51
|
Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W, Moyer RW. Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 2000; 274:120-39. [PMID: 10936094 DOI: 10.1006/viro.2000.0449] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of the genus B entomopoxvirus from Amsacta moorei (AmEPV) was sequenced and found to contain 232,392 bases with 279 unique open reading frames (ORFs) of greater than 60 amino acids. The central core of the viral chromosome is flanked by 9.4-kb inverted terminal repeats (ITRs), each of which contains 13 ORFs, raising the total number of ORFs within the viral chromosome to 292. ORFs with no known homology to other poxvirus genes were shown to constitute 33.6% of the viral genome. Approximately 28.6% of the AmEPV genome encodes homologs of the mammalian poxvirus colinear core genes, which are found dispersed throughout the AmEPV chromosome. There is also no significant gene order conservation between AmEPV and the orthopteran genus B poxvirus of Melanoplus sanguinipes (MsEPV). Novel AmEPV genes include those encoding a putative ABC transporter and a Kunitz-motif protease inhibitor. The most unusual feature of the AmEPV genome relates to the viral encoded poly(A) polymerase. In all other poxviruses this heterodimeric enzyme consists of a single large and a single small subunit. However, AmEPV appears to encode one large and two distinct small poly(A) polymerase subunits. AmEPV is one of the few entomopoxviruses which can be grown and manipulated in cell culture. The complete genomic sequence of AmEPV paves the way for an understanding and comparison of the molecular properties and pathogenesis between the entomopoxviruses of insects and the more intensively studied vertebrate poxviruses.
Collapse
Affiliation(s)
- A L Bawden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
This review describes the diverse array of pathways and molecular targets that are used by viruses to elude immune detection and destruction. These include targeting of pathways for major histocompatibility complex-restricted antigen presentation, apoptosis, cytokine-mediated signaling, and humoral immune responses. The continuous interactions between host and pathogens during their coevolution have shaped the immune system, but also the counter measures used by pathogens. Further study of their interactions should improve our ability to manipulate and exploit the various pathogens.
Collapse
Affiliation(s)
- D Tortorella
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
53
|
Everett H, Barry M, Lee SF, Sun X, Graham K, Stone J, Bleackley RC, McFadden G. M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J Exp Med 2000; 191:1487-98. [PMID: 10790424 PMCID: PMC2213443 DOI: 10.1084/jem.191.9.1487] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
M11L, a novel 166-amino acid membrane-associated protein expressed by the poxvirus, myxoma virus, was previously found to modulate apoptosis after infection of rabbit leukocytes. Furthermore, infection of rabbits with an M11L knockout virus unexpectedly produced lesions with a profound proinflammatory phenotype. We show here that M11L is antiapoptotic when expressed independently of other viral proteins, and is directed specifically to mitochondria by a short COOH-terminal region that is necessary and sufficient for targeting. This targeting region consists of a hydrophobic domain flanked by basic amino acid residues, adjacent to a positively charged tail. M11L blocks staurosporine-induced apoptosis by preventing mitochondria from undergoing a permeability transition, and the mitochondrial localization of this protein is essential for this function. We show that M11L is specifically required to inhibit the apoptotic response of monocytes/macrophages during virus infection, as cells of this lineage undergo apoptosis when infected with the M11L knockout virus. As monocyte apoptosis is uniquely proinflammatory, we propose that this observation reconciles the paradoxical proapoptotic and proinflammatory phenotypes of the M11L knockout virus. We suggest that apoptosis of tissue macrophages represents an important antiviral defense, and that the inhibition of apoptosis by viral proteins can be directed in a cell-specific fashion.
Collapse
Affiliation(s)
- Helen Everett
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michele Barry
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Siow Fong Lee
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Xuejun Sun
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Kathryn Graham
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - James Stone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - R. Chris Bleackley
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Grant McFadden
- Department of Microbiology and Immunology, University of Western Ontario, and John P. Robarts Research Institute, London, Ontario N6G 2V4, Canada
| |
Collapse
|
54
|
Nash P, Barry M, Seet BT, Veugelers K, Hota S, Heger J, Hodgkinson C, Graham K, Jackson RJ, McFadden G. Post-translational modification of the myxoma-virus anti-inflammatory serpin SERP-1 by a virally encoded sialyltransferase. Biochem J 2000; 347:375-82. [PMID: 10749666 PMCID: PMC1220969 DOI: 10.1042/0264-6021:3470375] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SERP-1 is a secreted serpin (serine-proteinase inhibitor) encoded by myxoma virus, a poxvirus pathogen of rabbits. SERP-1 is required for myxoma-virus virulence, and the purified protein has been shown to possess independent anti-inflammatory activity in animal models of restenosis and antigen-induced arthritis. As an inhibitor of serine proteinases, SERP-1 acts against tissue-type plasminogen activator, urokinase-type plasminogen activator, plasmin, thrombin and Factor Xa. In the present study, examination of SERP-1 glycosylation-site mutants showed that the N-linked glycosylation of Asn(172) was essential for SERP-1 secretion, whereas mutation of Asn(99) decreased secretion efficiency, indicating that N-linked glycosylation plays an essential role in the processing and trafficking of SERP-1. Furthermore, comparison of SERP-1 from wild-type myxoma virus and a virus containing a targeted disruption of the MST3N sialyltransferase locus demonstrated that SERP-1 is specifically modified by this myxoma-virus-encoded sialyltransferase, and is thus the first reported viral protein shown to by modified by a virally encoded glycosyltransferase. Sialylation of SERP-1 by the MST3N gene product creates a uniquely charged species of secreted SERP-1 that is distinct from SERP-1 produced from other eukaryotic expression systems, though this has no apparent effect upon the kinetics of in vitro proteinase inhibition. Rather, the role of viral sialylation of SERP-1 likely relates to masking antigenicity or targeting SERP-1 to specific sites of action in vivo.
Collapse
Affiliation(s)
- P Nash
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two beta nerve growth factors, transforming growth factor beta, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two alpha-type soluble NSF attachment proteins), and other, unknown conserved cellular processes (e.g., Hal3 domain protein and GSN1/SUR4) suggests that significant modification of host cell function occurs upon viral infection. The presence of a cyclobutane pyrimidine dimer photolyase homologue in FPV suggests the presence of a photoreactivation DNA repair pathway. This diverse complement of genes with likely host range functions in FPV suggests significant viral adaptation to the avian host.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
The induction of apoptosis, or controlled cell death, by various stimuli has been shown to activate a cascade of endoproteases, called caspases, that cleave numerous cellular proteins necessary for cellular homeostasis. This review discusses this family of proteases together with a variety of mammalian and viral regulatory proteins that act to control this activation.
Collapse
Affiliation(s)
- D K Miller
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| |
Collapse
|
57
|
Tai DI, Tsai SL, Chen YM, Chuang YL, Peng CY, Sheen IS, Yeh CT, Chang KS, Huang SN, Kuo GC, Liaw YF. Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 2000; 31:656-664. [PMID: 10706556 DOI: 10.1002/hep.510310316] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hepatitis C virus (HCV) core protein is a multifunctional protein. It may bind to the death domain of tumor necrosis factor receptor 1 (TNFR1) and to the cytoplasmic tail of lymphotoxin-beta receptor, implying that it may be involved in the apoptosis and anti-apoptosis signaling pathways. In vitro studies have been inconclusive regarding its ability to inhibit or enhance TNF-alpha-induced apoptosis. To address this issue, electrophoretic mobility shift assay (EMSA) and immunohistochemical studies were used to show the activation of nuclear factor kappaB (NF-kappaB) in HCV-infected liver tissues and in HCV core-transfected cells. The activation of NF-kappaB was correlated with the apoptosis assays. The results showed that NF-kappaB activation could be shown in HCV-infected livers and HCV core-transfected cells. The data of EMSA correlated with those of immunohistochemical studies, which revealed a higher frequency of NF-kappaB nuclear staining in HCV-infected than in normal livers. NF-kappaB activation conferred resistance to TNF-alpha-induced apoptosis in HCV core-transfected cells. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate sensitized them to TNF-alpha-induced apoptosis. These findings suggest that HCV infection may cause anti-apoptosis by activation of NF-kappaB and implicate a mechanism by which HCV may evade the host's immune surveillance leading to viral persistence and possibly to hepatocarcinogenesis.
Collapse
Affiliation(s)
- D I Tai
- Graduate Institute of Clinical Medicine, Chang Gung University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. IMMUNOLOGY TODAY 2000; 21:73-8. [PMID: 10652464 DOI: 10.1016/s0167-5699(99)01549-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immune response to infection can vary markedly in different organs of the same animal. In some organs, the infection can resolve with subsequent immunity to re-infection, whereas in other organs, pathogens can persist. Here, Christian Engwerda and Paul Kaye highlight the importance of defining organ-specific immune mechanisms for developing strategies that deal effectively with infectious diseases and their associated pathologies.
Collapse
Affiliation(s)
- C R Engwerda
- Dept of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK WC1E 7HT.
| | | |
Collapse
|
59
|
Abstract
Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
Collapse
Affiliation(s)
- A Roulston
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada.
| | | | | |
Collapse
|
60
|
Jerome KR, Fox R, Chen Z, Sears AE, Lee HY, Corey L. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 1999; 73:8950-7. [PMID: 10516000 PMCID: PMC112926 DOI: 10.1128/jvi.73.11.8950-8957.1999] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis of virus-infected cells occurs either as a direct response to viral infection or upon recognition of infection by the host immune response. Apoptosis reduces production of new virus from these cells, and therefore viruses have evolved inhibitory mechanisms. We previously showed that laboratory strains of herpes simplex virus type 1 (HSV-1) protect infected cells from apoptosis induced by cytotoxic T lymphocytes or ethanol. We have now evaluated the ability of HSV-1 and HSV-2 laboratory and clinical isolates to inhibit apoptosis induced by anti-Fas antibody or UV irradiation and explored the genetic basis for this inhibition. HSV-1 isolates inhibited apoptosis induced by UV or anti-Fas antibody. In contrast, HSV-2 clinical isolates failed to inhibit apoptosis induced by either stimulus, although the HSV-2 laboratory strain 333 had a partial inhibitory effect on UV-induced apoptosis. Inhibition of apoptosis by HSV was accompanied by marked reduction of caspase-3 and caspase-8 activity. Deletion of the HSV-1 Us3 gene markedly reduced inhibition of UV-induced apoptosis and partially abrogated inhibition of Fas-mediated apoptosis. Conversely, deletion of the HSV-1 Us5 gene markedly reduced protection from Fas-mediated apoptosis and partially abrogated protection from UV. The Us11 and Us12 genes were not necessary for protection from apoptosis induced by either stimulus. The differences between HSV-1 and HSV-2 in the ability to inhibit apoptosis may be factors in the immunobiology of HSV infections.
Collapse
Affiliation(s)
- K R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Pellegrini M, Strasser A. A portrait of the Bcl-2 protein family: life, death, and the whole picture. J Clin Immunol 1999; 19:365-77. [PMID: 10634210 DOI: 10.1023/a:1020598632068] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Bcl-2 family of proteins are important regulators of cell death. They are comprised of two opposing factions, the proapoptotic versus the antiapoptotic members. Both are required for normal development and cellular homeostasis of the immune system and other tissues. However, in certain circumstances they may participate in the development of disease.
Collapse
Affiliation(s)
- M Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | |
Collapse
|
62
|
Abstract
Chemokines and chemokine receptors play a critical role in the host defense against viruses by mobilizing leukocytes to sites of infection, injury and inflammation. In order to replicate successfully within their host organisms, viruses have devised novel strategies for exploiting or subverting chemokine networks. This review summarizes various mechanisms that are currently known to be used by viruses for modulating chemokine activities including viral homologs of chemokines and chemokine receptors and soluble viral chemokine binding proteins. Insight into these strategies is providing a wealth of information on viral-host interactions, the function of chemokines in host defense and may help to generate novel anti-chemokine agents for treating against viral diseases or inflammatory disorders.
Collapse
Affiliation(s)
- A S Lalani
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 94143-0414, USA.
| | | |
Collapse
|
63
|
Abstract
Engagement of the cell death surface receptor Fas by Fas ligand (FasL) results in apoptotic cell death, mediated by caspase activation. Cell death mediated via Fas/FasL interaction is important for homeostasis of cells in the immune system and for maintaining immune-privileged sites in the body. Killing via the Fas/FasL pathway also constitutes an important pathway of killing for cytotoxic T cells. Fas ligand is induced in activated T cells, resulting in activation-induced cell death by the Fas/FasL pathway. Recently it has been shown that the Fas receptor can also be up-regulated following a lesion to the cell, particularly that induced by DNA-damaging agents. This can then result in killing of the cell by a Fas/FasL-dependent pathway. Up-regulation of Fas receptor following DNA damage appears to be p53 dependent.
Collapse
Affiliation(s)
- P Waring
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Canberra City, Australian Capital Territory, Australia.
| | | |
Collapse
|
64
|
Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D, Wiley SR. IFN-γ Mediates a Novel Antiviral Activity Through Dynamic Modulation of TRAIL and TRAIL Receptor Expression. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is able to kill many transformed cells of diverse tissue types. We show that TRAIL is inducible by IFN-γ, by TNF-α, and by infection with human CMV, and has potent antiviral activity in vitro. CMV infection and IFN-γ also reciprocally modulate TRAIL receptor (TRAIL-R) expression. CMV infection increased the expression of TRAIL-R1 and -R2, whereas IFN-γ down-regulated the expression of TRAIL-Rs on uninfected fibroblasts. Moreover, IFN-γ significantly decreased the basal level of NF-κB activation, a known survival factor that inhibits apoptosis. Thus, TRAIL selectively kills virus-infected cells while leaving uninfected cells intact, and IFN-γ potentiates these effects by dynamic modulation of TRAIL and TRAIL-R expression and by sensitizing cells to apoptosis. The regulation of TRAIL and TRAIL-R expression may represent a general mechanism that contributes to the control of TRAIL-mediated apoptosis.
Collapse
|
65
|
Lalani AS, Masters J, Graham K, Liu L, Lucas A, McFadden G. Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-T1, during myxoma virus pathogenesis. Virology 1999; 256:233-45. [PMID: 10191189 DOI: 10.1006/viro.1999.9617] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myxoma virus is a poxvirus that causes a virulent systemic disease called myxomatosis in European rabbits. Like many poxviruses, myxoma virus encodes a variety of secreted proteins that subvert the antiviral activities of host cytokines. It was recently demonstrated that the myxoma virus M-T1 glycoprotein is a member of a large poxvirus family of secreted proteins that bind CC-chemokines and inhibit their chemoattractant activities in vitro. To determine the biological role of M-T1 in contributing to myxoma virus virulence, we constructed a recombinant M-T1-deletion mutant virus that was defective in M-T1 expression. Here, we demonstrate that M-T1 is expressed continuously during the course of myxoma virus infection as a highly stable 43-kDa glycoprotein and is dispensable for virus replication in vitro. Deletion of M-T1 had no significant effects on disease progression or in the overall mortality rate of infected European rabbits but heightened the localized cellular inflammation in primary tissue sites during the initial 2 to 3 days of infection. In the absence of M-T1 expression, deep dermal tissues surrounding the primary site of virus inoculation showed a dramatic increase in infiltrating leukocytes, particularly monocytes/macrophages, but these phagocytes remained relatively ineffective at clearing virus infection, likely due to the concerted properties of other secreted myxoma virus proteins. We conclude that M-T1 inhibits the chemotactic signals required for the influx of monocytes/macrophages during the acute-phase response of myxoma virus infection in vivo, as predicted by its ability to bind and inhibit CC-chemokines in vitro.
Collapse
Affiliation(s)
- A S Lalani
- Departments of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Viruses can induce apoptosis of infected cells either directly, to assist virus dissemination, or by inadvertently triggering cellular sensors that initiate cell death. Cellular checkpoints that can function as 'alarm bells' to transmit pro-apoptotic signals in response to virus infections include death receptors, protein kinase R, mitochondrial membrane potential, p53 and the endoplasmic reticulum.
Collapse
Affiliation(s)
- H Everett
- Dept of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
67
|
Lalani AS, Ness TL, Singh R, Harrison JK, Seet BT, Kelvin DJ, McFadden G, Moyer RW. Functional comparisons among members of the poxvirus T1/35kDa family of soluble CC-chemokine inhibitor glycoproteins. Virology 1998; 250:173-84. [PMID: 9770431 DOI: 10.1006/viro.1998.9340] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many poxviruses express a 35-40-kDa secreted protein, termed "T1" (for leporipoxviruses) or "35kDa" (for orthopoxviruses), that binds CC-chemokines with high affinity but is unrelated to any known cellular proteins. Many previously identified poxvirus cytokine-binding proteins display strict species ligand-binding specificity. Because the T1 and 35kDa proteins share only 40% amino acid identity, we compared the abilities of purified myxoma virus-T1 (M-T1) and vaccinia virus (strain Lister)- and rabbitpox virus-35kDa proteins to inhibit human CC-chemokines in vitro. All three proteins were equally effective in preventing several human CC-chemokines from binding to target chemokine receptors and blocking subsequent intracellular calcium release. The inhibitory affinities were comparable (Ki = 0.07-1.02 nM). These proteins also displayed similar abilities to inhibit (IC50 = 6.3-10.5 nM) human macrophage inflammatory protein-1alpha-mediated chemotaxis of human monocytes. None of the viral proteins blocked interleukin-8-mediated calcium flux or chemotaxis of human neutrophils, confirming that the biological specificity of the T1/35kDa family is targeted inhibition of CC-chemokines. Despite the significant sequence divergence between the leporipoxvirus T1 and orthopoxvirus 35kDa proteins, our data suggest that their CC-chemokine binding and inhibitory properties appear to be species nonspecific and that the critical motifs most likely reside within the limited regions of conservation.
Collapse
Affiliation(s)
- A S Lalani
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|