51
|
Mudaliana S. Antimicrobial activity of Centella asiatica and Gigantochloa apus. J Basic Clin Physiol Pharmacol 2021; 32:755-759. [PMID: 34214352 DOI: 10.1515/jbcpp-2020-0396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Antibiotic treatments can create multi-drug resistance among several pathogens. There is a need for an antibiotic alternative to overcome this problem. In Indonesia, Centella asiatica (Asiatic pennywort) and Gigantochloa apus (string bamboo) are two common medicinal plants used to treat tuberculosis, diarrhea, and other symptoms. This study was done to compare the antimicrobial activity of C. asiatica and G. apus against five pathogenic bacteria, i.e., Mycobacterium tuberculosis H37Rv strain, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Salmonella typhi. METHODS The ethanol extracts of C. asiatica, and G. apus shoot were obtained by using speed extractor, pressure, and temperature extraction. The phytochemical contents of each extract were screened. The ethanol extract's antimycobacterial activity was determined using Lowenstein Jensen (LJ) medium and antibacterial activity was determined using Kirby-Bauer methods on Mueller Hinton agar (MHA). RESULTS The phytochemical analysis showed that G. apus extract contains alkaloids and tannins, whereas C. asiatica extract contains flavonoids, alkaloids, saponins, and tannins. This study showed that G. apus inhibited the growth of M. tuberculosis H37Rv strain and S. typhi. C. asiatica showed antimicrobial activity against all pathogenic bacteria tested, except B. subtilis. CONCLUSIONS Both medicinal plants extract can inhibit the growth of five pathogenic bacteria tested, thus, have the potential as an alternative treatment, or complementary, to treat the pathogenic bacterial infection.
Collapse
Affiliation(s)
- Siti Mudaliana
- Laboratory Herbal of Materia Medica Batu, Public Health Office of East Java Province, Batu, Indonesia
| |
Collapse
|
52
|
Aliabadi M, Chee BS, Matos M, Cortese YJ, Nugent MJD, de Lima TAM, Magalhães WLE, de Lima GG, Firouzabadi MD. Microfibrillated cellulose films containing chitosan and tannic acid for wound healing applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:67. [PMID: 34117926 PMCID: PMC8197706 DOI: 10.1007/s10856-021-06536-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The effectiveness of tannic acid as antimicrobial and wound healing for burns have been shown for a century; however, uncontrolled target dosage may result in undesirable side-effects. Remarkably, tannic acid polyphenols compounds crosslinked with polymeric materials produce a strong composite containing the beneficial properties of this tannin. However, investigation of the crosslink structure and its antibacterial and regenerative properties are still unknown when using nanocellulose by mechanical defibrillation; additionally, due to the potential crosslink structure with chitosan, its structure can be complex. Therefore, this work uses bleach kraft nanocellulose in order to investigate the effect on the physical and regenerative properties when incorporated with chitosan and tannic acid. This film results in increased rigidity with a lamellar structure when incorporated with tannic acid due to its strong hydrogen bonding. The release of tannic acid varied depending on the structure it was synthesised with, whereas with chitosan it presented good release model compared to pure cellulose. In addition, exhibiting similar thermal stability as pure cellulose films with antibacterial properties tested against S. aureus and E. coli with good metabolic cellular viability while also inhibiting NF-κB activity, a characteristic of tannic acid.
Collapse
Affiliation(s)
- Meysam Aliabadi
- Department of Paper sciences and engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Mailson Matos
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Yvonne J Cortese
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Michael J D Nugent
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Tielidy A M de Lima
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | | | - Gabriel Goetten de Lima
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland.
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | | |
Collapse
|
53
|
Guo Y, An X, Fan Z. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J Mech Behav Biomed Mater 2021; 118:104452. [PMID: 33756417 DOI: 10.1016/j.jmbbm.2021.104452] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
The poor mechanical properties and the lack of antibacterial ability of hydrogels limit their applications as wound dressing. In this work, a novel and high strength polyvinyl alcohol (PVA)/tannic acid (TA) hydrogel with aramid nanofibers (ANFs) as the reinforcement was successfully fabricated. The surface composition and microstructure of the hydrogel were characterized by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The mechanical properties, water content and swelling behaviors, as well as the antibacterial abilities and biocompatibility of the prepared hydrogel were systematically analyzed as well. The results indicated that the prepared hydrogel showed excellent mechanical properties. The tensile strength and elongation of the prepared hydrogel can respectively reach 2.06 MPa and 950% owing to the formation of the multiple H bonds among PVA, ANFs and TA. What's more, PVA/ANFs/TA (PAT) hydrogel possessed shape memory and broad-spectrum antibacterial properties against S. aureus, E. coli and P. aeruginosa (100% antibacterial rate) at the concentration of 12 mg/mL. PAT hydrogels also had low cytotoxicity, affirming its potential application as wound dressing.
Collapse
Affiliation(s)
- Yuqing Guo
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoli An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
54
|
Li J, Li J, Wei J, Zhu X, Qiu S, Zhao H. Copper Tannic Acid-Coordinated Metal-Organic Nanosheets for Synergistic Antimicrobial and Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10446-10456. [PMID: 33617228 DOI: 10.1021/acsami.0c22321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The copper tannic acid (CuTA) nanosheets with an excellent antibacterial activity were successfully prepared, which showed fine antibacterial and antifouling performance after hybridization with acrylic resin. The morphology and structure characterization of CuTA nanosheets were studied by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, etc. The plate counting method, zone of inhibition test, and minimum inhibitory concentration (MIC) method were used to detect the antibacterial activity of the prepared samples against Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative Escherichia coli (E. coli). The results showed that the killing rates of 2 and 0.5 mg/mL of CuTA powder were close to 100% after 24 h. The MIC values of E. coli and B. subtilis were 0.25 and 0.5 mg/mL, respectively. The results of morphology and element distribution of bacteria, after treating with CuTA powder, revealed that Cu2+ and TA destroyed their cell walls and inhibited the proliferation and growth of the bacteria. Furthermore, the hybrid coating of CuTA nanosheets and acrylic resin showed brilliant antimicrobial performance for E. coli and B. subtilis and antialgae properties under a lower CuTA load (≤5%). The CuTA nanosheets with a low copper content (30.9 wt %) and low pollution have promising applications in marine antifouling coatings.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jingyu Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiayu Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaobo Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shihui Qiu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
55
|
Tong X, Liu S, Qu D, Gao H, Yan L, Chen Y, Crittenden J. Tannic acid-metal complex modified MXene membrane for contaminants removal from water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
Rolta R, Sharma A, Sourirajan A, Mallikarjunan PK, Dev K. Combination between antibacterial and antifungal antibiotics with phytocompounds of Artemisia annua L: A strategy to control drug resistance pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113420. [PMID: 32998023 DOI: 10.1016/j.jep.2020.113420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. is a traditional Chinese medicine used for the treatment of malaria, jaundice and intense fever. AIM OF THE STUDY The aim of the present study was to investigate the phytochemicals, antioxidants, antimicrobial and synergistic potential of methanolic and petroleum ether extracts of A. annua against bacterial and fungal pathogens. METHOD Antioxidant activity of different concentrations of methanolic and petroleum ether extracts of A. annua was determined by DPPH free radical scavenging assay. Antimicrobial activity was determined by agar well diffusion, whereas MIC and synergistic activity was done by broth dilution method.TLC and GC-MS were done to identify active phytocompounds present in methanolic and petroleum ether extracts. RESULTS Methanolic extract of A. annua showed higher antioxidant potential (IC50 37 0.75 ± 0.34 μg ml-1) as compared to petroleum ether extract. In antimicrobial analysis, methanolic and petroleum ether extracts of A. annua produced potent inhibitory activity against Candida strains as compared to bacterial strains. Methanolic and petroleum ether extracts of A. annua produced synergistic potential with decrease in MIC from 4 to 264 folds against bacterial (S. aureus and E. coli) and Candida strains in combination with antibacterial and antifungal antibiotics. Sub fraction I of methanolic and petroleum ether extracts was isolated through silica TLC and showed 10-fold more antimicrobial activity as compared to crude extract. GC-MS analysis of sub-fraction I of A. annua revealed 13 major phytocompounds with area more than 1%. Interestingly, 2-Propenoic acid and ridecyl ester (25.88%) were the major phytocompounds. CONCLUSION Phytocompounds of A. annua can be used as bioenhancer of antibacterial and antifungal agents to control drug resistance.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anshika Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | | | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
57
|
Bioactive Icariin/β-CD-IC/Bacterial Cellulose with Enhanced Biomedical Potential. NANOMATERIALS 2021; 11:nano11020387. [PMID: 33546254 PMCID: PMC7913306 DOI: 10.3390/nano11020387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/14/2023]
Abstract
A "super" bioactive antibacterial hydrogel, Icariin-β-CD-inclusion complex/Bacterial cellulose and an equally capable counterpart Icariin-Bacterial cellulose (ICBC) were successfully produced with excellent antioxidant properties. The highly porous hydrogels demonstrated very high fluid/liquid absorption capability and were functionally active as Fourier Transform Infrared Spectrometer (FTIR) test confirmed the existence of abundant hydroxyls (-OH stretching), carboxylic acids (-CH2/C-O stretching), Alkyne/nitrile (C≡C/C≡N stretching with triple bonds) and phenol (C-H/N-O symmetric stretching) functional groups. Scanning electron microscope (SEM) and X-ray diffraction (XRD) tests confirmed a successful β-CD-inclusion complexation with Icariin with a great potential for sustained and controlled drug release. In vitro drug release test results indicated a systemic and controlled release of the drug (Icariin) from the internal cavities of the β-CD inclusion complex incorporated inside the BC matrix with high Icariin (drug) release rates. Impressive inactivation rates against Gram-negative bacteria Escherichia coli ATCC 8099 and gram-positive bacteria Staphylococcus aureus ATCC 6538; >99.19% and >98.89% respectively were recorded, as the materials proved to be non-toxic on L929 cells in the in vitro cytotoxicity test results. The materials with promising versatile multipurpose administration of Icariin for wound dressing (as wound dressers), can also be executed as implants for tissue regeneration, as well as face-mask for cosmetic purposes.
Collapse
|
58
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
59
|
Aashique M, Roy A, Kosuru RY, Bera S. Membrane Depolarization Sensitizes Pseudomonas aeruginosa Against Tannic Acid. Curr Microbiol 2021; 78:713-717. [PMID: 33410955 DOI: 10.1007/s00284-020-02330-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
The use of dietary polyphenols as antimicrobial agents has gained immense popularity in recent years, although few of them-like tannic acid has limited use in this field of research; one of the main reasons is its restricted access through the bacterial membrane. Dissipating the bacterial membrane potential with a sub-lethal dosage of the protonophore, carbonyl cyanide m-chlorophenyl hydrazone, enhanced the tannic acid-cytotoxicity with subsequent inhibition of aerobic respiration in Pseudomonas aeruginosa strains which otherwise exhibited a minimum response to tannic acid. However, ascorbic acid, an antioxidant and bacterial membrane-stabilizing compound, had rescued the cells from both tannic acid- and CCCP-mediated lethality. The results suggested that dispersing the membrane potential with a protonophore can enhance the antibacterial properties of tannic acid.
Collapse
Affiliation(s)
- Md Aashique
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Amrita Roy
- Department of Biotechnology, Indian Academy Degree College, Bangalore, Karnataka, 5600043, India
| | - Rekha Yamini Kosuru
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Soumen Bera
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India.
| |
Collapse
|
60
|
Choi J, Kim WK. Dietary Application of Tannins as a Potential Mitigation Strategy for Current Challenges in Poultry Production: A Review. Animals (Basel) 2020; 10:ani10122389. [PMID: 33327595 PMCID: PMC7765034 DOI: 10.3390/ani10122389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There are diverse challenges in the poultry production industry that decrease the productivity and efficiency of poultry production, impair animal welfare, and pose issues to public health. Furthermore, the use of antibiotic growth promoters (AGP) in feed, which have been used to improve the growth performance and gut health of chickens, has been restricted in many countries. Tannins, polyphenolic compounds that precipitate proteins, are considered as alternatives for AGP in feed and provide solutions to mitigate challenges in poultry production due to their antimicrobial, antioxidant, anti-inflammatory and gut health promoting effects. However, because high dosages of tannins have antinutritional effects when fed to poultry, determining appropriate dosages of supplemental tannins is critical for their potential implementation as a solution for the challenges faced in poultry production. Abstract The poultry industry has an important role in producing sources of protein for the world, and the size of global poultry production continues to increase annually. However, the poultry industry is confronting diverse challenges including bacterial infection (salmonellosis), coccidiosis, oxidative stress, including that caused by heat stress, welfare issues such as food pad dermatitis (FPD) and nitrogen and greenhouse gasses emissions that cumulatively cause food safety issues, reduce the efficacy of poultry production, impair animal welfare, and induce environmental issues. Furthermore, restrictions on the use of AGP have exacerbated several of these negative effects. Tannins, polyphenolic compounds that possess a protein precipitation capacity, have been considered as antinutritional factors in the past because high dosages of tannins can decrease feed intake and negatively affect nutrient digestibility and absorption. However, tannins have been shown to have antimicrobial, antioxidant and anti-inflammatory properties, and as such, have gained interest as promising bioactive compounds to help alleviate the challenges of AGP removal in the poultry industry. In addition, the beneficial effects of tannins can be enhanced by several strategies including heat processing, combining tannins with other bioactive compounds, and encapsulation. As a result, supplementation of tannins alone or in conjunction with the above strategies could be an effective approach to decrease the need of AGP and otherwise improve poultry production efficiency.
Collapse
|
61
|
Štumpf S, Hostnik G, Primožič M, Leitgeb M, Bren U. Generation Times of E. coli Prolong with Increasing Tannin Concentration while the Lag Phase Extends Exponentially. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121680. [PMID: 33271746 PMCID: PMC7760653 DOI: 10.3390/plants9121680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/10/2023]
Abstract
The current study examines the effect of tannins and tannin extracts on the lag phase duration, growth rate, and generation time of Escherichia coli. Effects of castalagin, vescalagin, gallic acid, Colistizer, tannic acid as well as chestnut, mimosa, and quebracho extracts were determined on E. coli's growth phases using the broth microdilution method and obtained by turbidimetric measurements. E. coli responds to the stress caused by the investigated antimicrobial agents with reduced growth rates, longer generation times, and extended lag phases. Prolongation of the lag phase was relatively small at low tannin concentrations, while it became more pronounced at concentrations above half the MIC. Moreover, for the first time, it was observed that lag time extensions follow a strict exponential relationship with increasing tannin concentrations. This feature is very likely a direct consequence of the tannin complexation of certain essential ions from the growth medium, making them unavailable to E. coli for its growth.
Collapse
Affiliation(s)
- Sara Štumpf
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor 2000, Slovenia; (S.Š.); (G.H.); (M.P.); (M.L.)
| | - Gregor Hostnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor 2000, Slovenia; (S.Š.); (G.H.); (M.P.); (M.L.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor 2000, Slovenia; (S.Š.); (G.H.); (M.P.); (M.L.)
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor 2000, Slovenia; (S.Š.); (G.H.); (M.P.); (M.L.)
- Faculty of Medicine, University of Maribor, Maribor 2000, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor 2000, Slovenia; (S.Š.); (G.H.); (M.P.); (M.L.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper 6000, Slovenia
- Correspondence: ; Tel.: +386-2-2294-421
| |
Collapse
|
62
|
Farha AK, Yang QQ, Kim G, Li HB, Zhu F, Liu HY, Gan RY, Corke H. Tannins as an alternative to antibiotics. FOOD BIOSCI 2020; 38:100751. [DOI: 10.1016/j.fbio.2020.100751] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
63
|
Fan J, Xiao D, Zhang L, Edirisinghe I, Burton-Freeman B, Sandhu AK. Pharmacokinetic Characterization of (Poly)phenolic Metabolites in Human Plasma and Urine after Acute and Short-Term Daily Consumption of Mango Pulp. Molecules 2020; 25:E5522. [PMID: 33255828 PMCID: PMC7728344 DOI: 10.3390/molecules25235522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacokinetic (PK) evaluation of polyphenolic metabolites over 24 h was conducted in human subjects (n = 13, BMI = 22.7 ± 0.4 kg/m2) after acute mango pulp (MP), vitamin C (VC) or MP + VC test beverage intake and after 14 days of MP beverage intake. Plasma and urine samples were collected at different time intervals and analyzed using targeted and non-targeted mass spectrometry. The maximum concentrations (Cmax) of gallotannin metabolites were significantly increased (p < 0.05) after acute MP beverage intake compared to VC beverage alone. MP + VC beverage non-significantly enhanced the Cmax of gallic acid metabolites compared to MP beverage alone. Pyrogallol (microbial-derived metabolite) derivatives increased (3.6%) after the 14 days of MP beverage intake compared to 24 h acute MP beverage intake (p < 0.05). These results indicate extensive absorption and breakdown of gallotannins to galloyl and other (poly)phenolic metabolites after MP consumption, suggesting modulation and/or acclimation of gut microbiota to daily MP intake.
Collapse
Affiliation(s)
| | | | | | | | | | - Amandeep K. Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA; (J.F.); (D.X.); (L.Z.); (I.E.); (B.B.-F.)
| |
Collapse
|
64
|
Lu R, Zhang X, Cheng X, Zhang Y, Zan X, Zhang L. Medical Applications Based on Supramolecular Self-Assembled Materials From Tannic Acid. Front Chem 2020; 8:583484. [PMID: 33134280 PMCID: PMC7573216 DOI: 10.3389/fchem.2020.583484] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenol, characterized by various phenolic rings in the chemical structure and an abundance in nature, can be extracted from vegetables, grains, chocolates, fruits, tea, legumes, and seeds, among other sources. Tannic acid (TA), a classical polyphenol with a specific chemical structure, has been widely used in biomedicine because of its outstanding biocompatibility and antibacterial and antioxidant properties. TA has tunable interactions with various materials that are widely distributed in the body, such as proteins, polysaccharides, and glycoproteins, through multimodes including hydrogen bonding, hydrophobic interactions, and charge interactions, assisting TA as important building blocks in the supramolecular self-assembled materials. This review summarizes the recent immense progress in supramolecular self-assembled materials using TA as building blocks to generate different materials such as hydrogels, nanoparticles/microparticles, hollow capsules, and coating films, with enormous potential medical applications including drug delivery, tumor diagnosis and treatment, bone tissue engineering, biofunctional membrane material, and the treatment of certain diseases. Furthermore, we discuss the challenges and developmental prospects of supramolecular self-assembly nanomaterials based on TA.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi, China.,School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
65
|
Zhao Y, Jiang Q. Roles of the Polyphenol-Gut Microbiota Interaction in Alleviating Colitis and Preventing Colitis-Associated Colorectal Cancer. Adv Nutr 2020; 12:546-565. [PMID: 32905583 PMCID: PMC8009754 DOI: 10.1093/advances/nmaa104] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that the gut microbiota can promote or inhibit colonic inflammation and carcinogenesis. Promotion of beneficial gut bacteria is considered a promising strategy to alleviate colonic diseases including colitis and colorectal cancer. Interestingly, dietary polyphenols, which have been shown to attenuate colitis and inhibit colorectal cancer in animal models and some human studies, appear to reach relatively high concentrations in the large intestine and to interact with the gut microbial community. This review summarizes the modulatory effects of polyphenols on the gut microbiota in humans and animals under healthy and diseased conditions including colitis and colitis-associated colorectal cancer (CAC). Existing human and animal studies indicate that polyphenols and polyphenol-rich whole foods are capable of elevating butyrate producers and probiotics that alleviate colitis and inhibit CAC, such as Lactobacillus and Bifidobacterium. Studies in colitis and CAC models indicate that polyphenols decrease opportunistic pathogenic or proinflammatory microbes and counteract disease-induced dysbiosis. Consistently, polyphenols also change microbial functions, including increasing butyrate formation. Moreover, polyphenol metabolites produced by the gut microbiota appear to have anticancer and anti-inflammatory activities, protect gut barrier integrity, and mitigate inflammatory conditions in cells and animal models. Based on these results, we conclude that polyphenol-mediated alteration of microbial composition and functions, together with polyphenol metabolites produced by the gut microbiota, likely contribute to the protective effects of polyphenols on colitis and CAC. Future research is needed to validate the causal role of the polyphenol-gut microbiota interaction in polyphenols' anti-colitis and anti-CAC effects, and to further elucidate mechanisms underlying such interaction.
Collapse
Affiliation(s)
- Yiying Zhao
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
66
|
DEMİRTAŞ A. Influence of Pinus brutia bark extract containing phenolic compounds on some commensal and pathogenic bacteria from the intestinal microflora. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2020. [DOI: 10.24880/maeuvfd.709662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
67
|
Lotfi R. A commentary on methodological aspects of hydrolysable tannins metabolism in ruminant: a perspective view. Lett Appl Microbiol 2020; 71:466-478. [PMID: 32654165 DOI: 10.1111/lam.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022]
Abstract
Although, the application of tannic acid (TA), gallic acid (GA), natural hydrolysable tannins (HT)-rich ingredients, and HT-rich feeds in ruminant feeding have been explored in order to modify or manipulate microbial activities of digestive tract of animals, the interaction between HT and gastrointestinal microbiota and the fate of HT metabolites (GA, ellagic acid, pyrogallol, resorcinol, phloroglucinol, catechol and urolithin) derived from gastrointestinal microbial HT metabolism in the animal as a whole and animal products are missing. Incomplete biotransformation of HT and TA to GA, pyrogallol, resorcinol, phloroglucinol and other phenolic metabolites is a prevalent phenomenon discovered by researchers who examine the fate of HT metabolites in ruminant. While the rest of fellow researchers do not even examine the fate of HT metabolites and assume the complete biotransformation and fermentation of HT metabolites to volatile fatty acids (VFA). Only three studies have successfully identified the complete biotransformation and fermentation of HT metabolites to VFA in ruminant. The HT metabolites, mostly pyrogallol, produced through incomplete biotransformation of HT have adverse effects on gastrointestinal microbiota and host animal. Lack of awareness regarding the metabolism of HT metabolites and its consequences would compromise ruminant gastrointestinal microbiota, animal welfare, our environment and the power of research papers' findings. In this perspective paper, I will bring to attention a new angle on the biotransformation and fermentation of HT metabolites in gastrointestinal tract, the role of gastrointestinal microbiota and deficiency of current approach in isolating tannin-degrading bacteria from rumen. Also, suggestions for better monitoring and understanding HT metabolisms in ruminant are presented.
Collapse
Affiliation(s)
- R Lotfi
- Ph.D Candidate of Ruminant Nutrition at Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
68
|
|
69
|
The Effect of Growth Medium Strength on Minimum Inhibitory Concentrations of Tannins and Tannin Extracts against E. coli. Molecules 2020; 25:molecules25122947. [PMID: 32604845 PMCID: PMC7355419 DOI: 10.3390/molecules25122947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
In this study the effect of growth medium strength on the minimum inhibitory concentration (MIC) of different tannins and tannin extracts against Escherichia coli was systematically investigated for the first time. Three pure compounds (vescalagin, castalagin and gallic acid) and five extracts (chestnut, quebracho, mimosa, Colistizer and tannic acid) were studied. Broth microdilution was assayed and bacteria were grown using different growth medium strengths varying from half to double the concentration recommended by the producer. MICs were determined using the iodonitrotetrazolium chloride (INT) dye or turbidity measurements. It was observed that MIC values depend on the growth medium strength. With an increase in the growth medium concentration MIC values rose roughly linearly for all samples, while their relative order remained unchanged, indicating that a direct interaction of tannins with growth medium nutrients represents the likely source of their antimicrobial activity. Understanding the effect of growth medium strength can finally yield a plausible explanation for the observed variation in MIC values reported in the scientific literature as well as provide help in planning proper applications of tannins in the livestock production.
Collapse
|
70
|
Sunsandee N, Ramakul P, Phatanasri S, Pancharoen U. Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: Kinetic and equilibrium studies. ACTA ACUST UNITED AC 2020; 27:e00488. [PMID: 32577411 PMCID: PMC7305391 DOI: 10.1016/j.btre.2020.e00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
The maximum adsorption capacity was 86.93 %. Experimental data were in agreement with pseudo-second-order kinetics. Experimental data were followed Langmuir isotherm model. Biosorption of dicloxacilin onto T. catappa L. biomass is possible, spontaneous and exothermic process.
This study focused on the use of Indian almond leaf biomass, a local plant widely found in Thailand, on removal of dicloxacillin from pharmaceutical waste water by biosorption. The biosorption characteristics of dicloxacillin were investigated in terms of equilibrium, kinetics and thermodynamics. Optimum biosorption conditions were determined from pH, initial dicloxacillin concentration, biomass dosage, contact time, and temperature. The maximum adsorption capacity was 86.93 % (pH 6.0, 0.1 g/L biomass, dicloxacillin concentration 20 mg/L, contact time 24 h, temperature 283.15 K). The thermodynamic parameters (298.15 K), free energy change, enthalpy change and entropy change were -3475.79 J/mol, −25.36 kJ/mol, and −73.40 J/mol/K, respectively. The best interpretation for the experimental data was given by the Langmuir isotherm with correlation coefficient of 0.965. The results were found to tie in well with pseudo-second-order kinetics. Considering the cost-effectiveness, Indian almond leaf biomass is considered to be suitable to remove dicloxacillin from pharmaceutical waste water.
Collapse
Affiliation(s)
- Niti Sunsandee
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prakorn Ramakul
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Suphot Phatanasri
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ura Pancharoen
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
71
|
Fogagnolo M, Bergamini P, Marchesi E, Marvelli L, Gambari R, Lampronti I. Polytopic carriers for platinum ions: from digalloyl depside to tannic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01352h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multinuclear platinum complexes of the natural antioxidant tannic acid and its aglycone part methyl digallate can be prepared via an environmentally friendly, solvent-free process exploiting the convenient precursor [PtCO3(Me2SO-S)2].
Collapse
Affiliation(s)
- Marco Fogagnolo
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Paola Bergamini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Elena Marchesi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Lorenza Marvelli
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|
72
|
Li H, Gao C, Tang L, Wang C, Chen Q, Zheng Q, Yang S, Sheng S, Zan X. Lysozyme (Lys), Tannic Acid (TA), and Graphene Oxide (GO) Thin Coating for Antibacterial and Enhanced Osteogenesis. ACS APPLIED BIO MATERIALS 2019; 3:673-684. [PMID: 35019412 DOI: 10.1021/acsabm.9b01017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Huaqiong Li
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), 16 Xinsan Road, Wenzhou 325001, P.R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, P.R. China
| | - Chenyuan Gao
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), 16 Xinsan Road, Wenzhou 325001, P.R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, P.R. China
| | - Lin Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Chenou Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Qiong Chen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Qianyi Zheng
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Shuoshuo Yang
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), 16 Xinsan Road, Wenzhou 325001, P.R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, P.R. China
| | - Sunren Sheng
- Department of Orthopaedics,The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), 16 Xinsan Road, Wenzhou 325001, P.R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, P.R. China
| |
Collapse
|
73
|
Zhang ZY, Sun Y, Zheng YD, He W, Yang YY, Xie YJ, Feng ZX, Qiao K. A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110249. [PMID: 31753409 DOI: 10.1016/j.msec.2019.110249] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Biofilm-associated infections are in a high rate of recurrence and biofilms show formidable resistance to current antibiotics, making them a growing challenge in biomedical field. In this study, a biocompatible composite was developed by incorporating tannic acid (TA) and MgCl2 to bacterial cellulose (BC) for antimicrobial and anti-biofilm purposes. The morphology was investigated by scanning electron microscopy (SEM), and chemical structure were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS). In vitro release profiles of tannic acid revealed that the Mg2+ cross-links help impede the release of TA from BC matrix, while composite BC-TA lacked Mg2+ ionic cross-links, thus more TA was released from the hydrogel. The BC-TA-Mg composites also displayed strong antibacterial activity against S. aureus, E. coli and P. aeruginosa. Moreover, the composites significantly reduced biofilm formation of S. aureus and P. aeruginosa after 24 h incubation by ∼80% and ∼87%, respectively. As a consequence, the BC-TA-Mg composites are a very promising material for combating biofilm-associated infections in biomedical and public health fields.
Collapse
Affiliation(s)
- Zhao-Yu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yi Sun
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yu-Dong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Ying-Ying Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ya-Jie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Zhao-Xuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
74
|
Smaoui S, Hlima HB, Mtibaa AC, Fourati M, Sellem I, Elhadef K, Ennouri K, Mellouli L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci 2019; 158:107914. [PMID: 31437671 DOI: 10.1016/j.meatsci.2019.107914] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
The growing demand for natural food preservatives has promoted investigations on their application for preserving perishable foods. Consequently, the meat market is demanding natural antioxidants, free of synthetic additives and able to diminish the oxidation processes in high-fat meat and meat products. In this context, the present review discuss the development of healthier and shelf stable meat products by the successful use of pomegranate peel extracts containing phenolics as natural preservative agent in meat and meat products. This paper carries out an exhaustive review of the scientific literature on the main active phenolic compounds of pomegranate peel identified and quantified by advances in the separation sciences and spectrometry, and its biological activities evaluation. Moreover, the impact of pomegranate peel use on the quality and oxidative stability of meat products is also evaluated. As natural preservative, pomegranate peel phenolics could improve stored meat products quality, namely instrumental color retaining, limitaion of microflora growth, retardation of lipid and protein oxidation.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Mariam Fourati
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Imen Sellem
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| |
Collapse
|
75
|
Leonardi AK, Ober CK. Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annu Rev Chem Biomol Eng 2019; 10:241-264. [DOI: 10.1146/annurev-chembioeng-060718-030401] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.
Collapse
Affiliation(s)
- Amanda K. Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
76
|
Adsorption, Antibacterial and Antioxidant Properties of Tannic Acid on Silk Fiber. Polymers (Basel) 2019; 11:polym11060970. [PMID: 31163623 PMCID: PMC6631107 DOI: 10.3390/polym11060970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds have received increasing attention in the functional modification of textiles. In this work, tannic acid was used to impart antibacterial and antioxidant functions to silk using an adsorption technique, and the adsorption properties of tannic acid on silk were studied. The adsorption quantity of tannic acid on silk increased with decreasing pH in the range of 3–7. The rates of the uptake of tannic acid by silk were well correlated to the pseudo-second-order kinetic model, and the calculated activation energy of adsorption was 93.49 kJ/mol. The equilibrium adsorption isotherms followed the Langmuir model. The adsorption rate and isotherm studies demonstrated that the chemical adsorption of tannic acid on silk occurred through the ion-ion interaction between tannic acid and silk. Tannic acid displayed good building-up properties on silk. The silk fabric treated with 0.5% tannic acid (relative to fabric weight) exhibited excellent and durable antibacterial properties. Moreover, the silk fabrics treated with 2% and 5% tannic acid had good and durable antioxidant properties. The treatment by tannic acid had less impact on the whiteness of the silk fabric. In summary, tannic acid can be used as a functional agent for preparing healthy and hygienic silk materials.
Collapse
|
77
|
He Z, Hu Y, Gui Z, Zhou Y, Nie T, Zhu J, Liu Z, Chen K, Liu L, Leong KW, Cao P, Chen Y, Mao HQ. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. J Control Release 2019; 301:119-128. [DOI: 10.1016/j.jconrel.2019.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
78
|
Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models. Front Microbiol 2019; 10:829. [PMID: 31057527 PMCID: PMC6482321 DOI: 10.3389/fmicb.2019.00829] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022] Open
Abstract
Besides their established antioxidant activity, many phenolic compounds may exhibit significant antibacterial activity. Here, the effect of a large dataset of 35 polyphenols on the growth of 6 foodborne pathogenic or food-spoiling bacterial strains, three Gram-positive ones (Staphylococcus aureus, Bacillus subtilis, and Listeria monocytogenes) and three Gram-negative ones (Escherichia coli, Pseudomonas aeruginosa, and Salmonella Enteritidis), have been characterized. As expected, the effects of phenolic compounds were highly heterogeneous ranging from bacterial growth stimulation to antibacterial activity and depended on bacterial strains. The effect on bacterial growth of each of the polyphenols was expressed as relative Bacterial Load Difference (BLD) between a culture with and without (control) polyphenols at a 1 g L-1 concentration after 24 h incubation at 37°C. Reliable Quantitative Structure-Activity Relationship (QSAR) models were developed (regardless of polyphenol class or the mechanism of action involved) to predict BLD for E. coli, S. Enteritidis, S. aureus, and B. subtilis, unlike for L. monocytogenes and P. aeruginosa. L. monocytogenes was generally sensitive to polyphenols whereas P. aeruginosa was not. No satisfactory models predicting the BLD of P. aeruginosa and L. monocytogenes were obtained due to their specific and quite constant behavior toward polyphenols. The main descriptors involved in reliable QSAR models were the lipophilicity and the electronic and charge properties of the polyphenols. The models developed for the two Gram-negative bacteria (E. coli, S. Enteritidis) were comparable suggesting similar mechanisms of toxic action. This was not clearly observed for the two Gram-positive bacteria (S. aureus and B. subtilis). Interestingly, a preliminary evaluation by Microbial Adhesion To Solvents (MATS) measurements of surface properties of the two Gram-negative bacteria for which QSAR models were based on similar physico-chemical descriptors, revealed that MATS results were also quite similar. Moreover, the MATS results of the two Gram-positive bacterial strains S. aureus and B. subtilis for which QSARs were not based on similar physico-chemical descriptors also strongly differed. These observations suggest that the antibacterial activity of most of polyphenols likely depends on interactions between polyphenols and bacterial cells surface, although the surface properties of the bacterial strains should be further investigated with other techniques than MATS.
Collapse
Affiliation(s)
- Lynda Bouarab-Chibane
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Valérian Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA (Institut des Sciences Analytiques), UMR CNRS n°5280, Villeurbanne, France
| | - Pierre Lantéri
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA (Institut des Sciences Analytiques), UMR CNRS n°5280, Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA (Institut des Sciences Analytiques), UMR CNRS n°5280, Villeurbanne, France
| | - Lucie Léonard-Akkari
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Pascal Degraeve
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Claire Bordes
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA (Institut des Sciences Analytiques), UMR CNRS n°5280, Villeurbanne, France
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP (Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique), UMR CNRS n°5007, Villeurbanne, France
| |
Collapse
|
79
|
Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:82. [PMID: 30952208 PMCID: PMC6451225 DOI: 10.1186/s12906-019-2487-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cytinus is small genus of endophytic parasitic plants distributed in South Africa, Madagascar, and in the Mediterranean region. In the latter area, two species occur, Cytinus hypocistis and C. ruber, distinguished by both morphological characters and ecological traits. We characterized the ethanolic and aqueous extracts obtained from the inflorescences of C. hypocistis and C. ruber collected in Sardinia, Italy, and explored their tannin content, antioxidant properties and antimicrobial activities. METHODS Total phenolic contents were determined by Folin-Ciocalteu spectrophotometric method. Tannin content was determined by HPLC. Antioxidant activity of the extracts was tested with both electron transfer-based (FRAP, TEAC, DPPH) and spectrophotometric HAT methods (ORAC-PYR). The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bactericidal activity was evaluated using the time-kill method. Biofilm formation was evaluated by crystal violet (CV) staining assay. RESULTS Characterization of the tannin profile of C. hypocistis and C. ruber revealed a significant amount of gallotannins, in particular 1-O-galloyl-β-D-glucose. In addition, pentagalloyl-O-β-D-glucose was present in all extracts, reaching the concentration of 0.117 g/kg in the ethanolic extract of C. hypocistis. C. hypocistis extracts displayed a strongest antioxidant activity than C. ruber extracts. Three Gram-positive bacterial species tested (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium) resulted sensitive to both Cytinus extracts, with MICs ranging from 125 to 500 μg/ml for aqueous extracts and from 31.25 to 250 μg/ml for ethanolic extracts; on the contrary, Gram-negative strains (Pseudomonas aeruginosa and Klebsiella pneumoniae) were not affected by Cytinus extracts. Intriguingly, we observed the suppressive activity of ethanolic extracts of C. hypocistis and C. ruber on biofilm formation of S. epidermidis. Experiments performed with synthetic compounds indicated that pentagalloyl-O-β-D-glucose is likely to be one of the active antimicrobial components of Cytinus extracts. CONCLUSIONS These findings show that Cytinus extracts have antimicrobial and antioxidant activities, suggesting a possible application of Cytinus as sources of natural antimicrobials and antioxidants.
Collapse
|
80
|
Sun WJ, Zhao YY, Zhou J, Cheng XF, He JH, Lu JM. One-Step Fabrication of Bio-Compatible Coordination Complex Film on Diverse Substrates for Ternary Flexible Memory. Chemistry 2019; 25:4808-4813. [PMID: 30689240 DOI: 10.1002/chem.201806420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 11/06/2022]
Abstract
Recently, resistance random access memories (RRAMs) have been studied extensively, because the demand for information storage is increasing. However, it remains challenging to obtain a flexible device because the active materials involved need to be nontoxic, nonpolluting, distortion-tolerable, and biodegradable as well adhesive to diverse flexible substrates. In this paper, tannic acid (TA) and an iron ion (FeIII ) coordination complex were employed as the active layer in a sandwich-like (Al/active layer/substrate) device to achieve memory performance. A nontoxic, biocompatible TA-FeIII coordination complex was synthesized by a one-step self-assembly solution method. The retention time of the TA-FeIII memory performance was up to 15 000 s, the yield up to 53 %. Furthermore, the TA-FeIII coordination complex can form a high-quality film and shows stable ternary memory behavior on various flexible substrates, such as polyethylene terephthalate (PET), polyimide (PI), printer paper, and leaf. The device can be degraded by immersing it in vinegar solution. Our work will broaden the application of organic coordination complexes in flexible memory devices with diverse substrates.
Collapse
Affiliation(s)
- Wu-Ji Sun
- College of Chemistry, Chemical Engineering and Materials, Science Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Yong-Yan Zhao
- College of Chemistry, Chemical Engineering and Materials, Science Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jin Zhou
- College of Chemistry, Chemical Engineering and Materials, Science Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Xue-Feng Cheng
- College of Chemistry, Chemical Engineering and Materials, Science Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials, Science Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials, Science Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
81
|
Kurzbaum E, Iliasafov L, Kolik L, Starosvetsky J, Bilanovic D, Butnariu M, Armon R. From the Titanic and other shipwrecks to biofilm prevention: The interesting role of polyphenol-protein complexes in biofilm inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1098-1105. [PMID: 30677974 DOI: 10.1016/j.scitotenv.2018.12.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 05/08/2023]
Abstract
Bacteria attach themselves either reversibly or irreversibly onto practically any surface in aqueous and other environments in order to reproduce, while generating extracellular polymeric substances (EPS) as a supportive structure for biofilm formation. Surfaces with a potential to prevent cellular attachment and aggregation (biofilm) would be extremely useful in environmental, biotechnological, medical and industrial applications. The scientific community is currently focusing on the design of micro- and nano-scale textured surfaces with antibacterial and/or antifouling properties (e.g., filtration membranes). Several serum and tissue proteins promote bacterial adhesion (for example, albumin, fibronectin and fibrinogen), whereas polyphenols form complexes with proteins which change their structural, functional and nutritional properties. For example, tannic acid, a compound composed of polygalloyl glucoses or polygalloyl quinic acid esters and several galloyl moieties, inhibits the growth of many bacterial strains. The present review is based on different nautical archaeology research data, and asks a simple but as yet unanswered question: What is the chemistry that prevents leather biodegradation by environmental bacteria and/or formation of biofilms? Future research should answer these questions, which are highly important for biofilm prevention.
Collapse
Affiliation(s)
- Eyal Kurzbaum
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin 12900, Israel; Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Haifa 3498838, Israel.
| | - Luba Iliasafov
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Luba Kolik
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Jeana Starosvetsky
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Dragoljub Bilanovic
- Environmental, Economics, Earth, and Space Studies, Bemidji State University, Bemidji, MN 56601, USA.
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania, Timisoara 300645, Romania
| | - Robert Armon
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
82
|
Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1457-1474. [PMID: 30206947 DOI: 10.1002/jsfa.9357] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The growing demand for natural food preservatives in the last decade has promoted investigations on their application for preserving perishable foods. In this context, the present review is focused on discussing the prospective application of plant extracts containing phenolics or isolated plant phenolics as natural antimicrobials in foods. Plant essential oils are outside the scope of this review since utilization of their antimicrobial activity for food preservation has been extensively reviewed. RESULTS Although the exact antimicrobial mechanisms of action of phenolic compounds are not yet fully understood, it is commonly acknowledged that they have diverse sites of action at the cellular level. Antimicrobial phenolics can be added directly to the formulation of perishable food products or incorporated into food-contact materials to release them in the immediate zone of perishable foods. Edible coatings or active food packaging materials can thus be used as carriers of plant bioactive compounds. CONCLUSION These materials could be an interesting delivery system to improve the stability of phenolics in foods and to improve the shelf life of perishable foods. This review will thus provide an overview of current knowledge of the antimicrobial activity of phenolic-rich plant extracts and of the promises and limits of their exploitation for the preservation of perishable foods. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lynda Bouarab Chibane
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | | | - Jalloul Bouajila
- Faculté de Pharmacie de Toulouse, Laboratoire de Génie Chimique, UMR CNRS 5503, Université Paul Sabatier, Toulouse, France
| | - Nadia Oulahal
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| |
Collapse
|
83
|
|
84
|
Tonda RM, Rubach JK, Lumpkins BS, Mathis GF, Poss MJ. Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge. Poult Sci 2018; 97:3031-3042. [PMID: 29767789 DOI: 10.3382/ps/pey158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two experiments were conducted to investigate the effects of tannic acid extract (TAE) formulations on the performance and intestinal health of male Cobb × Cobb 500 broilers exposed to coccidiosis. In the first experiment, 320 broiler chicks were randomly assigned to 5 treatments with 8 replicates. Treatments included non-medicated, uninfected (NC); non-medicated, infected (PC); salinomycin (SAL, 66 mg/kg); tannic acid (TA, 0.5 g/kg) and TAE (TAE, 0.5 g/kg). On d 14, all groups (except NC) were orally inoculated with Eimeria acervulina, E. maxima and E. tenella oocysts. Intestinal lesion scores, fecal oocyst counts (OPG) and performance were evaluated on d 20. The PC had greater lesions and higher FCR than infected, supplemented groups. Only TAE reduced OPG compared to PC (P < 0.05). In the second experiment, 3,000 broiler chicks were vaccinated on day of hatch with live coccidial oocysts, then randomly assigned to 5 treatments with 15 replicates. Treatments included non-medicated (CNT); salinomycin (SAL, 66 mg/kg); robenidine (ROB, 33 mg/kg); TAE (0.5 g/kg) and TAE with Bacillus coagulans (TAE+BC, 0.5 g/kg). On d 29, a subset of pens (n = 20) were challenged with a mixed Eimeria spp. oral inoculum; performance, lesions and OPG were evaluated on d 35. An immune challenge was created in half the pens by issuing broilers feed without supplementation materials during the challenge. For the non-challenged pens (n = 55), performance was measured up to d 49. Performance of non-challenged, vaccinated-CNT birds was improved with all treatments at d 21 and d 49. Among the challenged birds, withdrawal of SAL or ROB resulted in FCR similar to the challenged CNT group (P > 0.05), whereas withdrawal of TAE or TAE+BC maintained improved FCR compared to challenged-CNT birds (P < 0.05). These findings indicate supplementation of TAE and TAE+BC with coccidiosis vaccination can be considered as a potential alternative strategy to address coccidiosis in broiler chickens.
Collapse
Affiliation(s)
- R M Tonda
- Kemin Industries, Inc., Des Moines, IA, 50317, USA
| | - J K Rubach
- Kemin Industries, Inc., Des Moines, IA, 50317, USA
| | - B S Lumpkins
- Southern Poultry Research, Athens, GA, 30607, USA
| | - G F Mathis
- Southern Poultry Research, Athens, GA, 30607, USA
| | - M J Poss
- Kemin Industries, Inc., Des Moines, IA, 50317, USA
| |
Collapse
|
85
|
Huang Q, Liu X, Zhao G, Hu T, Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:137-150. [PMID: 30140753 PMCID: PMC6104569 DOI: 10.1016/j.aninu.2017.09.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022]
Abstract
Naturally occurring plant compounds including tannins, saponins and essential oils are extensively assessed as natural alternatives to in-feed antibiotics. Tannins are a group of polyphenolic compounds that are widely present in plant region and possess various biological activities including antimicrobial, anti-parasitic, anti-viral, antioxidant, anti-inflammatory, immunomodulation, etc. Therefore, tannins are the major research subject in developing natural alternative to in-feed antibiotics. Strong protein affinity is the well-recognized property of plant tannins, which has successfully been applied to ruminant nutrition to decrease protein degradation in the rumen, and thereby improve protein utilization and animal production efficiency. Incorporations of tannin-containing forage in ruminant diets to control animal pasture bloat, intestinal parasite and pathogenic bacteria load are another 3 important applications of tannins in ruminant animals. Tannins have traditionally been regarded as "anti-nutritional factor" for monogastric animals and poultry, but recent researches have revealed some of them, when applied in appropriate manner, improved intestinal microbial ecosystem, enhanced gut health and hence increased productive performance. The applicability of plant tannins as an alternative to in-feed antibiotics depends on many factors that contribute to the great variability in their observed efficacies.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiuli Liu
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Guoqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianming Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxi Wang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge AB T1J 4B1, Canada
| |
Collapse
|
86
|
Girard M, Thanner S, Pradervand N, Hu D, Ollagnier C, Bee G. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: Efficacy on an experimental ETEC F4 model. PLoS One 2018; 13:e0197878. [PMID: 29799865 PMCID: PMC5969761 DOI: 10.1371/journal.pone.0197878] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
An experimental model for postweaning diarrhea with enterotoxigenic Escherichia coli F4 (ETEC F4) was set up in piglets, and the efficacy of 1% chestnut-tannin extract in preventing diarrhea was subsequently assessed. In a first trial (infection model), 32 Swiss Large White piglets (age: 24 days; average BW: 7.8 ± 0.8 kg) were randomly assigned to two experimental groups (infected [INF], noninfected [NINF]). In a subsequent trial, 72 Swiss Large White piglets (age: 26 days; average BW: 7.4 ± 1.5 kg) were blocked by BW and assigned within block to four experimental groups: NINF-CO: not infected and fed a standard control starter diet (CO); INF-CO: infected and fed the CO diet; NINF-TA: not infected and fed the CO diet supplemented with 1% chestnut extract containing 54% of hydrolysable tannins (TA); and INF-TA: infected and fed the TA diet. Both diets (TA and CO) were formulated to be isocaloric and isoproteic and to meet or surpass the nutritional requirements. In both trials, four days after weaning, piglets assigned to the INF group received an oral suspension of ETEC F4. Fecal score, ETEC shedding in feces (only in trial 2), and growth performance traits were measured for the following 14 days post infection. In both trials, more than 50% of the INF piglets developed diarrhea within six days post infection. Tannins reduced (P < 0.05) the average fecal score, the percentage of piglets in diarrhea, and the duration of diarrhea, whereas feed intake and the average daily gain were unaffected.
Collapse
Affiliation(s)
- Marion Girard
- Institute of Livestock Science, Agroscope, Posieux, Switzerland
| | - Sophie Thanner
- Institute of Livestock Science, Agroscope, Posieux, Switzerland
| | | | - Dou Hu
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Giuseppe Bee
- Institute of Livestock Science, Agroscope, Posieux, Switzerland
- * E-mail:
| |
Collapse
|
87
|
Guo J, Sun W, Kim JP, Lu X, Li Q, Lin M, Mrowczynski O, Rizk EB, Cheng J, Qian G, Yang J. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater 2018; 72:35-44. [PMID: 29555464 PMCID: PMC6328059 DOI: 10.1016/j.actbio.2018.03.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
Tissue adhesives play an important role in surgery to close wounds, seal tissues, and stop bleeding, but existing adhesives are costly, cytotoxic, or bond weakly to tissue. Inspired by the water-resistant adhesion of plant-derived tannins, we herein report a new family of bioadhesives derived from a facile, one-step Michael addition of tannic acid and gelatin under oxidizing conditions and crosslinked by silver nitrate. The oxidized polyphenol groups of tannic acid enable wet tissue adhesion through catecholamine-like chemistry, while both tannic acid and silver nanoparticles reduced from silver nitrate provide antimicrobial sources inherent within the polymeric network. These tannin-inspired gelatin bioadhesives are low-cost and readily scalable and eliminate the concerns of potential neurological effect brought by mussel-inspired strategy due to the inclusion of dopamine; variations in gelatin source (fish, bovine, or porcine) and tannic acid feeding ratios resulted in tunable gelation times (36 s-8 min), controllable degradation (up to 100% degradation within a month), considerable wet tissue adhesion strengths (up to 3.7 times to that of fibrin glue), excellent cytocompatibility, as well as antibacterial and antifungal properties. The innate properties of tannic acid as a natural phenolic crosslinker, molecular glue, and antimicrobial agent warrant a unique and significant approach to bioadhesive design. STATEMENT OF SIGNIFICANCE This manuscript describes the development of a new family of tannin-inspired antimicrobial bioadhesives derived from a facile, one-step Michael addition of tannic acid and gelatin under oxidizing conditions and crosslinked by silver nitrate. Our strategy is new and can be easily extended to other polymer systems, low-cost and readily scalable, and eliminate the concerns of potential neurological effect brought by mussel-inspired strategy due to the inclusion of dopamine. The tannin-inspired gelatin bioadhesives hold great promise for a number of applications in wound closure, tissue sealant, hemostasis, antimicrobial and cell/drug delivery, and would be interested to the readers from biomaterials, tissue engineering, and drug delivery area.
Collapse
Affiliation(s)
- Jinshan Guo
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wei Sun
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jimin Peter Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xili Lu
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qiyao Li
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Min Lin
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Emergency Center, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, China
| | - Oliver Mrowczynski
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey 17033, USA
| | - Elias B Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey 17033, USA
| | - Juange Cheng
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
88
|
Duskaev GK, Kazachkova NM, Ushakov AS, Nurzhanov BS, Rysaev AF. The effect of purified Quercus cortex extract on biochemical parameters of organism and productivity of healthy broiler chickens. Vet World 2018; 11:235-239. [PMID: 29657410 PMCID: PMC5891881 DOI: 10.14202/vetworld.2018.235-239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/22/2018] [Indexed: 11/29/2022] Open
Abstract
Aim: Modern methods of producing poultry meat without the use of antibiotics are known, and it is possible to achieve the desired conditions, including the use of herbal preparations. In addition, it is known that metabolites of medicinal plants are inhibitors of the quorum sensing system in bacteria. The aim of the present study was to determine the effect of Quercus cortex extract in a reduced dose on the productivity and body state of healthy chicken broilers. Materials and Methods: For the experiment, 120 heads of 7-day-old healthy broiler chickens were selected, and they were divided into four groups (n=30, 3 replicates of 10 birds in each group) by the analog method. The composition of diets of the experimental Groups I and II additionally included Q. cortex extract and Groups II and III included an enzyme preparation containing glucoamylase and concomitant cellulolytic enzymes. The following methods of study were used; gas chromatography–mass spectrometry, mass spectrometry and atomic emission spectrometry, and hematological analysis. Results: It was established that the increase in live weight of broiler chickens in experimental groups exceeded the analogous indicator in the control group by 3.1-16.6%, and feed intake within the entire experimental period increased by 2.6-15.4%, against a background of decreasing feed consumption for a weight gain of 1 kg of live weight (by 3.7-9.2%). There was an increase in iron concentration in blood of broiler chickens in Groups I and II (7.8-11.8%), in liver (23.7-92.4%, p≤0.05), and in spleen (53.9-77.7%, р≤0.05) against the background of a decrease in muscle tissue. A decreased content of monocytes and granulocytes was found, especially in experimental Group I. Conclusion: In the experiment, it was shown for the first time that the inclusion of Q. cortex extract in an enzyme-containing diet (anti-quarantine substances) was found to increase the productivity of poultry.
Collapse
Affiliation(s)
- Galimzhan Kalihanovich Duskaev
- Department for Feeding Agricultural Animals and Fodder Technology, All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, Orenburg, 460000, Russia
| | - Nadezhda Mihajlovna Kazachkova
- Department for Feeding Agricultural Animals and Fodder Technology, All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, Orenburg, 460000, Russia.,Department of Food Biotechnology, Orenburg State University, Orenburg, 460018, Russia
| | - Alexander Sergeevich Ushakov
- Department for Feeding Poultry, All-Russia Research and Technological Institute of Poultry, Sergiev Posad, 141311, Russia
| | - Baer Serekpaevich Nurzhanov
- Department for Feeding Agricultural Animals and Fodder Technology, All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, Orenburg, 460000, Russia
| | - Albert Farhitdinovich Rysaev
- Department for Feeding Agricultural Animals and Fodder Technology, All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, Orenburg, 460000, Russia
| |
Collapse
|
89
|
Sahiner N, Butun Sengel S, Yildiz M. A facile preparation of donut-like supramolecular tannic acid-Fe(III) composite as biomaterials with magnetic, conductive, and antioxidant properties. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1398823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nurettin Sahiner
- Faculty of Sciences and Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA
| | - Sultan Butun Sengel
- Faculty of Sciences and Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mustafa Yildiz
- Faculty of Sciences and Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
90
|
Effects of selenylation modification on structural and antioxidant properties of pectic polysaccharides extracted from Ulmus pumila L. Int J Biol Macromol 2017; 104:1124-1132. [DOI: 10.1016/j.ijbiomac.2017.06.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022]
|
91
|
Tintino SR, Morais-Tintino CD, Campina FF, Costa MDS, Menezes IR, de Matos YML, Calixto-Júnior JT, Pereira PS, Siqueira-Junior JP, Leal-Balbino TC, Coutinho HD, Balbino VQ. Tannic acid affects the phenotype of Staphylococcus aureus resistant to tetracycline and erythromycin by inhibition of efflux pumps. Bioorg Chem 2017; 74:197-200. [DOI: 10.1016/j.bioorg.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
92
|
Physical, microbiological and rheological properties of probiotic yogurt supplemented with grape extract. Journal of Food Science and Technology 2017; 54:1608-1615. [PMID: 28559620 DOI: 10.1007/s13197-017-2592-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/04/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
Abstract
In this study, yogurt was supplemented with 1.5 and 3.0 g L-1 of grape extract, inoculated culture containing Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus acidophilus and Bifidobacterium bb12 bifidum, fermented and stored at 4 °C. Acid production, microbial growth, gel strength, syneresis, rheological and sensory properties were studied. An increase in grape extract concentration extended fermentation time. Bacterial strains were found in at least 109 CFU100 g-1 of yogurt showing the possibility of probiotic yogurt production with grape extract. Gel strength decreased with increasing concentration of grape extract while syneresis increased. The addition of grape extract changed the dilatant behavior to a pseudoplastic behavior, decreased yield stress, whereas k values increased. Sensory attributes (color, flavor, taste, texture and appearance) didn't differ significantly.
Collapse
|
93
|
de Camargo AC, Regitano-d'Arce MAB, Rasera GB, Canniatti-Brazaca SG, do Prado-Silva L, Alvarenga VO, Sant'Ana AS, Shahidi F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem 2017; 237:538-544. [PMID: 28764032 DOI: 10.1016/j.foodchem.2017.05.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/15/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
Abstract
Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MSn. Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Gabriela Boscariol Rasera
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Solange Guidolin Canniatti-Brazaca
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Leonardo do Prado-Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Verônica Ortiz Alvarenga
- Department of Food Science, Faculty of Food Engineering, University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
94
|
Santhi VS, Salame L, Dvash L, Muklada H, Azaizeh H, Mreny R, Awwad S, Markovics A, Landau SY, Glazer I. Ethanolic extracts of Inula viscosa , Salix alba and Quercus calliprinos , negatively affect the development of the entomopathogenic nematode, Heterorhabditis bacteriophora – A model to compare gastro-intestinal nematodes developmental effect. J Invertebr Pathol 2017; 145:39-44. [DOI: 10.1016/j.jip.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 01/29/2023]
|
95
|
Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis. Nutrients 2017; 9:nu9040330. [PMID: 28346392 PMCID: PMC5409669 DOI: 10.3390/nu9040330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
We have demonstrated that polyphenol-rich sorghum bran diets alter fecal microbiota; however, little is known regarding their effect on colon inflammation. Our aim was to characterize the effect of sorghum bran diets on intestinal homeostasis during dextran sodium sulfate (DSS)-induced colitis. Male Sprague-Dawley rats (N = 20/diet) were provided diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins) or Hi Tannin Black (both) sorghum bran. Colitis was induced (N = 10/diet) with three separate 48-h exposures to 3% DSS, and feces were collected. On Day 82, animals were euthanized and the colon resected. Only discrete mucosal lesions, with no diarrhea or bloody stools, were observed in DSS rats. Only bran diets upregulated proliferation and Tff3, Tgfβ and short chain fatty acids (SCFA) transporter expression after a DSS challenge. DSS did not significantly affect fecal SCFA concentrations. Bran diets alone upregulated repair mechanisms and SCFA transporter expression, which suggests these polyphenol-rich sorghum brans may suppress some consequences of colitis.
Collapse
|
96
|
Rempe CS, Burris KP, Lenaghan SC, Stewart CN. The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Front Microbiol 2017; 8:422. [PMID: 28360902 PMCID: PMC5352675 DOI: 10.3389/fmicb.2017.00422] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Drug resistance of bacterial pathogens is a growing problem that can be addressed through the discovery of compounds with novel mechanisms of antibacterial activity. Natural products, including plant phenolic compounds, are one source of diverse chemical structures that could inhibit bacteria through novel mechanisms. However, evaluating novel antibacterial mechanisms of action can be difficult and is uncommon in assessments of plant phenolic compounds. With systems biology approaches, though, antibacterial mechanisms can be assessed without the bias of target-directed bioassays to enable the discovery of novel mechanism(s) of action against drug resistant microorganisms. This review article summarizes the current knowledge of antibacterial mechanisms of action of plant phenolic compounds and discusses relevant methodology.
Collapse
Affiliation(s)
- Caroline S. Rempe
- College of Arts and Sciences, Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA
| | - Kellie P. Burris
- Department of Food Science, University of TennesseeKnoxville, TN, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Scott C. Lenaghan
- Department of Food Science, University of TennesseeKnoxville, TN, USA
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of TennesseeKnoxville, TN, USA
| | - C. Neal Stewart
- College of Arts and Sciences, Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
97
|
Mattos GN, Tonon RV, Furtado AA, Cabral LM. Grape by-product extracts against microbial proliferation and lipid oxidation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1055-1064. [PMID: 27696415 DOI: 10.1002/jsfa.8062] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
The wine industry is responsible for the production of million tons of waste, such as grape skin, stalk, sludge and seeds, which can be considered inexpensive sources of phenolic compound owing to incomplete extraction during wine production. Phenolic compounds, also called polyphenols, comprise the most abundant bioactive compounds in grape and are recognized by their antioxidant and antimicrobial potential. Because of their functional properties, extracts obtained from grape wastes, which are rich in phenolic compounds, can be employed in the development of many products, ranging from medical to food applications, decreasing the growth of spoilage and pathogenic microorganisms and inhibiting lipid oxidation. These characteristics are motivating the research for alternative sources of natural antioxidant and antimicrobial agents, aimed at decreasing the use of artificial additives, which have been associated with some toxic effects. This article provides a review of the use of grape by-product extracts and their bioactive compounds as natural antioxidant and antimicrobial agents in food products. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabriela N Mattos
- Rural Federal University of Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil
| | - Renata V Tonon
- Embrapa Food Technology, 23020-470, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
98
|
Bottari NB, Lopes LQS, Pizzuti K, Filippi Dos Santos Alves C, Corrêa MS, Bolzan LP, Zago A, de Almeida Vaucher R, Boligon AA, Giongo JL, Baldissera MD, Santos RCV. Antimicrobial activity and phytochemical characterization of Carya illinoensis. Microb Pathog 2017; 104:190-195. [PMID: 28126664 DOI: 10.1016/j.micpath.2017.01.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 11/25/2022]
Abstract
Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans.
Collapse
Affiliation(s)
- Nathieli Bianchin Bottari
- Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria, RS, Brazil; Laboratory of Pharmacognosy, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | | | - Kauana Pizzuti
- Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | | | - Marcos Saldanha Corrêa
- Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Leandro Perger Bolzan
- Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Adriana Zago
- Laboratory of Pharmacognosy, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | | | - Aline Augusti Boligon
- Laboratory of Phytochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Janice Luehring Giongo
- Laboratory of Pharmaceutical Technology, Universidade Regional Integrada do Alto Uruguai (URI), Santiago, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
99
|
Talukdar PK, Udompijitkul P, Hossain A, Sarker MR. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells. Appl Environ Microbiol 2017; 83:e02731-16. [PMID: 27795314 PMCID: PMC5165105 DOI: 10.1128/aem.02731-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed.
Collapse
Affiliation(s)
- Prabhat K Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Pathima Udompijitkul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
100
|
Hertel S, Pötschke S, Basche S, Delius J, Hoth-Hannig W, Hannig M, Hannig C. Effect of Tannic Acid on the Protective Properties of the in situ Formed Pellicle. Caries Res 2016; 51:34-45. [PMID: 27960156 DOI: 10.1159/000451036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In the present in situ/ex vivo study the impact of tannic acid on the erosion-protective properties of the enamel pellicle was tested. Additionally, the antiadherent and antibacterial effects of tannic acid were evaluated. METHODS The pellicle was formed in situ on bovine enamel samples fixed on individual splints worn by 6 subjects. Following 1 min of pellicle formation the volunteers rinsed for 10 min with tannic acid. After further oral exposure for 19 min, 109 min, and 8 h overnight, respectively, slabs were incubated in HCl ex vivo (pH 2.0, 2.3, 3.0) over 120 s. Subsequently, kinetics of calcium and phosphate release were measured photometrically. Samples after a 1-min fluoride mouth rinse as well as enamel samples with and without a 30-min in situ pellicle served as controls. Antiadherent effects were evaluated after a 1-min rinse with tannic acid and oral exposure of the slabs overnight. DAPI (4',6-diamidino-2-phenylindole) combined with concanavalin A staining and live/dead staining was used for fluorescence microscopic visualization and quantification of adherent bacteria and glucans. Modification of the pellicle's ultrastructure by tannic acid was evaluated by transmission electron microscopy (TEM). RESULTS Tannic acid significantly improved the erosion-protective properties of the pellicle in a pH-dependent manner. Bacterial adherence and glucan formation on enamel were significantly reduced after rinses with tannic acid as investigated by fluorescence microscopy. TEM imaging indicated that rinsing with tannic acid yielded a sustainable modification of the pellicle; it was distinctly more electron dense. CONCLUSION Tannic acid offers an effective and sustainable approach for the prevention of caries and erosion.
Collapse
Affiliation(s)
- Susann Hertel
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|