51
|
Affiliation(s)
- Frank Stahl
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| |
Collapse
|
52
|
Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 2008; 179:1845-60. [PMID: 18689895 DOI: 10.1534/genetics.108.087940] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Break-induced replication (BIR) is an important process of DNA metabolism that has been implicated in the restart of collapsed replication forks, as well as in various chromosomal instabilities, including loss of heterozygosity, translocations, and alternative telomere lengthening. Therefore, knowledge of how BIR is carried out and regulated is important for better understanding the maintenance of genomic stability in eukaryotes. Here we present a new yeast experimental system that enables the genetic control of BIR to be investigated. Analysis of mutations selected on the basis of their sensitivity to various DNA-damaging agents demonstrated that deletion of POL32, which encodes a third, nonessential subunit of polymerase delta, significantly reduced the efficiency of BIR, although some POL32-independent BIR was still observed. Importantly, the BIR defect in pol32Delta cells was associated with the formation of half-crossovers. We propose that these half-crossovers resulted from aberrant processing of BIR intermediates. Furthermore, we suggest that the half-crossovers observed in our system are analogous to nonreciprocal translocations (NRTs) described in mammalian tumor cells and, thus, our system could represent an opportunity to further study the NRT mechanism in yeast.
Collapse
|
53
|
Rasnik I, Jeong YJ, McKinney SA, Rajagopal V, Patel SS, Ha T. Branch migration enzyme as a Brownian ratchet. EMBO J 2008; 27:1727-35. [PMID: 18511910 PMCID: PMC2435128 DOI: 10.1038/emboj.2008.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 04/30/2008] [Indexed: 11/08/2022] Open
Abstract
In recent years, it has been shown that helicases are able to perform functions beyond their traditional role in unwinding of double-stranded nucleic acids; yet the mechanistic aspects of these different activities are not clear. Our kinetic studies of Holliday junction branch migration catalysed by a ring-shaped helicase, T7 gp4, show that heterology of as little as a single base stalls catalysed branch migration. Using single-molecule analysis, one can locate the stall position to within a few base pairs of the heterology. Our data indicate that the presence of helicase alone promotes junction unfolding, which accelerates spontaneous branch migration, and individual time traces reveal complex trajectories consistent with random excursions of the branch point. Our results suggest that instead of actively unwinding base pairs as previously thought, the helicase exploits the spontaneous random walk of the junction and acts as a Brownian ratchet, which walks along duplex DNA while facilitating and biasing branch migration in a specific direction.
Collapse
Affiliation(s)
- Ivan Rasnik
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Morales M, Liu Y, Laiakis EC, Morgan WF, Nimer SD, Petrini JH. DNA damage signaling in hematopoietic cells: a role for Mre11 complex repair of topoisomerase lesions. Cancer Res 2008; 68:2186-93. [PMID: 18381424 PMCID: PMC2996041 DOI: 10.1158/0008-5472.can-07-2355] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Mre11 complex promotes DNA double-strand break repair and regulates DNA damage signaling via activation of the ataxia-telangiectasia mutated (ATM) kinase. The hypermorphic Rad50(S) allele encodes a variant of Rad50, a member of the Mre11 complex. Cells expressing Rad50(S) experience constitutive ATM activation, which leads to precipitous apoptotic attrition in hematopoietic cells. In this study, we show that ATM activation by the Rad50S-containing Mre11 complex enhances the proliferation of LSK cells, a population consisting of hematopoietic stem cells and multipotent progenitor cells. In Rad50(S/S) mice, enhanced LSK proliferation triggers apoptotic attrition. This phenotype is mitigated when Rad50(S/S) is combined with mutations that alter either LSK cell quiescence (myeloid elf-1-like factor/ELF4-deficient mice) or hematopoietic differentiation (p21- and p27-deficient mice), indicating that the LSK population is a primary target of Rad50(S) pathology. We show that cells from Rad50(S/S) mice are hypersensitive to camptothecin, a topoisomerase I inhibitor that causes DNA damage primarily during DNA replication. On this basis, we propose that apoptotic attrition of Rad50(S/S) hematopoietic cells results from enhanced proliferation in the context of topoisomerase-associated DNA damage. Impairment of apoptosis in Rad50(S/S) mice promotes hematopoietic malignancy, suggesting that primitive hematopoietic cells serve as a reservoir of potentially oncogenic lesions in Rad50(S/S) mice. These data provide compelling evidence that the Mre11 complex plays a role in the metabolism of topoisomerase lesions in mammals, and further suggest that such lesions can accumulate in primitive hematopoietic cells and confer significant oncogenic potential.
Collapse
Affiliation(s)
- Monica Morales
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York
| | - Yan Liu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Evagelia C. Laiakis
- Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, Maryland
| | - William F. Morgan
- Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen D. Nimer
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - John H.J. Petrini
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York
| |
Collapse
|
55
|
Webb MR, Plank JL, Long DT, Hsieh TS, Kreuzer KN. The phage T4 protein UvsW drives Holliday junction branch migration. J Biol Chem 2007; 282:34401-11. [PMID: 17823128 PMCID: PMC2094049 DOI: 10.1074/jbc.m705913200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phage T4 UvsW protein has been shown to play a crucial role in the switch from origin-dependent to recombination-dependent replication in T4 infections through the unwinding of origin R-loop initiation intermediates. UvsW also functions with UvsX and UvsY to repair damaged DNA through homologous recombination, and, based on genetic evidence, has been proposed to act as a Holliday junction branch migration enzyme. Here we report the purification and characterization of UvsW. Using oligonucleotide-based substrates, we confirm that UvsW unwinds branched DNA substrates, including X and Y structures, but shows little activity in unwinding linear duplex substrates with blunt or single-strand ends. Using a novel Holliday junction-containing substrate, we also demonstrate that UvsW promotes the branch migration of Holliday junctions efficiently through more than 1000 bp of DNA. The ATP hydrolysis-deficient mutant protein, UvsW-K141R, is unable to promote Holliday junction branch migration. However, both UvsW and UvsW-K141R are capable of stabilizing Holliday junctions against spontaneous branch migration when ATP is not present. Using two-dimensional agarose gel electrophoresis we also show that UvsW acts on T4-generated replication intermediates, including Holliday junction-containing X-shaped intermediates and replication fork-shaped intermediates. Taken together, these results strongly support a role for UvsW in the branch migration of Holliday junctions that form during T4 recombination, replication, and repair.
Collapse
Affiliation(s)
- Michael R Webb
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
56
|
Hirano N, Ohshima H, Sakashita H, Takahashi H. The Ser176 of T4 endonuclease IV is crucial for the restricted and polarized dC-specific cleavage of single-stranded DNA implicated in restriction of dC-containing DNA in host Escherichia coli. Nucleic Acids Res 2007; 35:6692-700. [PMID: 17913749 PMCID: PMC2175332 DOI: 10.1093/nar/gkm722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endonuclease (Endo) IV encoded by denB of bacteriophage T4 is an enzyme that cleaves single-stranded (ss) DNA in a dC-specific manner. Also the growth of dC-substituted T4 phage and host Escherichia coli cells is inhibited by denB expression presumably because of the inhibitory effect on replication of dC-containing DNA. Recently, we have demonstrated that an efficient cleavage by Endo IV occurs exclusively at the 5′-proximal dC (dC1) within a hexameric or an extended sequence consisting of dC residues at the 5′-proximal and the 3′-proximal positions (dCs tract), in which a third dC residue within the tract affects the polarized cleavage and cleavage rate. Here we isolate and characterize two denB mutants, denB(W88R) and denB(S176N). Both mutant alleles have lost the detrimental effect on the host cell. Endo IV(W88R) shows no enzymatic activity (<0.4% of that of wild-type Endo IV). On the other hand, Endo IV(S176N) retains cleavage activity (17.5% of that of wild-type Endo IV), but has lost the polarized and restricted cleavage of a dCs tract, indicating that the Ser176 residue of Endo IV is implicated in the polarized cleavage of a dCs tract which brings about a detrimental effect on the replication of dC-containing DNA.
Collapse
Affiliation(s)
| | | | | | - Hideo Takahashi
- *To whom correspondence should be addressed. +81 466 84 3350+81 466 84 3698
| |
Collapse
|
57
|
Culyba MJ, Minkah N, Hwang Y, Benhamou OMJ, Bushman FD. DNA branch nuclease activity of vaccinia A22 resolvase. J Biol Chem 2007; 282:34644-52. [PMID: 17890227 DOI: 10.1074/jbc.m705322200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, recombination, and repair can result in formation of diverse branched DNA structures. Many large DNA viruses are known to encode DNA branch nucleases, but several of the expected activities have not previously been found among poxvirus enzymes. Vaccinia encodes an enzyme, A22 resolvase, which is known to be active on four-stranded DNA junctions (Holliday junctions) or Holliday junction-like structures containing three of the four strands. Here we report that A22 resolvase in fact has a much wider substrate specificity than previously appreciated. A22 resolvase cleaves Y-junctions, single-stranded DNA flaps, transitions from double strands to unpaired single strands ("splayed duplexes"), and DNA bulges in vitro. We also report site-directed mutagenesis studies of candidate active site residues. The results identify the likely active site and support a model in which a single active site is responsible for cleavage on Holliday junctions and splayed duplexes. Lastly, we describe possible roles for the A22 resolvase DNA-branch nuclease activity in DNA replication and repair.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | | | | | |
Collapse
|
58
|
Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG, Hendrix RW. Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcusandSynechococcus. Environ Microbiol 2007; 9:1675-95. [PMID: 17564603 DOI: 10.1111/j.1462-2920.2007.01285.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus. Its 177,300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 - which shares 19% of Syn9's genes - Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences within marine cyanobacteria.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
DNA replication, recombination, and repair in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0231] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
60
|
Scharff LB, Koop HU. Linear molecules of tobacco ptDNA end at known replication origins and additional loci. PLANT MOLECULAR BIOLOGY 2006; 62:611-21. [PMID: 16897466 DOI: 10.1007/s11103-006-9042-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 06/28/2006] [Indexed: 05/10/2023]
Abstract
Higher plant plastid DNA (ptDNA) is generally described as a double-stranded circular molecule of the size of the monomer of the plastid genome. Also, the substrates and products of ptDNA replication are generally assumed to be circular molecules. Linear or partly linear ptDNA molecules were detected in our present study using pulsed-field gel electrophoresis and Southern blotting of ptDNA restricted with 'single cutter' restriction enzymes. These linear DNA molecules show discrete end points which were mapped using appropriate probes. One possible explanation of discrete ends would be that they represent origins of replication. Indeed, some of the mapped ends correlate well with the known origins of replication of tobacco plastids, i.e. both of the oriA sequences and--less pronouncedly--with the oriB elements. Other ends correspond to replication origins that were described for Oenothera hookeri, Zea mays, Glycine max and Chlamydomonas reinhardtii, respectively, while some of the mapped ends were not described previously and might therefore represent additional origins of replication.
Collapse
Affiliation(s)
- Lars B Scharff
- Department of Biology I - Botany, University of Munich, Menzinger Str. 67, D-80638 München, Germany
| | | |
Collapse
|
61
|
Eppink B, Wyman C, Kanaar R. Multiple interlinked mechanisms to circumvent DNA replication roadblocks. Exp Cell Res 2006; 312:2660-5. [PMID: 16859683 DOI: 10.1016/j.yexcr.2006.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/14/2006] [Indexed: 01/14/2023]
Abstract
DNA replication is a fragile process, since unavoidable lesions in the template DNA cause replicative polymerases to stall, posing a serious threat to genome integrity. Homologous recombination, translesion DNA synthesis and de novo reinitiation of DNA synthesis ensure robust replication by navigating it passed damaged DNA. In this review, we highlight the relationship between these three processes.
Collapse
Affiliation(s)
- Berina Eppink
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
62
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
63
|
Nelson SW, Yang J, Benkovic SJ. Site-directed mutations of T4 helicase loading protein (gp59) reveal multiple modes of DNA polymerase inhibition and the mechanism of unlocking by gp41 helicase. J Biol Chem 2006; 281:8697-706. [PMID: 16407253 DOI: 10.1074/jbc.m512185200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T4 helicase loading protein (gp59) interacts with a multitude of DNA replication proteins. In an effort to determine the functional consequences of these protein-protein interactions, point mutations were introduced into the gp59 protein. Mutations were chosen based on the available crystal structure and focused on hydrophobic residues with a high degree of solvent accessibility. Characterization of the mutant proteins revealed a single mutation, Y122A, which is defective in polymerase binding and has weakened affinity for the helicase. The interaction between single-stranded DNA-binding protein and Y122A is unaffected, as is the affinity of Y122A for DNA substrates. When standard concentrations of helicase are employed, Y122A is unable to productively load the helicase onto forked DNA substrates. As a result of the loss of polymerase binding, Y122A cannot inhibit the polymerase during nucleotide idling or prevent it from removing the primer strand of a D-loop. However, Y122A is capable of inhibiting strand displacement synthesis by polymerase. The retention of strand displacement inhibition by Y122A, even in the absence of a gp59-polymerase interaction, indicates that there are two modes of polymerase inhibition by gp59. Inhibition of the polymerase activity only requires gp59 to bind to the replication fork, whereas inhibition of the exonuclease activity requires an interaction between the polymerase and gp59. The inability of Y122A to interact with both the polymerase and the helicase suggests a mechanism for polymerase unlocking by the helicase based on a direct competition between the helicase and polymerase for an overlapping binding site on gp59.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
64
|
Abstract
The processes of DNA replication and recombination are intertwined at many different levels. In diverse systems, extensive DNA replication can be triggered by genetic recombination, with assembly of a replication complex onto a D-loop recombination intermediate. This and related pathways of replisome assembly allow the completion of DNA replication when forks initiated at a conventional replication origin fail before completing replication of the genome. In addition, the repair of double-strand breaks or gaps by homologous recombination requires at least limited DNA replication to replace the missing information. An intricate interplay between replication and recombination is also evident during the termination of bacterial DNA replication and during the induction of the bacterial SOS response to DNA damage.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
65
|
Handa N, Kobayashi I. Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function. J Bacteriol 2005; 187:7362-73. [PMID: 16237019 PMCID: PMC1272966 DOI: 10.1128/jb.187.21.7362-7373.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022] Open
Abstract
Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks.
Collapse
Affiliation(s)
- Naofumi Handa
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
66
|
Courcelle J. Recs preventing wrecks. Mutat Res 2005; 577:217-27. [PMID: 16011837 DOI: 10.1016/j.mrfmmm.2005.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 11/20/2022]
Abstract
The asexual cell cycle of E. coli produces two genetically identical clones of the parental cell through processive, semiconservative replication of the chromosome. When this process is prematurely disrupted by DNA damage, several recF pathway gene products play critical roles processing the arrested replication fork, allowing it to resume and complete its task. In contrast, when E. coli cultures are starved for thymine, these same gene products play a detrimental role, allowing replication to become unregulated and highly recombinagenic, resulting in lethality after prolonged starvation. Here, I briefly review the experimental observations that suggest how RecF maintains replication in the presence of DNA damage and discuss how this function may relate to the events that lead to a loss of viability during thymine starvation.
Collapse
Affiliation(s)
- Justin Courcelle
- Portland State University, Department of Biology, P.O. Box 751, Portland, OR 97207-0751, USA.
| |
Collapse
|
67
|
Martínez-Jiménez MI, Alonso JC, Ayora S. Bacillus subtilis bacteriophage SPP1-encoded gene 34.1 product is a recombination-dependent DNA replication protein. J Mol Biol 2005; 351:1007-19. [PMID: 16055153 DOI: 10.1016/j.jmb.2005.06.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/22/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022]
Abstract
SPP1-encoded replication and recombination proteins, involved in the early steps of the initiation of concatemeric DNA synthesis, have been analyzed. Dimeric G34.1P exonuclease degrades, with a 5' to 3' polarity and in a Mg2+-dependent reaction, preferentially linear double-stranded (ds) DNA rather than single-stranded (ss) DNA. Binding of the replisome organizer, G38P, to its cognate sites (oriDNA) halts the 5' to 3' exonucleolytic activity of G34.1P on dsDNA. The G35P recombinase increases the affinity of G34.1P for dsDNA, and stimulates G34.1P activity on dsDNA, but not on ssDNA. Then, filamented G35P promotes limited strand exchange with a homologous sequence. The ssDNA binding protein, G36P, protects ssDNA from the G34.1P exonuclease activity and stimulates G35P-catalyzed strand exchange. The data presented suggest a model for the role of G34.1P during initiation of sigma replication: G38P bound to oriDNA might halt replication fork progression, and G35P, G34.1P and G36P in concert might lead to the re-establishment of a unidirectional recombination-dependent replication that accounts for the direction of DNA packaging.
Collapse
Affiliation(s)
- María I Martínez-Jiménez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
68
|
Hamilton MD, Evans DH. Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase. Nucleic Acids Res 2005; 33:2259-68. [PMID: 15843688 PMCID: PMC1083429 DOI: 10.1093/nar/gki525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poxvirus DNA polymerases play a critical role in promoting virus recombination. To test if vaccinia polymerase (E9L) could mediate this effect by catalyzing the post-synaptic processing of recombinant joint molecules, we prepared substrates bearing a nick, a 3′-unpaired overhang, a 5′ overhang, or both 3′ and 5′ overhangs. The sequence of the 5′ overhang was also modified to permit or preclude branch migration across the joint site. These substrates were incubated with E9L, and the fate of the primer strand characterized under steady-state reaction conditions. E9L rapidly excises a mispaired 3′ strand from a DNA duplex, producing a meta-stable nicked molecule that is a substrate for ligase. The reaction was not greatly affected by adding an unpaired 5′ strand, but since such molecules cannot be processed into nicked intermediates, the 3′-ended strand continued to be subjected to exonucleolytic attack. Incorporating homology into the 5′ overhang prevented this and permitted some strand assimilation, but such substrates also promoted strand-displacement DNA synthesis of a type predicted by the 1981 Moyer and Graves model for poxvirus replication. Single-strand annealing reactions are used by poxviruses to produce recombinant viruses and these data show that virus DNA polymerases can process DNA in such a manner as to both generate single-stranded substrates for such reactions and to facilitate the final processing of the reaction products.
Collapse
Affiliation(s)
| | - David H. Evans
- To whom correspondence should be addressed. Tel: +1 780 492 2308; Fax: +1 780 492 7521;
| |
Collapse
|
69
|
Delagoutte E, von Hippel PH. Mechanistic studies of the T4 DNA (gp41) replication helicase: functional interactions of the C-terminal Tails of the helicase subunits with the T4 (gp59) helicase loader protein. J Mol Biol 2005; 347:257-75. [PMID: 15740739 DOI: 10.1016/j.jmb.2005.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 01/07/2005] [Accepted: 01/12/2005] [Indexed: 11/28/2022]
Abstract
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.
Collapse
Affiliation(s)
- Emmanuelle Delagoutte
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
70
|
Sedman T, Jõers P, Kuusk S, Sedman J. Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae. Curr Genet 2005; 47:213-22. [PMID: 15690159 DOI: 10.1007/s00294-005-0566-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/30/2004] [Accepted: 01/04/2005] [Indexed: 11/26/2022]
Abstract
Hmi1p is a helicase in the yeast Saccharomyces cerevisiae required for maintenance of the wild-type mitochondrial genome. Disruption of the HMI1 ORF generates rho(-) and rho(0) cells. Here we demonstrate that, in rho(-) yeast strains, Hmi1p stimulates the synthesis of long concatemeric mitochondrial DNA molecules associated with a reduction in the number of nucleoids used for mitochondrial DNA packaging. Surprisingly, the ATPase negative mutants of Hmi1p can also stimulate the synthesis of long concatemeric rho(-) mitochondrial DNA molecules and support the maintenance of the wild-type mitochondrial genome, albeit with reduced efficiency. We show that, in the mutant hmi1-5 background, the wild-type mitochondrial DNA is fragmented; and we propose that, in hmi1Delta yeast cells, the loss of the wild-type mitochondrial genome is caused by this fragmentation of the mitochondrial DNA.
Collapse
Affiliation(s)
- Tiina Sedman
- Department of General and Microbial Biochemistry, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
| | | | | | | |
Collapse
|
71
|
Sickmier EA, Kreuzer KN, White SW. The crystal structure of the UvsW helicase from bacteriophage T4. Structure 2004; 12:583-92. [PMID: 15062081 DOI: 10.1016/j.str.2004.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/12/2003] [Accepted: 12/12/2003] [Indexed: 11/25/2022]
Abstract
In bacteriophage T4, the WXY system repairs DNA damage by a process that involves homologous recombination. This system comprises three proteins, the RecA-like recombination protein UvsX, a recombination mediator protein UvsY, and a helicase UvsW. Here we report the 2.0 A resolution crystal structure of the N-terminal two domains of the UvsW helicase (UvsWNF; residues 1-282). The structure reveals a typical helicase RecA-like domain linked to a small N-terminal alpha/beta domain that likely binds the nucleic acid substrate. The missing C-terminal portion of UvsW almost certainly corresponds to the second RecA-like domain typically found in monomeric helicases. The putative substrate binding domain is unique within the known helicase structures, and it resembles the novel "double-wing" DNA binding domain from the phage T4 MotA transcription factor that mediates the expression of T4 middle genes. The functional implications of this homology for the role of UvsW in T4 DNA metabolism are discussed.
Collapse
Affiliation(s)
- E Allen Sickmier
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
72
|
Taylor TJ, Knipe DM. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 2004; 78:5856-66. [PMID: 15140983 PMCID: PMC415816 DOI: 10.1128/jvi.78.11.5856-5866.2004] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this study, we have used immunoprecipitation and mass spectrometry to identify over 50 cellular and viral proteins that are associated with the herpes simplex virus 1 (HSV-1) ICP8 single-stranded DNA-binding protein. Many of the coprecipitating cellular proteins are known members of large cellular complexes involved in (i) DNA replication or damage repair, including RPA and MSH6; (ii) nonhomologous and homologous recombination, including the catalytic subunit of the DNA-dependent protein kinase, Ku86, and Rad50; and (iii) chromatin remodeling, including BRG1, BRM, hSNF2H, BAF155, mSin3a, and histone deacetylase 2. It appears that DNA mediates the association of certain proteins with ICP8, while more direct protein-protein interactions mediate the association with other proteins. A number of these proteins accumulate in viral replication compartments in the infected cell nucleus, indicating that these proteins may have a role in viral replication. WRN, which functions in cellular recombination pathways via its helicase and exonuclease activities, is not absolutely required for viral replication, as viral yields are only very slightly, if at all, decreased in WRN-deficient human primary fibroblasts compared to control cells. In Ku70-deficient murine embryonic fibroblasts, viral yields are increased by almost 50-fold, suggesting that the cellular nonhomologous end-joining pathway inhibits HSV replication. We hypothesize that some of the proteins coprecipitating with ICP8 are involved in HSV replication and may give new insight into viral replication mechanisms.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
73
|
Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 2004; 23:2029-38. [PMID: 15116069 PMCID: PMC424415 DOI: 10.1038/sj.emboj.7600222] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/06/2004] [Indexed: 11/08/2022] Open
Abstract
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding.
Collapse
Affiliation(s)
- Byung Il Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kyoung Hoon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Soo Jeong Park
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| | - Soo Hyun Eom
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| | - Hyun Kyu Song
- Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
- Department of Chemistry, School of Chemistry & Molecular Engineering, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea. Tel.: +82 2 880 6653; Fax: +82 2 889 1568; E-mail:
| |
Collapse
|
74
|
Abstract
A chromosome fragmentation assay was used to measure the efficiency and genetic control of break-induced replication (BIR) in Saccharomyces cerevisiae. Formation of a chromosome fragment by de novo telomere generation at one end of the linear vector and recombination-dependent replication of 100 kb of chromosomal sequences at the other end of the vector occurred at high frequency in wild-type strains. RAD51 was required for more than 95% of BIR events involving a single-end invasion and was essential when two BIR events were required for generation of a chromosome fragment. The similar genetic requirements for BIR and gene conversion suggest a common strand invasion intermediate in these two recombinational repair processes. Mutation of RAD50 or RAD59 conferred no significant defect in BIR in either RAD51 or rad51 strains. RAD52 was shown to be essential for BIR at unique chromosomal sequences, although rare recombination events were detected between the subtelomeric Y' repeats.
Collapse
Affiliation(s)
- Allison P Davis
- Department of Microbiology and Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
75
|
Affiliation(s)
- Titia de Lange
- Laboratory for Cell Biology and Genetics, Box 159, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
76
|
de Lange T, Petrini JH. A new connection at human telomeres: association of the Mre11 complex with TRF2. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:265-73. [PMID: 12760040 DOI: 10.1101/sqb.2000.65.265] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
77
|
Hong G, Kreuzer KN. Endonuclease cleavage of blocked replication forks: An indirect pathway of DNA damage from antitumor drug-topoisomerase complexes. Proc Natl Acad Sci U S A 2003; 100:5046-51. [PMID: 12704241 PMCID: PMC154295 DOI: 10.1073/pnas.0835166100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Indexed: 11/18/2022] Open
Abstract
The cytotoxicity of several important antitumor drugs depends on formation of the covalent topoisomerase-DNA cleavage complex. However, cellular processes such as DNA replication are necessary to convert the cleavage complex into a cytotoxic lesion, but the molecular mechanism of this conversion and the precise nature of the cytotoxic lesion are unknown. Using a bacteriophage T4 model system, we have previously shown that antitumor drug-induced cleavage complexes block replication forks in vivo. In this report, we show that these blocked forks can be cleaved by T4 endonuclease VII to create overt DNA breaks. The accumulation of blocked forks increased in endonuclease VII-deficient infections, suggesting that endonuclease cleavage contributes to fork processing in vivo. Furthermore, purified endonuclease VII cleaved the blocked forks in vitro close to the branch points. These results suggest that an indirect pathway of branched-DNA cleavage contributes to the cytotoxicity of antitumor drugs that target DNA topoisomerases.
Collapse
Affiliation(s)
- George Hong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
78
|
Abstract
Replication forks frequently break and must be repaired by recombination. A reconstituted reaction now allows the factors that coordinate conversion from a recombination intermediate back to a replication fork to be defined. The PriA protein plays a key role in this control.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
79
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
When replication forks stall or collapse at sites of DNA damage, there are two avenues for fork rescue. Mutagenic translesion synthesis by a special class of DNA polymerases can move a fork past the damage, but can leave behind mutations. The alternative nonmutagenic pathways for fork repair involve cellular recombination systems. In bacteria, nonmutagenic repair of replication forks may occur as often as once per cell per generation, and is the favored path for fork restoration under normal growth conditions. Replication fork repair is almost certainly the major function of bacterial recombination systems, and was probably the impetus for the evolution of recombination systems. Increasingly, the nonmutagenic repair of replication forks is seen as a major function of eukaryotic recombination systems as well.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin at Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| |
Collapse
|
81
|
Abstract
The extensive chromosome replication (ECR) model of double-strand-break repair (DSBR) proposes that each end of a double-strand break (DSB) is repaired independently by initiating extensive semiconservative DNA replication after strand invasion into homologous template DNA. In contrast, several other DSBR models propose that the two ends of a break are repaired in a coordinated manner using a single repair template with only limited DNA synthesis. We have developed plasmid and chromosomal recombinational repair assays to assess coordination of the broken ends during DSBR in bacteriophage T4. Results from the plasmid assay demonstrate that the two ends of a DSB can be repaired independently using homologous regions on two different plasmids and that extensive replication is triggered in the process. These findings are consistent with the ECR model of DSBR. However, results from the chromosomal assay imply that the two ends of a DSB utilize the same homologous repair template even when many potential templates are present, suggesting coordination of the broken ends during chromosomal repair. This result is consistent with several coordinated models of DSBR, including a modified version of the ECR model.
Collapse
Affiliation(s)
- Bradley A Stohr
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
82
|
McGlynn P, Lloyd RG. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 2002; 3:859-70. [PMID: 12415303 DOI: 10.1038/nrm951] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome duplication necessarily involves the replication of imperfect DNA templates and, if left to their own devices, replication complexes regularly run into problems. The details of how cells overcome these replicative 'hiccups' are beginning to emerge, revealing a complex interplay between DNA replication, recombination and repair that ensures faithful passage of the genetic material from one generation to the next.
Collapse
Affiliation(s)
- Peter McGlynn
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
83
|
Taneja P, Gu J, Peng R, Carrick R, Uchiumi F, Ott RD, Gustafson E, Podust VN, Fanning E. A dominant-negative mutant of human DNA helicase B blocks the onset of chromosomal DNA replication. J Biol Chem 2002; 277:40853-61. [PMID: 12181327 DOI: 10.1074/jbc.m208067200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA encoding a human ortholog of mouse DNA helicase B, which may play a role in DNA replication, has been cloned and expressed as a recombinant protein. The predicted human DNA helicase B (HDHB) protein contains conserved helicase motifs (superfamily 1) that are strikingly similar to those of bacterial recD and T4 dda proteins. The HDHB gene is expressed at low levels in liver, spleen, kidney, and brain and at higher levels in testis and thymus. Purified recombinant HDHB hydrolyzed ATP and dATP in the presence of single-stranded DNA, displayed robust 5'-3' DNA helicase activity, and interacted physically and functionally with DNA polymerase alpha-primase. HDHB proteins with mutations in the Walker A or B motif lacked ATPase and helicase activity but retained the ability to interact with DNA polymerase alpha-primase, suggesting that the mutants might be dominant over endogenous HDHB in human cells. When purified HDHB protein was microinjected into the nucleus of cells in early G(1), the mutant proteins inhibited DNA synthesis, whereas the wild type protein had no effect. Injection of wild type or mutant protein into cells at G(1)/S did not prevent DNA synthesis. The results suggest that HDHB function is required for S phase entry.
Collapse
Affiliation(s)
- Poonam Taneja
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Shcherbakov V, Granovsky I, Plugina L, Shcherbakova T, Sizova S, Pyatkov K, Shlyapnikov M, Shubina O. Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks. Genetics 2002; 162:543-56. [PMID: 12399370 PMCID: PMC1462285 DOI: 10.1093/genetics/162.2.543] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.
Collapse
Affiliation(s)
- Victor Shcherbakov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432 Russia.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Backert S. R-loop-dependent rolling-circle replication and a new model for DNA concatemer resolution by mitochondrial plasmid mp1. EMBO J 2002; 21:3128-36. [PMID: 12065425 PMCID: PMC126065 DOI: 10.1093/emboj/cdf311] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mitochondrial (mt) plasmid mp1 of Chenopodium album replicates by a rolling-circle (RC) mechanism initiated at two double-stranded replication origins (dso1 and dso2). Two-dimensional gel electrophoresis and electron microscopy of early mp1 replication intermediates revealed novel spots. Ribonucleotide (R)-loops were identified at dso1, which function as a precursor for the RCs in vivo and in vitro. Bacteriophage T4-like networks of highly branched mp1 concatemers with up to 20 monomer units were mapped and shown to be mainly formed by replicating, invading, recombining and resolving molecules. A new model is proposed in which concatemers were separated into single units by a "snap-back" mechanism and homologous recombination. dso1 is a recombination hotspot, with sequence homology to bacterial Xer recombination cores. mp1 is a unique eukaryotic plasmid that expresses features of phages like T4 and could serve as a model system for replication and maintenance of DNA concatemers.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Botany and Microbiology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
86
|
Newlon CS, Theis JF. DNA replication joins the revolution: whole-genome views of DNA replication in budding yeast. Bioessays 2002; 24:300-4. [PMID: 11948615 DOI: 10.1002/bies.10075] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Replication origins, which are responsible for initiating the replication of eukaryotic chromosomal DNAs, are spaced at intervals of 40 to 200 kb. Although the sets of proteins that assemble at replication origins during G(1) to form pre-replicative complexes are highly conserved, the structures of replication origins varies from organism to organism. The identification of replication origins has been a labor-intensive task, requiring the analysis of chromosomal DNA replication intermediates. As a result, only a few replication origins have been identified and studied. In a pair of recently published papers, Raghuraman and colleagues and Wyrick, Aparicio and colleagues provide complementary microarray-based approaches to the identification of replication origins. These genome-wide views of DNA replication in Saccharomyces cerevisiae provide new insights into the way that the genome is duplicated and hold promise for the analysis of other genomes.
Collapse
Affiliation(s)
- Carol S Newlon
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103, USA.
| | | |
Collapse
|
87
|
Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene 2002; 21:598-610. [PMID: 11850785 DOI: 10.1038/sj.onc.1205058] [Citation(s) in RCA: 472] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Some immortalized mammalian cell lines and tumors maintain or increase the overall length of their telomeres in the absence of telomerase activity by one or more mechanisms referred to as alternative lengthening of telomeres (ALT). Characteristics of human ALT cells include great heterogeneity of telomere size (ranging from undetectable to abnormally long) within individual cells, and ALT-associated PML bodies (APBs) that contain extrachromosomal telomeric DNA, telomere-specific binding proteins, and proteins involved in DNA recombination and replication. Activation of ALT during immortalization involves recessive mutations in genes that are as yet unidentified. Repressors of ALT activity are present in normal cells and some telomerase-positive cells. Telomere length dynamics in ALT cells suggest a recombinational mechanism. Inter-telomeric copying occurs, consistent with a mechanism in which single-stranded DNA at one telomere terminus invades another telomere and uses it as a copy template resulting in net increase in telomeric sequence. It is possible that t-loops, linear and/or circular extrachromosomal telomeric DNA, and the proteins found in APBs, may be involved in the mechanism. ALT and telomerase activity can co-exist within cultured cells, and within tumors. The existence of ALT adds some complexity to proposed uses of telomere-related parameters in cancer diagnosis and prognosis, and poses challenges for the design of anticancer therapeutics designed to inhibit telomere maintenance.
Collapse
Affiliation(s)
- Jeremy D Henson
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney 2145, Australia
| | | | | | | |
Collapse
|
88
|
Abstract
It has recently become clear that the recombinational repair of stalled replication forks is the primary function of homologous recombination systems in bacteria. In spite of the rapid progress in many related lines of inquiry that have converged to support this view, much remains to be done. This review focuses on several key gaps in understanding. Insufficient data currently exists on: (a) the levels and types of DNA damage present as a function of growth conditions, (b) which types of damage and other barriers actually halt replication, (c) the structures of the stalled/collapsed replication forks, (d) the number of recombinational repair paths available and their mechanistic details, (e) the enzymology of some of the key reactions required for repair, (f) the role of certain recombination proteins that have not yet been studied, and (g) the molecular origin of certain in vivo observations associated with recombinational DNA repair during the SOS response. The current status of each of these topics is reviewed.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
89
|
Marintcheva B, Weller SK. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:77-118. [PMID: 11642367 DOI: 10.1016/s0079-6603(01)70014-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
90
|
Marsin S, McGovern S, Ehrlich SD, Bruand C, Polard P. Early steps of Bacillus subtilis primosome assembly. J Biol Chem 2001; 276:45818-25. [PMID: 11585815 DOI: 10.1074/jbc.m101996200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primosomes are nucleoprotein assemblies designed for the activation of DNA replication forks. Their primary role is to recruit the replicative helicase onto single-stranded DNA. The "replication restart" primosome, defined in Escherichia coli, is involved in the reactivation of arrested replication forks. Binding of the PriA protein to forked DNA triggers its assembly. PriA is conserved in bacteria, but its primosomal partners are not. In Bacillus subtilis, genetic analysis has revealed three primosomal proteins, DnaB, DnaD, and DnaI, that have no obvious homologues in E. coli. Interestingly, they are involved in primosome function both at arrested replication forks and at the chromosomal origin. Our biochemical analysis of the DnaB and DnaD proteins unravels their role in primosome assembly. They are both multimeric and bind individually to DNA. Furthermore, DnaD stimulates DnaB binding activities. DnaD alone and the DnaD/DnaB pair interact specifically with PriA of B. subtilis on several DNA substrates. This suggests that the nucleoprotein assembly is sequential in the PriA, DnaD, DnaB order. The preferred DNA substrate mimics an arrested DNA replication fork with unreplicated lagging strand, structurally identical to a product of recombinational repair of a stalled replication fork.
Collapse
Affiliation(s)
- S Marsin
- Laboratoire de Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | | | |
Collapse
|
91
|
Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 2001; 8:1163-74. [PMID: 11779493 DOI: 10.1016/s1097-2765(01)00419-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recombination mechanisms that deal with double-strand breaks in organisms as diverse as phage, bacteria, yeast, and humans are remarkably conserved. We discuss conservation in the biochemical pathways required to recombine DNA ends and in the structure of the DNA products. In addition, we highlight that two fundamentally distinct broken DNA substrates exist and describe how they are repaired differently by recombination. Finally, we discuss the need to coordinate recombinational repair with cell division through DNA damage response pathways.
Collapse
Affiliation(s)
- G A Cromie
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|
92
|
Abstract
Replicating poxviruses catalyze high-frequency recombination reactions by a process that is not well understood. Using transfected DNA substrates we show that these viruses probably use a single-strand annealing recombination mechanism. Plasmids carrying overlapping portions of a luciferase gene expression cassette and luciferase assays were first shown to provide an accurate method of assaying recombinant frequencies. We then transfected pairs of DNAs into virus-infected cells and monitored the efficiencies of linear-by-linear, linear-by-circle, and circle-by-circle recombination. These experiments showed that vaccinia virus recombination systems preferentially catalyze linear-by-linear reactions much more efficiently than circle-by-circle reactions and catalyze circle-by-circle reactions more efficiently than linear-by-circle reactions. Reactions involving linear substrates required surprisingly little sequence identity, with only 16-bp overlaps still permitting approximately 4% recombinant production. Masking the homologies by adding unrelated DNA sequences to the ends of linear substrates inhibited recombination in a manner dependent upon the number of added sequences. Circular molecules were also recombined by replicating viruses but at frequencies 15- to 50-fold lower than are linear substrates. These results are consistent with mechanisms in which exonuclease or helicase processing of DNA ends permits the forming of recombinants through annealing of complementary single strands. Our data are not consistent with a model involving strand invasion reactions, because such reactions should favor mixtures of linear and circular substrates. We also noted that many of the reaction features seen in vivo were reproduced in a simple in vitro reaction requiring only purified vaccinia virus DNA polymerase, single-strand DNA binding protein, and pairs of linear substrates. The 3'-to-5' exonuclease activity of poxviral DNA polymerases potentially catalyzes recombination in vivo.
Collapse
Affiliation(s)
- X D Yao
- Department of Molecular Biology and Genetics, The University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
93
|
Bleuit JS, Xu H, Ma Y, Wang T, Liu J, Morrical SW. Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci U S A 2001; 98:8298-305. [PMID: 11459967 PMCID: PMC37435 DOI: 10.1073/pnas.131007498] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of recombination-dependent replication (RDR) in the T4 system have revealed the critical roles played by mediator proteins in the timely and productive loading of specific enzymes onto single-stranded DNA (ssDNA) during phage RDR processes. The T4 recombination mediator protein, uvsY, is necessary for the proper assembly of the T4 presynaptic filament (uvsX recombinase cooperatively bound to ssDNA), leading to the recombination-primed initiation of leading strand DNA synthesis. In the lagging strand synthesis component of RDR, replication mediator protein gp59 is required for the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA. Together, uvsY and gp59 mediate the productive coupling of homologous recombination events to the initiation of T4 RDR. UvsY promotes presynaptic filament formation on 3' ssDNA-tailed chromosomes, the physiological primers for T4 RDR, and recent results suggest that uvsY also may serve as a coupling factor between presynapsis and the nucleolytic resection of double-stranded DNA ends. Other results indicate that uvsY stabilizes uvsX bound to the invading strand, effectively preventing primosome assembly there. Instead, gp59 directs primosome assembly to the displaced strand of the D loop/replication fork. This partitioning mechanism enforced by the T4 recombination/replication mediator proteins guards against antirecombination activity of the helicase component and ensures that recombination intermediates formed by uvsX/uvsY will efficiently be converted into semiconservative DNA replication forks. Although the major mode of T4 RDR is semiconservative, we present biochemical evidence that a conservative "bubble migration" mode of RDR could play a role in lesion bypass by the T4 replication machinery.
Collapse
Affiliation(s)
- J S Bleuit
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
94
|
Jones CE, Mueser TC, Dudas KC, Kreuzer KN, Nossal NG. Bacteriophage T4 gene 41 helicase and gene 59 helicase-loading protein: a versatile couple with roles in replication and recombination. Proc Natl Acad Sci U S A 2001; 98:8312-8. [PMID: 11459969 PMCID: PMC37437 DOI: 10.1073/pnas.121009398] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T4 uses two modes of replication initiation: origin-dependent replication early in infection and recombination-dependent replication at later times. The same relatively simple complex of T4 replication proteins is responsible for both modes of DNA synthesis. Thus the mechanism for loading the T4 41 helicase must be versatile enough to allow it to be loaded on R loops created by transcription at several origins, on D loops created by recombination, and on stalled replication forks. T4 59 helicase-loading protein is a small, basic, almost completely alpha-helical protein whose N-terminal domain has structural similarity to high mobility group family proteins. In this paper we review recent evidence that 59 protein recognizes specific structures rather than specific sequences. It binds and loads the helicase on replication forks and on three- and four-stranded (Holliday junction) recombination structures, without sequence specificity. We summarize our experiments showing that purified T4 enzymes catalyze complete unidirectional replication of a plasmid containing the T4 ori(uvsY) origin, with a preformed R loop at the position of the R loop identified at this origin in vivo. This replication depends on the 41 helicase and is strongly stimulated by 59 protein. Moreover, the helicase-loading protein helps to coordinate leading and lagging strand synthesis by blocking replication on the ori(uvsY) R loop plasmid until the helicase is loaded. The T4 enzymes also can replicate plasmids with R loops that do not have a T4 origin sequence, but only if the R loops are within an easily unwound DNA sequence.
Collapse
Affiliation(s)
- C E Jones
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | | | |
Collapse
|
95
|
Ristic D, Wyman C, Paulusma C, Kanaar R. The architecture of the human Rad54-DNA complex provides evidence for protein translocation along DNA. Proc Natl Acad Sci U S A 2001; 98:8454-60. [PMID: 11459989 PMCID: PMC37457 DOI: 10.1073/pnas.151056798] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper maintenance and duplication of the genome require accurate recombination between homologous DNA molecules. In eukaryotic cells, the Rad51 protein mediates pairing between homologous DNA molecules. This reaction is assisted by the Rad54 protein. To gain insight into how Rad54 functions, we studied the interaction of the human Rad54 (hRad54) protein with double-stranded DNA. We have recently shown that binding of hRad54 to DNA induces a change in DNA topology. To determine whether this change was caused by a protein-constrained change in twist, a protein-constrained change in writhe, or the introduction of unconstrained plectonemic supercoils, we investigated the hRad54--DNA complex by scanning force microscopy. The architecture of the observed complexes suggests that movement of the hRad54 protein complex along the DNA helix generates unconstrained plectonemic supercoils. We discuss how hRad54-induced superhelical stress in the target DNA may function to facilitate homologous DNA pairing by the hRad51 protein directly. In addition, the induction of supercoiling by hRad54 could stimulate recombination indirectly by displacing histones and/or other proteins packaging the DNA into chromatin. This function of DNA translocating motors might be of general importance in chromatin metabolism.
Collapse
Affiliation(s)
- D Ristic
- Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
96
|
George JW, Stohr BA, Tomso DJ, Kreuzer KN. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4. Proc Natl Acad Sci U S A 2001; 98:8290-7. [PMID: 11459966 PMCID: PMC37434 DOI: 10.1073/pnas.131007598] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid.
Collapse
Affiliation(s)
- J W George
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
97
|
Mosig G, Gewin J, Luder A, Colowick N, Vo D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc Natl Acad Sci U S A 2001; 98:8306-11. [PMID: 11459968 PMCID: PMC37436 DOI: 10.1073/pnas.131007398] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two major pathways of recombination-dependent DNA replication, "join-copy" and "join-cut-copy," can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | |
Collapse
|
98
|
Bhagwat M, Nossal NG. Bacteriophage T4 RNase H removes both RNA primers and adjacent DNA from the 5' end of lagging strand fragments. J Biol Chem 2001; 276:28516-24. [PMID: 11376000 DOI: 10.1074/jbc.m103914200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
99
|
Abstract
Type II topoisomerase inhibitors are used to treat both tumors and bacterial infections. These inhibitors stabilize covalent DNA-topoisomerase cleavage complexes that ultimately cause lethal DNA damage. A functional recombinational repair apparatus decreases sensitivity to these drugs, suggesting that topoisomerase-mediated DNA damage is amenable to such repair. Using a bacteriophage T4 model system, we have developed a novel in vivo plasmid-based assay that allows physical analysis of the repair products from one particular topoisomerase cleavage site. We show that the antitumor agent 4'-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA) stabilizes the T4 type II topoisomerase at the strong topoisomerase cleavage site on the plasmid, thereby stimulating recombinational repair. The resulting m-AMSA-dependent repair products do not form in the absence of functional topoisomerase and appear at lower drug concentrations with a drug-hypersensitive topoisomerase mutant. The appearance of repair products requires that the plasmid contain a T4 origin of replication. Finally, genetic analyses demonstrate that repair product formation is absolutely dependent on genes 32 and 46, largely dependent on genes uvsX and uvsY, and only partly dependent on gene 49. Very similar genetic requirements are observed for repair of endonuclease-generated double-strand breaks, suggesting mechanistic similarity between the two repair pathways.
Collapse
Affiliation(s)
- B A Stohr
- Departments of Microbiology and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
100
|
Malkova A, Signon L, Schaefer CB, Naylor ML, Theis JF, Newlon CS, Haber JE. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev 2001; 15:1055-60. [PMID: 11331601 PMCID: PMC312680 DOI: 10.1101/gad.875901] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Without the RAD51 strand exchange protein, Saccharomyces cerevisiae cannot repair a double-strand break (DSB) by gene conversion. However, cells can repair DSBs by recombination-dependent, break-induced replication (BIR). RAD51-independent BIR is initiated more than 13 kb from the DSB. Repair depends on a 200-bp sequence adjacent to ARS310, located approximately 34 kb centromere-proximal to the DSB, but does not depend on the origin activity of ARS310. We conclude that the ability of a recombination-induced replication fork to copy > 130 kb to the end of the chromosome depends on a special site that enhances assembly of a processive repair replication fork.
Collapse
Affiliation(s)
- A Malkova
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | | | | | | | |
Collapse
|