51
|
de Bossoreille de Ribou S, Douam F, Hamant O, Frohlich MW, Negrutiu I. Plant science and agricultural productivity: why are we hitting the yield ceiling? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:159-76. [PMID: 23849123 DOI: 10.1016/j.plantsci.2013.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 05/11/2023]
Abstract
Trends in conventional plant breeding and in biotechnology research are analyzed with a focus on production and productivity of individual organisms. Our growing understanding of the productive/adaptive potential of (crop) plants is a prerequisite to increasing this potential and also its expression under environmental constraints. This review concentrates on growth rate, ribosome activity, and photosynthetic rate to link these key cellular processes to plant productivity. Examples of how they may be integrated in heterosis, organ growth control, and responses to abiotic stresses are presented. The yield components in rice are presented as a model. The ultimate goal of research programs, that concentrate on yield and productivity and integrating the panoply of systems biology tools, is to achieve "low input, high output" agriculture, i.e. shifting from a conventional "productivist" agriculture to an efficient sustainable agriculture. This is of critical, strategic importance, because the extent to which we, both locally and globally, secure and manage the long-term productive potential of plant resources will determine the future of humanity.
Collapse
|
52
|
Ren D, Li Y, Zhao F, Sang X, Shi J, Wang N, Guo S, Ling Y, Zhang C, Yang Z, He G. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. PLANT PHYSIOLOGY 2013; 162:872-84. [PMID: 23629832 PMCID: PMC3668076 DOI: 10.1104/pp.113.216044] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of the spikelet remains unclear. In this study, we identified a rice (Oryza sativa) spikelet mutant, multi-floret spikelet1 (mfs1), that showed delayed transformation of spikelet meristems to floral meristems, which resulted in an extra hull-like organ and an elongated rachilla. In addition, the sterile lemma was homeotically converted to the rudimentary glume and the body of the palea was degenerated in mfs1. These results suggest that the MULTI-FLORET SPIKELET1 (MFS1) gene plays an important role in the regulation of spikelet meristem determinacy and floral organ identity. MFS1 belongs to an unknown function clade in the APETALA2/ethylene-responsive factor (AP2/ERF) family. The MFS1-green fluorescent protein fusion protein is localized in the nucleus. MFS1 messenger RNA is expressed in various tissues, especially in the spikelet and floral meristems. Furthermore, our findings suggest that MFS1 positively regulates the expression of LONG STERILE LEMMA and the INDETERMINATE SPIKELET1 (IDS1)-like genes SUPERNUMERARY BRACT and OsIDS1.
Collapse
|
53
|
Mehrnia M, Balazadeh S, Zanor MI, Mueller-Roeber B. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:842-57. [PMID: 23616605 PMCID: PMC3668074 DOI: 10.1104/pp.113.214049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were down-regulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3;3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking.
Collapse
|
54
|
Silveira FAO, Oliveira EG. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado. BRAZ J BIOL 2013; 73:271-7. [DOI: 10.1590/s1519-69842013000200007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022] Open
Abstract
Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.
Collapse
Affiliation(s)
- FAO Silveira
- Universidade Federal de Minas Gerais – UFMG, Brazil
| | | |
Collapse
|
55
|
Yin H, Gao P, Liu C, Yang J, Liu Z, Luo D. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. PLANTA 2013; 237:15-27. [PMID: 22956125 DOI: 10.1007/s00425-012-1736-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/03/2012] [Indexed: 05/21/2023]
Abstract
In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.
Collapse
Affiliation(s)
- Hengfu Yin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
56
|
Baker RL, Hileman LC, Diggle PK. Patterns of shoot architecture in locally adapted populations are linked to intraspecific differences in gene regulation. THE NEW PHYTOLOGIST 2012; 196:271-281. [PMID: 22882227 DOI: 10.1111/j.1469-8137.2012.04245.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• Shoot architecture, including the number and location of branches, is a crucial aspect of plant function, morphological diversification, life history evolution and crop domestication. • Genes controlling shoot architecture are well characterized in, and largely conserved across, model flowering plant species. The role of these genes in the evolution of morphological diversity in natural populations, however, has not been explored. • We identify axillary meristem outgrowth as a primary driver of divergent branch number and life histories in two locally adapted populations of the monkeyflower, Mimulus guttatus. • Furthermore, we show that MORE AXILLARY GROWTH (MAX) gene expression strongly correlates with natural variation in branch outgrowth in this species, linking modification of the MAX-dependent pathway to the evolutionary diversification of shoot architecture.
Collapse
Affiliation(s)
- Robert L Baker
- Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado at Boulder, Boulder, CO 80309, USA
- Current address: Department of Botany, University of Wyoming, Laramie WY 80271, USA
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
57
|
Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. PLANTA 2012; 236:887-900. [PMID: 22767201 DOI: 10.1007/s00425-012-1697-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) has been proposed to regulate a diverse array of activities during plant growth, development and immune function. S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is emerging as a prototypic redox-based post-translational modification. An ARABIDOPSIS THALIANA S-NITROSOGLUTATHIONE (GSNO) REDUCTASE (AtGSNOR1) is thought to be the major regulator of total cellular SNO levels in this plant species. Here, we report on the impact of loss- and gain-of-function mutations in AtGSNOR1 upon plant growth and development. Loss of AtGSNOR1 function in atgsnor1-3 plants increased the number of initiated higher order axillary shoots that remain active, resulting in a loss of apical dominance relative to wild type. In addition atgsnor1-3 affected leaf shape, germination, 2,4-D sensitivity and reduced hypocotyl elongation in both light and dark grown seedlings. Silique size and seed production were also decreased in atgsnor1-3 plants and the latter was reduced in atgsnor1-1 plants, which overexpress AtGSNOR1. Overexpression of AtGSNOR1 slightly delayed flowering time in both long and short days, whereas atgsnor1-3 showed early flowering compared to wild type. In the atgsnor1-3 line, FLOWERING LOCUS C (FLC) expression was reduced, whereas transcription of CONSTANS (CO) was enhanced. Therefore, AtGSNOR1 may negatively regulate the autonomous and photoperiod flowering time pathways. Both overexpression and loss of AtGSNOR1 function also reduced primary root growth, while root hair development was increased in atgsnor1-1 and reduced in atgsnor1-3 plants. Collectively, our findings imply that AtGSNOR1 controls multiple genetic networks integral to plant growth and development.
Collapse
Affiliation(s)
- Eunjung Kwon
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK.
| | | | | | | | | | | | | |
Collapse
|
58
|
de Almeida M, de Almeida CV, Mendes Graner E, Ebling Brondani G, Fiori de Abreu-Tarazi M. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. PLANT CELL REPORTS 2012; 31:1495-515. [PMID: 22534682 DOI: 10.1007/s00299-012-1264-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 05/18/2023]
Abstract
UNLABELLED The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. KEY MESSAGE Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.
Collapse
Affiliation(s)
- Marcilio de Almeida
- Departamento de Ciências Biológicas PPG em Fisiologia e Bioquímica de Plantas e PPG em Recursos Florestais, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13.418-900, Brazil.
| | | | | | | | | |
Collapse
|
59
|
McGarry RC, Ayre BG. Manipulating plant architecture with members of the CETS gene family. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:71-81. [PMID: 22525246 DOI: 10.1016/j.plantsci.2012.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 05/21/2023]
Abstract
The shape or architecture of a plant is specified through the activities of indeterminate and determinate meristems, and the sum of these events sharply impacts plant growth habit, productivity, and crop management. The CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) gene family shares homology to phosphatidylethanolamine binding protein (PEBP) genes and is prominent in controlling the timing and location of the developmental transition from indeterminate to determinate growth, with different family members balancing the activities of others through antagonistic functions. The CETS members FLOWERING LOCUS T (FT) of Arabidopsis and related genes (e.g. SINGLE FLOWER TRUSS, SFT, in tomato) are important in promoting the transition to determinate growth while TERMINAL FLOWER 1 (TFL1) and its homologs (e.g. tomato SELF PRUNING, SP) oppose this activity by maintaining meristems in an indeterminate state. FT orthologs, and perhaps other CETS family members, act as mobile proteinaceous hormones, and can amplify their impact by accumulating in recipient organs. A universal model is emerging for the timing and placement of determinate and indeterminate growth through a balance of FT-like and TFL1-like gene activities, and it is now clear that the domestication of many wild exotics into crops with desired growth habits resulted from selection of altered FT/TFL1 balances. Manipulating this ratio further, through transgenic or viral-based technologies, holds promise for improved agricultural sustainability.
Collapse
Affiliation(s)
- Roisin C McGarry
- University of North Texas, Department of Biological Sciences, 1155 Union Circle 305220, Denton, TX 76203-5017, USA.
| | | |
Collapse
|
60
|
Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. ANNALS OF BOTANY 2012; 109:851-71. [PMID: 22356739 PMCID: PMC3310499 DOI: 10.1093/aob/mcs017] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/06/2012] [Indexed: 05/02/2023]
Abstract
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy.
| | | | | |
Collapse
|
61
|
Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, McKim SM, Douglas CJ, Hepworth SR. Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. PLANT PHYSIOLOGY 2012; 158:946-60. [PMID: 22114095 PMCID: PMC3271780 DOI: 10.1104/pp.111.188573] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
The transition to flowering in many plant species, including Arabidopsis (Arabidopsis thaliana), is marked by the elongation of internodes to make an inflorescence upon which lateral branches and flowers are arranged in a characteristic pattern. Inflorescence patterning relies in part on the activities of two three-amino-acid loop-extension homeodomain transcription factors: BREVIPEDICELLUS (BP) and PENNYWISE (PNY) whose interacting products also promote meristem function. We examine here the genetic interactions between BP-PNY whose expression is up-regulated in stems at the floral transition, and the lateral organ boundary genes BLADE-ON-PETIOLE1 (BOP1) and BOP2, whose expression is restricted to pedicel axils. Our data show that bp and pny inflorescence defects are caused by BOP1/2 gain of function in stems and pedicels. Compatible with this, inactivation of BOP1/2 rescues these defects. BOP expression domains are differentially enlarged in bp and pny mutants, corresponding to the distinctive patterns of growth restriction in these mutants leading to compacted internodes and clustered or downward-oriented fruits. Our data indicate that BOP1/2 are positive regulators of KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6 expression and that growth restriction in BOP1/2 gain-of-function plants requires KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6. Antagonism between BOP1/2 and BP is explained in part by their reciprocal regulation of gene expression, as evidenced by the identification of lignin biosynthetic genes that are repressed by BP and activated by BOP1/2 in stems. These data reveal BOP1/2 gain of function as the basis of bp and pny inflorescence defects and reveal how antagonism between BOP1/2 and BP-PNY contributes to inflorescence patterning in a model plant species.
Collapse
|
62
|
Jeifetz D, David-Schwartz R, Borovsky Y, Paran I. CaBLIND regulates axillary meristem initiation and transition to flowering in pepper. PLANTA 2011; 234:1227-36. [PMID: 21773792 DOI: 10.1007/s00425-011-1479-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/01/2011] [Indexed: 05/10/2023]
Abstract
Plant architecture is a major motif in plant diversity. The shape of the plant is regulated by genes that have been found to have similar or related functions in different species. However, changes in gene regulation or their recruitment to additional developmental pathways contribute to the wide range of plant patterns. Our aim was to unravel the genetic mechanisms governing the unique architecture of pepper (Capsicum annuum) and to determine whether these genetic factors have conserved functions in other plant species. We describe the pepper CaBLIND (CaBL) gene that is orthologous to the tomato (Solanum lycopersicum) BLIND (BL) and to the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS (RAX). We identified two allelic Cabl mutants that show dramatic reduction in axillary meristem initiation. In addition, Cabl exhibits late flowering and ectopic vegetative growth during the reproductive phase. Double-mutant and expression analyses suggest that CaBL functions independently of FASCICULATE, the pepper ortholog of SELF PRUNING in regulating sympodial growth, but is epistatic to FASCICULATE in controlling axillary meristem formation. Furthermore, CaBL operates independently of CaREVOLUTA and CaLATERAL SUPPRESSOR in regulating axillary branching. Our results provide evidence of CaBL's conserved function with BL and RAX genes in regulating axillary meristem initiation early in development. In addition, similar to BL but opposite to RAX, CaBL acts to promote the transition from vegetative to reproductive phase. However, in contrast to BL and RAX, CaBL is co-opted to play a role in suppressing vegetative growth during the reproductive phase in pepper.
Collapse
Affiliation(s)
- Dar Jeifetz
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, P.O. Box 6, 50250, Bet Dagan, Israel
| | | | | | | |
Collapse
|
63
|
Fujita H, Kawaguchi M. Strategy for shoot meristem proliferation in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:1851-1854. [PMID: 22067107 PMCID: PMC3329367 DOI: 10.4161/psb.6.11.17656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shoot apical meristem (SAM) of plants harbors stem cells capable of generating the aerial tissues including reproductive organs. Therefore, it is very important for plants to control SAM proliferation and its density as a survival strategy. The SAM is regulated by the dynamics of a specific gene network, such as the WUS-CLV interaction of A. thaliana. By using a mathematical model, we previously proposed six possible SAM patterns in terms of the manner and frequency of stem cell proliferation. Two of these SAM patterns are predicted to generate either dichotomous or axillary shoot branch. Dichotomous shoot branches caused by this mechanism are characteristic of the earliest vascular plants, such as Cooksonia and Rhynia, but are observed in only a small minority of plant species of the present day. On the other hand, axillary branches are observed in the majority of plant species and are induced by a different dynamics of the feedback regulation between auxin and the asymmetric distribution of PIN auxin efflux carriers. During evolution, some plants may have adopted this auxin-PIN system to more strictly control SAM proliferation.
Collapse
Affiliation(s)
- Hironori Fujita
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan.
| | | |
Collapse
|
64
|
van der Schoot C, Rinne PLH. Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:120-31. [PMID: 21421354 DOI: 10.1016/j.plantsci.2010.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/15/2010] [Accepted: 08/17/2010] [Indexed: 05/04/2023]
Abstract
To survive winter deciduous perennials of the temperate zones cease growth and acquire a cold-acclimated state. Timing of these events is guided by sensory systems in the leaves that register critical alterations in photoperiod. Growth cessation on its own is not sufficient to develop adequate freezing tolerance, which requires entry of the shoot apical meristem (SAM) into dormancy. To fully appreciate perennial dormancy as a precondition for cold acclimation it is necessary to assess how it is brought about in a timely fashion, what the nature of it is, and how it is released. Short day (SD) exposure results in growth cessation, bud set, dormancy establishment at the SAM, and a moderate to high level of freezing tolerance. Subsequent chilling releases the SAM from dormancy and enhances freezing tolerance further. Recent investigations indicate that dormancy is a state of self-arrest that is brought about by an enzyme-based system which disrupts the intrinsic signal network of the SAM. Release from this state requires a complimentary enzyme-based system that is preformed during SD and mobilized by chilling. These findings are in agreement with the paradigm of dormancy cycling, which defines the seasonal alternations at the SAM as transitions between states of self-organization and self-arrest. The success of this survival strategy is based on the adequate scheduling of a complex array of events. The appreciation is growing that this involves signal cascades that are, mutatis mutandis, also recruited in floral evocation in many annuals, including Arabidopsis. A heuristic model is presented of dormancy cycling at the SAM, which depicts crucial molecular and cellular events that drive the cycle.
Collapse
Affiliation(s)
- Christiaan van der Schoot
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway.
| | | |
Collapse
|
65
|
Teper-Bamnolker P, Dudai N, Fischer R, Belausov E, Zemach H, Shoseyov O, Eshel D. Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem. PLANTA 2010; 232:179-86. [PMID: 20390295 DOI: 10.1007/s00425-010-1154-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/16/2010] [Indexed: 05/23/2023]
Abstract
Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 microl l(-1), showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 microl l(-1) of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days' exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants.
Collapse
|
66
|
Wang L, Yin H, Qian Q, Yang J, Huang C, Hu X, Luo D. NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Res 2009; 19:598-611. [DOI: 10.1038/cr.2009.36] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
67
|
Elitzur T, Nahum H, Borovsky Y, Pekker I, Eshed Y, Paran I. Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:869-80. [PMID: 19174461 PMCID: PMC2652051 DOI: 10.1093/jxb/ern334] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 05/18/2023]
Abstract
Wild peppers (Capsicum spp.) are either annual or perennial in their native habitat and their shoot architecture is dictated by their sympodial growth habit. To study shoot architecture in pepper, sympodial development is described in wild type and in the classical recessive fasciculate (fa) mutation. The basic sympodial unit in wild-type pepper comprises two leaves and a single terminal flower. fasciculate plants are characterized by the formation of floral clusters separated by short internodes and miniature leaves and by early flowering. Developmental analysis of these clusters revealed shorter sympodial units and, often, precocious termination prior to sympodial leaf formation. fa was mapped to pepper chromosome 6, in a region corresponding to the tomato SELF-PRUNING (SP) locus, the homologue of TFL1 of Arabidopsis. Sequence comparison between wild-type and fa plants revealed a duplication of the second exon in the mutants' orthologue of SP, leading to the formation of a premature stop codon. Ectopic expression of FASCICULATE complemented the Arabidopsis tfl1 mutant plants and as expected, stimulated late flowering. In agreement with the major effect of FASCICULATE imposed on sympodial development, the gene transcripts were localized to the centre of sympodial shoots but could not be detected in the primary shoot. The wide range of pleiotropic effects on plant architecture mediated by a single 'flowering' gene, suggests that it is used to co-ordinate many developmental events, and thus may underlie some of the widespread variation in the Solanaceae shoot architecture.
Collapse
Affiliation(s)
- Tomer Elitzur
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Hadas Nahum
- Department of Plant Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yelena Borovsky
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Irena Pekker
- Department of Plant Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Eshed
- Department of Plant Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ilan Paran
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| |
Collapse
|
68
|
Milla R, Giménez-Benavides L, Montserrat-Martí G. Replacement of species along altitude gradients: the role of branch architecture. ANNALS OF BOTANY 2008; 102:953-66. [PMID: 18838484 PMCID: PMC2712404 DOI: 10.1093/aob/mcn187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Plant species typical of cold and warm habitats differ in a suite of morpho-physio-phenological traits, although their evolutionary routes have been poorly explored. Here, it is advocated that traits typical of different climate regimes can be largely driven by contrasting branch architectures. This is explored within Saxifraga. First, an investigation was carried out to determine whether series Ceratophyllae (lateral inflorescences) is segregated to lowlands compared with Pentadactylis (terminal inflorescences). Then, two altitudinal vicariants, S. trifurcata (lowland, with lateral inflorescences) and S. canaliculata (highland, with apical inflorescences), were selected. It was hypothesized that apical flowering of S. canaliculata constrains its growth period, bringing with it traits typical of short growth season plants, and conversely for S. trifurcata. METHODS The hypothesis was tested by measuring plant compactness and organ pre-formation in seven populations of these species along an altitude gradient. KEY RESULTS Most variables differed among species. Morphological variables at all scales support that the architecture of S. canaliculata generates a more compact habit. A higher number of primordia and earlier inflorescence pre-formation in S. canaliculata indicate that it begins organogenesis earlier. Data on organogenesis suggest that the different timing of inflorescence initiation may be the origin of the contrasting architectures. Within species, shoot compactness increased, and the length of lateral primordia decreased, as altitude increased. All other metrics were similar among locations of the same species at contrasting altitudes. CONCLUSIONS The hypotheses linking elevational segregation of species, architecture and pheno-morphological traits were validated at broad (gen. Saxifraga) and local (altitudinal vicariants) scales. This supports the initial idea that shoot architecture may to a large extent condition high altitude adaptive syndrome.
Collapse
Affiliation(s)
- Rubén Milla
- Area de Biodiversidad y Conservación, Universidad Rey Juan Carlos. c/ Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| | | | | |
Collapse
|
69
|
Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 2008; 135:3013-9. [PMID: 18701544 DOI: 10.1242/dev.024273] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Grass flowers are organized on small branches known as spikelets. In maize, the spikelet meristem is determinate, producing one floral meristem and then converting into a second floral meristem. The APETALA2 (AP2)-like gene indeterminate spikelet1 (ids1) is required for the timely conversion of the spikelet meristem into the floral meristem. Ectopic expression of ids1 in the tassel, resulting from a failure of regulation by the tasselseed4 microRNA, causes feminization and the formation of extra floral meristems. Here we show that ids1 and the related gene, sister of indeterminate spikelet1 (sid1), play multiple roles in inflorescence architecture in maize. Both genes are needed for branching of the inflorescence meristem, to initiate floral meristems and to control spikelet meristem determinacy. We show that reducing the levels of ids1 and sid1 fully suppresses the tasselseed4 phenotype, suggesting that these genes are major targets of this microRNA. Finally, sid1 and ids1 repress AGAMOUS-like MADS-box transcription factors within the lateral organs of the spikelet, similar to the function of AP2 in Arabidopsis, where it is required for floral organ fate. Thus, although the targets of the AP2 genes are conserved between maize and Arabidopsis, the genes themselves have adopted novel meristem functions in monocots.
Collapse
Affiliation(s)
- George Chuck
- Plant Gene Expression Center, United States Department of Agriculture - Agriculture Research Service and the University of California, Albany, CA 94710, USA.
| | | | | |
Collapse
|
70
|
George L, Romanowsky SM, Harper JF, Sharrock RA. The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:716-28. [PMID: 18065565 PMCID: PMC2245845 DOI: 10.1104/pp.107.108118] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 12/03/2007] [Indexed: 05/21/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) compact inflorescence (cif) genotype causes altered adult vegetative development and a reduction in elongation of inflorescence internodes resulting in formation of floral clusters. The cif trait requires both a recessive mutation, cif1, and the activity of a naturally occurring dominant allele of an unlinked gene, CIF2(D). We show here that the pseudoverticillata mutation is allelic with cif1 and that the product of the CIF1 gene is ACA10, a member of the large family of P-type Ca(2+)-ATPases found in higher plants. T-DNA insertion mutations in ACA10, but not in the two other Arabidopsis plasma membrane Ca(2+)-ATPase-encoding genes, ACA8 and ACA9, cause a cif phenotype when combined with the dominant CIF2(D) modifier allele. Therefore, ACA10 has a unique function in regulating adult phase growth and inflorescence development. The wild-type ACA8 and ACA10 mRNAs are present at similar levels, and the two promoter-beta-glucuronidase fusion transgenes show very similar expression patterns. Moreover, transformation of the cif mutant with an extra copy of the ACA8 gene, which causes overexpression of the ACA8 transcript, can complement the cif phenotype. This suggests that these two Ca(2+) pump genes have distinct but related activities and that their differential functions can be altered by relatively small changes in their patterns or levels of expression. The correspondence between cif1 and mutations in ACA10 establishes a genetic link between calcium transport, vegetative phase change, and inflorescence architecture.
Collapse
Affiliation(s)
- Lynn George
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | |
Collapse
|
71
|
Adam H, Ouellet F, Kane NA, Agharbaoui Z, Major G, Tominaga Y, Sarhan F. Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. PLANT & CELL PHYSIOLOGY 2007; 48:1192-206. [PMID: 17623742 DOI: 10.1093/pcp/pcm089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TaVRN1, a member of the APETALA1 (AP1) subfamily of MADS-box transcription factors, is a key gene that controls transition from vegetative to reproductive phase in wheat. The accumulation of TaVRN1 transcripts in winter wheat probably requires the down-regulation of TaVRT2, a MADS-box factor that binds and represses the TaVRN1 promoter, and of the flowering repressor TaVRN2. However, the molecular mechanisms by which TaVRN1 functions as an activator of phase transition is unknown. To address this, a combination of gene expression and functional studies was used. RNA in situ hybridization studies showed that TaVRN1 transcripts accumulate in all meristems and primordia associated with flower development. An interaction screen in yeast revealed that TaVRN1 interacts with several proteins involved in different processes of plant development such as transcription factors, kinases and a cyclophilin. Arabidopsis plants overexpressing TaVRN1 flower early and show various levels of modified plant architecture. The ectopic expression causes an overexpression of the AP1 and MAX4 genes, which are associated with flowering and auxin regulation, respectively. The induction of gene expression probably results from the binding of TaVRN1 to CArG motifs present on the AP1 and MAX4 promoters. In contrast, Arabidopsis plants that overexpress TaVRT2, which encodes a putative flowering repressor, show an opposite late flowering phenotype. Together, the data provide molecular evidence that TaVRN1 may have pleiotropic effects in various processes such as control of axillary bud growth, transition to flowering and development of floral organs.
Collapse
Affiliation(s)
- Hélène Adam
- Université du Québec à Montréal, Département des Sciences biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | | | | | |
Collapse
|
72
|
Espírito-Santo MM, Neves FDS, Andrade-Neto FR, Fernandes GW. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 2007; 153:353-64. [PMID: 17453251 DOI: 10.1007/s00442-007-0737-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Plant architecture is considered to affect herbivory intensity, but it is one of the least studied factors in plant-insect interactions, especially for gall-inducing insects. This study aimed to investigate the influence of plant architecture on the speciose fauna of gall-inducing insects associated with 17 species of Baccharis. Five architectural variables were evaluated: plant height, number of fourth-level shoots, biomass, average level and number of ramifications. The number of galling species associated with each host plant species was also determined. To test the effects of plant architecture on gall richness at the individual level, we used another data set where the number of fourth-level shoots and gall richness were determined for B. concinna, B. dracunculifolia, and B. ramosissima every 3 weeks during 1 year. The average similarity between host species based on gall fauna was low (9%), but plants with the same architectural pattern tended to support similar gall communities. The most important architectural trait influencing gall richness at the species level was the number of fourth-level shoots, which is indicative of the availability of plant meristems, a fundamental tissue for gall induction and development. This variable also showed a positive correlation with gall richness at the individual level. We propose that variations in gall richness among host species are driven by interspecific differences in plant architecture via availability of young, undifferentiated tissue, which is genetically controlled by the strength of the apical dominance. Plant architecture should have evolutionary consequences for gall communities, promoting insect radiation among architecturally similar plants through host shift and sympatric speciation. We also discuss the role of plant architecture in the global biogeography of gall-inducing insects.
Collapse
Affiliation(s)
- Mário M Espírito-Santo
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, CP 126, CEP 39401-089 Montes Claros, MG, Brazil.
| | | | | | | |
Collapse
|
73
|
Ehrenreich IM, Stafford PA, Purugganan MD. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics 2007; 176:1223-36. [PMID: 17435248 PMCID: PMC1894586 DOI: 10.1534/genetics.107.071928] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Association mapping focused on 36 genes involved in branch development was used to identify candidate genes for variation in shoot branching in Arabidopsis thaliana. The associations between four branching traits and moderate-frequency haplogroups at the studied genes were tested in a panel of 96 accessions from a restricted geographic range in Central Europe. Using a mixed-model association-mapping method, we identified three loci--MORE AXILLARY GROWTH 2 (MAX2), MORE AXILLARY GROWTH 3 (MAX3), and SUPERSHOOT 1 (SPS1)--that were significantly associated with branching variation. On the basis of a more extensive examination of the MAX2 and MAX3 genomic regions, we find that linkage disequilibrium in these regions decays within approximately 10 kb and trait associations localize to the candidate genes in these regions. When the significant associations are compared to relevant quantitative trait loci (QTL) from previous Ler x Col and Cvi x Ler recombinant inbred line (RIL) mapping studies, no additive QTL overlapping these candidate genes are observed, although epistatic QTL for branching, including one that spans the SPS1, are found. These results suggest that epistasis is prevalent in determining branching variation in A. thaliana and may need to be considered in linkage disequilibrium mapping studies of genetically diverse accessions.
Collapse
Affiliation(s)
- Ian M. Ehrenreich
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695 and Department of Biology and Center for Comparative Functional Genomics, New York University, New York, New York 10003
| | - Phillip A. Stafford
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695 and Department of Biology and Center for Comparative Functional Genomics, New York University, New York, New York 10003
| | - Michael D. Purugganan
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695 and Department of Biology and Center for Comparative Functional Genomics, New York University, New York, New York 10003
- Corresponding author: Department of Biology and Center for Comparative Functional Genomics, New York University, 1009 Silver Center, 100 Washington Square E., New York, NY 10003-6688. E-mail:
| |
Collapse
|
74
|
Floyd SK, Zalewski CS, Bowman JL. Evolution of class III homeodomain-leucine zipper genes in streptophytes. Genetics 2006; 173:373-88. [PMID: 16489224 PMCID: PMC1461458 DOI: 10.1534/genetics.105.054239] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/16/2006] [Indexed: 01/07/2023] Open
Abstract
Land plants underwent tremendous evolutionary change following the divergence of the ancestral lineage from algal relatives. Several important developmental innovations appeared as the embryophyte clade diversified, leading to the appearance of new organs and tissue types. To understand how these changes came about, we need to identify the fundamental genetic developmental programs that are responsible for growth, patterning, and differentiation and describe how these programs were modified and elaborated through time to produce novel morphologies. Class III homeodomain-leucine zipper (class III HD-Zip) genes, identified in the model plant Arabidopsis thaliana, provide good candidates for basic land plant patterning genes. We show that these genes may have evolved in a common ancestor of land plants and their algal sister group and that the gene family has diversified as land plant lineages have diversified. Phylogenetic analysis, expression data from nonflowering lineages, and evidence from Arabidopsis and other flowering plants indicate that class III HD-Zip genes acquired new functions in sporophyte apical growth, vascular patterning and differentiation, and leaf development. Modification of expression patterns that accompanied diversification of class III HD-Zip genes likely played an important role in the evolution of land plant form.
Collapse
Affiliation(s)
- Sandra K Floyd
- Section of Plant Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
75
|
Peng M, Cui Y, Bi YM, Rothstein SJ. AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:282-96. [PMID: 16623890 DOI: 10.1111/j.1365-313x.2006.02691.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The functional characterization of mammalian proteins containing a methyl-CpG-binding domain (MBD) has revealed that MBD proteins can decipher the epigenetic information encoded by DNA methylation, and integrate DNA methylation, modification of chromatin structure and repression of gene expression. The Arabidopsis genome has 13 putative genes encoding MBD proteins, and no specific biological function has been defined for any AtMBD genes. In this study, we identified three T-DNA insertion mutant alleles at the AtMBD9 locus, and found that all of them exhibited obvious developmental abnormalities. First, the atmbd9 mutants flowered significantly earlier than wild-type plants. The expression of FLOWERING LOCUS C (FLC), a major repressor of Arabidopsis flowering, was markedly attenuated by the AtMBD9 mutations. This FLC transcription reduction was associated with a significant decrease in the acetylation level in histone H3 and H4 of FLC chromatin in the atmbd9 mutants. Secondly, the atmbd9 mutants produced more shoot branches by increasing the outgrowth of axillary buds when compared with wild-type plants. The two known major factors controlling the outgrowth of axillary buds in Arabidopsis, auxin and the more axillary growth (MAX) pathway, were found not to be involved in producing this enhanced shoot branching phenotype in atmbd9 mutants, indicating that AtMBD9 may regulate a novel pathway to control shoot branching. This pathway is not related to FLC expression as over-expression of FLC in atmbd9-2 restored its flowering time to one similar to that of the wild type, but did not alter the shoot branching phenotype.
Collapse
Affiliation(s)
- Mingsheng Peng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | |
Collapse
|
76
|
Abstract
Crop plants were domesticated by prehistoric farmers through artificial selection to provide a means of feeding the human population. This article discusses the developmental genetics of crop domestication and improvement, including the historical framework and recent approaches in maize and other grasses. In many cases, selecting for a plant form that correlates with productivity involves controlling meristem activity. In the domestication of modern maize from its progenitor Zea mays ssp. parviglumis, QTL (quantitative trait loci) mapping, genetics and population genomics approaches have identified several genes that contain signatures of selection. Only a few genes involved in the derivation of the highly productive maize ear have been identified, including teosinte glume architecture1 and ramosa1. Future prospects hinge on forward and reverse genetics, as well as on other approaches from the developing discipline of evo-devo (evolutionary developmental biology).
Collapse
|
77
|
Wang Y, Li J. The plant architecture of rice (Oryza sativa). PLANT MOLECULAR BIOLOGY 2005; 59:75-84. [PMID: 16217603 DOI: 10.1007/s11103-004-4038-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 09/30/2004] [Indexed: 05/04/2023]
Abstract
Plant architecture, a collection of the important agronomic traits that determine grain production in rice, is mainly affected by factors including tillering, plant height and panicle morphology. Recently, significant progress has been made in isolating and collecting of mutants that are defective in rice plant architecture. Although our understanding of the molecular mechanisms that control rice tillering, panicle development and plant height are still limited, new findings have begun to emerge. This review, therefore, summarizes the recent progress in exploring the mechanisms that control rice plant architecture.
Collapse
Affiliation(s)
- Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
78
|
Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature 2005; 436:1119-26. [PMID: 16041362 DOI: 10.1038/nature03892] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/06/2005] [Indexed: 11/09/2022]
Abstract
The external appearance of flowering plants is determined to a large extent by the forms of flower-bearing branch systems, known as inflorescences, and their position in the overall structure of the plant. Branches and branching patterns are produced by tissues called shoot apical meristems. Thus, inflorescence architecture reflects meristem number, arrangement and activity, and the duration of meristem activity correlates with branch length. The inflorescences of maize, unlike those of related grasses such as rice and sorghum, predominantly lack long branches, giving rise to the tassel and familiar corncob. Here we report the isolation of the maize ramosa1 gene and show that it controls inflorescence architecture. Through its expression in a boundary domain near the nascent meristem base, ramosa1 imposes short branch identity as branch meristems are initiated. A second gene, ramosa2, acts through ramosa1 by regulating ramosa1 gene expression levels. ramosa1 encodes a transcription factor that appears to be absent in rice, is heterochronically expressed in sorghum, and may have played an important role in maize domestication and grass evolution.
Collapse
Affiliation(s)
- Erik Vollbrecht
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
79
|
Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè ME, Schmidt RJ. The role of barren stalk1 in the architecture of maize. Nature 2005; 432:630-5. [PMID: 15577912 DOI: 10.1038/nature03148] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 10/25/2004] [Indexed: 11/09/2022]
Abstract
The architecture of higher plants is established through the activity of lateral meristems--small groups of stem cells formed during vegetative and reproductive development. Lateral meristems generate branches and inflorescence structures, which define the overall form of a plant, and are largely responsible for the evolution of different plant architectures. Here, we report the isolation of the barren stalk1 gene, which encodes a non-canonical basic helix-loop-helix protein required for the initiation of all aerial lateral meristems in maize. barren stalk1 represents one of the earliest genes involved in the patterning of maize inflorescences, and, together with the teosinte branched1 gene, it regulates vegetative lateral meristem development. The architecture of maize has been a major target of selection for early agriculturalists and modern farmers, because it influences harvesting, breeding strategies and mechanization. By sampling nucleotide diversity in the barren stalk1 region, we show that two haplotypes entered the maize gene pool from its wild progenitor, teosinte, and that only one was incorporated throughout modern inbreds, suggesting that barren stalk1 was selected for agronomic purposes.
Collapse
Affiliation(s)
- Andrea Gallavotti
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Malamy JE. Intrinsic and environmental response pathways that regulate root system architecture. PLANT, CELL & ENVIRONMENT 2005; 28:67-77. [PMID: 16021787 DOI: 10.1111/j.1365-3040.2005.01306.x] [Citation(s) in RCA: 466] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Root system development is an important agronomic trait. The right architecture in a given environment allows plants to survive periods of water of nutrient deficit, and compete effectively for resources. Root systems also provide an optimal system for studying developmental plasticity, a characteristic feature of plant growth. This review proposes a framework for describing the pathways regulating the development of complex structures such as root systems: intrinsic pathways determine the characteristic architecture of the root system in a given plant species, and define the limits for plasticity in that species. Response pathways co-ordinate environmental cues with development by modulating intrinsic pathways. The current literature describing the regulation of root system development is summarized here within this framework. Regulatory pathways are also organized based on their specific developmental effect in the root system. All the pathways affect lateral root formation, but some specifically target initiation of the lateral root, while others target the development and activation of the lateral root primordium, or the elongation of the lateral root. Finally, we discuss emerging approaches for understanding the regulation of root system architecture.
Collapse
Affiliation(s)
- J E Malamy
- Molecular Genetics and Cell Biology Department, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
81
|
Faivre-Rampant O, Cardle L, Marshall D, Viola R, Taylor MA. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:613-22. [PMID: 14966214 DOI: 10.1093/jxb/erh075] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A suppression subtractive hybridization approach (SSH) was used to generate a cDNA library enriched in clones representing genes that are up-regulated in the potato tuber apical bud on dormancy release. The sequences of cDNAs representing 385 different genes were determined. This study focuses on the characterization of one of these cDNAs. On the basis of sequence similarity, the cDNA was identified as encoding a member of the auxin response factor family (ARF6). The expression pattern of potato ARF6 was determined by in situ hybridization. In apical tuber buds in the early stages of sprouting, relatively high levels of ARF6-specific transcripts were detected, especially in the peripheral zones of the tunica and corpus of the apical meristems. Expression was also detected in procambial and early vascular tissues, both subtending the meristem and in adjacent leaf primordia. By contrast, in dormant buds no expression of ARF6 could be detected. The expression pattern was also determined during the tuberization process; steady-state expression levels decreased c. 10-fold in the apical region as tuberization proceeded. In non-growing buds, exhibiting correlative inhibition, ARF6-specific transcript levels were relatively low, but rapidly increased when apical dominance was removed by excision of the apical bud. The effects of gibberellin and auxin on axillary bud growth and ARF6 expression are described.
Collapse
Affiliation(s)
- Odile Faivre-Rampant
- Quality, Health and Nutrition, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | |
Collapse
|
82
|
Rosin FM, Hart JK, Van Onckelen H, Hannapel DJ. Suppression of a vegetative MADS box gene of potato activates axillary meristem development. PLANT PHYSIOLOGY 2003; 131:1613-22. [PMID: 12692320 PMCID: PMC166917 DOI: 10.1104/pp.102.012500] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Revised: 10/17/2002] [Accepted: 11/25/2002] [Indexed: 05/18/2023]
Abstract
Potato MADS box 1 (POTM1) is a member of the SQUAMOSA-like family of plant MADS box genes isolated from an early stage tuber cDNA library. The RNA of POTM1 is most abundant in vegetative meristems of potato (Solanum tuberosum), accumulating specifically in the tunica and corpus layers of the meristem, the procambium, the lamina of new leaves, and newly formed axillary meristems. Transgenic lines with reduced levels of POTM1 mRNA exhibited decreased apical dominance accompanied by a compact growth habit and a reduction in leaf size. Suppression lines produced truncated shoot clusters from stem buds and, in a model system, exhibited enhanced axillary bud growth instead of producing a tuber. This enhanced axillary bud growth was not the result of increased axillary bud formation. Tuber yields were reduced and rooting of cuttings was strongly inhibited in POTM1 suppression lines. Both starch accumulation and the activation of cell division occurred in specific regions of the vegetative meristems of the POTM1 transgenic lines. Cytokinin levels in axillary buds of a transgenic suppression line increased 2- to 3-fold. These results imply that POTM1 mediates the control of axillary bud development by regulating cell growth in vegetative meristems.
Collapse
Affiliation(s)
- Faye M Rosin
- Interdepartmental Program in Molecular, Cellular, and Developmental Biology, Department of Horticulture, Iowa State University, Ames 50011-1100, USA
| | | | | | | |
Collapse
|
83
|
Hubbard L, McSteen P, Doebley J, Hake S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 2002; 162:1927-35. [PMID: 12524360 PMCID: PMC1462370 DOI: 10.1093/genetics/162.4.1927] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of domesticated maize from its wild ancestor teosinte is a dramatic example of the effect of human selection on agricultural crops. Maize has one dominant axis of growth, whereas teosinte is highly branched. The axillary branches in maize are short and feminized whereas the axillary branches of teosinte are long and end in a male inflorescence under normal growth conditions. Previous QTL and molecular analysis suggested that the teosinte branched1 (tb1) gene of maize contributed to the architectural difference between maize and teosinte. tb1 mutants of maize resemble teosinte in their overall architecture. We analyzed the tb1 mutant phenotype in more detail and showed that the highly branched phenotype was due to the presence of secondary and tertiary axillary branching, as well as to an increase in the length of each node, rather than to an increase in the number of nodes. Double-mutant analysis with anther ear1 and tassel seed2 revealed that the sex of the axillary inflorescence was not correlated with its length. RNA in situ hybridization showed that tb1 was expressed in maize axillary meristems and in stamens of ear primordia, consistent with a function of suppressing growth of these tissues. Expression in teosinte inflorescence development suggests a role in pedicellate spikelet suppression. Our results provide support for a role for tb1 in growth suppression and reveal the specific tissues where suppression may occur.
Collapse
Affiliation(s)
- Lauren Hubbard
- Plant Gene Expression Center, USDA-ARS, Albany, California 94710, USA
| | | | | | | |
Collapse
|
84
|
Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc Natl Acad Sci U S A 2002; 99:4730-5. [PMID: 11917137 PMCID: PMC123716 DOI: 10.1073/pnas.072626099] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flowering plants display a remarkable range of inflorescence architecture, and pedicel characteristics are one of the key contributors to this diversity. However, very little is known about the genes or the pathways that regulate pedicel development. The brevipedicellus (bp) mutant of Arabidopsis thaliana displays a unique phenotype with defects in pedicel development causing downward-pointing flowers and a compact inflorescence architecture. Cloning and molecular analysis of two independent mutant alleles revealed that BP encodes the homeodomain protein KNAT1, a member of the KNOX family. bp-1 is a null allele with deletion of the entire locus, whereas bp-2 has a point mutation that is predicted to result in a truncated protein. In both bp alleles, the pedicels and internodes were compact because of fewer cell divisions; in addition, defects in epidermal and cortical cell differentiation and elongation were found in the affected regions. The downward-pointing pedicels were produced by an asymmetric effect of the bp mutation on the abaxial vs. adaxial sides. Cell differentiation, elongation, and growth were affected more severely on the abaxial than adaxial side, causing the change in the pedicel growth angle. In addition, bp plants displayed defects in cell differentiation and radial growth of the style. Our results show that BP plays a key regulatory role in defining important aspects of the growth and cell differentiation of the inflorescence stem, pedicel, and style in Arabidopsis.
Collapse
Affiliation(s)
- S P Venglat
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, Canada S7N 0W9
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Stirnberg P, van De Sande K, Leyser HMO. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002; 129:1131-41. [PMID: 11874909 DOI: 10.1242/dev.129.5.1131] [Citation(s) in RCA: 429] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant shoots elaborate their adult form by selective control over the growth of both their primary shoot apical meristem and their axillary shoot meristems. We describe recessive mutations at two loci in Arabidopsis, MAX1 and MAX2, that affect the selective repression of axillary shoots. All the first order (but not higher order) axillary shoots initiated by mutant plants remain active, resulting in bushier shoots than those of wild type. In vegetative plants where axillary shoots develop in a basal to apical sequence, the mutations do not clearly alter node distance, from the shoot apex, at which axillary shoot meristems initiate but shorten the distance at which the first axillary leaf primordium is produced by the axillary shoot meristem. A small number of mutant axillary shoot meristems is enlarged and, later in development, a low proportion of mutant lateral shoots is fasciated. Together, this suggests that MAX1 and MAX2 do not control the timing of axillary meristem initiation but repress primordia formation by the axillary meristem. In addition to shoot branching, mutations at both loci affect leaf shape. The mutations at MAX2 cause increased hypocotyl and petiole elongation in light-grown seedlings. Positional cloning identifies MAX2 as a member of the F-box leucine-rich repeat family of proteins. MAX2 is identical to ORE9, a proposed regulator of leaf senescence (Woo, H. R., Chung, K. M., Park, J.-H., Oh, S. A., Ahn, T., Hong, S. H., Jang, S. K. and Nam, H. G. (2001) Plant Cell13, 1779-1790). Our results suggest that selective repression of axillary shoots involves ubiquitin-mediated degradation of as yet unidentified proteins that activate axillary growth.
Collapse
Affiliation(s)
- Petra Stirnberg
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | | | |
Collapse
|
86
|
Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TFC, Purugganan MD. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 2002; 160:1133-51. [PMID: 11901129 PMCID: PMC1462026 DOI: 10.1093/genetics/160.3.1133] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.
Collapse
Affiliation(s)
- Mark C Ungerer
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
87
|
Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. PLANT PHYSIOLOGY 2001; 127:1405-1413. [PMID: 11743082 DOI: 10.1104/pp.010841] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- S Shimizu-Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | |
Collapse
|
88
|
Tantikanjana T, Yong JW, Letham DS, Griffith M, Hussain M, Ljung K, Sandberg G, Sundaresan V. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev 2001; 15:1577-88. [PMID: 11410537 PMCID: PMC312715 DOI: 10.1101/gad.887301] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aerial architecture of flowering plants is determined to a large extent by shoot growth and shoot branching arising from the initiation and growth of axillary meristems. We have identified an Arabidopsis mutant, supershoot (sps), which is characterized by a massive overproliferation of shoots, such that a single plant can generate 500 or more inflorescences. Analysis of the mutant plants shows that the primary defect is because of an increase in the number of meristems formed in leaf axils, together with release of bud arrest, resulting in reiterative branch formation from rosette and cauline leaves. The SPS gene is shown here to encode a cytochrome P450, and together with a 3- to 9-fold increase in levels of Z-type cytokinins in sps mutant plants, indicate a role for SPS in modulating hormone levels. The expression pattern of SPS, with strong expression at the leaf axils, correlates well with the phenotypic defects. Our results indicate that control of shoot branching in Arabidopsis may be accomplished in part by suppression of axillary meristem initiation and growth through the localized attenuation of cytokinin levels at sites of bud initiation.
Collapse
Affiliation(s)
- T Tantikanjana
- Institute of Molecular Agrobiology, The National University of Singapore, Singapore 117604
| | | | | | | | | | | | | | | |
Collapse
|