51
|
Guo H, Ecker JR. Plant Responses to Ethylene Gas Are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor. Cell 2003; 115:667-77. [PMID: 14675532 DOI: 10.1016/s0092-8674(03)00969-3] [Citation(s) in RCA: 558] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants use ethylene gas as a signal to regulate myriad developmental processes and stress responses. The Arabidopsis EIN3 protein is a key transcription factor mediating ethylene-regulated gene expression and morphological responses. Here, we report that EIN3 protein levels rapidly increase in response to ethylene and this response requires several ethylene-signaling pathway components including the ethylene receptors (ETR1 and EIN4), CTR1, EIN2, EIN5, and EIN6. In the absence of ethylene, EIN3 is quickly degraded through a ubiquitin/proteasome pathway mediated by two F box proteins, EBF1 and EBF2. Plants containing mutations in either gene show enhanced ethylene response by stabilizing EIN3, whereas efb1 efb2 double mutants show constitutive ethylene phenotypes. Plants overexpressing either F box gene display ethylene insensitivity and destabilization of EIN3 protein. These results reveal that a ubiquitin/proteasome pathway negatively regulates ethylene responses by targeting EIN3 for degradation, and pinpoint EIN3 regulation as the key step in the response to ethylene.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/isolation & purification
- Cysteine Endopeptidases/drug effects
- Cysteine Endopeptidases/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Ethylenes/metabolism
- Ethylenes/pharmacology
- F-Box Motifs/drug effects
- F-Box Motifs/genetics
- F-Box Proteins/genetics
- F-Box Proteins/isolation & purification
- Feedback, Physiological/drug effects
- Feedback, Physiological/genetics
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Molecular Sequence Data
- Multienzyme Complexes/drug effects
- Multienzyme Complexes/metabolism
- Mutation/genetics
- Nuclear Proteins/drug effects
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Peptide Hydrolases/genetics
- Peptide Hydrolases/metabolism
- Phenotype
- Proteasome Endopeptidase Complex
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/isolation & purification
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription Factors
Collapse
Affiliation(s)
- Hongwei Guo
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
52
|
Abstract
The plant hormone ethylene is an essential signaling molecule involved in many plant processes including: germination, flower development, fruit ripening and responses to many environmental stimuli. Moreover, large increases in ethylene levels occur during plant stress responses, fruit ripening and flower wilting. Manipulation of ethylene biosynthesis or perception allows us to modulate these processes and thereby create plants with more robust and/or desirable traits, giving us a glimpse into the role of ethylene in the plant. Here, recent and landmark advances in genetic alteration of members of the ethylene pathway in plants and the physiological consequences of these alterations are examined.
Collapse
|
53
|
Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 2003; 278:34725-32. [PMID: 12821658 DOI: 10.1074/jbc.m305548200] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant hormone ethylene is perceived by a five-member family of receptors related to the bacterial histidine kinases. The Raf-like kinase CTR1 functions downstream of the ethylene receptors as a negative regulator of ethylene signal transduction. CTR1 is shown here to be associated with membranes of the endoplasmic reticulum in Arabidopsis as a result of its interactions with ethylene receptors. Membrane association of CTR1 is reduced by mutations that eliminate ethylene receptors and by a mutation in CTR1 that reduces its ability to bind to the ethylene receptor ETR1. Direct evidence that CTR1 is part of an ethylene receptor signaling complex was obtained by co-purification of the ethylene receptor ETR1 with a tagged version of CTR1 from an Arabidopsis membrane extract. The histidine kinase activity of ETR1 is not required for its association with CTR1, based on co-purification of tagged ETR1 mutants and CTR1 after expression in a transgenic yeast system. These data demonstrate that CTR1 is part of an ethylene receptor signaling complex in Arabidopsis and support a model in which localization of CTR1 to the endoplasmic reticulum is necessary for its function. Additional data that demonstrate a post-transcriptional effect of ethylene upon the expression of CTR1 suggest that production of ethylene receptor signaling complexes may be coordinately regulated.
Collapse
Affiliation(s)
- Zhiyong Gao
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Arroyo A, Bossi F, Finkelstein RR, León P. Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:231-42. [PMID: 12970489 PMCID: PMC196600 DOI: 10.1104/pp.103.021089] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 03/28/2003] [Accepted: 06/03/2003] [Indexed: 05/18/2023]
Abstract
Mutant characterization has demonstrated that ABI4 (Abscisic Acid [ABA] Insensitive 4), ABI5 (ABA Insensitive 5), and CTR1 (Constitutive Triple Response 1) genes play an important role in the sugar signaling response in plants. The present study shows that the transcripts of these three genes are modulated by glucose (Glc) independently of the developmental arrest caused by high Glc concentrations. ABI4 and ABI5 transcripts accumulate in response to sugars, whereas the CTR1 transcript is transiently reduced followed by a rapid recovery. The results of our kinetic studies on gene expression indicate that ABI4, ABI5, and CTR1 are regulated by multiple signals including Glc, osmotic stress, and ABA. However, the differential expression profiles caused by these treatments suggest that distinct signaling pathways are used for each signal. ABI4 and ABI5 response to the Glc analog 2-deoxy-Glc supports this conclusion. Glc regulation of ABI4 and CTR1 transcripts is dependent on the developmental stage. Finally, the Glc-mediated regulation of ABI4 and ABI5 is affected in mutants displaying Glc-insensitive phenotypes such as gins, abas, abi4, abi5, and ctr1 but not in abi1-1, abi2-1, and abi3-1, which do not show a Glc-insensitive phenotype. The capacity of transcription factors, like the ones analyzed in this work, to be regulated by a variety of signals might contribute to the ability of plants to respond in a flexible and integral way to continuous changes in the internal and external environment.
Collapse
Affiliation(s)
- Analilia Arroyo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001 Chamilpa, Apartado Postal 510-3 Cuernavaca, Morelos 62271, Mexico
| | | | | | | |
Collapse
|
55
|
Lee JH, Kim WT. Molecular and biochemical characterization of VR-EILs encoding mung bean ETHYLENE INSENSITIVE3-LIKE proteins. PLANT PHYSIOLOGY 2003; 132:1475-88. [PMID: 12857828 PMCID: PMC167086 DOI: 10.1104/pp.103.022574] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 04/02/2003] [Accepted: 04/02/2003] [Indexed: 05/18/2023]
Abstract
ETHYLENE INSENSITIVE3 (EIN3) is a transcription factor involved in the ethylene signal transduction pathway in Arabidopsis. Two full-length cDNA clones, pVR-EIL1 and pVR-EIL2, encoding EIN3-LIKE proteins were isolated by reverse transcriptase-polymerase chain reaction and by screening the cDNA library of mung bean (Vigna radiata) hypocotyls. VR-EIL1 and VR-EIL2 share 70% identity and display varying degrees of sequence conservation (39%-65%) with previously isolated EIN3 homologs from Arabidopsis, tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum) plants. Gel retardation assay revealed that both VR-EILs were able to interact specifically with optimal binding sequence-1, the recently identified optimal binding sequence for tobacco TEIL, with the binding of VR-EIL2 being more efficient than that of VR-EIL1. Transient expression analysis using a VR-EIL::smGFP fusion gene in onion (Allium cepa) epidermal cells indicated that the VR-EIL proteins were effectively targeted to the nucleus. The fusion protein of VR-EIL2 with GAL4 DNA-binding domain strongly activated transcription of a reporter gene in yeast cells, and an essential domain for transcription-stimulating activity was localized to the amino-terminal acidic region that consists of 50 amino acid residues. In contrast with what has been previously found in EIN3- and TEIL-overexpressing Arabidopsis plants, transgenic tobacco seedlings expressing the VR-EIL genes under the control of cauliflower mosaic virus 35S promoter did not exhibit a constitutive triple response. Instead, they displayed a markedly enhanced proliferation of root hairs, one of the typical ethylene response phenotypes, and increased sensitivity to exogenous ethylene. In addition, the pathogenesis-related (PR) genes encoding beta-1,3-glucanase, osmotin, and PR1 were constitutively expressed in 35S::VR-EIL lines without added ethylene, and were hyperinduced in response to ethylene treatment. These results indicate that VR-EILs are functional in tobacco cells, thereby effectively transactivating the GCC-box-containing PR genes and enhancing sensitivity to ethylene. The possible physiological role of VR-EILs is discussed in the light of the suggestion that they are active components of the ethylene-signaling pathway and their heterologous expressions constitutively turn on a subset of ethylene responses in tobacco plants.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
56
|
Navet R, Jarmuszkiewicz W, Almeida AM, Sluse-Goffart C, Sluse FE. Energy conservation and dissipation in mitochondria isolated from developing tomato fruit of ethylene-defective mutants failing normal ripening: the effect of ethephon, a chemical precursor of ethylene. J Bioenerg Biomembr 2003; 35:157-68. [PMID: 12887014 DOI: 10.1023/a:1023750204310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alternative oxidase (AOX) and uncoupling protein (UCP) are present simultaneously in tomato fruit mitochondria. In a previous work, it has been shown that protein expression and activity of these two energy-dissipating systems exhibit large variations during tomato fruit development and ripening on the vine. It has been suggested that AOX and UCP could be responsible for the respiration increase at the end of ripening and that the cytochrome pathway could be implicated in the climacteric respiratory burst before the onset of ripening. In this study, the use of tomato mutants that fail normal ripening because of deficiencies in ethylene perception or production as well as the treatment of one selected mutant with a chemical precursor of ethylene have revealed that the bioenergetics of tomato fruit development and ripening is under the control of this plant hormone. Indeed, the evolution pattern of bioenergetic features changes with the type of mutation and with the introduction of ethylene into an ethylene-synthesis-deficient tomato fruit mutant during its induced ripening.
Collapse
Affiliation(s)
- Rachel Navet
- Laboratory of Bioenergetics, Department of Life Sciences, Institute of Chemistry B6c, University of Liège, Sar-Tilman, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
57
|
Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen JP, Van Der Straeten D. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. PLANT PHYSIOLOGY 2003; 131:1228-38. [PMID: 12644673 PMCID: PMC166883 DOI: 10.1104/pp.010850] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Revised: 08/02/2002] [Accepted: 11/09/2002] [Indexed: 05/18/2023]
Abstract
Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, KL Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Walters RG, Shephard F, Rogers JJM, Rolfe SA, Horton P. Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. PLANT PHYSIOLOGY 2003; 131:472-81. [PMID: 12586872 PMCID: PMC166824 DOI: 10.1104/pp.015479] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 10/23/2002] [Accepted: 10/23/2002] [Indexed: 05/20/2023]
Abstract
In common with many other higher plant species, Arabidopsis undergoes photosynthetic acclimation, altering the composition of the photosynthetic apparatus in response to fluctuations in its growth environment. The changes in photosynthetic function that result from acclimation can be detected in a noninvasive manner by monitoring chlorophyll (Chl) fluorescence. This technique has been used to develop a screen that enables the rapid identification of plants defective at ACCLIMATION OF PHOTOSYNTHESIS TO THE ENVIRONMENT (APE) loci. The application of this screen to a population of T-DNA-transformed Arabidopsis has successfully led to the identification of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis and pigment composition in leaves from three such mutants showed that they had altered acclimation responses to the growth light environment, each having a distinct acclimation-defective phenotype, demonstrating that screening for mutants using Chl fluorescence is a viable strategy for the investigation of acclimation. Sequencing of the genomic DNA flanking the T-DNA elements showed that in the ape1 mutant, a gene was disrupted that encodes a protein of unknown function but that appears to be specific to photosynthetic organisms, whereas the ape2 mutant carries an insertion in the region of the TPT gene encoding the chloroplast inner envelope triose phosphate/phosphate translocator.
Collapse
Affiliation(s)
- Robin G Walters
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
59
|
Wang W, Hall AE, O'Malley R, Bleecker AB. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 2003; 100:352-7. [PMID: 12509505 PMCID: PMC140975 DOI: 10.1073/pnas.0237085100] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene signaling in plants is mediated by a family of receptors related to bacterial two-component histidine kinases. Of the five members of the Arabidopsis ethylene receptor family, members of subfamily I (ETR1 and ERS1) contain completely conserved histidine kinase domains, whereas members of subfamily II (ETR2, EIN4, and ERS2) lack conserved residues thought to be necessary for kinase activity. To examine the role of the conserved histidine kinase domain in receptor signaling, ers1;etr1 loss-of-function double mutants were generated. The double mutants exhibited a severe constitutive ethylene response phenotype consistent with the negative regulator model for receptor function. The adult ers1-2;etr1-6 and ers1-2;etr1-7 phenotypes included miniature rosette size, delayed flowering, and both male and female sterility, whereas etiolated-seedling responses were less affected. Chimeric transgene constructs in which the ETR1 promoter was used to drive expression of cDNAs for each of the five receptor isoforms were transferred into the ers1-2;etr1-7 double-mutant plants. Subfamily I constructs restored normal growth, whereas subfamily II constructs failed to rescue the double mutant, providing evidence for a unique role for subfamily I in receptor signaling. However, transformation of either the ers1-2;etr1-6 or ers1-2;etr1-7 mutant with a kinase-inactivated ETR1 genomic clone also resulted in complete restoration of normal growth and ethylene responsiveness in the double-mutant background, leading to the conclusion that canonical histidine kinase activity by receptors is not required for ethylene receptor signaling.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Botany and Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
60
|
Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:221-33. [PMID: 12535337 DOI: 10.1046/j.1365-313x.2003.01620.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.
Collapse
Affiliation(s)
- Yafan Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
61
|
Zhao XC, Qu X, Mathews DE, Schaller GE. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. PLANT PHYSIOLOGY 2002; 130:1983-91. [PMID: 12481081 PMCID: PMC166709 DOI: 10.1104/pp.011635] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 08/18/2002] [Accepted: 08/30/2002] [Indexed: 05/20/2023]
Abstract
The ethylene receptor family of Arabidopsis consists of five members, one of these being ETR1. The effect of ethylene pathway mutations upon expression of ETR1 was examined. For this purpose, ETR1 levels were quantified in mutant backgrounds containing receptor loss-of-function mutations, ethylene-insensitive mutations, and constitutive ethylene response mutations. Ethylene-insensitive mutations of ETR1 resulted in a posttranscriptional increase in levels of the mutant receptor. Treatment of seedlings with silver, which leads to ethylene insensitivity, also resulted in an increase in levels of ETR1. Loss-of-function mutations of ETR1 resulted in both transcriptional and posttranscriptional changes in levels of the receptor. Most other ethylene pathway mutations, including a newly isolated T-DNA insertion mutation in the gene encoding the ethylene receptor ERS1, had relatively minor effects upon the expression of ETR1. Our results indicate that mutations in ETR1 can affect expression at the posttranscriptional level, and suggest that these posttranscriptional changes may contribute to the phenotypes observed in the mutants. Our results also refine the model on how mutations in ethylene receptors are able to confer dominant ethylene insensitivity upon plants.
Collapse
Affiliation(s)
- Xue-Chu Zhao
- Department of Biochemistry, University of New Hampshire, Durham 03824, USA
| | | | | | | |
Collapse
|
62
|
Yang T, Poovaiah BW. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 2002; 277:45049-58. [PMID: 12218065 DOI: 10.1074/jbc.m207941200] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.
Collapse
Affiliation(s)
- Tianbao Yang
- Laboratory of Plant Molecular Biology and Physiology, Department of Horticulture, Washington State University, Pullman, Washington 99164-6414, USA
| | | |
Collapse
|
63
|
Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latché A, Giovannoni JJ, Pech JC, Bouzayen M. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. PLANT PHYSIOLOGY 2002; 130:1132-42. [PMID: 12427980 PMCID: PMC166634 DOI: 10.1104/pp.009415] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Revised: 07/14/2002] [Accepted: 07/26/2002] [Indexed: 05/18/2023]
Abstract
LeCTR1 was initially isolated by both differential display reverse transcriptase-polymerase chain reaction screening for tomato (Lycopersicon esculentum) fruit ethylene-inducible genes and through homology with the Arabidopsis CTR1 cDNA. LeCTR1 shares strong nucleotide sequence homology with Arabidopsis CTR1, a gene acting downstream of the ethylene receptor and showing similarity to the Raf family of serine/threonine protein kinases. The length of the LeCTR1 transcribed region from ATG to stop codon (12,000 bp) is more than twice that of Arabidopsis CTR1 (4,700 bp). Structural analysis reveals perfect conservation of both the number and position of introns and exons in LeCTR1 and Arabidopsis CTR1. The introns in LeCTR1 are much longer, however. To address whether this structural conservation is indicative of functional conservation of the corresponding proteins, we expressed LeCTR1 in the Arabidopsis ctr1-1 (constitutive triple response 1) mutant under the direction of the 35S promoter. Our data clearly show that ectopic expression of LeCTR1 in the Arabidopsis ctr1-1 mutant can restore normal ethylene signaling. The recovery of normal ethylene sensitivity upon heterologous expression of LeCTR1 was also confirmed by restored glucose sensitivity absent in the Arabidopsis ctr1-1 mutant. Expression studies confirm ethylene responsiveness of LeCTR1 in various tissues, including ripening fruit, and may suggest the evolution of alternate regulatory mechanisms in tomato versus Arabidopsis.
Collapse
Affiliation(s)
- Julie Leclercq
- Unité Mixte de Recherche 990, Institut National de la Recherche Agronomique/Institut National Polytechnique-Ecole Nationale Supérieure Agronomique, Boite Postale 107 Auzeville, 31326 Castanet Tolosan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Cancel JD, Larsen PB. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:1557-67. [PMID: 12177468 PMCID: PMC166743 DOI: 10.1104/pp.003780] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Revised: 03/21/2002] [Accepted: 04/11/2002] [Indexed: 05/18/2023]
Abstract
Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.
Collapse
Affiliation(s)
- Jesse D Cancel
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
65
|
Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:237-43. [PMID: 11960742 DOI: 10.1016/s1369-5266(02)00251-0] [Citation(s) in RCA: 595] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants synthesize and emit a large variety of volatile organic compounds with terpenoids and fatty-acid derivatives the dominant classes. Whereas some volatiles are probably common to almost all plants, others are specific to only one or a few related taxa. The rapid progress in elucidating the biosynthetic pathways, enzymes, and genes involved in the formation of plant volatiles allows their physiology and function to be rigorously investigated at the molecular and biochemical levels. Floral volatiles serve as attractants for species-specific pollinators, whereas the volatiles emitted from vegetative parts, especially those released after herbivory, appear to protect plants by deterring herbivores and by attracting the enemies of herbivores.
Collapse
Affiliation(s)
- Eran Pichersky
- Molecular, Cellular and Developmental Biology, University of Michigan, 830 N University Street, Ann Arbor, Michigan 48109-1048, USA.
| | | |
Collapse
|
66
|
Mazarei M, Puthoff DP, Hart JK, Rodermel SR, Baum TJ. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:577-86. [PMID: 12059106 DOI: 10.1094/mpmi.2002.15.6.577] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ethylene-responsive element-binding proteins (EREBPs) are members of a family of plant transcription factors. Conserved EREBP domains of these proteins bind to the GCC box, an ethylene-responsive promoter element found in many pathogenesis-related (PR) genes. Using degenerate primers to the EREBP domain from diverse plant species, an EREBP homolog was isolated from a soybean cDNA library. Gel mobility-shift assays revealed that the translation product of this cDNA bound specifically to GCC box sequences. We, therefore, named this gene Glycine max ethylene-responsive element-binding protein 1 (GmEREBP1), i.e., a gene coding for the first confirmed GCC box-binding protein of soybean. GmEREBP1 mRNA abundance was analyzed by RNA blot hybridizations in soybean roots and shoots of cultivars Corsoy 79 and Hartwig, which are susceptible and resistant, respectively, to the soybean cyst nematode (Heterodera glycines). These analyses revealed that GmEREBP1 is expressed in a root-preferential manner and that GmEREBP1 mRNA abundance is changed after H. glycines infection. GmEREBP1 mRNA abundance decreased in infected (susceptible) 'Corsoy 79' roots, whereas it increased in abundance in infected (resistant) 'Hartwig' roots. Furthermore, ethephon treatment repressed GmEREBP1 mRNA accumulation in both cultivars, whereas wounding increased expression in both cultivars. These changes in mRNA steady-state levels suggest that GmEREBP1 plays a role in soybean-H. glycines interactions.
Collapse
Affiliation(s)
- Mitra Mazarei
- Department of Plant Pathology, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
67
|
Périn C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latché A, Pitrat M, Lelièvre JM. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. PLANT PHYSIOLOGY 2002; 129:300-9. [PMID: 12011360 PMCID: PMC155893 DOI: 10.1104/pp.010613] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Revised: 11/01/2001] [Accepted: 02/04/2002] [Indexed: 05/19/2023]
Abstract
Fruit ripening and abscission are associated with an ethylene burst in several melon (Cucumis melo) genotypes. In cantaloupe as in other climacteric fruit, exogenous ethylene can prematurely induce abscission, ethylene production, and ripening. Melon genotypes without fruit abscission or without ethylene burst also exist and are, therefore, non-climacteric. In the nonabscising melon fruit PI 161375, exogenous ethylene failed to stimulate abscission, loss of firmness, ethylene production, and expression of all target genes tested. However, the PI 161375 etiolated seedlings displayed the usual ethylene-induced triple response. Genetic analysis on a population of recombinant cantaloupe Charentais x PI 161375 inbred lines in segregation for fruit abscission and ethylene production indicated that both characters are controlled by two independent loci, abscission layer (Al)-3 and Al-4. The non-climacteric phenotype in fruit tissues is attributable to ethylene insensitivity conferred by the recessive allelic forms from PI 161375. Five candidate genes (two ACO, two ACS, and ERS) that were localized on the melon genetic map did not exhibit colocalization with Al-3 or Al-4.
Collapse
Affiliation(s)
- Christophe Périn
- Institut National de la Recherche Agronomique, Station de Génétique et d'Amélioration des Fruits et Légumes, Domaine St. Maurice, Boîte Postale 94, 84143 Montfavet cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
69
|
Fankhauser C. Light perception in plants: cytokinins and red light join forces to keep phytochrome B active. TRENDS IN PLANT SCIENCE 2002; 7:143-5. [PMID: 11950603 DOI: 10.1016/s1360-1385(02)02228-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant growth and development is modulated by internal cues such as rhe hormonal balance and external factors. Plants are particularly sensitive to their light environment, which they scrutinize with at least three classes of photoreceptors. In recent years, it has become increasingly clear that light and hormonal signaling interact at several levels. A cytokinin receptor was recently identified together with several elements acting in this signaling pathway. ARR4, a response regulator working downstream of a cytokinin receptor, has been shown to regulate phytochrome B-mediated light signaling.
Collapse
|
70
|
Peeters AJM, Cox MCH, Benschop JJ, Vreeburg RAM, Bou J, Voesenek LACJ. Submergence research using Rumex palustris as a model; looking back and going forward. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:391-398. [PMID: 11847236 DOI: 10.1093/jexbot/53.368.391] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flooding is a phenomenon that destroys many crops worldwide. During evolution several plant species evolved specialized mechanisms to survive short- or long-term waterlogging and even complete submergence. One of the plant species that evolved such a mechanism is Rumex palustris. When flooded, this plant species is capable to elongate its petioles to reach the surface of the water. Thereby it restores normal gas exchange which leads to a better survival rate. Enhanced levels of ethylene, due to physical entrapment, is the key signal for the plant that its environment has changed from air to water. Subsequently, a signal transduction cascade involving at least four (classical) plant hormones, ethylene, auxin, abscisic acid, and gibberellic acid, is activated. This results in hyponastic growth of the leaves accompanied by a strongly enhanced elongation rate of the petioles enabling them to reach the surface. Other factors, among them cell wall loosening enzymes have been shown to play a role as well.
Collapse
Affiliation(s)
- Anton J M Peeters
- Department of Plant Ecophysiology, University Utrecht, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Jennifer Nemhauser
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1099
- Corresponding author: Plant Biology Laboratory, Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037-1099; Phone 858-453-4100 x1128; Fax 858-558-6379;
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1099
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037-1099
| |
Collapse
|
72
|
Affiliation(s)
- A Bleeker
- Department of Botany and Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
73
|
Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re18. [PMID: 11717470 DOI: 10.1126/stke.2001.109.re18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the Arabidopsis thaliana genome, 11 genes encode bacterial-type two-component histidine kinases. Genetic and biochemical analyses indicate that five two-component histidine kinase-like proteins (ETR1, ETR2, EIN4, ERS1, and ERS2) function as ethylene receptors. A hybrid histidine kinase, CRE1 (also known as AHK4), acts as a cytokinin receptor, and a set of response regulators may be involved in cytokinin signal transduction. In addition to CRE1, histidine kinases CKI1 and CKI2 are likely to play important roles in cytokinin signaling. A database search of the entire Arabidopsis genome sequence has identified two additional homologs of CRE1. Arabidopsis seems to employ a hybrid histidine kinase, ATHK1, as an osmosensor. Plants widely use two-component systems in the detection of, and signal transduction by, the growth regulators ethylene and cytokinin, as well as in their responses to environmental stimuli.
Collapse
Affiliation(s)
- T Urao
- Biological Resources Division, Japan International Research Center for Agricultural Science (JIRCAS), Ministry of Agriculture, Forestry and Fisheries, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | | | | |
Collapse
|
74
|
Barry CS, Fox EA, Yen H, Lee S, Ying T, Grierson D, Giovannoni JJ. Analysis of the ethylene response in the epinastic mutant of tomato. PLANT PHYSIOLOGY 2001; 127:58-66. [PMID: 11553734 PMCID: PMC117962 DOI: 10.1104/pp.127.1.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2001] [Revised: 04/06/2001] [Accepted: 05/25/2001] [Indexed: 05/19/2023]
Abstract
Ethylene can alter plant morphology due to its effect on cell expansion. The most widely documented example of ethylene-mediated cell expansion is promotion of the "triple response" of seedlings grown in the dark in ethylene. Roots and hypocotyls become shorter and thickened compared with controls due to a reorientation of cell expansion, and curvature of the apical hook is more pronounced. The epinastic (epi) mutant of tomato (Lycopersicon esculentum) has a dark-grown seedling phenotype similar to the triple response even in the absence of ethylene. In addition, in adult plants both the leaves and the petioles display epinastic curvature and there is constitutive expression of an ethylene-inducible chitinase gene. However, petal senescence and abscission and fruit ripening are all normal in epi. A double mutant (epi/epi;Nr/Nr) homozygous for both the recessive epi and dominant ethylene-insensitive Never-ripe loci has the same dark-grown seedling and vegetative phenotypes as epi but possesses the senescence and ripening characteristics of Never-ripe. These data suggest that a subset of ethylene responses controlling vegetative growth and development may be constitutively activated in epi. In addition, the epi locus has been placed on the tomato RFLP map on the long arm of chromosome 4 and does not demonstrate linkage to reported tomato CTR1 homologs.
Collapse
Affiliation(s)
- C S Barry
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Small gaseous molecules play important roles in biological signaling in both animal and plant physiology. The hydrocarbon gas ethylene has long been known to regulate diverse aspects of plant growth and development, including fruit ripening, leaf senescence and flower abscission. Recent progress has been made toward identifying components involved in ethylene signal transduction in the plant Arabidopsis thaliana. Ethylene is perceived by five receptors that have similarity to two-component signaling proteins. The hydrophobic amino-terminus of the receptors binds ethylene, and mutations in this domain both prevent ethylene binding and confer ethylene insensitivity to the plant; the carboxyl-terminal portion of the receptors has similarity to bacterial his tidine protein kinases. Genetic data suggest a model in which ethylene binding inhibits receptor signaling, yet precisely how these receptors function is unclear. Two of the receptors have been found to associate with a negative regulator of ethylene responses called CTR1, which appears to be a mitogen-activated protein kinase (MAPK) kinase kinase.
Collapse
Affiliation(s)
- C Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA.
| | | |
Collapse
|
76
|
Abstract
The mitogen-activated protein kinase (MAP kinase) signal transduction cascades are routes through which eukaryotic cells deliver extracellular messages to the cytosol and nucleus. These signalling pathways direct cell division, cellular differentiation, metabolism, and both biotic and abiotic stress responses. In plants, MAP kinases and the upstream components of the cascades are represented by multigene families, organized into different pathways which are stimulated and interact in complex ways. Experimental strategies for the analysis of MAP kinase cascades include the yeast two-hybrid system; using this approach in vitro interactions between specific MAP kinase cascade components have been analysed and putative plant cascades postulated. Transient transformation of protoplasts with epitope-tagged kinases has allowed cascades to be tested in planta. There is clear evidence for the involvement of MAP kinases in plant cell division and in the regulation of auxin signalling. Biotic (pathogens and pathogen-derived elicitors from fungi, bacteria and viruses) and abiotic stresses including wounding, mechanical stimulation, cold, drought and ozone can elicit defence responses in plants through MAP kinase pathways. There are data suggesting that ABA signalling utilizes a MAP kinase pathway, and probably ethylene and perhaps cytokinins do so also. The objective of this paper is to review this rapidly advancing field. Contents Summary 67 I. Introduction 68 II. Background 68 III. MAP kinase targets and targeting specificity 69 IV. Assays and inhibitors 70 V. Two well characterized MAP kinase pathways, Hog1 and Sevenless 71 VI. MAP kinases in plants 73 VII. MAP kinases and cell division 76 VIII. MAP kinases and plant hormones 76 IX. MAP kinase and abiotic stress 78 X. MAP kinase and biotic stress 80 XI. Future perspectives for MAP kinase research in plants 83 Acknowledgements 84 References 84.
Collapse
Affiliation(s)
- Peter C Morris
- Heriot-Watt University, Department of Biological Sciences, Riccarton, Edinburgh, EH14 4AS
| |
Collapse
|
77
|
Giovannoni J. MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:725-749. [PMID: 11337414 DOI: 10.1146/annurev.arplant.52.1.725] [Citation(s) in RCA: 415] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development and maturation of fruits has received considerable scientific scrutiny because of both the uniqueness of such processes to the biology of plants and the importance of fruit as a significant component of the human diet. Molecular and genetic analysis of fruit development, and especially ripening of fleshy fruits, has resulted in significant gains in knowledge over recent years. Great strides have been made in the areas of ethylene biosynthesis and response, cell wall metabolism, and environmental factors, such as light, that impact ripening. Discoveries made in Arabidopsis in terms of general mechanisms for signal transduction, in addition to specific mechanisms of carpel development, have assisted discovery in more traditional models such as tomato. This review attempts to coalesce recent findings in the areas of fruit development and ripening.
Collapse
Affiliation(s)
- Jim Giovannoni
- USDA-ARS Plant, Soil and Nutrition Laboratory and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853; e-mail:
| |
Collapse
|
78
|
Memelink J, Verpoorte R, Kijne JW. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. TRENDS IN PLANT SCIENCE 2001; 6:212-9. [PMID: 11335174 DOI: 10.1016/s1360-1385(01)01924-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Jasmonic acid is an important plant stress signalling molecule. It induces the biosynthesis of defence proteins and protective secondary metabolites. In alkaloid metabolism, jasmonate acts by coordinate activation of the expression of multiple biosynthesis genes. In terpenoid indole alkaloid metabolism and primary precursor pathways, jasmonate induces gene expression and metabolism via ORCAs, which are members of the AP2/ERF-domain family of plant transcription factors. Other jasmonate-regulated (secondary) metabolic pathways might also be controlled by ORCA-like AP2/ERF-domain transcription factors. If so, such regulators could be used to improve plant fitness or metabolite productivity of plants or cell cultures.
Collapse
Affiliation(s)
- J Memelink
- Institute of Molecular Plant Sciences, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
79
|
Abstract
The cytokinin family of plant hormones is involved in diverse aspects of plant growth and development in vivo and in culture. Two groups have recently shown that a two-component histidine kinase functions as a cytokinin receptor specifically required for vascular development.
Collapse
Affiliation(s)
- M Estelle
- The University of Texas at Austin, Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, Austin, Texas 78712, USA
| |
Collapse
|
80
|
Gilroy S, Trewavas A. Signal processing and transduction in plant cells: the end of the beginning? Nat Rev Mol Cell Biol 2001; 2:307-14. [PMID: 11283728 DOI: 10.1038/35067109] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plants have a very different lifestyle to animals, and one might expect that unique molecules and processes would underpin plant-cell signal transduction. But, with a few notable exceptions, the list is remarkably familiar and could have been constructed from animal studies. Wherein, then, does lifestyle specificity emerge?
Collapse
|
81
|
Alonso JM, Ecker JR. The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Sci Signal 2001. [DOI: 10.1126/scisignal.702001re1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
82
|
Alonso JM, Ecker JR. The ethylene pathway: a paradigm for plant hormone signaling and interaction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752640 DOI: 10.1126/stke.2001.70.re1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To dissect the web of signals that control plant growth, it is important to understand how the individual components of the pathway are modulated. Ethylene is a plant hormone involved in a large number of developmental processes. Biochemical and genetic approaches have provided a detailed view of the biosynthetic and signal transduction pathways of this hormone in the reference plant Arabidopsis thaliana. The effects of several hormones and of developmental changes on the regulation of the key enzymes of ethylene biosynthesis, ACC synthase and ACC oxidase, serve as a clear example of interaction between signals in the generation of complex responses. We now have a picture of how ethylene is sensed by the ethylene receptors and how the signal is further transduced to the nucleus. Although some of the ethylene receptors show a tissue-specific pattern of expression, little is known about the regulation of the components of the ethylene transduction cascade by other hormones or developmental factors. Once the ethylene signal reaches the nucleus, it activates a transcriptional cascade that results in changes in the expression of a number of genes. We describe some of the results that suggest an interaction at the transcriptional level between ethylene, other hormones, and stress signals.
Collapse
Affiliation(s)
- J M Alonso
- the Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
83
|
Reddy AS, Reddy VS, Golovkin M. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun 2000; 279:762-9. [PMID: 11162426 DOI: 10.1006/bbrc.2000.4032] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | |
Collapse
|
84
|
Abstract
The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Collapse
|