternating laser excitation (ALEX) in combination with smFRET measurements; here we describe the implementation of these methodologies for the study of biomolecules in solution.
Collapse
|
62
|
Delaforge E, Milles S, Bouvignies G, Bouvier D, Boivin S, Salvi N, Maurin D, Martel A, Round A, Lemke EA, Ringkjøbing Jensen M, Hart DJ, Blackledge M. Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α. J Am Chem Soc 2015; 137:15122-34. [DOI: 10.1021/jacs.5b07765] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elise Delaforge
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Sigrid Milles
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Guillaume Bouvignies
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Denis Bouvier
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- Univ. Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
| | - Stephane Boivin
- Univ. Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Nicola Salvi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Damien Maurin
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, F-38044 Grenoble, France
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
| | - Edward A. Lemke
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Malene Ringkjøbing Jensen
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Darren J. Hart
- Univ. Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Martin Blackledge
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| |
Collapse
|
63
|
Clausen MP, Sezgin E, Bernardino de la Serna J, Waithe D, Lagerholm BC, Eggeling C. A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics. Methods 2015; 88:67-75. [PMID: 26123184 PMCID: PMC4641872 DOI: 10.1016/j.ymeth.2015.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software.
Collapse
Affiliation(s)
- Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom; Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
64
|
Becker W. Fluorescence lifetime imaging by multi-dimensional time correlated single photon counting. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Sun G, Guo M, Teh C, Korzh V, Bathe M, Wohland T. Bayesian model selection applied to the analysis of fluorescence correlation spectroscopy data of fluorescent proteins in vitro and in vivo. Anal Chem 2015; 87:4326-33. [PMID: 25815704 PMCID: PMC4430836 DOI: 10.1021/acs.analchem.5b00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful technique to investigate molecular dynamics with single molecule sensitivity. In particular, in the life sciences it has found widespread application using fluorescent proteins as molecularly specific labels. However, FCS data analysis and interpretation using fluorescent proteins remains challenging due to typically low signal-to-noise ratio of FCS data and correlated noise in autocorrelated data sets. As a result, naive fitting procedures that ignore these important issues typically provide similarly good fits for multiple competing models without clear distinction of which model is preferred given the signal-to-noise ratio present in the data. Recently, we introduced a Bayesian model selection procedure to overcome this issue with FCS data analysis. The method accounts for the highly correlated noise that is present in FCS data sets and additionally penalizes model complexity to prevent over interpretation of FCS data. Here, we apply this procedure to evaluate FCS data from fluorescent proteins assayed in vitro and in vivo. Consistent with previous work, we demonstrate that model selection is strongly dependent on the signal-to-noise ratio of the measurement, namely, excitation intensity and measurement time, and is sensitive to saturation artifacts. Under fixed, low intensity excitation conditions, physical transport models can unambiguously be identified. However, at excitation intensities that are considered moderate in many studies, unwanted artifacts are introduced that result in nonphysical models to be preferred. We also determined the appropriate fitting models of a GFP tagged secreted signaling protein, Wnt3, in live zebrafish embryos, which is necessary for the investigation of Wnt3 expression and secretion in development. Bayes model selection therefore provides a robust procedure to determine appropriate transport and photophysical models for fluorescent proteins when appropriate models are provided, to help detect and eliminate experimental artifacts in solution, cells, and in living organisms.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Chemistry, National University of Singapore, 117543 Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557 Singapore
| | - Ming Guo
- Laboratory for Computational Biology and Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673 Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Mark Bathe
- Laboratory for Computational Biology and Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, 117543 Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| |
Collapse
|
66
|
Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 2015; 6:6655. [PMID: 25851214 PMCID: PMC4403447 DOI: 10.1038/ncomms7655] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl et al. show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.
Collapse
|
67
|
Buning R, Kropff W, Martens K, van Noort J. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064103. [PMID: 25564102 DOI: 10.1088/0953-8984/27/6/064103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.
Collapse
Affiliation(s)
- Ruth Buning
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | | | | | | |
Collapse
|
68
|
Benke S, Roderer D, Wunderlich B, Nettels D, Glockshuber R, Schuler B. The assembly dynamics of the cytolytic pore toxin ClyA. Nat Commun 2015; 6:6198. [PMID: 25652783 PMCID: PMC4347018 DOI: 10.1038/ncomms7198] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition.
Collapse
Affiliation(s)
- Stephan Benke
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Roderer
- ETH Zurich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Bengt Wunderlich
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Nettels
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rudi Glockshuber
- ETH Zurich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Benjamin Schuler
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
69
|
Nedbal J, Visitkul V, Ortiz-Zapater E, Weitsman G, Chana P, Matthews DR, Ng T, Ameer-Beg SM. Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening. Cytometry A 2015; 87:104-18. [PMID: 25523156 PMCID: PMC4440390 DOI: 10.1002/cyto.a.22616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/12/2014] [Accepted: 12/03/2014] [Indexed: 01/22/2023]
Abstract
Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jakub Nedbal
- Division of Cancer Studies, King's College LondonUnited Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
| | - Viput Visitkul
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
| | - Elena Ortiz-Zapater
- Division of Asthma, Allergy & Lung Biology, King's College LondonUnited Kingdom
| | | | - Prabhjoat Chana
- Immune Monitoring Laboratory, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College LondonUnited Kingdom
| | - Daniel R Matthews
- Queensland Brain Institute, The University of QueenslandSt Lucia, Australia
| | - Tony Ng
- Division of Cancer Studies, King's College LondonUnited Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
- UCL Cancer Institute, University College LondonUnited Kingdom
| | - Simon M Ameer-Beg
- Division of Cancer Studies, King's College LondonUnited Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
| |
Collapse
|
70
|
Ait-Bara S, Clerté C, Margeat E. Single-molecule FRET characterization of RNA remodeling induced by an antitermination protein. Methods Mol Biol 2015; 1259:349-68. [PMID: 25579596 DOI: 10.1007/978-1-4939-2214-7_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Single-molecule Förster Resonance Energy Transfer (smFRET) is a useful technique to probe conformational changes within bio-macromolecules. Here, we introduce how to perform smFRET measurements in solution to investigate RNA remodeling and RNA-protein interactions. In particular, we focus on how the close-to-open transition of an antiterminator hairpin is influenced by the binding of the antitermination protein and the competition by oligonucleotides.
Collapse
Affiliation(s)
- Soraya Ait-Bara
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090, Montpellier, France
| | | | | |
Collapse
|
71
|
Bene L, Damjanovich L. The other side of the coin: time-domain fluorescence lifetime in flow. Cytometry A 2014; 87:101-3. [PMID: 25515417 DOI: 10.1002/cyto.a.22615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/03/2014] [Indexed: 11/07/2022]
Affiliation(s)
- László Bene
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
72
|
The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function. Proc Natl Acad Sci U S A 2014; 111:17881-6. [PMID: 25468961 DOI: 10.1073/pnas.1414073111] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a dimeric molecular chaperone essential in numerous cellular processes. Its three domains (N, M, and C) are connected via linkers that allow the rearrangement of domains during Hsp90's chaperone cycle. A unique linker, called charged linker (CL), connects the N- and M-domain of Hsp90. We used an integrated approach, combining single-molecule techniques and biochemical and in vivo methods, to study the unresolved structure and function of this region. Here we show that the CL facilitates intramolecular rearrangements on the milliseconds timescale between a state in which the N-domain is docked to the M-domain and a state in which the N-domain is more flexible. The docked conformation is stabilized by 1.1 kBT (2.7 kJ/mol) through binding of the CL to the N-domain of Hsp90. Docking and undocking of the CL affects the much slower intermolecular domain movement and Hsp90's chaperone cycle governing client activation, cell viability, and stress tolerance.
Collapse
|
73
|
Michalet X, Ingargiola A, Colyer RA, Scalia G, Weiss S, Maccagnani P, Gulinatti A, Rech I, Ghioni M. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2014; 20:38044201-380442020. [PMID: 25309114 PMCID: PMC4190971 DOI: 10.1109/jstqe.2014.2341568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements.
Collapse
Affiliation(s)
- Xavier Michalet
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90046,
USA
| | | | - Ryan A. Colyer
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90046,
USA
- Department of Science, Cabrini College, Radnor, PA 19087, USA
| | - Giuseppe Scalia
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90046,
USA
- Département de Physique, Université de Fribourg, 1700
Fribourg, Switzerland
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90046,
USA
| | - Piera Maccagnani
- Istituto per la Microelettronica e Microsistemi (IMM-CNR), Sezione di
Bologna, 40129 Bologna, Italy
| | - Angelo Gulinatti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, 20133 Milano, Italy
| | - Ivan Rech
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, 20133 Milano, Italy
| | - Massimo Ghioni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, 20133 Milano, Italy
| |
Collapse
|
74
|
Lu M, Lu HP. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy. J Phys Chem B 2014; 118:11943-55. [PMID: 25222115 PMCID: PMC4199541 DOI: 10.1021/jp5081498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Conformational motions of proteins
are highly dynamic and intrinsically
complex. To capture the temporal and spatial complexity of conformational
motions and further to understand their roles in protein functions,
an attempt is made to probe multidimensional conformational dynamics
of proteins besides the typical one-dimensional FRET coordinate or
the projected conformational motions on the one-dimensional FRET coordinate.
T4 lysozyme hinge-bending motions between two domains along α-helix
have been probed by single-molecule FRET. Nevertheless, the domain
motions of T4 lysozyme are rather complex involving multiple coupled
nuclear coordinates and most likely contain motions besides hinge-bending.
It is highly likely that the multiple dimensional protein conformational
motions beyond the typical enzymatic hinged-bending motions have profound
impact on overall enzymatic functions. In this report, we have developed
a single-molecule multiparameter photon stamping spectroscopy integrating
fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic
approach enables simultaneous observations of both FRET-related site-to-site
conformational dynamics and molecular rotational (or orientational)
motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have
further observed wide-distributed rotational flexibility along orientation
coordinates by recording fluorescence anisotropy and simultaneously
identified multiple intermediate conformational states along FRET
coordinate by monitoring time-dependent donor lifetime, presenting
a whole picture of multidimensional conformational dynamics in the
process of T4 lysozyme open-close hinge-bending enzymatic turnover
motions under enzymatic reaction conditions. By analyzing the autocorrelation
functions of both lifetime and anisotropy trajectories, we have also
observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional
conformational fluctuation dynamics, providing a fundamental understanding
of the enzymatic reaction turnover dynamics associated with overall
enzyme as well as the specific active-site conformational fluctuations
that are not identifiable and resolvable in the conventional ensemble-averaged
experiment.
Collapse
Affiliation(s)
- Maolin Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | | |
Collapse
|
75
|
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 2014; 19:15824-65. [PMID: 25271426 PMCID: PMC6271140 DOI: 10.3390/molecules191015824] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.
Collapse
Affiliation(s)
- Alexander Gust
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Birka Lalkens
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany.
| |
Collapse
|
76
|
Hohlbein J, Craggs TD, Cordes T. Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 2014; 43:1156-71. [PMID: 24037326 DOI: 10.1039/c3cs60233h] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables the sorting of fluorescently labelled species based on the number and type of fluorophores present. ALEX also provides a convenient way of accessing the correction factors necessary for determining accurate molecular distances. Here, we provide a comprehensive overview of the concept and current applications of ALEX and we explicitly discuss how to obtain fully corrected distance information across the entire FRET range. We also present new ideas for applications of ALEX which will push the limits of smFRET-based experiments in terms of temporal and spatial resolution for the study of complex biological systems.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands.
| | | | | |
Collapse
|
77
|
Murphy RR, Danezis G, Horrocks MH, Jackson SE, Klenerman D. Bayesian Inference of Accurate Population Sizes and FRET Efficiencies from Single Diffusing Biomolecules. Anal Chem 2014; 86:8603-12. [DOI: 10.1021/ac501188r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca R. Murphy
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - George Danezis
- Department
of Computer Science, University College London, London WC1E 6BT, United Kingdom
| | - Mathew H. Horrocks
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sophie E. Jackson
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
78
|
Zheng D, Lu HP. Single-molecule enzymatic conformational dynamics: spilling out the product molecules. J Phys Chem B 2014; 118:9128-40. [PMID: 25025461 PMCID: PMC4126733 DOI: 10.1021/jp5014434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Product releasing is an essential step of an enzymatic reaction, and a mechanistic understanding primarily depends on the active-site conformational changes and molecular interactions that are involved in this step of the enzymatic reaction. Here we report our work on the enzymatic product releasing dynamics and mechanism of an enzyme, horseradish peroxidase (HRP), using combined single-molecule time-resolved fluorescence intensity, anisotropy, and lifetime measurements. Our results have shown a wide distribution of the multiple conformational states involved in active-site interacting with the product molecules during the product releasing. We have identified that there is a significant pathway in which the product molecules are spilled out from the enzymatic active site, driven by a squeezing effect from a tight active-site conformational state, although the conventional pathway of releasing a product molecule from an open active-site conformational state is still a primary pathway. Our study provides new insight into the enzymatic reaction dynamics and mechanism, and the information is uniquely obtainable from our combined time-resolved single-molecule spectroscopic measurements and analyses.
Collapse
Affiliation(s)
- Desheng Zheng
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
79
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
80
|
MFD-PIE and PIE-FI: Ways to Extract More Information with TCSPC. SPRINGER SERIES ON FLUORESCENCE 2014. [DOI: 10.1007/4243_2014_66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
81
|
Orevi T, Lerner E, Rahamim G, Amir D, Haas E. Ensemble and single-molecule detected time-resolved FRET methods in studies of protein conformations and dynamics. Methods Mol Biol 2014; 1076:113-169. [PMID: 24108626 DOI: 10.1007/978-1-62703-649-8_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most proteins are nanomachines that are selected to execute specific functions and therefore should have some degree of flexibility. The driving force that excites specific motions of domains and smaller chain elements is the thermal fluctuations of the solvent bath which are channeled to selected modes of motions by the structural constraints. Consequently characterization of the ensembles of conformers of proteins and their dynamics should be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer (trFRET) within ensembles of site specifically labeled protein molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined, and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed. Both ensemble and single-molecule detection methods can be applied for data collection. In combination with synchronization methods, time-resolved FRET was also used for studies of fast conformational transitions, in particular the folding/unfolding transitions.
Collapse
Affiliation(s)
- Tomer Orevi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
82
|
Basak S, Chattopadhyay K. Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys Chem Chem Phys 2014; 16:11139-49. [DOI: 10.1039/c3cp55219e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
83
|
Hendrix J, Lamb DC. Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS. Methods Mol Biol 2014; 1076:653-682. [PMID: 24108649 DOI: 10.1007/978-1-62703-649-8_30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pulsed interleaved excitation (PIE) employs pulsed laser sources that are interleaved such that differentially colored fluorophores can be measured or imaged quasi-simultaneously in the absence of spectral crosstalk. PIE improves the robustness and reduces data analysis complexity of many fluorescence techniques, such as fluorescence cross-correlation spectroscopy (FCCS) and raster image cross-correlation spectroscopy (ccRICS), two methods used for quantitative investigation of molecular interactions in vitro and in living cells. However, as PIE is most often used for fluorescence fluctuation spectroscopy and burst analysis experiments and utilizes time-correlated single-photon counting detection and advanced optoelectronics, it has remained a technique that is mostly used by specialized single-molecule research groups. This protocols chapter provides an accessible overview of PIE for anyone considering implementing the method on a homebuilt or commercial microscope. We give details on the instrumentation, data collection and analysis software, on how to properly set up and align a PIE microscope, and finally, on how to perform proper dual-color FCS and RICS experiments.
Collapse
Affiliation(s)
- Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for Nanoscience (CeNS), Ludwig-Maximilian-Universität München, Munich, Germany
| | | |
Collapse
|
84
|
Abstract
Single-molecule spectroscopy has developed into a widely used method for probing the structure, dynamics, and mechanisms of biomolecular systems, especially in combination with Förster resonance energy transfer (FRET). In this introductory tutorial, essential concepts and methods will be outlined, from the FRET process and the basic considerations for sample preparation and instrumentation to some key elements of data analysis and photon statistics. Different approaches for obtaining dynamic information over a wide range of timescales will be explained and illustrated with examples, including the quantitative analysis of FRET efficiency histograms, correlation spectroscopy, fluorescence trajectories, and microfluidic mixing.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057
Zurich, Switzerland
| |
Collapse
|
85
|
DeVore MS, Gull SF, Johnson CK. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy. Chem Phys 2013; 422:10.1016/j.chemphys.2012.11.018. [PMID: 24223465 PMCID: PMC3819237 DOI: 10.1016/j.chemphys.2012.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.
Collapse
Affiliation(s)
- Matthew S. DeVore
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Stephen F. Gull
- Astrophysics Group, Department of Physics, Cambridge University, Cambridge CB3 0HE, United Kingdom
| | - Carey K. Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, United States
| |
Collapse
|
86
|
Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET. EMBO J 2013; 32:1639-49. [PMID: 23624933 DOI: 10.1038/emboj.2013.89] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/21/2013] [Indexed: 11/08/2022] Open
Abstract
The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains. Analysis of the fluctuations in the interdomain separation revealed frequent transitions to a nucleotide-free state. The nucleotide-exchange factor Mge1 did not induce ADP release, as expected, but rather facilitated binding of ATP. These results indicate that the conformational cycle of Ssc1 is more elaborate than previously thought and provide insight into how the Hsp70s can perform a wide variety of functions.
Collapse
|
87
|
Rothwell PJ, Allen WJ, Sisamakis E, Kalinin S, Felekyan S, Widengren J, Waksman G, Seidel CAM. dNTP-dependent conformational transitions in the fingers subdomain of Klentaq1 DNA polymerase: insights into the role of the "nucleotide-binding" state. J Biol Chem 2013; 288:13575-91. [PMID: 23525110 DOI: 10.1074/jbc.m112.432690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Conformational selection plays a key role in the polymerase cycle. RESULTS Klentaq1 exists in conformational equilibrium between three states (open, closed, and “nucleotide-binding”) whose level of occupancy is determined by the bound substrate. CONCLUSION The “nucleotide-binding” state plays a pivotal role in the reaction pathway. SIGNIFICANCE Direct evidence is provided for the role of a conformationally distinct “nucleotide-binding” state during dNTP incorporation. DNA polymerases are responsible for the accurate replication of DNA. Kinetic, single-molecule, and x-ray studies show that multiple conformational states are important for DNA polymerase fidelity. Using high precision FRET measurements, we show that Klentaq1 (the Klenow fragment of Thermus aquaticus DNA polymerase 1) is in equilibrium between three structurally distinct states. In the absence of nucleotide, the enzyme is mostly open, whereas in the presence of DNA and a correctly base-pairing dNTP, it re-equilibrates to a closed state. In the presence of a dNTP alone, with DNA and an incorrect dNTP, or in elevated MgCl2 concentrations, an intermediate state termed the "nucleotide-binding" state predominates. Photon distribution and hidden Markov modeling revealed fast dynamic and slow conformational processes occurring between all three states in a complex energy landscape suggesting a mechanism in which dNTP delivery is mediated by the nucleotide-binding state. After nucleotide binding, correct dNTPs are transported to the closed state, whereas incorrect dNTPs are delivered to the open state.
Collapse
Affiliation(s)
- Paul J Rothwell
- Chair for Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Otosu T, Ishii K, Tahara T. Note: Simple calibration of the counting-rate dependence of the timing shift of single photon avalanche diodes by photon interval analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:036105. [PMID: 23556857 DOI: 10.1063/1.4794769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The counting-rate dependence of the temporal response of single photon avalanche diodes (SPADs) is a critical issue for the accurate determination of the fluorescence lifetime. In this study, the response of SPADs was examined with analyzing the time interval of the detected photons. The results clearly show that the shift of the detection timing causes the counting-rate dependence of the temporal response, and this timing shift is solely determined by the time interval from the preceding photon. We demonstrate that this timing instability is readily calibrated by utilizing the macrotime data taken with the time-tag mode that is implemented in the time-correlated single photon counting modules.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Molecular Spectroscopy Laboratory, RIKEN, 2-1, Hirosawa, Wako 351-0198, Japan
| | | | | |
Collapse
|
89
|
Ingargiola A, Panzeri F, Sarkosh N, Gulinatti A, Rech I, Ghioni M, Weiss S, Michalet X. 8-spot smFRET analysis using two 8-pixel SPAD arrays. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8590. [PMID: 24386541 DOI: 10.1117/12.2003704] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) techniques are now widely used to address outstanding problems in biology and biophysics. In order to study freely diffusing molecules, current approaches consist in exciting a low concentration (<100 pM) sample with a single confocal spot using one or more lasers and detecting the induced single-molecule fluorescence in one or more spectrally- and/or polarization-distinct channels using single-pixel Single-Photon Avalanche Diodes (SPADs). A large enough number of single-molecule bursts must be accumulated in order to compute FRET efficiencies with sufficient statistics. As a result, the minimum timescale of observable phenomena is set by the minimum acquisition time needed for accurate measurements, typically a few minutes or more, limiting this approach mostly to equilibrium studies. Increasing smFRET analysis throughput would allow studying dynamics with shorter timescales. We recently demonstrated a new multi-spot excitation approach, employing a novel multi-pixel SPAD array, using a simplified dual-view setup in which a single 8-pixel SPAD array was used to collect FRET data from 4 independent spots. In this work we extend our results to 8 spots and use two 8-SPAD arrays to collect donor and acceptor photons and demonstrate the capabilities of this system by studying a series of doubly labeled dsDNA samples with different donor-acceptor distances ranging from low to high FRET efficiencies. Our results show that it is possible to enhance the throughput of smFRET measurements in solution by almost one order of magnitude, opening the way for studies of single-molecule dynamics with fast timescale once larger SPAD arrays become available.
Collapse
Affiliation(s)
| | - Francesco Panzeri
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Niusha Sarkosh
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| | - Angelo Gulinatti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Ivan Rech
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Massimo Ghioni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| |
Collapse
|
90
|
Michalet X, Colyer RA, Scalia G, Ingargiola A, Lin R, Millaud JE, Weiss S, Siegmund OHW, Tremsin AS, Vallerga JV, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni M, Cova S. Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120035. [PMID: 23267185 PMCID: PMC3538434 DOI: 10.1098/rstb.2012.0035] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.
Collapse
Affiliation(s)
- X Michalet
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1547, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Gulinatti A, Rech I, Maccagnani P, Ghioni M. A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8631. [PMID: 24357913 PMCID: PMC3865242 DOI: 10.1117/12.2003984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12×4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the trade-offs between the detectors' performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50µm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors.
Collapse
Affiliation(s)
- Angelo Gulinatti
- Politecnico di Milano, Dipartimento di Elettronica e Informazione, piazza Leonardo da Vinci 32 - 20133 Milano, Italy
| | - Ivan Rech
- Politecnico di Milano, Dipartimento di Elettronica e Informazione, piazza Leonardo da Vinci 32 - 20133 Milano, Italy
| | - Piera Maccagnani
- IMM-CNR sezione di Bologna, Via Piero Gobetti, 101 - 40129 Bologna, Italy
| | - Massimo Ghioni
- Politecnico di Milano, Dipartimento di Elettronica e Informazione, piazza Leonardo da Vinci 32 - 20133 Milano, Italy ; MPD Micro-Photon-Devices, via Stradivari 4 - 39100 Bolzano, Italy
| |
Collapse
|
92
|
Abstract
Pulsed interleaved excitation (PIE) is the methodology of interleaved or alternating excitation of different fluorophores on the nanosecond timescale, which allows quasi-simultaneous, yet independent measurements to be performed. PIE simplifies quantification of several fluorescence techniques such as FCCS and FRET experiments. Foremost, it allows to specifically filter out spectral emission bleedthrough (crosstalk) and direct excitation without a decrease in the signal-to-noise ratio (SNR) of the experiment. Next, PIE allows determination of the absolute FRET efficiency from FCCS experiments in the case of nonperfect labeling. In recent years, PIE has been utilized in many different advanced FFS techniques. Combining MFD with PIE allows highly accurate and species-specific spFRET analyses to be performed. The combination of scanning FFS techniques with PIE combines the best of both techniques and allows for false-positive free measurements of molecular interactions in vitro and in living cells. In succession, a comprehensive overview of the principle and versatility of the PIE technique is discussed, the theory for analysis with PIE is outlined by comparing CW- and PIE-FCCS and finally, some of the most important applications of the PIE technique in literature are reviewed.
Collapse
Affiliation(s)
- Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
93
|
Felekyan S, Sanabria H, Kalinin S, Kühnemuth R, Seidel CAM. Analyzing Förster resonance energy transfer with fluctuation algorithms. Methods Enzymol 2013; 519:39-85. [PMID: 23280107 DOI: 10.1016/b978-0-12-405539-1.00002-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) in combination with Förster resonance energy transfer (FRET) has been developed to a powerful statistical tool, which allows for the analysis of FRET fluctuations in the huge time of nanoseconds to seconds. FRET-FCS utilizes the strong distance dependence of the FRET efficiency on the donor (D)-acceptor (A) distance so that it developed to a perfect method for studying structural fluctuation in biomolecules involved in conformational flexibility, structural dynamics, complex formation, folding, and catalysis. Structural fluctuations thereby result in anticorrelated donor and acceptor signals, which are analyzed by FRET-FCS in order to characterize underlying structural dynamics. Simulated and experimental examples are discussed. First, we review experimental implementations of FRET-FCS and present theory for a two-state interconverting system. Additionally, we consider a very common case of FRET dynamics in the presence of donor-only labeled species. We demonstrate that the mean relaxation time for the structural dynamics can be easily obtained in most of cases, whereas extracting meaningful information from correlation amplitudes can be challenging. We present a strategy to avoid a fit with an underdetermined model function by restraining the D and A brightnesses of the at least one involved state, so that both FRET efficiencies and both rate constants (i.e., the equilibrium constant) can be determined. For samples containing several fluorescent species, the use of pulsed polarized excitation with multiparameter fluorescence detection allows for filtered FCS (fFCS), where species-specific correlation functions can be obtained, which can be directly interpreted. The species selection is achieved by filtering using fluorescence decays of individual species. Analytical functions for species auto- and cross-correlation functions are given. Moreover, fFCS is less affected by photophysical artifacts and often offers higher contrast, which effectively increases its time resolution and significantly enhances its capability to resolve multistate kinetics. fFCS can also differentiate between species even when their brightnesses are the same and thus opens up new possibilities to characterize complex dynamics. Alternative fluctuation algorithms to study FRET dynamics are also briefly reviewed.
Collapse
Affiliation(s)
- Suren Felekyan
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
94
|
Milles S, Lemke EA. What precision-protein-tuning and nano-resolved single molecule sciences can do for each other. Bioessays 2012; 35:65-74. [DOI: 10.1002/bies.201200094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
95
|
Kalinin S, Peulen T, Sindbert S, Rothwell PJ, Berger S, Restle T, Goody RS, Gohlke H, Seidel CAM. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat Methods 2012; 9:1218-25. [PMID: 23142871 DOI: 10.1038/nmeth.2222] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022]
Abstract
We present a comprehensive toolkit for Förster resonance energy transfer (FRET)-restrained modeling of biomolecules and their complexes for quantitative applications in structural biology. A dramatic improvement in the precision of FRET-derived structures is achieved by explicitly considering spatial distributions of dye positions, which greatly reduces uncertainties due to flexible dye linkers. The precision and confidence levels of the models are calculated by rigorous error estimation. The accuracy of this approach is demonstrated by docking a DNA primer-template to HIV-1 reverse transcriptase. The derived model agrees with the known X-ray structure with an r.m.s. deviation of 0.5 Å. Furthermore, we introduce FRET-guided 'screening' of a large structural ensemble created by molecular dynamics simulations. We used this hybrid approach to determine the formerly unknown configuration of the flexible single-strand template overhang.
Collapse
Affiliation(s)
- Stanislav Kalinin
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kapusta P, Macháň R, Benda A, Hof M. Fluorescence Lifetime Correlation Spectroscopy (FLCS): concepts, applications and outlook. Int J Mol Sci 2012; 13:12890-910. [PMID: 23202928 PMCID: PMC3497302 DOI: 10.3390/ijms131012890] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 11/16/2022] Open
Abstract
Fluorescence Lifetime Correlation Spectroscopy (FLCS) is a variant of fluorescence correlation spectroscopy (FCS), which uses differences in fluorescence intensity decays to separate contributions of different fluorophore populations to FCS signal. Besides which, FLCS is a powerful tool to improve quality of FCS data by removing noise and distortion caused by scattered excitation light, detector thermal noise and detector afterpulsing. We are providing an overview of, to our knowledge, all published applications of FLCS. Although these are not numerous so far, they illustrate possibilities for the technique and the research topics in which FLCS has the potential to become widespread. Furthermore, we are addressing some questions which may be asked by a beginner user of FLCS. The last part of the text reviews other techniques closely related to FLCS. The generalization of the idea of FLCS paves the way for further promising application of the principle of statistical filtering of signals. Specifically, the idea of fluorescence spectral correlation spectroscopy is here outlined.
Collapse
Affiliation(s)
- Peter Kapusta
- J. Heyrovský Institute of Physical Chemistry of ASCR, v.v.i, Dolejškova 3, 18223 Prague 8, Czech Republic; E-Mails: (P.K.); (R.M.)
| | - Radek Macháň
- J. Heyrovský Institute of Physical Chemistry of ASCR, v.v.i, Dolejškova 3, 18223 Prague 8, Czech Republic; E-Mails: (P.K.); (R.M.)
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná 3105, 272 01 Kladno, Czech Republic
| | - Aleš Benda
- Centre for Vascular Research and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia; E-Mail:
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of ASCR, v.v.i, Dolejškova 3, 18223 Prague 8, Czech Republic; E-Mails: (P.K.); (R.M.)
| |
Collapse
|
97
|
Lopez SG, Ruedas-Rama MJ, Casares S, Alvarez-Pez JM, Orte A. Bulk and Single-Molecule Fluorescence Studies of the Saturation of the DNA Double Helix Using YOYO-3 Intercalator Dye. J Phys Chem B 2012; 116:11561-9. [DOI: 10.1021/jp303438d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergio G. Lopez
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Maria J. Ruedas-Rama
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Salvador Casares
- Department of Physical Chemistry,
Faculty of Sciences, University of Granada, Fuentenueva Campus, 18071, Granada, Spain
| | - Jose M. Alvarez-Pez
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Angel Orte
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| |
Collapse
|
98
|
Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Natl Acad Sci U S A 2012; 109:7747-52. [PMID: 22550169 DOI: 10.1073/pnas.1205120109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In single-molecule FRET experiments with pulsed lasers, not only the colors of the photons but also the fluorescence lifetimes can be monitored. Although these quantities appear to be random, they are modulated by conformational dynamics. In order to extract information about such dynamics, we develop the theory of the joint distribution of FRET efficiencies and fluorescence lifetimes determined from bins (or bursts) of photons. Our starting point is a rigorous formal expression for the distribution of the numbers of donor and acceptor photons and donor lifetimes in a bin that treats the influence of conformational dynamics on all timescales. This formula leads to an analytic result for a two-state system interconverting on a timescale slower than the interphoton time and to an efficient simulation algorithm for multistate dynamics. The shape of the joint distribution contains more information about conformational dynamics than the FRET efficiency histogram alone. In favorable cases, the connectivity of the underlying conformational states can be determined directly by simple inspection of the projection of the joint distribution on the efficiency-lifetime plane.
Collapse
|
99
|
Kudryavtsev V, Sikor M, Kalinin S, Mokranjac D, Seidel CAM, Lamb DC. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. Chemphyschem 2012; 13:1060-78. [PMID: 22383292 DOI: 10.1002/cphc.201100822] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/30/2011] [Indexed: 12/13/2022]
Abstract
Single-pair Förster resonance energy transfer (spFRET) experiments using single-molecule burst analysis on a confocal microscope are an ideal tool to measure inter- and intramolecular distances and dynamics on the nanoscale. Different techniques have been developed to maximize the amount of information available in spFRET burst analysis experiments. Multiparameter fluorescence detection (MFD) is used to monitor a variety of fluorescence parameters simultaneously and pulsed interleaved excitation (PIE) employs direct excitation of the acceptor to probe its presence and photoactivity. To calculate accurate FRET efficiencies from spFRET experiments with MFD or PIE, several calibration measurements are usually required. Herein, we demonstrate that by combining MFD with PIE information regarding all calibration factors as well as an accurate determination of spFRET histograms can be performed in a single measurement. In addition, the quality of overlap of the different detection volumes as well as the detection of acceptor photophysics can be investigated with MFD-PIE. Bursts containing acceptor photobleaching can be identified and excluded from further investigation while bursts that contain FRET dynamics are unaffected by this analysis. We have employed MFD-PIE to accurately analyze the effects of nucleotides and substrate on the interdomain separation in DnaK, the major bacterial heat shock protein 70 (Hsp70). The interdomain distance increases from 47 Å in the ATP-bound state to 84 Å in the ADP-bound state and slightly contracts to 77 Å when a substrate is bound. This is in contrast to what was observed for the mitochondrial member of the Hsp70s, Ssc1, supporting the notion of evolutionary specialization of Hsp70s for different cellular functions in different organisms and cell organelles.
Collapse
Affiliation(s)
- Volodymyr Kudryavtsev
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstr. 11, Gerhard-Ertl-Building, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CAM. Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. Chemphyschem 2012; 13:1036-53. [PMID: 22407544 PMCID: PMC3495305 DOI: 10.1002/cphc.201100897] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/02/2012] [Indexed: 02/07/2023]
Abstract
An analysis method of lifetime, polarization and spectrally filtered fluorescence correlation spectroscopy, referred to as filtered FCS (fFCS), is introduced. It uses, but is not limited to, multiparameter fluorescence detection to differentiate between molecular species with respect to their fluorescence lifetime, polarization and spectral information. Like the recently introduced fluorescence lifetime correlation spectroscopy (FLCS) [Chem. Phys. Lett. 2002, 353, 439-445], fFCS is based on pulsed laser excitation. However, it uses the species-specific polarization and spectrally resolved fluorescence decays to generate filters. We determined the most efficient method to generate global filters taking into account the anisotropy information. Thus, fFCS is able to distinguish species, even if they have very close or the same fluorescence lifetime, given differences in other fluorescence parameters. fFCS can be applied as a tool to compute species-specific auto- (SACF) and cross- correlation (SCCF) functions from a mixture of different species for accurate and quantitative analysis of their concentration, diffusion and kinetic properties. The computed correlation curves are also free from artifacts caused by unspecific background signal. We tested this methodology by simulating the extreme case of ligand-receptor binding processes monitored only by differences in fluorescence anisotropy. Furthermore, we apply fFCS to an experimental single-molecule FRET study of an open-to-closed conformational transition of the protein Syntaxin-1. In conclusion, fFCS and the global analysis of the SACFs and SCCF is a key tool to investigate binding processes and conformational dynamics of biomolecules in a nanosecond-to-millisecond time range as well as to unravel the involved molecular states.
Collapse
Affiliation(s)
- Suren Felekyan
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstraße 1, Geb. 26.32.02, 40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|