51
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
52
|
Abstract
Acid secretion by the gastric parietal cell is regulated by paracrine, endocrine, and neural pathways. The physiological stimuli include histamine, acetylcholine, and gastrin via their receptors located on the basolateral plasma membranes. Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and/or cAMP followed by activation of a cAMP-dependent protein kinase cascade that triggers the translocation and insertion of the proton pump enzyme, H,K-ATPase, into the apical plasma membrane of parietal cells. Whereas the H,K-ATPase contains a plasma membrane targeting motif, the stimulation-mediated relocation of the H,K-ATPase from the cytoplasmic membrane compartment to the apical plasma membrane is mediated by a SNARE protein complex and its regulatory proteins. This review summarizes the progress made toward an understanding of the cell biology of gastric acid secretion. In particular we have reviewed the early signaling events following histaminergic and cholinergic activation, the identification of multiple factors participating in the trafficking and recycling of the proton pump, and the role of the cytoskeleton in supporting the apical pole remodeling, which appears to be necessary for active acid secretion by the parietal cell. Emphasis is placed on identifying protein factors that serve as effectors for the mechanistic changes associated with cellular activation and the secretory response.
Collapse
Affiliation(s)
- Xuebiao Yao
- Department of Molecular and Cell Biology University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
53
|
Summy JM, Qian Y, Jiang BH, Guappone-Koay A, Gatesman A, Shi X, Flynn DC. The SH4-Unique-SH3-SH2 domains dictate specificity in signaling that differentiate c-Yes from c-Src. J Cell Sci 2003; 116:2585-98. [PMID: 12734402 DOI: 10.1242/jcs.00466] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
c-Src and c-Yes are highly homologous members of the Src family of non-receptor tyrosine kinases. The overall sequence similarity between c-Src and c-Yes allows them to perform many overlapping functions. However, the phenotypes of the c-src and c-yes knockout mice, and cells derived from them, are quite different, indicating functional specificity between the two proteins. Specifically, c-src-/- cells are deficient in several processes that require dynamic regulation of the actin cytoskeleton. In order to begin to understand why c-Yes is unable to compensate for c-Src signaling, we used a series of Src/Yes chimeras in which the non-catalytic functional domains of Src527F were replaced by those of c-Yes. Using chicken embryo fibroblasts as a model system, our results indicate that the c-Yes N-terminal SH4-Unique domains are sufficient to inhibit the ability of Src527F to alter cell morphology, induce actin filament rearrangements or stimulate motility or invasive potential. The data also indicate that the SH4-Unique-SH3-SH2 domains of c-Yes work cooperatively and prevent activation of signaling proteins associated with Src527F transformation, including activation of phosphatidylinositol 3-kinase, phosphorylation of c-Raf and Akt and downregulation of RhoA-GTP. These data indicate that c-Yes may not modulate signals associated with c-Src-induced changes in actin filament integrity and may explain why c-Yes fails to compensate for c-Src signaling in src-/- cells.
Collapse
Affiliation(s)
- Justin M Summy
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, PO Box 9300, Morgantown 26506, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Mostov K, Su T, ter Beest M. Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 2003; 5:287-93. [PMID: 12669082 DOI: 10.1038/ncb0403-287] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most cells are polarized and have distinct plasma membrane domains, which are the result of polarized trafficking of proteins and lipids. Great progress has been made in elucidating the highly conserved polarized targeting machinery. A pre-eminent challenge now is to understand the plasticity of polarized traffic, how it is altered by differentiation and dedifferentiation during development, as well as the adaptation of differentiated cells to meet changing physiological needs.
Collapse
Affiliation(s)
- Keith Mostov
- Department of Anatomy, Genentech Hall, 600 16th Street, University of California, San Francisco, CA 94143-2140, USA.
| | | | | |
Collapse
|
55
|
van Ijzendoorn SCD, Mostov KE, Hoekstra D. Role of Rab Proteins in Epithelial Membrane Traffic. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:59-88. [PMID: 14711116 DOI: 10.1016/s0074-7696(03)32002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Small GTPase rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Recent data suggest also that rabs, and their divalent effector proteins, organize organelle subdomains and as such may define functional organelle identity. Most rabs are ubiquitously expressed. However, some rabs are preferentially expressed in epithelial cells where they appear intimately associated with the epithelial-specific transcytotic pathway and/or tight junctions. This review discusses the role of rabs in epithelial membrane transport.
Collapse
Affiliation(s)
- Sven C D van Ijzendoorn
- Department of Membrane Cell Biology, University of Groningen, Groningen 9713AV, The Netherlands
| | | | | |
Collapse
|
56
|
Abstract
IgA, IgG and IgM are transported across epithelial cells in a receptor-mediated process known as transcytosis. In addition to neutralizing pathogens in the lumen of the gastrointestinal, respiratory and urogenital tracts, these antibody-receptor complexes are now known to mediate intracellular neutralization of pathogens and might also be important in immune activation and tolerance. Recent studies on the intracellular transport pathways of antibody-receptor complexes and antibody-stimulated receptor-mediated transcytosis are providing new insight into the nature and regulation of endocytic pathways.
Collapse
Affiliation(s)
- Raul Rojas
- Laboratory of Epithelial Cell Biology, Renal Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
57
|
Oh HS, Kwon H, Sun SK, Yang CH. QM, a putative tumor suppressor, regulates proto-oncogene c-yes. J Biol Chem 2002; 277:36489-98. [PMID: 12138090 DOI: 10.1074/jbc.m201859200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The QM gene encodes a 24.5 kDa ribosomal protein L10 known to be highly homologous to a Jun-binding protein (Jif-1), which inhibits the formation of Jun-Jun dimers. Here we have carried out screening with the c-Yes protein and found that a QM homologous protein showed interactions with c-Yes and other Src family members. We have found that two different regions of QM protein were associated with the SH3 domain of c-Yes. The QM protein does not contain canonical SH3 binding motifs or previously reported amino acid fragments showing interaction with SH3 domains. Several c-Yes kinase activity assays indicated that the QM protein reduced c-Yes kinase activity by 70% and that this suppression is related not only to the two SH3 binding regions but also to the C-terminal region of QM. Moreover, our autophosphorylation assays clarified that this regulation resulted from the inhibition of c-Yes autophosphorylation. Immunofluorescence studies showed that the QM proteins and c-Yes are able to interact in various tumor cell lines in vivo. The increases of the c-Yes protein and mRNA levels were detected when the QM was transfected. These results suggest that the QM protein might be a regulator for various signal transduction pathways involving SH3 domain-containing membrane proteins.
Collapse
Affiliation(s)
- Hyung Suk Oh
- Division of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
58
|
Claypool SM, Dickinson BL, Yoshida M, Lencer WI, Blumberg RS. Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 2002; 277:28038-50. [PMID: 12023961 PMCID: PMC2825174 DOI: 10.1074/jbc.m202367200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The major histocompatibility complex class I-related neonatal Fc receptor, FcRn, assembles as a heterodimer consisting of a heavy chain and beta(2)-microglobulin (beta(2)m), which is essential for FcRn function. We observed that, in Madin-Darby canine kidney (MDCK) cells, the function of human FcRn in mediating the bidirectional transport of IgG was significantly increased upon co-expression of the human isoform of beta(2)m. In MDCK cells, the presence of human beta(2)m endowed upon human FcRn an enhanced ability to exit the endoplasmic reticulum and acquire mature carbohydrate side-chain modifications at steady state, a faster kinetics of maturation, and augmented localization at the cell surface as a mature glycoprotein able to bind IgG. Although human FcRn with immature carbohydrate side-chain modifications was capable of exhibiting pH-dependent binding of IgG, only human FcRn with mature carbohydrate side-chain modifications was detected on the cell surface. These results show that human FcRn travels to the cell surface via the normal secretory pathway and that the appropriate expression and function of human FcRn in MDCK cells depends upon the co-expression of human beta(2)m.
Collapse
Affiliation(s)
- Steven M. Claypool
- Harvard Medical School, Program in Immunology, Boston, Massachusetts 02115
- Gastroenterogy Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Bonny L. Dickinson
- Gastrointestinal Cell Biology and Department of Medicine, Children’s Hospital, Boston, Massachusetts 02115
| | - Masaru Yoshida
- Gastroenterogy Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Wayne I. Lencer
- Gastrointestinal Cell Biology and Department of Medicine, Children’s Hospital, Boston, Massachusetts 02115
- Harvard Digestive Diseases Center, Boston, Massachusetts 02115
| | - Richard S. Blumberg
- Gastroenterogy Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Digestive Diseases Center, Boston, Massachusetts 02115
- Supported by NIH Grants DK44319 and DK51362. To whom correspondence should be addressed: Gastroenterology Division, Dept. of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115. Tel.: 617-732-6917; Fax: 617-264-5185;
| |
Collapse
|
59
|
Chen YH, Lu Q, Goodenough DA, Jeansonne B. Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Mol Biol Cell 2002; 13:1227-37. [PMID: 11950934 PMCID: PMC102264 DOI: 10.1091/mbc.01-08-0423] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Occludin is an integral membrane protein that is tyrosine phosphorylated when localized at tight junctions. When Ca(2+) was depleted from the culture medium, occludin tyrosine phosphorylation was diminished from Madin-Darby canine kidney epithelial cells in 2 min. This dephosphorylation was correlated with a significant reduction in transepithelial electrical resistance (TER), indicating a global loss of the tight junction barrier function. Reconstitution of Ca(2+) resulted in a robust tyrosine rephosphorylation of occludin that was temporally associated with an increase in TER. Moreover, we demonstrate in this study that occludin was colocalized with the nonreceptor tyrosine kinase c-Yes at cell junction areas and formed an immunoprecipitable complex with c-Yes in vivo. This complex dissociated when the cells were incubated in medium without Ca(2+) or treated with a c-Yes inhibitor, CGP77675. In the presence of CGP77675 after Ca(2+) repletion, occludin tyrosine phosphorylation was completely abolished and both tight junction formation and the increase of the TER were inhibited. Our study thus provides strong evidence that occludin tyrosine phosphorylation is tightly linked to tight junction formation in epithelial cells, and that the nonreceptor tyrosine kinase c-Yes is involved in the regulation of this process.
Collapse
Affiliation(s)
- Yan-Hua Chen
- Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, NC 27858, USA.
| | | | | | | |
Collapse
|
60
|
van IJzendoorn SCD, Tuvim MJ, Weimbs T, Dickey BF, Mostov KE. Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev Cell 2002; 2:219-28. [PMID: 11832247 DOI: 10.1016/s1534-5807(02)00115-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the role of rab3b in epithelial cells. In MDCK cells, rab3b localizes to vesicular structures containing the polymeric immunoglobulin receptor (pIgR) and located subjacent to the apical surface. We found that GTP-bound rab3b directly interacts with the cytoplasmic domain of pIgR. Binding of dIgA to pIgR causes a dissociation of the interaction with rab3b, a process that requires dIgA-mediated signaling, Arg657 in the cytoplasmic domain of pIgR, and possibly GTP hydrolysis by rab3b. Binding of dIgA to pIgR at the basolateral surface stimulates subsequent transcytosis to the apical surface. Overexpression of GTP-locked rab3b inhibits dIgA-stimulated transcytosis. Together, our data demonstrate that a rab protein can bind directly to a specific cargo protein and thereby control its trafficking.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
61
|
Okamoto CT, Li R, Zhang Z, Jeng YY, Chew CS. Regulation of protein and vesicle trafficking at the apical membrane of epithelial cells. J Control Release 2002; 78:35-41. [PMID: 11772447 DOI: 10.1016/s0168-3659(01)00479-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of endocytotic and post-endocytotic trafficking pathways at the apical membrane of epithelial cells presents a potential avenue for the identification of targets to modulate the initial stages of absorption and transepithelial transport of macromolecules. In addition, it is becoming increasingly clear that the activity of a number of apical membrane transporters is acutely regulated by vesicular trafficking. The gastric HCl-secreting parietal (oxyntic) cell is a model system to characterize an apical membrane vesicular trafficking pathway and its relationship to the regulation of the function of the gastric proton pump. The subapical tubulovesicular compartment of the parietal cell is highly enriched in the H,K-ATPase and is a key endosomal-like system in the apical membrane recycling pathway. In the process of cataloging the proteins that interact with the H,K-ATPase and tubulovesicles, we have identified novel components that may regulate protein sorting through this compartment and candidate linker proteins between the vesicular trafficking machinery and the cytoskeleton. One protein associated with H,K-ATPase-rich tubulovesicles is the nonreceptor tyrosine kinase c-src, identified by a screen for dynamin-binding proteins. The tyrosine kinase is active, as it can tyrosine-phosphorylate tubulovesicular proteins in vitro. One of the tyrosine-phosphorylated proteins of M(r) 100 kDa may be the H,K-ATPase itself, or a protein in a complex with the H,K-ATPase that is stable to dissociation by nonionic detergents. By virtue of its association with tubulovesicular membranes, c-src may regulate the trafficking and/or activity of the H,K-ATPase. A second protein identified by a screen for dynamin-binding proteins is the protein lasp-1. Lasp-1, through its modular protein structure, may bind to dynamin and to the actin cytoskeleton, thus linking the vesicular trafficking machinery with the cytoskeleton. These two examples illustrate the utility of the parietal cell in the biochemical characterization of components potentially involved in the regulation of apical membrane trafficking pathways.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA.
| | | | | | | | | |
Collapse
|
62
|
McCabe JB, Berthiaume LG. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol Biol Cell 2001; 12:3601-17. [PMID: 11694592 PMCID: PMC60279 DOI: 10.1091/mbc.12.11.3601] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
When variably fatty acylated N-terminal amino acid sequences were appended to a green fluorescent reporter protein (GFP), chimeric GFPs were localized to different membranes in a fatty acylation-dependent manner. To explore the mechanism of localization, the properties of acceptor membranes and their interaction with acylated chimeric GFPs were analyzed in COS-7 cells. Myristoylated GFPs containing a palmitoylated or polybasic region colocalized with cholesterol and ganglioside GM(1), but not with caveolin, at the plasma membrane and endosomes. A dipalmitoylated GFP chimera colocalized with cholesterol and GM(1) at the plasma membrane and with caveolin in the Golgi region. Acylated GFP chimeras did not cofractionate with low-density caveolin-rich lipid rafts prepared with Triton X-100 or detergent-free methods. All GFP chimeras, but not full-length p62(c-yes) and caveolin, were readily solubilized from membranes with various detergents. These data suggest that, although N-terminal acylation can bring GFP to cholesterol and sphingolipid-enriched membranes, protein-protein interactions are required to localize a given protein to detergent-resistant membranes or caveolin-rich membranes. In addition to restricting acceptor membrane localization, N-terminal fatty acylation could represent an efficient means to enrich the concentration of signaling proteins in the vicinity of detergent-resistant membranes and facilitate protein-protein interactions mediating transfer to a detergent-resistant lipid raft core.
Collapse
Affiliation(s)
- J B McCabe
- M.D./Ph.D. Program, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
63
|
Pilette C, Ouadrhiri Y, Godding V, Vaerman JP, Sibille Y. Lung mucosal immunity: immunoglobulin-A revisited. Eur Respir J 2001; 18:571-88. [PMID: 11589357 DOI: 10.1183/09031936.01.00228801] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucosal defence mechanisms are critical in preventing colonization of the respiratory tract by pathogens and penetration of antigens through the epithelial barrier. Recent research has now illustrated the active contribution of the respiratory epithelium to the exclusion of microbes and particles, but also to the control of the inflammatory and immune responses in the airways and in the alveoli. Epithelial cells also mediate the active transport of polymeric immunoglobulin-A from the lamina propria to the airway lumen through the polymeric immunoglobulin receptor. The role of IgA in the defence of mucosal surfaces has now expanded from a limited role of scavenger of exogenous material to a broader protective function with potential applications in immunotherapy. In addition, the recent identification of receptors for IgA on the surface of blood leukocytes and alveolar macrophages provides an additional mechanism of interaction between the cellular and humoral immune systems at the level of the respiratory tract.
Collapse
Affiliation(s)
- C Pilette
- Unit of Experimental Medicine, Christian de Duve Institute of Cellular Pathology, University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
64
|
van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JG. IgA and the IgA Fc receptor. Trends Immunol 2001; 22:205-11. [PMID: 11274926 DOI: 10.1016/s1471-4906(01)01873-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
IgA has traditionally been regarded a non-inflammatory antibody. This might indeed be true for secretory IgA (SIgA), which exerts its function at mucosal surfaces where commensal microorganisms and dietary antigens prevail. Serum IgA, however, potently triggers (pro)-inflammatory activity upon binding to the myeloid IgA receptor, FcalphaRI. Here, new insights in the roles of IgA and FcalphaRI are addressed and a model integrating the various functions of IgA in immunity is discussed.
Collapse
Affiliation(s)
- M van Egmond
- Departments of Cell Biology and Immunology and Surgical Oncology, Vrije Universiteit, Van de Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
65
|
Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 2001; 276:4398-408. [PMID: 11078729 DOI: 10.1074/jbc.m005448200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway.
Collapse
Affiliation(s)
- A Schlegel
- Department of Molecular Pharmacology, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
66
|
Abstract
The polymeric immunoglobulin receptor (pIgR) is important in host defense, transporting antibodies across mucosal epithelial cells. Recent work has shown that, using a protein that binds directly to the pIgR, Streptococcus pneumoniae can co-opt the transcytosis machinery and gain entry into airway epithelial cells.
Collapse
Affiliation(s)
- C S Kaetzel
- Department of Pathology, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
67
|
Hoey JG, Summy J, Flynn DC. Chimeric constructs containing the SH4/Unique domains of cYes can restrict the ability of Src(527F) to upregulate heme oxygenase-1 expression efficiently. Cell Signal 2000; 12:691-701. [PMID: 11080622 DOI: 10.1016/s0898-6568(00)00116-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
cSrc and cYes are the two most homologous members of the Src-family of nonreceptor tyrosine kinases. These kinases perform redundant signalling functions in cells; however, there is also evidence to support specificity in signalling. In this report, specificity in signalling between activated forms of the cSrc and cYes oncoproteins was examined at the level of downstream gene expression. Here, pp60c-src(527F) (Src(527F)) and chimeric constructs of Src(527F) containing combinations of the SH4/Unique/SH3/SH2 domains of cYes were generated to determine whether the individual modular domains of cSrc or cYes could direct distinct cellular signals leading to differential gene expression. A biased, differential display analysis approach was used to analyse changes in gene expression. The data indicate that Src(527F) is capable of upregulating heme oxygenase-1 (HO-1) in CEF cells at the level of transcription and protein expression. Chimeric constructs containing the SH4/Unique domains of cYes were less efficient in upregulating HO-1 expression. Activation of cSrc and expression of the HO-1 gene product are each induced under conditions of hypoxia. We hypothesize that activated cSrc can direct upregulation of HO-1 while activated cYes may be less efficient in stimulating signal transduction pathways that direct expression of HO-1.
Collapse
Affiliation(s)
- J G Hoey
- 2822 MBR Cancer Center, West Virginia University, Morgantown, WV, 26506-9300, USA
| | | | | |
Collapse
|
68
|
Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M, Tuomanen E. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 2000; 102:827-37. [PMID: 11030626 DOI: 10.1016/s0092-8674(00)00071-4] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The polymeric immunoglobulin receptor (pIgR) plays a crucial role in mucosal immunity against microbial infection by transporting polymeric immunoglobulins (pIg) across the mucosal epithelium. We report here that the human pIgR (hpIgR) can bind to a major pneumococcal adhesin, CbpA. Expression of hpIgR in human nasopharyngeal cells and MDCK cells greatly enhanced pneumococcal adherence and invasion. The hpIgR-mediated bacterial adherence and invasion were abolished by either insertional knockout of cbpA or antibodies against either hpIgR or CbpA. In contrast, rabbit pIgR (rpIgR) did not bind to CbpA and its expression in MDCK cells did not enhance pneumococcal adherence and invasion. These results suggest that pneumococci are a novel example of a pathogen co-opting the pIg transcytosis machinery to promote translocation across a mucosal barrier.
Collapse
Affiliation(s)
- J R Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Pol A, Calvo M, Lu A, Enrich C. EGF triggers caveolin redistribution from the plasma membrane to the early/sorting endocytic compartment of hepatocytes. Cell Signal 2000; 12:537-40. [PMID: 11027946 DOI: 10.1016/s0898-6568(00)00100-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we demonstrate that, in rat liver, epidermal growth factor (EGF) is responsible for the partial redistribution of caveolin-1 from the plasma membrane into the early/sorting endocytic compartment. Highly purified endosomes and plasma membrane fractions were isolated from control rat liver and from rats injected with EGF or pIgA for different times. Whereas in subcellular fractions from control hepatocytes most of caveolin was concentrated in the plasma membrane and the receptor-recycling fractions, after EGF injection there was a significant redistribution of caveolin toward the early/sorting (CURL) endocytic fractions. The recruitment of caveolin into the endocytic compartment was not induced by pIgA.
Collapse
Affiliation(s)
- A Pol
- Departament de Biologia Cellular, Institut dí Investigacions Biomèdiques August Pi Sunyer, Facultat de Medicina, Universitat de Barcelona, Casanova 143. 08036-, Barcelona, Spain
| | | | | | | |
Collapse
|
70
|
Abstract
Epithelial cells contain apical and basolateral surfaces with distinct compositions. Sorting of certain proteins to the basolateral surface involves the epithelial-specific mu 1b clathrin adaptor subunit. Recent results have shown that targeting to the basolateral surface utilizes the exocyst, whereas traffic to the apical surface uses syntaxin 3. Endocytosis at the apical surface is regulated by ARF6. Transcytosis of IgA is regulated by the p62Yes tyrosine kinase.
Collapse
Affiliation(s)
- K E Mostov
- Department of Anatomy, University of California, San Francisco, 94143-0452, USA.
| | | | | |
Collapse
|
71
|
Calvo M, Pol A, Lu A, Ortega D, Pons M, Blasi J, Enrich C. Cellubrevin is present in the basolateral endocytic compartment of hepatocytes and follows the transcytotic pathway after IgA internalization. J Biol Chem 2000; 275:7910-7. [PMID: 10713107 DOI: 10.1074/jbc.275.11.7910] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The endocytic compartment of polarized cells is organized in basolateral and apical endosomes plus those endocytic structures specialized in recycling and transcytosis, which are still poorly characterized. The complexity of the various populations of endosomes has been demonstrated by the exquisite repertoire of endogenous proteins. In this study we examined the distribution of cellubrevin in the endocytic compartment of hepatocytes, since its intracellular location and function in polarized cells are largely unknown. Highly purified rat liver endosomes were isolated from estradiol-treated rats, and the early/sorting endosomal fraction was further subfractionated in a multistep sucrose density gradient, and studied. Analysis of dissected endosomal fractions showed that cellubrevin was located in early/sorting endosomes, with Rab4, annexins II and VI, and transferrin receptor, but in a specific subpopulation of these early endosomes with the same density range as pIgA and Raf-1. Interestingly, only in those isolated endosomal fractions, endosomes enriched in transcytotic structures (of livers loaded with IgA), the polymeric immunoglobulin receptor specifically co-immunoprecipitated with cellubrevin. In addition, confocal and immuno-electron microscopy identification of cellubrevin in tubular structures underneath the sinusoidal plasma membrane together with the re-organization of cellubrevin, in the endocytic compartment, after the IgA loading, strongly suggest the involvement of cellubrevin in the transcytosis of pIgA.
Collapse
Affiliation(s)
- M Calvo
- Departament de Biologia Cel.lular, Institut de Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Summy JM, Guappone AC, Sudol M, Flynn DC. The SH3 and SH2 domains are capable of directing specificity in protein interactions between the non-receptor tyrosine kinases cSrc and cYes. Oncogene 2000; 19:155-60. [PMID: 10644991 DOI: 10.1038/sj.onc.1203265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The c-src and c-yes proto-oncogenes encode 60 000 and 62 000 Dalton non-receptor tyrosine kinases of the Src family, pp60c-src and pp62c-yes, respectively. These kinases are over 80% homologous outside of their unique amino termini, yet several studies suggest that differences exist in the regulation, activation, and function of cSrc and cYes. The determinants of specificity in signaling between these proteins, however, remain unclear. In order to investigate the roles of the Src Homology (SH) 3 and 2 domains in mediating signaling specificity between cSrc and cYes, chimeras were created in which the SH3 and/or SH2 domains of cSrc or the fully activated variant Src527F were replaced by the corresponding domains of cYes. These constructs were used to assess the effects of the Yes SH3 and SH2 domains on the ability of Src to form stable complexes with and induce tyrosine phosphorylation of Src SH3 and SH2 domain binding partners in vivo. Both the Yes SH3 and SH2 domains were found to alter the capacity of Src to form stable associations with heterologous proteins. The Yes SH3 domain was unable to affinity absorb the Src SH3/SH2 binding partner AFAP-110 from COS-1 cell lysates, and chimeric constructs of Src527F containing the cYes SH3 domain were unable to efficiently co-immunoprecipitate with AFAP-110 from chicken embryo fibroblasts. Interactions with the Src SH2 domain binding partner pp130cas were unaffected. Additionally, only chimeras containing the cYes SH2 domain were able to co-immunoprecipitate with an unidentified 87 kDa tyrosine-phosphorylated protein. These results indicate that the SH3 and SH2 domains are capable of directing specificity in substrate binding between Src and Yes, suggesting potential mechanisms for generating specificity in signaling between these two highly related non-receptor tyrosine kinases.
Collapse
Affiliation(s)
- J M Summy
- The Mary Babb Randolph Cancer Center, Department of Microbiology, West Virginia University, Morgantown, West Virginia, WV 26506-9300, USA
| | | | | | | |
Collapse
|