51
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
52
|
Du W, Erden O, Pang Q. TNF-α signaling in Fanconi anemia. Blood Cells Mol Dis 2013; 52:2-11. [PMID: 23890415 DOI: 10.1016/j.bcmd.2013.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contributing to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA.
Collapse
Affiliation(s)
- Wei Du
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
53
|
Martinez-Forero I, Azpilikueta A, Bolaños-Mateo E, Nistal-Villan E, Palazon A, Teijeira A, Perez-Chacon G, Morales-Kastresana A, Murillo O, Jure-Kunkel M, Zapata JM, Melero I. T cell costimulation with anti-CD137 monoclonal antibodies is mediated by K63-polyubiquitin-dependent signals from endosomes. THE JOURNAL OF IMMUNOLOGY 2013; 190:6694-706. [PMID: 23690480 DOI: 10.4049/jimmunol.1203010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Agonist anti-CD137 (4-1BB) mAbs enhance CD8-mediated antitumor immunity. Agonist anti-human CD137 mAbs binding to four distinct epitopes on the CD137 glycoprotein costimulated T cell activation irrespective of the engaged epitope or its interference with CD137L binding. CD137 perturbation with all these agonist mAbs resulted in Ag and Ab internalization toward an endosomal vesicular compartment. Internalization was observed in activated T lymphocytes from humans and mice, not only in culture but also in Ab-injected living animals. These in vivo experiments were carried out upon systemic i.v. injections with anti-CD137 mAbs and showed CD137 internalization in tumor-infiltrating lymphocytes and in activated human T cells transferred to immunodeficient mice. Efficient CD137 internalization required K63 polyubiquitination and endocytosed CD137-containing vesicles recruited TNFR-associated factor (TRAF) 2 and were decorated with K63 polyubiquitins. CD137 stimulation activates NF-κB through a K63-linked polyubiquitination-dependent route, and CD137-associated TRAF2 becomes K63 polyubiquitinated. Consistent with a role for TRAF2 in CD137 signaling, transgenic mice functionally deficient in TRAF2 showed delayed immunotherapeutic activity of anti-CD137 mAbs. As a whole, these findings advance our knowledge of the mechanisms of action of anti-CD137 immunostimulatory mAbs such as those currently undergoing clinical trials in cancer patients.
Collapse
Affiliation(s)
- Ivan Martinez-Forero
- Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31008, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Lee H, Park E, Kim Y, Park S. EphrinA5-EphA7 complex induces apoptotic cell death via TNFR1. Mol Cells 2013; 35:450-5. [PMID: 23657875 PMCID: PMC3887865 DOI: 10.1007/s10059-013-0072-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 10/26/2022] Open
Abstract
A previous study showed that the EphA7 receptor regulates apoptotic cell death during early brain development. In this study, we provide evidence that the EphA7 receptor interacts with death receptors such as tumor necrosis factor receptor 1 (TNFR1) to decrease cell viability. We showed that ephrinA5 stimulates EphA7 to activate the TNFR1-mediated apoptotic signaling pathway. In addition, a pull-down assay using biotinylated ephrinA5-Fc revealed that ephrinA5-EphA7 complexes recruit TNFR1 to form a multi-protein complex. Immunocytochemical staining analysis showed that EphA7 was co-localized with TNFR1 on the cell surface when cells were incubated with ephrinA5 at low temperatures. Finally, both the internalization motif and death domain of TNFR1 was important for interacting with an intracytoplasmic region of EphA7; this interaction was essential for inducing the apoptotic signaling cascade. This result suggests that a distinct multi-protein complex comprising ephrinA5, EphA7, and TNFR1 may constitute a platform for inducing caspase-dependent apoptotic cell death.
Collapse
Affiliation(s)
- Haeryung Lee
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Eunjeong Park
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Yujin Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Soochul Park
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
55
|
Tan BM, Zammit NW, Yam AO, Slattery R, Walters SN, Malle E, Grey ST. Baculoviral inhibitors of apoptosis repeat containing (BIRC) proteins fine-tune TNF-induced nuclear factor κB and c-Jun N-terminal kinase signalling in mouse pancreatic beta cells. Diabetologia 2013; 56:520-32. [PMID: 23250032 DOI: 10.1007/s00125-012-2784-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS For beta cells, contact with TNF-α triggers signalling cascades that converge on pathways important for cell survival and inflammation, specifically nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways. Here, we investigated the function of baculoviral inhibitors of apoptosis repeat containing (BIRC) proteins in regulating TNF signalling cascades. METHODS TNF regulation of Birc genes was studied by mRNA expression and promoter analysis. Birc gene control of cell signalling was studied in beta cell lines, and in islets from Birc2(-/-) and Birc3(-/-) mice, and from Birc3(-/-) Birc2Δ beta cell mice that selectively lack Birc2 and Birc3 (double knockout [DKO]). Islet function was tested by intraperitoneal glucose tolerance test and transplantation. RESULTS TNF-α selectively induced Birc3 in beta cells, which in turn was sufficient to drive and potentiate NF-κB reporter activity. Conversely, Birc3(-/-) islets exhibited delayed TNF-α-induced IκBα degradation with reduced expression of Ccl2 and Cxcl10. DKO islets showed a further delay in IκBα degradation kinetics. Surprisingly, DKO islets exhibited stimulus-independent and TNF-dependent hyperexpression of TNF target genes A20 (also known as Tnfaip3), Icam1, Ccl2 and Cxcl10. DKO islets showed hyperphosphorylation of the JNK-substrate, c-Jun, while a JNK-antagonist prevented increases of Icam1, Ccl2 and Cxcl10 expression. Proteosome blockade of MIN6 cells phenocopied DKO islets. DKO islets showed more rapid loss of glucose homeostasis when challenged with the inflammatory insult of transplantation. CONCLUSIONS/INTERPRETATION BIRC3 provides a feed-forward loop, which, with BIRC2, is required to moderate the normal speed of NF-κB activation. Paradoxically, BIRC2 and BIRC3 act as a molecular brake to rein in activation of the JNK signalling pathway. Thus BIRC2 and BIRC3 fine-tune NF-κB and JNK signalling to ensure transcriptional responses are appropriately matched to extracellular inputs. This control is critical for the beta cell's stress response.
Collapse
Affiliation(s)
- B M Tan
- Gene Therapy and Autoimmunity Group, Immunology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
56
|
Balatti V, Pekarky Y, Rizzotto L, Croce CM. miR deregulation in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:309-25. [PMID: 24014303 DOI: 10.1007/978-1-4614-8051-8_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most frequent human leukemia and it occurs in two forms, indolent and aggressive. Although clinical features and genetic abnormalities in CLL are well documented, molecular details underlying the disease are still under investigation.MicroRNAs are small noncoding RNAs involved in a variety of cellular processes and expressed in a tissue-specific manner. MicroRNAs have the ability to regulate gene expression. In physiological conditions, microRNAs act as gene expression controllers by targeting the mRNA or inhibiting its translation. Their deregulation can lead to an alteration of the expression level of many genes which can induce the development or promote the progression of tumors.In CLL, microRNAs can function as oncogenes, tumor suppressor genes, and/or can be used as markers for disease onset/progression. For example, in indolent CLL, 13q14 deletions targeting miR-15/16 initiate the disease, while in aggressive CLL miR-181 targets the critical TCL1 oncogene and can also be used as a progression marker.Here we discuss the foremost findings about the role of microRNAs in CLL pathogenesis, and how this knowledge can be used to identify new approaches to treat CLL.
Collapse
Affiliation(s)
- Veronica Balatti
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and the Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
57
|
Bas E, Dinh CT, Garnham C, Polak M, Van de Water TR. Conservation of hearing and protection of hair cells in cochlear implant patients' with residual hearing. Anat Rec (Hoboken) 2012; 295:1909-27. [DOI: 10.1002/ar.22574] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022]
|
58
|
Pérez-Chacón G, Llobet D, Pardo C, Pindado J, Choi Y, Reed JC, Zapata JM. TNFR-associated factor 2 deficiency in B lymphocytes predisposes to chronic lymphocytic leukemia/small lymphocytic lymphoma in mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1053-61. [PMID: 22711886 DOI: 10.4049/jimmunol.1200814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that transgenic (tg) mice expressing in B lymphocytes both BCL-2 and a TNFR-associated factor 2 (TRAF2) mutant lacking the really interesting new gene and zinc finger domains (TRAF2DN) develop small lymphocytic lymphoma and chronic lymphocytic leukemia with high incidence (Zapata et al. 2004. Proc. Nat. Acad. Sci. USA 101: 16600-16605). Further analysis of the expression of TRAF2 and TRAF2DN in purified B cells demonstrated that expression of both endogenous TRAF2 and tg TRAF2DN was negligible in Traf2DN-tg B cells compared with wild-type mice. This was the result of proteasome-dependent degradation, and rendered TRAF2DN B cells as bona fide TRAF2-deficient B cells. Similar to B cells with targeted Traf2 deletion, Traf2DN-tg mice show expanded marginal zone B cell population and have constitutive p100 NF-κB2 processing. Also, TRAF3, X-linked inhibitor of apoptosis, and Bcl-X(L) expression levels were increased, whereas cellular inhibitors of apoptosis 1 and 2 levels were drastically reduced compared with those found in wild-type B cells. Moreover, consistent with previous results, we also show that TRAF2 was required for efficient JNK and ERK activation in response to CD40 engagement. However, TRAF2 was deleterious for BCR-mediated activation of these kinases. In contrast, TRAF2 deficiency had no effect on CD40-mediated p38 MAPK activation but significantly reduced BCR-mediated p38 activation. Finally, we further confirm that TRAF2 was required for CD40-mediated proliferation, but its absence relieved B cells of the need for B cell activating factor for survival. Altogether, our results suggest that TRAF2 deficiency cooperates with BCL-2 in promoting chronic lymphocytic leukemia/small lymphocytic lymphoma in mice, possibly by specifically enforcing marginal zone B cell accumulation, increasing X-linked inhibitor of apoptosis expression, and rendering B cells independent of B cell activating factor for survival.
Collapse
|
59
|
Choi JW, Lee JW, Kim JK, Jeon HK, Choi JJ, Kim DG, Kim BG, Nam DH, Kim HJ, Yun SH, Kim S. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J Mol Cell Biol 2012; 4:164-73. [PMID: 22532625 DOI: 10.1093/jmcb/mjs018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a main cause for the failure of cancer management and intensive investigation is on-going to control chemoresistant (CR) cancers. Although NF-κB has been suggested as one of the potential targets to alleviate chemoresistance of epithelial ovarian cancer (EOC), direct targeting of NF-κB may result in an unexpected effect due to the complex regulatory network via NF-κB. Here we show that AIMP2-DX2, a splicing variant of tumor suppressor AIMP2, can be a therapeutic target to control CR EOC. AIMP2-DX2 was often highly expressed in CR EOC both in vitro and in vivo. AIMP2-DX2 compromised the tumor necrosis factor alpha-dependent pro-apoptotic activity of AIMP2 via the competitive inhibition of AIMP2 binding to TRAF2 that plays a pivotal role in the regulation of NF-κB. The direct delivery of siRNA against AIMP2-DX2 into abdominal metastatic tumors of ovarian cancer using a microneedle converged on microendoscopy significantly suppressed the growth rate of tumors. The treated cancer tissues showed an enhanced apoptosis and the decreased TRAF2 level. Thus, we suggest that the downregulation of AIMP2-DX2 can be a potent adjuvant therapeutic approach for CR EOC that resulted from an aberrant activity of NF-κB.
Collapse
Affiliation(s)
- Jin Woo Choi
- Medicinal Bioconvergence Research Center, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi 443-759, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Vrazo AC, Chauchard M, Raab-Traub N, Longnecker R. Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 2012; 8:e1002662. [PMID: 22536156 PMCID: PMC3334893 DOI: 10.1371/journal.ppat.1002662] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors. As a ubiquitous human pathogen, Epstein-Barr virus (EBV) infection is associated with several human B cell diseases characterized by inappropriate B cell activation and function, including infectious mononucleosis and certain cancers. EBV latent membrane protein 1 (LMP1) and 2A (LMP2A) hijack cell signaling pathways to alter B cell activation and function, and are detected in EBV-associated diseases. Defining the effect on B cell function when LMP1 and LMP2A are expressed together in the same cell is critical to understanding how EBV subverts normal B cell behavior before disease develops. Using transgenic mice, we have demonstrated that LMP2A dampens cellular proliferation and activation induced by LMP1, which may be due to the LMP2A-associated decrease in the levels of TRAF2, a signaling protein used by LMP1. LMP2A also allows B cells carrying LMP1 to enter the germinal center during an immune response, a site that gives rise to EBV-associated tumors in humans. In sum, this study highlights the biological outcomes of LMP1 and LMP2A co-expression in B cells and contributes to the knowledge of how EBV subverts normal B cell behavior before disease develops.
Collapse
Affiliation(s)
- Alexandra C. Vrazo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Maria Chauchard
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
61
|
Gommerman JL, Summers deLuca L. LTβR and CD40: working together in dendritic cells to optimize immune responses. Immunol Rev 2012; 244:85-98. [PMID: 22017433 DOI: 10.1111/j.1600-065x.2011.01056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Generating an immune response tailored to destroy an infecting organism while limiting bystander damage involves guiding T-cell activation using a variety of cues taken from the immunogen (antigen type, dose, and persistence, accompanying danger signals) as well as the host (tissue environment, T-cell frequency, and affinity for antigen). Dendritic cells (DCs) serve as translators of much of this information and are critically required for effective pathogen and tumor clearance. Moreover, dysregulation of DC activation can lead to autoimmunity. Inhibition of the lymphotoxin (LT) and CD40 pathways has been shown to be effective at quieting inflammation in settings where DC-T-cell interactions are key instigators of disease progression. In this review, we compare and contrast the CD40 and LT pathways in the context of receptor/ligand expression, signal transduction, and DC biology. We provide evidence that these two pathways play complementary roles in DC cytokine secretion, thus indirectly shaping the nature of the CD8(+) T-cell response to foreign antigen. Given the distinct role of these pathways in the context of DC function, we propose that dual therapies targeted at both the CD40 and LTβ receptor may have therapeutic potential in silencing DC-driven autoimmunity or in promoting tumor clearance.
Collapse
|
62
|
Snell LM, Lin GHY, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 2012; 244:197-217. [PMID: 22017440 DOI: 10.1111/j.1600-065x.2011.01063.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GITR [glucocorticoid inducible tumor necrosis factor receptor (TNFR)-related protein] and 4-1BB are costimulatory TNFR family members that are expressed on regulatory and effector T cells as well as on other cells of the immune system. Here we discuss the role of GITR and 4-1BB on T cells during viral infections and in cancer immunotherapy. Systemic treatment with agonistic anti-4-1BB antibody leads to a number of immune system abnormalities, and clinical trials of anti-4-1BB have been terminated. However, other modes of 4-1BB ligation may be less toxic. To date, similar toxicities have not been reported for anti-GITR treatment of mice, although anti-GITR antibodies can exacerbate mouse autoimmune models. Intrinsic effects of GITR and 4-1BB on effector T cells appear to predominate over their effects on other cell types in some models. Despite their similarities in enhancing T-cell survival, 4-1BB and GITR are clearly not redundant, and both pathways are required for maximal CD8(+) T-cell responses and mouse survival following severe respiratory influenza infection. GITR uses TNFR-associated factor (TRAF) 2 and TRAF5, whereas 4-1BB recruits TRAF1 and TRAF2 to mediate survival signaling in T cells. The differential use of signaling adapters combined with their differential expression may explain the non-redundant roles of GITR and 4-1BB in the immune system.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
63
|
D-pinitol inhibits RANKL-induced osteoclastogenesis. Int Immunopharmacol 2012; 12:494-500. [PMID: 22269833 DOI: 10.1016/j.intimp.2012.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 11/24/2022]
Abstract
Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. D-pinitol, a 3-methoxy analogue of D-chiroinositol, was identified as an active principle in soy foods and legumes. Here we found that D-pinitol markedly inhibited the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation from bone marrow stromal cells and RAW264.7 macrophage cells. In addition, D-pinitol also reduced RANKL-induced p38 and JNK phosphorylation. Furthermore, RANKL-mediated increase of IKK, IκBα, and p65 phosphorylation and NF-κB-luciferase activity was inhibited by D-pinitol. However, D-pinitol did not affect the proliferation and differentiation of osteoblasts. In addition, D-pinitol also prevented the bone loss induced by ovariectomy in vivo. Our data suggest that D-pinitol inhibits osteoclastogenesis from bone marrow stromal cells and macrophage cells via attenuated RANKL-induced p38, JNK, and NF-κB activation, which in turn protect bone loss from ovariectomy.
Collapse
|
64
|
Zhang L, Teng Y, Zhang Y, Liu J, Xu L, Qu J, Hou K, Yang X, Liu Y, Qu X. C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway. Oncol Lett 2011; 3:395-400. [PMID: 22740919 DOI: 10.3892/ol.2011.487] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/31/2011] [Indexed: 11/06/2022] Open
Abstract
The receptor activator for nuclear factor κB ligand/receptor activator for nuclear factor κB (RANKL/RANK) pathway is critical for RANK-expressing cancer cells to home to bones, and c-Src is critical for cancer progression. The objective of this study was to explore the effect of c-Src in the RANKL/RANK pathway and migration activity in human breast cancer cells. Breast cancer cell lines MCF-7, MDA-MB-231 and BT-474 were obtained and cultured. Flow cytometry was used to examine RANK expression. The results showed that RANK was expressed in breast cancer cell lines MCF-7, MDA-MB-231 and BT-474, and soluble RANKL (sRANKL)-triggered migration of breast cancer cells by activating ERK1/2, Akt and c-Src. The sRANKL-induced migration was blocked with RANKL inhibitor osteoprotegerin (OPG), MEK inhibitor PD98059, PI3K inhibitor LY294002 and Src inhibitor PP2. Inhibition of c-Src function with PP2 blocked the activation of Akt and ERK1/2, resulting in the inhibition of RANKL-induced migration. In conclusion, RANKL was found to increase the migration of breast cancer cells by activating the c-Src-Akt and c-Src-ERK signaling pathways.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Tumor necrosis factor receptor (TNFR) superfamily members mediate the cellular response to a wide variety of biological inputs. The responses range from cell death, survival, differentiation, proliferation, to the regulation of immunity. All these physiological responses are regulated by a limited number of highly pleiotropic kinases. The fact that the same signaling molecules are involved in transducing signals from TNFR superfamily members that regulate different and even opposing processes raises the question of how their specificity is determined. Regulatory strategies that can contribute to signaling specificity include scaffolding to control kinase specificity, combinatorial use of several signal transducers, and temporal control of signaling. In this review, we discuss these strategies in the context of TNFR superfamily member signaling.
Collapse
Affiliation(s)
- Bärbel Schröfelbauer
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA.
| | | |
Collapse
|
66
|
Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2011; 82:249-58. [PMID: 21962882 DOI: 10.1016/j.critrevonc.2011.08.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023] Open
Abstract
Necrosis plays an important role in multiple physiological and pathological processes. Recently, a relatively new form of necrosis has been characterized as "necroptosis". Morphologically, necroptosis exhibits the features of necrosis; however, necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinase 1 and 3 (RIP1 and RIP3) and can be specifically inhibited by necrostatins. Necroptosis has been found to contribute to the regulation of immune system, cancer development as well as cellular responses to multiple stresses. In this review, we will summarize the signaling pathway, biological effects and pathological significance of this specific form of programmed cell death.
Collapse
|
67
|
Silke J. The regulation of TNF signalling: what a tangled web we weave. Curr Opin Immunol 2011; 23:620-6. [PMID: 21920725 DOI: 10.1016/j.coi.2011.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 11/26/2022]
Abstract
In the past 2 years there has been an explosion of information regarding molecules that regulate TNF-R1 signalling, and even reviews published in 2010 are out of date. TNF-R1 activation of NF-κB is a text book example of a signal transduction pathway regulated by ubiquitin and many of the concepts concerning the different roles of ubiquitin chains were first outlined in TNF-R1 signalling. What was once a very simple pathway with clearly defined roles for ubiquitin in regulating TNF-R1 signalling has, however, now become so complicated that we have 'an embarrassment of riches'. The less polite might claim our pathways of TNF-R1 signalling look as complicated as a web constructed by a drug-addled spider. This review will pick apart only one small strand of the web, and will address the role of ubiquitin in the activation of NF-κB by TNF with a focus on interpreting in vivo results. Nevertheless some of the concepts, for example the role of linear ubiquitin chains in regulating signalling, may be applicable to the family in general.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
68
|
Verhoog NJD, Du Toit A, Avenant C, Hapgood JP. Glucocorticoid-independent repression of tumor necrosis factor (TNF) alpha-stimulated interleukin (IL)-6 expression by the glucocorticoid receptor: a potential mechanism for protection against an excessive inflammatory response. J Biol Chem 2011; 286:19297-310. [PMID: 21474440 PMCID: PMC3103308 DOI: 10.1074/jbc.m110.193672] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/30/2011] [Indexed: 01/04/2023] Open
Abstract
TNFα signaling and cytokine levels play a crucial role in cervical immunity and the host response to infections. We investigated the role of liganded and unliganded glucocorticoid receptor (GR) in IL-6 and IL-8 gene regulation in response to TNFα in the End1/E6E7 immortalized human endocervical epithelial cell line. In the absence of glucocorticoids, both decreasing GR protein levels by an siRNA strategy and results with the GR antagonist RU486 suggest a role for the unliganded GR in reduction of TNFα-induced IL-6 and IL-8 mRNA levels in End1/E6E7 cells. Moreover, GR-dependent repression of endogenous IL-6 mRNA as well as a minimal IL-6 promoter-reporter gene is also demonstrated in COS-1 cells in the absence of GR ligand, suggesting a transcriptional mechanism that is not cell-specific. TNFα induced recruitment of both the unliganded GR and GR-interacting protein type 1 (GRIP-1) to the IL-6 promoter. This, together with GRIP-1 overexpression studies, suggests a function for GRIP-1 as a GR co-repressor in this context. TNFα was shown to induce phosphorylation of the unliganded human GR at Ser-226 but not Ser-211, unlike dexamethasone, which induced hyperphosphorylation at both serine residues. Ser-226 is shown to be required for the ligand-independent GR-mediated repression of IL-6 in response to TNFα. Taken together, these results support a model whereby the unliganded GR attenuates TNFα-stimulated IL-6 transcription by a mechanism involving selective phosphorylation and recruitment of the unliganded GR and GRIP-1 to the IL-6 promoter. These findings suggest the presence of a novel autoregulatory mechanism that may prevent overproduction of IL-6 in the endocervix, possibly protecting against negative effects of excessive inflammation.
Collapse
Affiliation(s)
- Nicolette J. D. Verhoog
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Andrea Du Toit
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Chanel Avenant
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Janet P. Hapgood
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| |
Collapse
|
69
|
Hagemeier SR, Barlow EA, Kleman AA, Kenney SC. The Epstein-Barr virus BRRF1 protein, Na, induces lytic infection in a TRAF2- and p53-dependent manner. J Virol 2011; 85:4318-29. [PMID: 21325409 PMCID: PMC3126225 DOI: 10.1128/jvi.01856-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BRRF1 lytic gene product (Na) is encoded within the same immediate-early region as the BZLF1 (Z) and BRLF1(R) gene products, but its role during EBV infection has not been well defined. We previously showed that Na cooperates with the R protein to induce lytic gene expression in latently infected EBV-positive 293 cells, and in some EBV-negative cell lines it can activate the Z promoter in reporter gene assays. Here we show that overexpression of Na alone is sufficient to induce lytic gene expression in several different latently infected epithelial cell lines (Hone-Akata, CNE2-Akata, and AGS-Akata), while knockdown of endogenous Na expression reduces lytic gene expression. Consistent with its ability to interact with tumor necrosis factor receptor-associated factor 2 (TRAF2) in a yeast two-hybrid assay, we demonstrate that Na interacts with TRAF2 in cells. Furthermore, we show that TRAF2 is required for Na induction of lytic gene expression, that Na induces Jun N-terminal protein kinase (JNK) activation in a TRAF2-dependent manner, and that a JNK inhibitor abolishes the ability of Na to disrupt viral latency. Additionally, we show that Na and the tumor suppressor protein p53 cooperate to induce lytic gene expression in epithelial cells (including the C666-1 nasopharyngeal carcinoma cell line), although Na does not appear to affect p53 function. Together these data suggest that Na plays an important role in regulating the switch between latent and lytic infection in epithelial cells and that this effect requires both the TRAF2 and p53 cellular proteins.
Collapse
Affiliation(s)
| | | | | | - Shannon C. Kenney
- Departments of Oncology
- Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave., Madison, Wisconsin 53706
| |
Collapse
|
70
|
Abstract
Inherited susceptibility to chronic lymphocytic leukemia (CLL) has been recognized for decades. Approximately 10% of individuals with CLL report a family history of CLL or a related lymphoproliferative disorder, and genetic predisposition is the best understood risk factor for CLL. Studies of familial CLL have suggested that the disease features are largely similar to sporadic CLL, although recent data suggest that familial CLL may more commonly show somatic hypermutation of the immunoglobulin heavy-chain variable region, suggesting a more indolent disease course. Monoclonal B-cell lymphocytosis (MBL) has been identified recently as a likely precursor to CLL; it is found in the general population with increasing age and enriched in unaffected relatives of individuals with familial CLL. Studies of MBL as well as mouse models of CLL may lead to better understanding of early CLL pathogenesis that is relevant to familial predisposition. To date, the identification of genes that predispose to familial CLL has been slow, primarily due to the relatively few families available for study, the small size of those families and disease causation most likely by multiple genes that each confer smaller risks. In the coming years, the application of systematic genomics approaches to familial CLL should, hopefully, lead to the identification of novel loci involved in the disease.
Collapse
Affiliation(s)
- Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
71
|
Tsubaki M, Kato C, Isono A, Kaneko J, Isozaki M, Satou T, Itoh T, Kidera Y, Tanimori Y, Yanae M, Nishida S. Macrophage inflammatory protein-1α induces osteoclast formation by activation of the MEK/ERK/c-Fos pathway and inhibition of the p38MAPK/IRF-3/IFN-β pathway. J Cell Biochem 2011; 111:1661-72. [PMID: 21053363 DOI: 10.1002/jcb.22907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a bone disease that affects many individuals. It was recently reported that macrophage inflammatory protein (MIP)-1α is constitutively secreted by MM cells. MIP-1α causes bone destruction through the formation of osteoclasts (OCs). However, the molecular mechanism underlying MIP-1α-induced OC formation is not well understood. In the present study, we attempted to clarify the mechanism whereby MIP-1α induces OC formation in a mouse macrophage-like cell line comprising C7 cells. We found that MIP-1α augmented OC formation in a concentration-dependent manner; moreover, it inhibited IFN-β and ISGF3γ mRNA expression, and IFN-β secretion. MIP-1α increased the expressions of phosphorylated ERK1/2 and c-Fos and decreased those of phosphorylated p38MAPK and IRF-3. We found that the MEK1/2 inhibitor U0126 inhibited OC formation by suppressing the MEK/ERK/c-Fos pathway. SB203580 induced OC formation by upregulating c-fos mRNA expression, and SB203580 was found to inhibit IFN-β and IRF-3 mRNA expressions. The results indicate that MIP-1α induces OC formation by activating and inhibiting the MEK/ERK/c-Fos and p38MAPK/IRF-3 pathways, respectively, and suppressing IFN-β expression. These findings may be useful in the development of an OC inhibitor that targets intracellular signaling factors.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Chen LM, Kuo CH, Lai TY, Lin YM, Su CC, Hsu HH, Tsai FJ, Tsai CH, Huang CY, Tang CH. RANKL increases migration of human lung cancer cells through intercellular adhesion molecule-1 up-regulation. J Cell Biochem 2011; 112:933-41. [DOI: 10.1002/jcb.23009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
73
|
De Colvenaer V, Taveirne S, Delforche M, De Smedt M, Vandekerckhove B, Taghon T, Boon L, Plum J, Leclercq G. CD27-deficient mice show normal NK-cell differentiation but impaired function upon stimulation. Immunol Cell Biol 2011; 89:803-11. [PMID: 21283110 DOI: 10.1038/icb.2010.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are part of the first line defense against tumors, parasites and virus-infected cells. Therefore, factors that control NK-cell numbers and their function are important. CD27 is constitutively expressed on NK cells and its expression correlates with sequential phases in NK-cell development, discriminating phenotypically and functionally different subsets within the NK-cell population. Although CD27 has been described to have an important regulatory role in effector and memory T and B lymphocytes, its role in NK-cell biology remains to be addressed. In this study, we used CD27(-/-) mice to investigate the role of CD27 in NK-cell development and function, both during the resting state and upon stimulation. The results show that NK-cell numbers are not impaired in CD27(-/-) mice. Moreover, CD27(-/-) NK cells reach full phenotypic maturity, evidenced by normal expression of CD49b, CD43 and CD11b. Expression of activating receptors is unaltered, whereas expression of several inhibitory receptors is increased. Cytotoxicity and interferon-γ production by NK cells from CD27(-/-) mice in the resting state are normal. However, upon in vivo anti-CD40- or poly-I:C-mediated activation, or in vitro interleukin-15 priming plus anti-NKp46 stimulation, the absence of CD27 results in decreased cytolytic activity and cytokine production by spleen and liver NK cells. In conclusion, this study demonstrates that CD27 is dispensable for the development of functional NK cells. However, upon stimulation of NK cells, CD27 displays an important role in their activation and functionality.
Collapse
Affiliation(s)
- Veerle De Colvenaer
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
New Perspectives in TNF-R1-Induced NF-κB Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:79-88. [DOI: 10.1007/978-1-4419-6612-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
The novel isoflavone derivatives inhibit RANKL-induced osteoclast formation. Eur J Pharmacol 2010; 648:59-66. [DOI: 10.1016/j.ejphar.2010.08.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 08/12/2010] [Accepted: 08/31/2010] [Indexed: 12/26/2022]
|
76
|
Villeneuve J, Lepreux S, Mulot A, Bérard AM, Higa-Nishiyama A, Costet P, De Ledinghen V, Bioulac-Sage P, Balabaud C, Nurden AT, Rosenbaum J, Chevet E, Ripoche J. A protective role for CD154 in hepatic steatosis in mice. Hepatology 2010; 52:1968-79. [PMID: 21064031 DOI: 10.1002/hep.23935] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 08/06/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED Inflammation and lipid metabolism pathways are linked, and deregulation of this interface may be critical in hepatic steatosis. The importance of the dialog between inflammatory signaling pathways and the unfolded protein response (UPR) in metabolism has been underlined. Herein, we studied the role of CD154, a key mediator of inflammation, in hepatic steatosis. To this end, Balb/c mice, wild-type or deficient in CD154 (CD154KO), were fed a diet rich in olive oil. In vitro, the effect of CD154 was studied on primary hepatocyte cultures and hepatocyte-derived cell lines. Results showed that CD154KO mice fed a diet rich in olive oil developed hepatic steatosis associated with reduced apolipoprotein B100 (apoB100) expression and decreased secretion of very low-density lipoproteins. This phenotype correlated with an altered UPR as assessed by reduced X-Box binding protein-1 (XBP1) messenger RNA (mRNA) splicing and reduced phosphorylation of eukaryotic initiation factor 2α. Altered UPR signaling in livers of CD154KO mice was confirmed in tunicamycin (TM) challenge experiments. Treatment of primary hepatocyte cultures and hepatocyte-derived cell lines with soluble CD154 increased XBP1 mRNA splicing in cells subjected to either oleic acid (OA) or TM treatment. Moreover, CD154 reduced the inhibition of apoB100 secretion by HepG2 cells grown in the presence of high concentrations of OA, an effect suppressed by XBP1 mRNA silencing and in HepG2 cells expressing a dominant negative form of inositol requiring ER-to-nucleus signaling protein-1. The control of the UPR by CD154 may represent one of the mechanisms involved in the pathophysiology of hepatic steatosis. CONCLUSION Our study identifies CD154 as a new mediator of hepatic steatosis.
Collapse
Affiliation(s)
- Julien Villeneuve
- Inserm U889, National Institute for Health and Medical Research U889, Bordeaux University, F-33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Sasaki H, Suzuki N, AlShwaimi E, Xu Y, Battaglino R, Morse L, Stashenko P. 18β-glycyrrhetinic acid inhibits periodontitis via glucocorticoid-independent nuclear factor-κB inactivation in interleukin-10-deficient mice. J Periodontal Res 2010; 45:757-63. [PMID: 20682015 PMCID: PMC3075584 DOI: 10.1111/j.1600-0765.2010.01296.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE 18β-Glycyrrhetinic acid (GA) is a natural anti-inflammatory compound derived from licorice root extract (Glycyrrhiza glabra). The effect of GA on experimental periodontitis and its mechanism of action were determined in the present study. MATERIAL AND METHODS Periodontitis was induced by oral infection with Porphyromonas gingivalis W83 in interleukin-10-deficient mice. The effect of GA, which was delivered by subcutaneous injections in either prophylactic or therapeutic regimens, on alveolar bone loss and gingival gene expressions was determined on day 42 after initial infection. The effect of GA on lipopolysaccharide (LPS)-stimulated macrophages, T cell proliferation and osteoclastogenesis was also examined in vitro. RESULTS 18β-Glycyrrhetinic acid administered either prophylactically or therapeutically resulted in a dramatic reduction of infection-induced bone loss in interleukin-10-deficient mice, which are highly disease susceptible. Although GA has been reported to exert its anti-inflammatory activity via downregulation of 11β-hydroxysteroid dehydrogenase-2 (HSD2), which converts active glucocorticoids to their inactive forms, GA did not reduce HSD2 gene expression in gingival tissue. Rather, in glucocorticoid-free conditions, GA potently inhibited LPS-stimulated proinflammatory cytokine production and RANKL-stimulated osteoclastogenesis, both of which are dependent on nuclear factor-κB. Furthermore, GA suppressed LPS- and RANKL-stimulated phosphorylation of nuclear factor-κB p105 in vitro. CONCLUSION These findings indicate that GA inhibits periodontitis by inactivation of nuclear factor-κB in an interleukin-10- and glucocorticoid-independent fashion.
Collapse
Affiliation(s)
- Hajime Sasaki
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, U.S.A
| | - Noriyuki Suzuki
- Pulp Biology and Endodontics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Emad AlShwaimi
- Restorative Dental Sciences Department, Endodontic Division, College of Dentistry, King Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yan Xu
- Department of Medical Microbiology and Immunology, Kunming Medical University, Yunnan, China 650031
| | - Ricardo Battaglino
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, U.S.A
| | - Leslie Morse
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, 125 Nashua Street, Boston, MA 02114 USA
| | - Philip Stashenko
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, U.S.A
| |
Collapse
|
78
|
Abstract
B-cell chronic lymphocytic leukemia (CLL), the most common leukemia in the Western world, results from an expansion of a rare population of CD5+ mature B-lymphocytes. CLL occurs in two forms, aggressive and indolent. For the most part indolent CLL is characterized by low ZAP-70 expression and mutated IgH V(H); aggressive CLL shows high ZAP-70 expression and unmutated IgH V(H). Although clinical features and genomic abnormalities in CLL have been studied extensively, molecular mechanisms underlying disease development are still emerging. In the last few years, several important insights were reported in this area. MiR-15/16 targeting BCL2 and MCL1 and DLEU7 targeting TNF pathway were proposed as tumor suppressors at 13q14, a commonly deleted region in indolent CLL. Molecular details of how activation of TCL1, a critical oncogene in aggressive CLL, results in the initiation of this malignancy were clarified. Importance of these pathways was supported by investigations of several mouse models of CLL. Here, we present what has been learned from these new pathways, discuss mouse CLL models and how these mouse models recapitulate the molecular mechanisms of this common leukemia.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
79
|
Morgan MJ, Liu ZG. Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 2010; 30:1-12. [PMID: 20652490 PMCID: PMC6608586 DOI: 10.1007/s10059-010-0105-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 12/29/2022] Open
Abstract
TNFalpha is a pleotropic cytokine that initiates many downstream signaling pathways, including NF-kappaB activation, MAP kinase activation and the induction of both apoptosis and necrosis. TNFalpha has shown to lead to reactive oxygen species generation through activation of NADPH oxidase, through mitochondrial pathways, or other enzymes. As discussed, ROS play a role in potentiation or inhibition of many of these signaling pathways. We particularly discuss the role of sustained JNK activation potentiated by ROS, which generally is supportive of apoptosis and "necrotic cell death" through various mechanisms, while ROS could have inhibitory or stimulatory roles in NF-kappaB signaling.
Collapse
Affiliation(s)
- Michael J. Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zheng-gang Liu
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
80
|
Zhang W, Zhang X, Wu XL, He LS, Zeng XF, Crammer AC, Lipsky PE. Competition between TRAF2 and TRAF6 regulates NF-kappaB activation in human B lymphocytes. ACTA ACUST UNITED AC 2010; 25:1-12. [PMID: 20449947 DOI: 10.1016/s1001-9294(10)60013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of TNF receptor-associated factor 2 (TRAF-2) and TRAF6 in CD40-induced nuclear factor-kappaB (NF-kappaB) signaling pathway and whether CD40 signaling requires TRAF2. METHODS Human B cell lines were transfected with plasmids expressing wild type TRAF2 or dominant negative TRAF2, TRAF2-shRNA, or TRAF6-shRNA. The activation of NF-kappaB was detected by Western blot, kinase assay, transfactor enzyme-linked immunosorbent assay (ELISA), and fluorescence resonance energy transfer (FRET). Analysis of the role of TRAF-2 and TRAF-6 in CD40-mediated NF-kappaB activity was examined following stimulation with recombinant CD154. RESULTS TRAF2 induced activity of IkappaB-kinases (IKKalpha, IKKi/epsilon), phosphorylation of IkappaBalpha, as well as nuclear translocation and phosphorylation of p65/RelA. In contrast, TRAF6 strongly induced NF-kappaB activation and nuclear translocation of p65 as well as p50 and c-Rel. Engagement of CD154-induced nuclear translocation of p65 was inhibited by a TRAF6-shRNA, but conversely was enhanced by a TRAF2-shRNA. Examination of direct interactions between CD40 and TRAFs by FRET documented that both TRAF2 and TRAF6 directly interacted with CD40. However, the two TRAFs competed for CD40 binding. CONCLUSIONS These results indicate that TRAF2 can signal in human B cells, but it is not essential for CD40-mediated NF-kappaB activation. Moreover, TRAF2 can compete with TRAF6 for CD40 binding, and thereby limit the capacity of CD40 engagement to induce NF-kappaB activation.
Collapse
Affiliation(s)
- Wen Zhang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most common human leukemia. 13q14 deletions are most common chromosomal alterations in CLL. We previously reported that miR-15/16 is a target of 13q14 deletions and plays a tumor suppressor role by targeting BCL2. Because DLEU7 is located near miR-15/16 and is also positioned within a minimal deleted region, we investigated whether DLEU7 could also play a tumor suppressor role. Recent studies of transgenic mouse models demonstrated the importance of the nuclear factor-κB (NF-κB) pathway in CLL. To examine the possible role of DLEU7 in CLL, we investigated the effect of DLEU7 expression on NF-κB and nuclear factor of activated T cells (NFAT) activity. We found that DLEU7 functions as a potent NF-κB and NFAT inhibitor by physically interacting and inhibiting TACI and BCMA, members of the tumor necrosis factor (TNF) receptor family involved in B-CLL. In addition, DLEU7 expression in A549 lung cancer cells resulted in a decrease in S phase and increased apoptosis. The results suggest that loss of DLEU7 may cooperate with the loss of miR-15/16 in the pathogenesis of CLL.
Collapse
|
82
|
Hsu CJ, Lin TY, Kuo CC, Tsai CH, Lin MZ, Hsu HC, Fong YC, Tang CH. Involvement of integrin up-regulation in RANKL/RANK pathway of chondrosarcomas migration. J Cell Biochem 2010; 111:138-47. [DOI: 10.1002/jcb.22677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
83
|
Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2010; 36:831-44. [PMID: 20005846 DOI: 10.1016/j.molcel.2009.10.013] [Citation(s) in RCA: 625] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 07/22/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
TNF is a key inflammatory cytokine. Using a modified tandem affinity purification approach, we identified HOIL-1 and HOIP as functional components of the native TNF-R1 signaling complex (TNF-RSC). Together, they were shown to form a linear ubiquitin chain assembly complex (LUBAC) and to ubiquitylate NEMO. We show that LUBAC binds to ubiquitin chains of different linkage types and that its recruitment to the TNF-RSC is impaired in TRADD-, TRAF2-, and cIAP1/2- but not in RIP1- or NEMO-deficient MEFs. Furthermore, the E3 ligase activity of cIAPs, but not TRAF2, is required for HOIL-1 recruitment to the TNF-RSC. LUBAC enhances NEMO interaction with the TNF-RSC, stabilizes this protein complex, and is required for efficient TNF-induced activation of NF-kappaB and JNK, resulting in apoptosis inhibition. Finally, we demonstrate that sustained stability of the TNF-RSC requires LUBAC's enzymatic activity, thereby adding a third form of ubiquitin linkage to the triggering of TNF signaling by the TNF-RSC.
Collapse
Affiliation(s)
- Tobias L Haas
- Division of Apoptosis Regulation, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhang L, Blackwell K, Shi Z, Habelhah H. The RING domain of TRAF2 plays an essential role in the inhibition of TNFalpha-induced cell death but not in the activation of NF-kappaB. J Mol Biol 2010; 396:528-39. [PMID: 20064526 DOI: 10.1016/j.jmb.2010.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/12/2009] [Accepted: 01/05/2010] [Indexed: 02/01/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) and receptor-interacting protein 1 (RIP1) play critical roles in activating c-Jun N-terminal kinase (JNK) and inhibitor of kappaB kinase (IKK), as well as in inhibiting apoptosis induced by TNFalpha. The TRAF2 RING domain-mediated polyubiquitination of RIP1 is believed to be essential for TNFalpha-induced IKK activation, and the RING-domain-deleted TRAF2 (TRAF2-DeltaR) has been widely used as a dominant negative in transient overexpression systems to block TNFalpha-induced JNK and IKK activation. Here, we report that stable expression of TRAF2-DeltaR at a physiological level in TRAF2 and TRAF5 double knockout (TRAF2/5 DKO) cells almost completely restores normal TNFalpha-induced IKK activation, but not RIP1 polyubiquitination. In addition, stable expression of TRAF2-DeltaR in TRAF2/5 DKO cells efficiently inhibited the TNFalpha-induced later phase of prolonged JNK activation, yet failed to inhibit TNFalpha-induced cell death. Although the basal and inducible expression of anti-apoptotic proteins in TRAF2-DeltaR-expressing TRAF2/5 DKO cells was normal, the cells remained sensitive to TNFalpha-induced cell death because anti-apoptotic proteins were not recruited to the TNFR1 complex efficiently. Moreover, stable expression of TRAF2-DeltaR in TRAF2/5 DKO cells failed to suppress constitutive p100 processing in these cells. These data suggest that (i) the TRAF2 RING domain plays a critical role in inhibiting cell death induced by TNFalpha and is essential for suppressing the noncanonical nuclear factor kappaB pathway in unstimulated cells; (ii) RIP1 polyubiquitination is not essential for TNFalpha-induced IKK activation; and (iii) prolonged JNK activation has no obligate role in TNFalpha-induced cell death.
Collapse
Affiliation(s)
- Laiqun Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
85
|
Silke J, Brink R. Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 2010; 17:35-45. [PMID: 19680262 DOI: 10.1038/cdd.2009.114] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
There have been a number of recent discoveries relating to the functions of inhibitors of apoptosis (IAPs) and TNF receptor-associated factors (TRAFs) in regulating signalling from TNF receptor superfamily (TNFRSF) members and some tantalizing glimpses into a wider area of influence, that of innate immune signalling. Discoveries relating to the function of these ubiquitin E3 ligases in regulating signalling from the eponymous member of the family, TNF-R1, are dealt with superbly in a separate review by Wertz and Dixit and so we will confine our discussion to the subset of the TNFRSF that does not contain a death domain (DD). In line with the available data we will divide the review into two parts, the first is restricted to the role of TRAFs 2 and 3 and cIAPs in regulating TNFRSF signalling, whereas the second will be more speculative, asking what role IAPs and TRAFs have in innate immune signalling.
Collapse
Affiliation(s)
- J Silke
- Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia.
| | | |
Collapse
|
86
|
Vince JE, Pantaki D, Feltham R, Mace PD, Cordier SM, Schmukle AC, Davidson AJ, Callus BA, Wong WWL, Gentle IE, Carter H, Lee EF, Walczak H, Day CL, Vaux DL, Silke J. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis. J Biol Chem 2009; 284:35906-15. [PMID: 19815541 PMCID: PMC2791019 DOI: 10.1074/jbc.m109.072256] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2) binds to cIAP1 and cIAP2 (cIAP1/2) and recruits them to the cytoplasmic domain of several members of the TNF receptor (TNFR) superfamily, including the TNF-TNFR1 ligand-receptor complex. Here, we define a cIAP1/2-interacting motif (CIM) within the TRAF-N domain of TRAF2, and we use TRAF2 CIM mutants to determine the role of TRAF2 and cIAP1/2 individually, and the TRAF2-cIAP1/2 interaction, in TNFR1-dependent signaling. We show that both the TRAF2 RING domain and the TRAF2 CIM are required to regulate NF-kappaB-inducing kinase stability and suppress constitutive noncanonical NF-kappaB activation. Conversely, following TNFR1 stimulation, cells bearing a CIM-mutated TRAF2 showed reduced canonical NF-kappaB activation and TNF-induced RIPK1 ubiquitylation. Remarkably, the RING domain of TRAF2 was dispensable for these functions. However, like the TRAF2 CIM, the RING domain of TRAF2 was required for protection against TNF-induced apoptosis. These results show that TRAF2 has anti-apoptotic signaling roles in addition to promoting NF-kappaB signaling and that efficient activation of NF-kappaB by TNFR1 requires the recruitment of cIAP1/2 by TRAF2.
Collapse
Affiliation(s)
- James E. Vince
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Delara Pantaki
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Rebecca Feltham
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Peter D. Mace
- the Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | - Stephanie M. Cordier
- the Department of Immunology, Tumour Immunology Unit, Division of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Anna C. Schmukle
- the Department of Immunology, Tumour Immunology Unit, Division of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Angelina J. Davidson
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Bernard A. Callus
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Wendy Wei-Lynn Wong
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Ian E. Gentle
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Holly Carter
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Henning Walczak
- the Department of Immunology, Tumour Immunology Unit, Division of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Catherine L. Day
- the Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | - David L. Vaux
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| | - John Silke
- From the Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
| |
Collapse
|
87
|
Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 11:11.9D.1-11.9D.19. [PMID: 19918944 DOI: 10.1002/0471142735.im1109ds87] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor necrosis factor (TNF) superfamily consists of a wide variety of cell-bound and secreted proteins that regulate numerous cellular processes. In particular, TNF-family proteins regulate the proliferation and death of tumor cells, as well as activated immune cells. This overview discusses the mammalian TNF receptor-associated factors (TRAFs), of which TRAF1, 2, 3, 5, and 6 have been shown to interact directly or indirectly with members of the TNF receptor superfamily. Structural features of TRAF proteins are described along with a discussion of TRAF-interacting proteins and the signaling pathways activated by the TRAF proteins. Finally, we examine the phenotypes observed in TRAF-knockout mice.
Collapse
Affiliation(s)
- Hyunil Ha
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Daehee Han
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Yongwon Choi
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
88
|
Korchnak AC, Zhan Y, Aguilar MT, Chadee DN. Cytokine-induced activation of mixed lineage kinase 3 requires TRAF2 and TRAF6. Cell Signal 2009; 21:1620-5. [PMID: 19586614 PMCID: PMC2772099 DOI: 10.1016/j.cellsig.2009.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/20/2009] [Accepted: 06/26/2009] [Indexed: 01/06/2023]
Abstract
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple mitogen-activated protein kinase (MAPK) pathways in response to growth factors, stresses and the pro-inflammatory cytokine, tumor necrosis factor (TNF). MLK3 is required for optimal activation of stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling by TNF, however, the mechanism by which MLK3 is recruited and activated by the TNF receptor remains poorly understood. Here we report that both TNF and interleukin-1 beta (IL-1 beta) stimulation rapidly activate MLK3 kinase activity. We observed that TNF stimulates an interaction between MLK3 and TNF receptor associated factor (TRAF) 2 and IL-1 beta stimulates an interaction between MLK3 and TRAF6. RNA interference (RNAi) of traf2 or traf6 dramatically impairs MLK3 activation by TNF indicating that TRAF2 and TRAF6 are critically required for MLK3 activation. We show that TNF also stimulates ubiquitination of MLK3 and MLK3 can be conjugated with lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitin chains. Our results suggest that K48-linked ubiquitination directs MLK3 for proteosomal degradation while K63-linked ubiquitination is important for MLK3 kinase activity. These results reveal a novel mechanism for MLK3 activation by the pro-inflammatory cytokines TNF and IL-1 beta.
Collapse
Affiliation(s)
- Amanda C Korchnak
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS601, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
89
|
Abstract
Nuclear factor kappa enhancer binding protein (NF-kappaB) regulates diverse biological processes including immunity, inflammation, and apoptosis. A vast array of cellular stimuli converges on NF-kappaB, and ubiquitination plays an essential role in the coordination of these signals to regulate NF-kappaB activity. At least three steps in NF-kappaB activation directly involve ubiquitination: proteasomal degradation of inhibitor of NF-kappaB (IkappaB), processing of NF-kappaB precursors, and activation of the transforming growth factor (TGF)-beta-activated kinase (TAK1) and IkappaB kinase (IKK) complexes. In this review, we discuss recent advances in the identification and characterization of ubiquitination and deubiquitination machinery that regulate NF-kappaB. Particular emphasis is given to proteasome-independent functions of ubiquitin, specifically its role in the activation of protein kinase complexes and in coordination of cell survival and apoptosis signals downstream of tumor necrosis factor alpha (TNFalpha).
Collapse
Affiliation(s)
- Brian Skaug
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | |
Collapse
|
90
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229:152-72. [PMID: 19426221 DOI: 10.1111/j.1600-065x.2009.00782.x] [Citation(s) in RCA: 1123] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School and The Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
91
|
Choi JW, Kim DG, Park MC, Um JY, Han JM, Park SG, Choi EC, Kim S. AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J Cell Sci 2009; 122:2710-5. [PMID: 19584093 DOI: 10.1242/jcs.049767] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMP2 (aminoacyl-tRNA synthetase interacting multifunctional protein 2; also known as JTV-1) was first identified as p38 in a macromolecular protein complex that consisted of nine different aminoacyl-tRNA synthetases and two other auxiliary factors. AIMP2 also plays pivotal roles in the regulation of cell proliferation and death. Although AIMP2 was previously shown to augment TNFalpha-induced cell death, its working mechanism in this signal pathway was not understood. Here, we investigate the functional significance and mode of action of AIMP2 in TNFalpha signaling. TNFalpha-induced cell death was compromised in AIMP2-deficient or -suppressed cells and exogenous supplementation of AIMP2 augmented apoptotic sensitivity to TNFalpha signaling. This activity was confirmed by the AIMP2-dependent increase of IkappaB and suppression of NFkappaB. We found binding of AIMP2 to TRAF2, a key player in the TNFalpha signaling pathway. AIMP2 augmented the association of an E3 ubiquitin ligase, c-IAP1, with TRAF2, causing ubiquitin-dependent degradation of TRAF2. These findings suggest that AIMP2 can mediate the pro-apoptotic activity of TNFalpha via the downregulation of TRAF2 expression.
Collapse
Affiliation(s)
- Jin Woo Choi
- Center for Medicinal Protein Network and Systems Biology, Department of Molecular Medicine, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Affiliation(s)
- Yu-Hsin Chiu
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390-9148
| | - Meng Zhao
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390-9148
| | - Zhijian J. Chen
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390-9148
- Howard Hughes Medical Institute University of Texas Southwestern Medical Center Dallas, TX 75390-9148
| |
Collapse
|
93
|
Ahmed RAM, Murao K, Imachi H, Yoshida K, Dobashi H, Hosomi N, Ishida T. c-Jun N-terminal kinases inhibitor suppresses the TNF-alpha induced MCP-1 expression in human umbilical vein endothelial cells. Endocrine 2009; 35:184-8. [PMID: 19107603 DOI: 10.1007/s12020-008-9136-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/27/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a 76-amino-acid chemokine that is considered to be an important chemotactic factor for monocytes. MCP-1 is expressed in the macrophage-rich areas of atherosclerotic lesions. A recent report indicated that MCP-1 expression in human umbilical vein endothelial cells (HUVECs) is induced by the stimulation of tumor necrosis factor (TNF)-alpha via the c-Jun N-terminal kinases (JNK) pathway. In this study, we examined the effects of JNK inhibitor (JNKI-1), on MCP-1 expression. The results of this study indicated that the expression of MCP-1 mRNA and protein were stimulated in the presence of TNF-alpha. TNF-alpha stimulated the phosphrylation of JNK, however, JNKI-1 inhibited the TNF-alpha stimulated MCP-1 secretion and gene expression. As expected, JNKI-1 blocked the stimulatory effect of TNF-alpha on the MCP-1 promoter activity. In conclusion, JNKI-1 partially inhibits the TNF-alpha-induced MCP-1 expression in HUVECs, and therefore JNKI-1 may be of therapeutic value in the treatment of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Rania Abdel Muneem Ahmed
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
94
|
Li L, Soetandyo N, Wang Q, Ye Y. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:346-53. [PMID: 18952128 PMCID: PMC2657479 DOI: 10.1016/j.bbamcr.2008.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/09/2008] [Accepted: 09/17/2008] [Indexed: 11/22/2022]
Abstract
The zinc finger-containing protein A20 is a negative regulator of TNF-induced JNK (c-Jun-N-terminal kinase) and NFkappaB (nuclear factor kappaB) signaling. A20 is an unusual enzyme that contains both ubiquitinating and deubiquitinating activities. Although A20 is mostly localized in the cytosol, our recent studies reveal that a fraction of A20 can associate with a lysosome-interacting compartment in a manner that requires its carboxy terminal zinc fingers, but independent of its ubiquitin modifying activities. Whether the lysosome-associated A20 has a function in cellular signaling is unclear. Here, we demonstrate that A20 is capable of targeting an associated signaling molecule such as TRAF2 to the lysosomes for degradation. This process is dependent on the membrane tethering zinc finger domains of A20, but does not require A20 ubiquitin modifying activity. Our findings suggest a novel mode of A20 action that involves lysosomal targeting of signal molecules bound to A20.
Collapse
Affiliation(s)
- Lianyun Li
- Building 5, Room 433, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health 5, center drive, Bethesda, MD 20892, USA
| | - Nia Soetandyo
- Building 5, Room 433, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health 5, center drive, Bethesda, MD 20892, USA
| | - Qiuyan Wang
- Building 5, Room 433, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health 5, center drive, Bethesda, MD 20892, USA
| | - Yihong Ye
- Building 5, Room 433, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health 5, center drive, Bethesda, MD 20892, USA
| |
Collapse
|
95
|
Tang CH, Huang TH, Chang CS, Fu WM, Yang RS. Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-kappaB pathways. Osteoporos Int 2009; 20:93-103. [PMID: 18506384 DOI: 10.1007/s00198-008-0630-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 03/21/2008] [Indexed: 12/20/2022]
Abstract
UNLABELLED Onion powder has been reported to decrease the ovariectomy-induced bone resorption of rats. However, the molecular mechanism of onion powder on the bone cells has not been reported. Here, we report that water solution of onion crude powder decreases the osteoclastogenesis from co-cultures of bone marrow stromal cells and macrophage cells. Additionally, water solution of onion crude powder inhibits the RANKL-induced ERK, p38 and NF-kappaB activation in macrophages. In summary, our data showed that onion powder may benefit bone through an anti-resorption effect on the osteoclasts. INTRODUCTION A nutritional approach is important for both prevention and treatment of osteoporosis. Onion has been reported to decrease the ovariectomy-induced bone resorption. However, the functional effects of onion on the cultured osteoclasts and osteoblasts remain largely unknown. Here, we found that water solution of onion crude powder markedly inhibited the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis through ERK, p38 and NF-kappaB pathways. Other studies were also designed to investigate the potential signaling pathways involved in onion-induced decrease in osteoclastogenesis. METHODS The osteoclastogenesis was examined using the TRAP staining method. The MAPKs and NF-kappaB pathways were measured using Western blot analysis. A transfection protocol was used to examine NF-kappaB activity. RESULTS Water solution of onion crude powder inhibited the RANKL plus M-CSF-induced osteoclastic differentiation from either bone marrow stromal cells or from RAW264.7 macrophage cells. Treatment of RAW264.7 macrophages with RANKL could induce the activation of ERK, p38 and NF-kappaB that was inhibited by water solution of onion crude powder. On the other hand, it did not affect the cell proliferation and differentiation of human cultured osteoblasts. CONCLUSIONS Our data suggest that water solution of onion crude powder inhibits osteoclastogenesis from co-cultures of bone marrow stromal cells and macrophage cells via attenuation of RANKL-induced ERK, p38 and NF-kappaB activation.
Collapse
Affiliation(s)
- C-H Tang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
96
|
Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood 2008; 113:4595-603. [PMID: 19074733 DOI: 10.1182/blood-2008-07-165456] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) regulates both innate and adaptive immunity by modulating signaling by Toll-like receptors (TLR) and TNF receptors. TRAF3 was recently identified as a tumor suppressor in human multiple myeloma, suggesting a prominent role in plasma cell homeostasis. We have generated transgenic mice expressing human TRAF3 in lymphocytes. These mice are normal at birth, but they develop over time plasmacytosis and hypergammaglobulinemia, as well as systemic inflammation and tertiary lymphoid organ formation. The analysis of the humoral responses of the TRAF3 mice demonstrated increased responses to T-dependent and T-independent antigens with increased production of antigen-specific immunoglobulin Gs (IgGs) compared with wild-type mice. Furthermore, TLR-mediated IgG production is also increased in TRAF3 B cells. In addition, TRAF3 mice develop autoimmunity and are predisposed to cancer, particularly squamous cell carcinomas of the tongue ( approximately 50% incidence) and salivary gland tumors. In summary, TRAF3 renders B cells hyperreactive to antigens and TLR agonists, promoting autoimmunity, inflammation, and cancer, hereby providing a new model for studying de novo carcinogenesis promoted by B cell-initiated chronic inflammation.
Collapse
|
97
|
Zheng M, Morgan-Lappe SE, Yang J, Bockbrader KM, Pamarthy D, Thomas D, Fesik SW, Sun Y. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res 2008; 68:7570-8. [PMID: 18794145 PMCID: PMC2597026 DOI: 10.1158/0008-5472.can-08-0632] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy combined with chemotherapy is the treatment of choice for glioblastoma and locally advanced lung cancer, but radioresistance of these two types of cancer remains a significant therapeutic hindrance. To identify molecular target(s) for radiosensitization, we screened a small interfering RNA (siRNA) library targeting all protein kinases and E3 ubiquitin ligases in the human genome and identified tumor necrosis factor receptor-associated factor 2 (TRAF2). Silencing of TRAF2 using siRNA caused a significant growth suppression of glioblastoma U251 cells and moderately sensitized these radioresistant cells to radiation. Overexpression of a really interesting new gene (RING)-deleted dominant-negative TRAF2 mutant also conferred radiosensitivity, whereas overexpression of wild-type (WT) TRAF2 significantly protected cells from radiation-induced killing. Likewise, siRNA silencing of TRAF2 in radioresistant lung cancer H1299 cells caused growth suppression and radiosensitization, whereas overexpression of WT TRAF2 enhanced radioresistance in a RING ligase-dependent manner. Moreover, siRNA silencing of TRAF2 in UM-SCC-1 head and neck cancer cells also conferred radiosensitization. Further support for the role of TRAF2 in cancer comes from the observations that TRAF2 is overexpressed in both lung adenocarcinoma tissues and multiple lung cancer cell lines. Importantly, TRAF2 expression was very low in normal bronchial epithelial NL20 cells, and TRAF2 silencing had a minimal effect on NL20 growth and radiation sensitivity. Mechanistically, TRAF2 silencing blocks the activation of the nuclear factor-kappaB signaling pathway and down-regulates several G(2)-M cell cycle control proteins, resulting in enhanced G(2)-M arrest, growth suppression, and radiosensitization. Our studies suggest that TRAF2 is an attractive drug target for anticancer therapy and radiosensitization.
Collapse
Affiliation(s)
- Min Zheng
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109–5637
| | - Susan E. Morgan-Lappe
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | - Jie Yang
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109–5637
| | - Katrina M. Bockbrader
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109–5637
| | - Deepika Pamarthy
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109–5637
| | - Dafydd Thomas
- Department of Pathology and Internal Medicine, University of Michigan Cancer Center, MSRB2/C570, 1150 West Medical Center Drive, Ann Arbor, Michigan, 48109–0669
| | - Stephen W. Fesik
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | - Yi Sun
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109–5637
| |
Collapse
|
98
|
Limaye V. The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. ACTA ACUST UNITED AC 2008; 15:101-12. [PMID: 18568950 DOI: 10.1080/10623320802125342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sphingolipids, in particular sphingosine kinase (SphK) and its product sphingosine-1-phosphate (S1P), are now recognized to play an important role in regulating many critical processes in endothelial cells. Activation of SphK1 is essential in mediating the endothelial proinflammatory effects of inflammatory cytokines such as tumor necrosis factor (TNF). In addition, S1P regulates the survival and proliferation of endothelial cells, as well as their ability to undergo cell migration, all essential components of angiogenesis. Thus the inflammatory and angiogenic potential of the endothelium is in part regulated by intracellular components including the activity of SphK1 and levels of S1P. Herein a review of the sphingomyelin pathway with a particular focus on its relevance to endothelial cell biology is presented.
Collapse
Affiliation(s)
- Vidya Limaye
- Rheumatology Department, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
99
|
Necrotic cell death and 'necrostatins': now we can control cellular explosion. Trends Biochem Sci 2008; 33:352-5. [PMID: 18635359 DOI: 10.1016/j.tibs.2008.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/24/2022]
Abstract
The receptor-interacting protein 1 (RIP1) kinase activity is necessary for death-receptor-induced necrotic cell death. Recently, it has been demonstrated that 'necrostatins' efficiently block tumor necrosis factor-induced necrotic cell death through the inhibition of RIP1 kinase activity. This discovery supports the concept that receptor-induced necrosis, just like apoptosis, is a controlled cellular process. In addition, necrostatins are becoming important tools for evaluating the contribution of necrotic cell death in experimental disease models.
Collapse
|
100
|
Vince JE, Chau D, Callus B, Wong WWL, Hawkins CJ, Schneider P, McKinlay M, Benetatos CA, Condon SM, Chunduru SK, Yeoh G, Brink R, Vaux DL, Silke J. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. ACTA ACUST UNITED AC 2008; 182:171-84. [PMID: 18606850 PMCID: PMC2447903 DOI: 10.1083/jcb.200801010] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor κB (NF-κB) signaling, and sensitize cells to tumor necrosis factor α (TNFα). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1–Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1–TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-κB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFα-induced death occurs. TWEAK-induced loss of the cIAP1–TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFα-induced death, whereas primary cells remain resistant. Conversely, cIAP1–TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFα sensitization. Lysosomal degradation of cIAP1–TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Collapse
Affiliation(s)
- James E Vince
- Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, VIC 3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|