51
|
Wild M, Kicuntod J, Seyler L, Wangen C, Bertzbach LD, Conradie AM, Kaufer BB, Wagner S, Michel D, Eickhoff J, Tsogoeva SB, Bäuerle T, Hahn F, Marschall M. Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). Int J Mol Sci 2021; 22:ijms22020575. [PMID: 33430060 PMCID: PMC7826512 DOI: 10.3390/ijms22020575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a human pathogenic herpesvirus associated with a variety of clinical symptoms. Current antiviral therapy is not always effective, so that improved drug classes and drug-targeting strategies are needed. Particularly host-directed antivirals, including pharmaceutical kinase inhibitors (PKIs), may help to overcome problems of drug resistance. Here, we focused on utilizing a selection of clinically relevant PKIs and determined their anticytomegaloviral efficacies. Particularly, PKIs directed to host or viral cyclin-dependent kinases, i.e., abemaciclib, LDC4297 and maribavir, exerted promising profiles against human and murine cytomegaloviruses. The anti-HCMV in vitro activity of the approved anti-cancer drug abemaciclib was confirmed in vivo using our luciferase-based murine cytomegalovirus (MCMV) animal model in immunocompetent mice. To assess drug combinations, we applied the Bliss independence checkerboard and Loewe additivity fixed-dose assays in parallel. Results revealed that (i) both affirmative approaches provided valuable information on anti-CMV drug efficacies and interactions, (ii) the analyzed combinations comprised additive, synergistic or antagonistic drug interactions consistent with the drugs’ antiviral mode-of-action, (iii) the selected PKIs, especially LDC4297, showed promising inhibitory profiles, not only against HCMV but also other α-, β- and γ-herpesviruses, and specifically, (iv) the combination treatment with LDC4297 and maribavir revealed a strong synergism against HCMV, which might open doors towards novel clinical options in the near future. Taken together, this study highlights the potential of therapeutic drug combinations of current developmental/preclinical PKIs.
Collapse
Affiliation(s)
- Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Lisa Seyler
- Institute of Radiology, University Medical Center Erlangen, FAU, Palmsanlage 5, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Andelé M. Conradie
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Detlef Michel
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany;
| | - Svetlana B. Tsogoeva
- Institute of Organic Chemistry I, FAU, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, FAU, Palmsanlage 5, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
- Correspondence: ; Tel.: +49-9131-8526-089
| |
Collapse
|
52
|
Carlson TJ, Gonzales-Luna AJ, Garey KW. Recent developments in antimicrobial therapy for gastrointestinal infections. Curr Opin Gastroenterol 2021; 37:30-36. [PMID: 33229860 DOI: 10.1097/mog.0000000000000696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW This focused, narrative review summarizes human clinical trial data for direct-acting antimicrobials in development for the treatment of gastrointestinal infections that were published in the past 18 months (1 January 2019 to 30 June 2020). RECENT FINDINGS Antimicrobial agents for Clostridioides difficile infection (n = 6), cryptosporidiosis (n = 1), cytomegalovirus infection (n = 3) and Helicobacter pylori infection (n = 1) have completed and/or are undergoing human clinical trials. SUMMARY Although this review highlights significant advances in four disease states, many common gastrointestinal pathogens have no antimicrobials in human clinical trials, emphasizing the need for continued prioritization in this field of study.
Collapse
Affiliation(s)
- Travis J Carlson
- Department of Clinical Sciences, High Point University Fred Wilson School of Pharmacy, High Point, North Carolina
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
53
|
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol 2021; 19:759-773. [PMID: 34168328 PMCID: PMC8223196 DOI: 10.1038/s41579-021-00582-z] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects ~60% of adults in developed countries and more than 90% in developing countries. Usually, it is controlled by a vigorous immune response so that infections are asymptomatic or symptoms are mild. However, if the immune system is compromised, HCMV can replicate to high levels and cause serious end organ disease. Substantial progress is being made in understanding the natural history and pathogenesis of HCMV infection and disease in the immunocompromised host. Serial measures of viral load defined the dynamics of HCMV replication and are now used routinely to allow intervention with antiviral drugs in individual patients. They are also used as pharmacodynamic read-outs to evaluate prototype vaccines that may protect against HCMV replication and to define immune correlates of this protection. This novel information is informing the design of randomized controlled trials of new antiviral drugs and vaccines currently under evaluation. In this Review, we discuss immune responses to HCMV and countermeasures deployed by the virus, the establishment of latency and reactivation from it, exogenous reinfection with additional strains, pathogenesis, development of end organ disease, indirect effects of infection, immune correlates of control of replication, current treatment strategies and the evaluation of novel vaccine candidates.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity and Transplantation, University College London, London, UK.
| | - Matthew Reeves
- grid.83440.3b0000000121901201Institute for Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
54
|
How I treat CMV reactivation after allogeneic hematopoietic stem cell transplantation. Blood 2020; 135:1619-1629. [PMID: 32202631 DOI: 10.1182/blood.2019000956] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation remains one of the most common and life-threatening infectious complications following allogeneic hematopoietic stem cell transplantation, despite novel diagnostic technologies, several novel prophylactic agents, and further improvements in preemptive therapy and treatment of established CMV disease. Treatment decisions for CMV reactivation are becoming increasingly difficult and must take into account whether the patient has received antiviral prophylaxis, the patient's individual risk profile for CMV disease, CMV-specific T-cell reconstitution, CMV viral load, and the potential drug resistance detected at the time of initiation of antiviral therapy. Thus, we increasingly use personalized treatment strategies for the recipient of an allograft with CMV reactivation based on prior use of anti-CMV prophylaxis, viral load, the assessment of CMV-specific T-cell immunity, and the molecular assessment of resistance to antiviral drugs.
Collapse
|
55
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is widely prevalent but mostly harmless in immunocompetent individuals. In the post hematopoietic stem cell transplant (HSCT) setting unrestricted viral replication can cause end-organ damage (CMV disease) and, in a small proportion, mortality. Current management strategies are based on sensitive surveillance programmes, with the more recent introduction of an effective prophylactic antiviral drug, letermovir, but all aim to bridge patients until reconstitution of endogenous immunity is sufficient to constrain viral replication. AREAS COVERED Over the past 25 years, the adoptive transfer of CMV-specific T-cells has developed from the first proof of concept transfer of CD 8 + T-cell clones, to the development of 'off the shelf' third party derived Viral-Specific T-cells (VSTs). In this review, we cover the current management of CMV, and discuss the developments in CMV adoptive cellular therapy. EXPERT OPINION Due to the adoption of letermovir as a prophylaxis in standard therapy, the incidence of CMV reactivation is likely to decrease, and any widely adopted cellular therapy needs to be economically competitive. Current clinical trials will help to identify the patients most likely to gain the maximum benefit from any form of cell therapy.
Collapse
Affiliation(s)
- Lorna Neill
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
56
|
Akahoshi Y, Kimura SI, Inamoto Y, Seo S, Muranushi H, Shimizu H, Ozawa Y, Tanaka M, Uchida N, Kanda Y, Katayama Y, Shiratori S, Ota S, Matsuoka KI, Onizuka M, Fukuda T, Atsuta Y, Murata M, Terakura S, Nakasone H. Effect of Cytomegalovirus Reactivation With or Without Acute Graft-Versus-Host Disease on the Risk of Nonrelapse Mortality. Clin Infect Dis 2020; 73:e620-e628. [DOI: 10.1093/cid/ciaa1871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Despite a strong association between acute graft-versus-host disease (GVHD) and cytomegalovirus reactivation (CMVR), the joint effect of acute GVHD and CMVR on nonrelapse mortality (NRM) has not been well studied.
Methods
We evaluated the impact of CMVR on NRM stratified according to the development of acute GVHD using a landmark method. This study included 6078 patients who received their first allogeneic hematopoietic cell transplantation (HCT) with a preemptive strategy for CMVR between 2008 and 2017.
Results
The cumulative incidences of grade 2-4 acute GVHD (G24GVHD), CMVR by day 100, and CMV disease by day 365 were 37.3%, 52.1%, and 2.9%, respectively. Patients with G24GVHD were associated with the subsequent development of CMVR, and the presence of CMVR also increased the risk of G24GVHD. In a landmark analysis at day 65, the cumulative incidence of NRM at 1 year was 5.4%, 10.0%, 13.9%, and 19.7% in patients with G24GVHD–/CMVR–, G24GVHD–/CMVR+, G24GVHD+/CMVR–, and G24GVHD+/CMVR+, respectively. In a multivariate analysis, CMVR was respectively associated with an increased risk of NRM by day 365 in patients without G24GVHD (hazard ratio [HR], 1.59; 95% confidence interval [CI], 1.24–2.05; P < .001) and with G24GVHD (HR, 1.34; 95% CI, 1.06–1.70; P = .014), but the interaction between G24GVHD and CMVR was not significant (P = .326). Subgroup analyses suggested that the joint effect of acute GVHD and CMVR might vary according to the baseline characteristics.
Conclusions
These data regarding the close relationship between acute GVHD and CMVR should provide important implications for the treatment strategy after HCT.
Collapse
Affiliation(s)
- Yu Akahoshi
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yoshihiro Inamoto
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Sachiko Seo
- Department of Haematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Hiroyuki Muranushi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Shimizu
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital and Atomic Bomb Survivors Hospital, Hiroshima, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Ken-ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Takahiro Fukuda
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
57
|
Scoring system for clinically significant CMV infection in seropositive recipients following allogenic hematopoietic cell transplant: an SFGM-TC study. Bone Marrow Transplant 2020; 56:1305-1315. [PMID: 33339900 DOI: 10.1038/s41409-020-01178-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 11/08/2022]
Abstract
In order to identify cytomegalovirus (CMV)-seropositive patients who are at risk of developing CMV infection following first allogeneic hematopoietic cell transplantation (allo-HCT), we built up a scoring system based on patient/donor characteristics and transplantation modalities. To this end, 3690 consecutive patients were chronologically divided into a derivation cohort (2010-2012, n = 2180) and a validation cohort (2013-2014, n = 1490). Haploidentical donors were excluded. The incidence of first clinically significant CMV infection (CMV disease or CMV viremia leading to preemptive treatment) at 1, 3, and 6 months in the derivation cohort was 13.8%, 38.5%, and 39.6%, respectively. CMV-seropositive donor, unrelated donor (HLA matched 10/10 or HLA mismatched 9/10), myeloablative conditioning, total body irradiation, antithymocyte globulin, and mycophenolate mofetil significantly and independently affected the incidence of 3-month infection. These six factors were selected to build up the prognostic model. Four risk groups were defined: low, intermediate-low, intermediate-high, and high-risk categories, with a 3-month predicted incidence of first clinically significant CMV infection in the derivation cohort of 22.2%, 31.1%, 45.4%, and 56.9%, respectively. This score represents a framework for the evaluation of patients who are at risk of developing clinically significant CMV infection following allo-HCT. Prospective studies using this score may be of benefit in assessing the value of anti-CMV prophylaxis in well-defined patient cohorts.
Collapse
|
58
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
59
|
Akhmedov M. Infectious complications in allogeneic hematopoietic cell transplant recipients: Review of transplant-related risk factors and current state of prophylaxis. Clin Transplant 2020; 35:e14172. [PMID: 33247497 DOI: 10.1111/ctr.14172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
Allogeneic hematopoietic cell transplantation is a complex procedure that carries a significant risk of complications. Infections are among the most common of them. Several direct factors such as neutropenia, hypogammaglobulinemia, lymphopenia, mucosal barrier injury, and graft-versus-host disease have been shown to be associated with increased infectious risk post-transplant. Apart from direct factors, there are also indirect transplant-related factors that are the primary trigger to the formers' development. The most important of them are type of preparative regimen, graft source, donor type, graft-versus-host disease prophylaxis, and graft manipulation techniques. In this review, an attempt has been made to summarize the role of the transplant-related factors in the development of infectious complications and provide evidence underlying the current concept of infectious disease prophylaxis in patients after allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Mobil Akhmedov
- Department of Bone Marrow Transplantation, National Hematology Research Center, Moscow, Russian Federation
| |
Collapse
|
60
|
Derigs P, Radujkovic A, Schubert ML, Schnitzler P, Schöning T, Müller-Tidow C, Hegenbart U, Schönland SO, Luft T, Dreger P, Schmitt M. Letermovir prophylaxis is effective in preventing cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation: single-center real-world data. Ann Hematol 2020; 100:2087-2093. [PMID: 33270162 PMCID: PMC8285358 DOI: 10.1007/s00277-020-04362-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Morbidity and mortality after allogeneic hematopoietic cell transplantation (alloHCT) are still essentially affected by reactivation of cytomegalovirus (CMV). We evaluated 80 seropositive patients transplanted consecutively between March 2018 and March 2019 who received letermovir (LET) prophylaxis from engraftment until day +100 and retrospectively compared them with 80 patients without LET allografted between January 2017 and March 2018. The primary endpoint of this study was the cumulative incidence (CI) of clinically significant CMV infection (CS-CMVi) defined as CMV reactivation demanding preemptive treatment or CMV disease. With 14% CI of CS-CMVi at day +100 (11 events) was significantly lower in the LET cohort when compared to the control group (33 events, 41%; HR 0.29; p < 0.001). Whereas therapy with foscarnet could be completely avoided in the LET group, 7 out of 80 patients in the control cohort received foscarnet, resulting in 151 extra in-patient days for foscarnet administration (p = 0.002). One-year overall survival was 72% in the control arm vs 84% in the LET arm (HR 0.75 [95%CI 0.43–1.30]; p < 0.306). This study confirms efficacy and safety of LET for prophylaxis of CS-CMVi after alloHCT in a real-world setting, resulting in a significant patient benefit by reducing hospitalization needs and exposure to potentially toxic antiviral drugs for treatment of CMV reactivation.
Collapse
Affiliation(s)
- Patrick Derigs
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Aleksandar Radujkovic
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tilman Schöning
- Department of Pharmacy, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
61
|
Chan TSY, Cheng SSY, Chen WT, Hsu DC, Chau RWY, Kang SH, Alsumali A, Kwong YL. Cost-effectiveness of letermovir as cytomegalovirus prophylaxis in adult recipients of allogeneic hematopoietic stem cell transplantation in Hong Kong. J Med Econ 2020; 23:1485-1492. [PMID: 33155494 DOI: 10.1080/13696998.2020.1843321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The cost-effectiveness of letermovir as cytomegalovirus (CMV) prophylaxis in adult seropositive patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT), compared with the conventional strategy of preemptive treatment, has not been evaluated in Asia. METHODS A decision analytical model, simulating the clinical progression of CMV infection on a lifetime horizon, was developed to compare prophylactic strategy with letermovir with preemptive therapy alone as anti-CMV strategies. Prophylaxis comprised administering letermovir for 14 weeks, with clinical outcomes measured at 24 weeks, followed by preemptive therapy if CMV infection occurred. This approach was modeled on outcomes of the letermovir phase 3 clinical study. The model enumerated the cost of letermovir prophylaxis, quality-adjusted life years (QALYs), and incremental cost per QALYs gained with prophylaxis. The opposite arm involved regular monitoring and preemptive therapy for CMV reactivation. Real-world costs from the adult HSCT center at Queen Mary Hospital, Hong Kong, were adopted for analysis. Costs and clinical benefits, expressed as QALYs, were discounted at 3% per year. RESULTS Letermovir prophylaxis compared with preemptive therapy only would lead to an increase of life-year and QALYs at increased costs. Incremental cost-effectiveness analysis showed that letermovir prophylaxis had an associated cost of HKD 193,580 for each life-year gained, and HKD 234,675 for each QALY gained. Probabilistic sensitivity analysis showed that the majority of incremental cost-effectiveness ratio fell below the cost-effectiveness threshold of HKD 382,046 (one gross domestic product per capita) per QALY gained. CONCLUSIONS Letermovir prophylaxis would be cost-effective for preventing CMV infection in adult seropositive allogeneic HSCT recipients in Hong Kong.
Collapse
Affiliation(s)
| | | | - Wei-Ting Chen
- Global Medical & Scientific Affairs, MSD, Taipei, Taiwan
| | - Danny Chung Hsu
- Global Medical & Scientific Affairs, MSD, Hong Kong, Hong Kong
| | | | - Suk Hyun Kang
- Centre for Observational and Real-world Evidence, MSD, Seoul, Korea
| | | | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
62
|
Bacigalupo A, Metafuni E, Amato V, Marquez Algaba E, Pagano L. Reducing infectious complications after allogeneic stem cell transplant. Expert Rev Hematol 2020; 13:1235-1251. [PMID: 32996342 DOI: 10.1080/17474086.2020.1831382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Infections remain a significant problem, in patients undergoing an allogeneic hematopoietic stem-cell transplant (HSCT) and efforts have been made over the years, to reduce the incidence, morbidity and mortality of infectious complications. AREAS COVERED This manuscript is focused on the epidemiology, risk factors and prevention of infections after allogeneic HSCT. A systematic literature review was performed using the PubMed database, between November 2019 and January 2020, with the following MeSH terms: stem-cell transplantation, infection, fungal, bacterial, viral, prophylaxis, vaccines, prevention. The authors reviewed all the publications, and following a common revision, a summary report was made and results were divided in three sections: bacterial, fungal and viral infections. EXPERT OPINION Different infections occur in the early, intermediate and late post-transplant period, due to distinct risk factors. Improved diagnostic techniques, pre-emtive therapy and better prophylaxis of immunologic complications, have reduced the morbidity and mortality of infections. The role of the gut microbiota is under careful scrutiny and may further help us to identify high-risk patients.
Collapse
Affiliation(s)
- Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Viviana Amato
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Ester Marquez Algaba
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Livio Pagano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica Del Sacro Cuore , Rome, Italy
| |
Collapse
|
63
|
Bruminhent J, Razonable R. Advances in drug therapies for cytomegalovirus in transplantation: a focus on maribavir and letermovir. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1835639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - R.R. Razonable
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
64
|
Takenaka K, Onishi Y, Mori T, Hirakawa T, Tada Y, Uchida N, Kobayashi T, Kanda Y, Ozawa Y, Ota S, Iida H, Fukushima K, Kimua T, Fukuda T, Atsuta Y, Matsuto K, Yamazaki H, Nakasone H. Negative Impact of Cytomegalovirus Reactivation on Survival in Adult Patients with Aplastic Anemia after an Allogeneic Hematopoietic Stem Cell Transplantation: A Report from Transplantation-Related Complication and Adult Aplastic Anemia Working Groups of the Japan Society for Hematopoietic Cell Transplantation. Transplant Cell Ther 2020; 27:82.e1-82.e8. [PMID: 33039517 DOI: 10.1016/j.bbmt.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/17/2022]
Abstract
Cytomegalovirus (CMV) infection is a major infectious complication following an allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent large-scale retrospective studies reported that CMV reactivation is an independent risk factor for poor post-transplant outcomes, although the development of CMV end-organ disease is suppressed by the CMV antiviral preemptive therapy, which has been mainly analyzed for hematopoietic malignancies, such as acute leukemia. However, it remains unclear whether CMV reactivation also has a negative effect on post-transplant outcomes in aplastic anemia (AA). Therefore, we evaluated the clinical relevance of CMV reactivation in patients with AA using the registry database of the Japan Society for Hematopoietic Cell Transplantation. Adult patients with AA who underwent their first allo-HSCT between 2005 and 2017 and who survived with neutrophil engraftment until 100 days post-transplantation were analyzed (n = 672). Patients were monitored using pp65 antigenemia since the time of engraftment, and CMV reactivation in the analysis of this study was defined as the beginning of CMV preemptive or definitive therapy within 100 days post-transplantation. CMV reactivation occurred in 372 (55%) patients, including 19 with CMV end-organ disease. In time-dependent multivariate analysis, patients aged ≥40 years (hazard ratio [HR], 1.89; P = .003) who underwent transplantation from HLA-matched related peripheral blood stem cells (HR, 2.85; P = .008), HLA-matched unrelated bone marrow (BM) (HR, 2.01; P = .036), and other stem cell sources (HR, 2.32; P = .007) compared to HLA-matched related BM, CMV reactivation (HR 1.65; P = .042), grade II to IV acute graft-versus-host disease (HR 1.73; P = .013), and secondary graft failure (HR 7.09; P < .001) had independent risk factors that significantly decreased overall survival, indicating that CMV reactivation, one of the early events at post-transplantation, had a significant negative impact on the long-term prognosis at post-transplantation. This effect was more pronounced in patients aged ≥40 years who received a graft from other than HLA-matched related BM. Comparing the causes of death with and without CMV reactivation, no significant difference in the frequency of each cause of death was observed between the 2 groups (P = .453). Improvement of post-transplant CMV management that effectively suppresses CMV reactivation in the early stage at post-transplantation will be required to improve post-transplant outcomes, especially in high-risk patients.
Collapse
Affiliation(s)
- Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan.
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsuneaki Hirakawa
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuuma Tada
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan; Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Hiroatsu Iida
- Division of Cell Therapy, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Hospital, Osaka, Japan
| | - Takafumi Kimua
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keitaro Matsuto
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hirohito Yamazaki
- Division of Transfusion Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
65
|
Rhee Y, Santos CA, Lurain N, Marinovic DA, Prockop SE, Varma A, Papanicolaou G, Ustun C, Nathan S. Difficult Balance Between Multidrug-Resistant Cytomegalovirus Infection and Graft-Versus-Host Disease in an Allogeneic Hematopoietic Stem Cell Transplant Recipient. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2020; 28:257-260. [DOI: 10.1097/ipc.0000000000000858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
We present a case of multidrug-resistant cytomegalovirus (CMV) infection in an allogeneic hematopoietic stem cell transplant recipient with graft-versus-host disease. We demonstrate evolving viral mutations with documented resistance to first-line CMV DNA polymerase inhibitors and letermovir. Leflunomide and compassionate use investigational third-party CMV-specific cytotoxic T-cell lymphocyte infusions led to reductions in CMV viremia; however, the patient succumbed to respiratory failure. This article highlights the difficult balance between immunosuppression for graft-versus-host disease therapy and refractory CMV treatment, with a review of CMV antiviral therapy.
Collapse
Affiliation(s)
- Yoona Rhee
- Division of Infectious Diseases, Department of Internal Medicine
| | | | - Nell Lurain
- Department of Microbial Pathogens and Immunity
| | - Debra A. Marinovic
- Section of Bone Marrow Transplant and Cell Therapy, Division of Hematology and Oncology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Susan E. Prockop
- Pediatric Bone Marrow Transplant Service, Department of Pediatrics
| | - Ankur Varma
- Section of Bone Marrow Transplant and Cell Therapy, Division of Hematology and Oncology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | | | - Celalettin Ustun
- Section of Bone Marrow Transplant and Cell Therapy, Division of Hematology and Oncology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Sunita Nathan
- Section of Bone Marrow Transplant and Cell Therapy, Division of Hematology and Oncology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| |
Collapse
|
66
|
Shafat MS, Mehra V, Peggs KS, Roddie C. Cellular Therapeutic Approaches to Cytomegalovirus Infection Following Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:1694. [PMID: 32849591 PMCID: PMC7411136 DOI: 10.3389/fimmu.2020.01694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
Cytomegalovirus (CMV) infection is common following allogeneic hematopoietic stem cell transplant (HSCT) and is a major cause of morbidity and increased mortality. Whilst pharmacotherapy can be effective in the prevention and treatment of CMV, these agents are often expensive, toxic and in some cases ineffective due to viral resistance mechanisms. Immunotherapeutic approaches are compelling and early clinical trials of adoptively transferred donor-derived virus-specific T (VST) cells against CMV have demonstrated efficacy. However, significant logistical challenges limit their broad application. Strategies to optimize VST manufacture and cell banking alongside scientific developments to enhance efficacy whilst minimizing toxicity are ongoing. This review will discuss the development of CMV-specific T-cell therapies, the challenges of widespread delivery of VSTs for CMV and explore how VST therapy can change outcomes in CMV infection following HSCT.
Collapse
Affiliation(s)
- Manar S Shafat
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom
| | - Vedika Mehra
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom
| | - Karl S Peggs
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Claire Roddie
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
67
|
Chou S, Song K, Wu J, Bo T, Crumpacker C. Drug resistance mutations and associated phenotypes detected in clinical trials of maribavir for treatment of cytomegalovirus infection. J Infect Dis 2020; 226:576-584. [PMID: 32726419 PMCID: PMC9441206 DOI: 10.1093/infdis/jiaa462] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/24/2020] [Indexed: 01/26/2023] Open
Abstract
Background In separate phase 2 trials, 120 patients received maribavir for cytomegalovirus (CMV) infection failing conventional therapy (trial 202) and 119 received maribavir for asymptomatic infection (trial 203). Overall, 172 cleared their CMV infection (CMV DNA <200 copies/mL) within 6 weeks. Methods Baseline and posttreatment plasma samples were tested for mutations in viral genes UL97, UL54, and/or UL27. Selected viral mutants were phenotyped for drug susceptibility. Results Baseline samples revealed UL54 mutations newly phenotyped as conferring resistance to standard DNA polymerase inhibitor(s), including K493N, P497S, K513T, L565V, V823A, A987V, and E989D. Of 29 patients (including 25 from trial 202) who cleared but later experienced recurrent CMV infection while on maribavir, 23 had available UL97 genotyping data; 17 had known resistance mutations (T409M or H411Y) and 5 additional had UL97 C480F alone. The newly phenotyped mutation C480F conferred high-grade maribavir resistance and low-grade ganciclovir resistance. Among 25 who did not respond to >14 days of therapy, 9 showed T409M or H411Y and 4 others showed C480F alone. Conclusions After maribavir therapy (400–1200 mg twice daily), UL97 mutations T409M, H411Y, or C480F emerge to confer maribavir resistance in patients with recurrent CMV infection while on therapy or no response to therapy. Clinical Trials Registration NCT01611974 and EudraCT 2010-024247-32.
Collapse
Affiliation(s)
- Sunwen Chou
- Oregon Health & Science University and VA Health Care System, Portland OR
| | - Kening Song
- Shire Human Genetic Therapies Inc., Lexington MA, a Takeda Company
| | - Jingyang Wu
- Shire Human Genetic Therapies Inc., Lexington MA, a Takeda Company
| | - Tien Bo
- Shire Human Genetic Therapies Inc., Lexington MA, a Takeda Company
| | | |
Collapse
|
68
|
Theobald SJ, Kreer C, Khailaie S, Bonifacius A, Eiz-Vesper B, Figueiredo C, Mach M, Backovic M, Ballmaier M, Koenig J, Olbrich H, Schneider A, Volk V, Danisch S, Gieselmann L, Ercanoglu MS, Messerle M, von Kaisenberg C, Witte T, Klawonn F, Meyer-Hermann M, Klein F, Stripecke R. Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathog 2020; 16:e1008560. [PMID: 32667948 PMCID: PMC7363084 DOI: 10.1371/journal.ppat.1008560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation. Human cytomegalovirus (HCMV) is a ubiquitous pathogen. As long as the immune system is functional, T and B cells can control HCMV. Yet, for patients who have debilitated immune functions, HCMV infections and reactivations cause major complications. Vaccines or antibodies to prevent or treat HCMV are not yet approved. Novel animal models for testing new immunization approaches are emerging and are important tools to identify biomedical products with a reasonable chance to work in patients. Here, we used a model based on mice transplanted with human immune cells and infected with a traceable HCMV. We tested a cell vaccine (iDCgB) carrying gB, a potent HCMV antigen. The model showed that iDCgB halted the HCMV infection in more than 90% of the mice. We found that antibodies were key players mediating protection. Using state-of-the-art methods, we were able to use the sequences of the human antibodies generated in the mice to construct and produce monoclonal antibodies in the laboratory. Proof-of-concept experiments indicated that administration of these monoclonal antibodies into mice protected them against HCMV infection. In summary, this humanized mouse model was useful to test a vaccine and to generate and test novel antibodies that can be further developed for human use.
Collapse
Affiliation(s)
- Sebastian J. Theobald
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Mach
- Institute of Virology, University Erlangen-Nürnberg, Erlangen, Germany
| | - Marija Backovic
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Matthias Ballmaier
- Research Facility Cell Sorting, Hannover Medical School, Hannover, Germany
| | - Johannes Koenig
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Henning Olbrich
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Andreas Schneider
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Valery Volk
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Simon Danisch
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Martin Messerle
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Instiute of Virology, Hannover Medical School, Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbuettel, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Renata Stripecke
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- * E-mail:
| |
Collapse
|
69
|
Wu TT, Guo QQ, Chen ZL, Wang LL, Du Y, Chen R, Mao YH, Yang SG, Huang J, Wang JT, Wang L, Tang L, Zhang JQ. Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors. Eur J Med Chem 2020; 204:112637. [PMID: 32717477 DOI: 10.1016/j.ejmech.2020.112637] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
A series of novel substituted triazines bearing a benzimidazole scaffold were designed and synthesized based on the structures of known anti-cancer agents, namely gedatolisib and alpelisib. All the target compounds were screened for inhibitory activity against PI3Kα and mTOR kinases. Notably, most analogs exhibited IC50 in the nanomolar range. Investigation of the isozyme selectivity indicated that the compounds exhibited remarkable inhibitory activity against PI3Kδ, especially compound 19f showed an IC50 value of 2.3 nM for PI3Kδ and moderate δ-isozyme selectivity over other class I PI3K isoforms and mTOR (with IC50 values of 14.6, 34.0, 849.0 and 15.4 nM for PI3Kα, β, γ and mTOR, respectively). An in vitro MTT assay was conducted to assess the antiproliferative and cytotoxic effects of the prepared analogs. It was revealed that the compounds displayed significant inhibitory activities against the HCT116 human colon cancer cell line. Compound 19i showed 4.7-fold higher potency than the positive control gedatolisib (0.3 vs. 1.4 μM, IC50 values). Phosphoblot studies demonstrated that 19c and 19i could significantly suppress the PI3K/Akt/mTOR signaling pathway at 10 μM. Moreover, analogs 19b, 19c and 19i displayed better stability in artificial gastric fluids than gedatolisib, while 19i was indicated not very stable in rat liver microsomes, and may occur phase I metabolic transformations.
Collapse
Affiliation(s)
- Ting-Ting Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Qing-Qing Guo
- Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zi-Li Chen
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Li-Li Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Yao Du
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan-Hu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Sheng-Gang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Jing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Jian-Ta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Ling Wang
- Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Ji-Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
70
|
Papanicolaou GA, Silveira FP, Langston AA, Pereira MR, Avery RK, Uknis M, Wijatyk A, Wu J, Boeckh M, Marty FM, Villano S. Maribavir for Refractory or Resistant Cytomegalovirus Infections in Hematopoietic-cell or Solid-organ Transplant Recipients: A Randomized, Dose-ranging, Double-blind, Phase 2 Study. Clin Infect Dis 2020; 68:1255-1264. [PMID: 30329038 PMCID: PMC6451997 DOI: 10.1093/cid/ciy706] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Background Cytomegalovirus (CMV) infections that are refractory or resistant (RR) to available antivirals ([val]ganciclovir, foscarnet, cidofovir) are associated with higher mortality in transplant patients. Maribavir is active against RR CMV strains. Methods Hematopoietic-cell or solid-organ transplant recipients ≥12 years old with RR CMV infections and plasma CMV deoxyribonucleic acid (DNA) ≥1000 copies/mL were randomized (1:1:1) to twice-daily dose-blinded maribavir 400, 800, or 1200 mg for up to 24 weeks. The primary efficacy endpoint was the proportion of patients with confirmed undetectable plasma CMV DNA within 6 weeks of treatment. Safety analyses included the frequency and severity of treatment-emergent adverse events (TEAEs). Results From July 2012 to December 2014, 120 patients were randomized and treated (40 per dose group): 80/120 (67%) patients achieved undetectable CMV DNA within 6 weeks of treatment (95% confidence interval, 57–75%), with rates of 70%, 63%, and 68%, respectively, for maribavir 400, 800, and 1200 mg twice daily. Recurrent on-treatment CMV infections occurred in 25 patients; 13 developed mutations conferring maribavir resistance. Maribavir was discontinued due to adverse events in 41/120 (34%) patients, and 17/41 discontinued due to CMV infections. During the study, 32 (27%) patients died, 4 due to CMV disease. Dysgeusia was the most common TEAE (78/120; 65%) and led to maribavir discontinuation in 1 patient. Absolute neutrophil counts <1000/µL were noted in 12/106 (11%) evaluable patients, with rates similar across doses. Conclusions Maribavir ≥400 mg twice daily was active against RR CMV infections in transplant recipients; no new safety signals were identified. Clinical Trials Registration NCT01611974.
Collapse
Affiliation(s)
| | - Fernanda P Silveira
- The Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Marcus R Pereira
- Department of Medicine, Columbia University Medical Center, New York, New York
| | | | - Marc Uknis
- Shire Pharmaceuticals, Wayne, Pennsylvania
| | | | - Jingyang Wu
- Shire Pharmaceuticals, Lexington, Massachusetts
| | - Michael Boeckh
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | |
Collapse
|
71
|
Marschall M, Häge S, Conrad M, Alkhashrom S, Kicuntod J, Schweininger J, Kriegel M, Lösing J, Tillmanns J, Neipel F, Eichler J, Muller YA, Sticht H. Nuclear Egress Complexes of HCMV and Other Herpesviruses: Solving the Puzzle of Sequence Coevolution, Conserved Structures and Subfamily-Spanning Binding Properties. Viruses 2020; 12:v12060683. [PMID: 32599939 PMCID: PMC7354485 DOI: 10.3390/v12060683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric nuclear egress complex (core NEC). These core NECs serve as hexameric lattice-structured platforms for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina as well as membrane-rearranging functions (multicomponent NEC). The regulation of nuclear egress has been profoundly analyzed for murine and human cytomegaloviruses (CMVs) on a mechanistic basis, followed by the description of core NEC crystal structures, first for HCMV, then HSV-1, PRV and EBV. Interestingly, the highly conserved structural domains of these proteins stand in contrast to a very limited sequence conservation of the key amino acids within core NEC-binding interfaces. Even more surprising, although a high functional consistency was found when regarding the basic role of NECs in nuclear egress, a clear specification was identified regarding the limited, subfamily-spanning binding properties of core NEC pairs and NEC multicomponent proteins. This review summarizes the evolving picture of the relationship between sequence coevolution, structural conservation and properties of NEC interaction, comparing HCMV to α-, β- and γ-herpesviruses. Since NECs represent substantially important elements of herpesviral replication that are considered as drug-accessible targets, their putative translational use for antiviral strategies is discussed.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
- Correspondence: ; Tel.: +49-9131-85-26089
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| | - Sewar Alkhashrom
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Johannes Schweininger
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Mark Kriegel
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Frank Neipel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Jutta Eichler
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| |
Collapse
|
72
|
Ilic K, Song I, Wu J, Martin P. Evaluation of the Effect of Maribavir on Cardiac Repolarization in Healthy Participants: Thorough QT/QTc Study. Clin Transl Sci 2020; 13:1260-1270. [PMID: 32506738 PMCID: PMC7719377 DOI: 10.1111/cts.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
Maribavir is an orally bioavailable benzimidazole riboside in clinical development for treatment of cytomegalovirus infection in patients who undergo transplantation. Maribavir was evaluated in a thorough QT (TQT) study to determine any effects on cardiac repolarization. The effect of maribavir 100 and 1,200 mg oral doses on the baseline-adjusted and placebo-adjusted corrected QT (QTc) interval (delta delta QTc (ddQTc)) and other electrocardiogram (ECG) parameters was assessed in a randomized, phase I, placebo-controlled, four-period crossover study in healthy participants (men and women ages 18-50 years). Additionally, maribavir pharmacokinetics, safety, and tolerability were investigated. Moxifloxacin (400 mg) was used as a positive control to demonstrate the study's ability to detect QT prolongation. Digital 12-lead Holter ECG monitoring was performed over 22 hours following study drug administration. Individual, Fridericia's, and Bazett's QTc intervals were calculated. Of 52 randomized participants (29 ± 8.1 years old; 31 men (60%)), 50 (96%) completed the study. For both 100-mg and 1200-mg doses of maribavir, analysis of ddQTc demonstrated that the upper bound of the two-sided 90% confidence interval was below the 10-ms threshold at all time points. The concentration-effect analysis demonstrated no relationship between ddQTc and plasma concentrations of maribavir (and its metabolite). There were no clinically meaningful changes in heart rate and systolic blood pressure. The most common adverse event was dysgeusia; no serious adverse events were reported. This TQT study demonstrated that maribavir did not have impact on cardiac repolarization.
Collapse
Affiliation(s)
- Katarina Ilic
- Shire, a Takeda Company, Lexington, Massachusetts, USA
| | - Ivy Song
- Shire, a Takeda Company, Lexington, Massachusetts, USA
| | - Jingyang Wu
- Shire, a Takeda Company, Lexington, Massachusetts, USA
| | | |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight novel advances in prophylaxis against and treatment of CMV in kidney transplant recipients. Current options include intravenous ganciclovir and oral valganciclovir, but use of these agents is limited by side effects, such as myelosuppression as well as evolving resistance in CMV strains. RECENT FINDINGS Advances in the field include novel drugs that have shown promise in preliminary studies and are now being tested in large-scale clinical trials. Moreover, there is a developing focus in enhancing host immune responses to better protect against viral infection using anti-CMV vaccines. Studying host immune responses to CMV has also led to improved monitoring strategies, such as the QuantiFERON assay, which will allow for improved risk stratification and targeted therapies in transplant recipients. SUMMARY In summary, although options for prophylaxis and treatment against CMV have been somewhat limited to date, a number of new strategies are currently under development with several drugs in phase 3 trials. Therefore, the landscape of CMV management in kidney transplant recipients will be changing significantly in the coming years with the ultimate goal of safer and more effective therapies to combat CMV.
Collapse
|
74
|
Ligat G, Muller C, Alain S, Hantz S. [The terminase complex, a relevant target for the treatment of HCMV infection]. Med Sci (Paris) 2020; 36:367-375. [PMID: 32356713 DOI: 10.1051/medsci/2020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important ubiquitous opportunistic pathogen that belongs to the betaherpesviridae. Primary HCMV infection is generally asymptomatic in immunocompetent individuals. In contrast, HCMV infection causes serious disease in immunocompromised patients and is the leading cause of congenital viral infection. Although they are effective, the use of conventional molecules is limited by the emergence of resistance and by their toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA packaging is performed by the terminase complex, which cleaves DNA to package the virus genome into the capsid. With no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials. However, its mechanism of action is unclear and it has no significant activity against other herpesvirus or non-human CMV.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France - Adresse actuelle : Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Clotilde Muller
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sophie Alain
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sébastien Hantz
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW Cytomegalovirus (CMV) is the most common infection after organ transplant. In addition to causing a viral syndrome and infection, it also increases the risk for complications in the organ transplant, along with higher overall morbidity and mortality. Prevention and ideal treatment of CMV is paramount for optimal outcomes, both for individuals as well as for transplant programs. New guidelines and novel therapies are changing the way we manage disease. RECENT FINDINGS Several new antiviral agents have emerged in recent times, including letermovir, maribavir, and brincidofovir, enhancing our ability to prevent and treat CMV. Recent data on novel agents will be reviewed, with an emphasis on recent guidelines and best practices. SUMMARY Optimal treatment, influenced by recent advances in the field, including management of resistant virus, results in better outcomes with this significant and virulent virus.
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW CMV DNA polymerase inhibitors such as ganciclovir and foscarnet have dramatically reduced the burden of CMV infection in the HCT recipient. However, their use is often limited by toxicities and resistance. Agents with novel mechanisms and favorable toxicity profiles are critically needed. We review recent developments in CMV antivirals and immune-based approaches to mitigating CMV infection. RECENT FINDINGS Letermovir, an inhibitor of the CMV terminase complex, was approved in 2017 for primary CMV prophylaxis in adult seropositive allogeneic HCT recipients. Maribavir, an inhibitor of the CMV UL97 kinase, is currently in two phase 3 treatment studies. Adoptive immunotherapy using third-party T cells has proven safe and effective in preliminary studies. Vaccine development continues, with several promising candidates currently under study. No longer limited to DNA polymerase inhibitors, the prevention and treatment of CMV infections in the HCT recipient is a rapidly evolving field which should translate into improvements in CMV-related outcomes.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail code L457, Portland, OR, 97239, USA.
| |
Collapse
|
77
|
Savva R. The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design. Microorganisms 2020; 8:microorganisms8030461. [PMID: 32214054 PMCID: PMC7143999 DOI: 10.3390/microorganisms8030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/10/2023] Open
Abstract
Vast evolutionary distances separate the known herpesviruses, adapted to colonise specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are available, but the need for reduced toxicity and improved efficacy in critical healthcare interventions invites novel solutions: immunocompromised patients presenting particular challenges. A conserved enzyme required for viral fitness is Ung, a uracil-DNA glycosylase, which is encoded ubiquitously in Herpesviridae genomes and also host cells. Research investigating Ung in Herpesviridae dynamics has uncovered an unexpected combination of viral co-option of host Ung, along with remarkable Subfamily-specific exaptation of the virus-encoded Ung. These enzymes apparently play essential roles, both in the maintenance of viral latency and during initiation of lytic replication. The ubiquitously conserved Ung active site has previously been explored as a therapeutic target. However, exquisite selectivity and better drug-like characteristics might instead be obtained via targeting structural variations within another motif of catalytic importance in Ung. The motif structure is unique within each Subfamily and essential for viral survival. This unique signature in highly conserved Ung constitutes an attractive exploratory target for the development of novel beneficial therapeutics.
Collapse
Affiliation(s)
- Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
78
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Hussein ITM, Brooks J, Bowlin TL. The discovery and development of filociclovir for the prevention and treatment of human cytomegalovirus-related disease. Antiviral Res 2020; 176:104710. [PMID: 31940473 DOI: 10.1016/j.antiviral.2020.104710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Human cytomegalovirus (HCMV) infections are widespread among the human population. Infection is persistent and mostly asymptomatic, except in immunocompromised individuals, particularly transplant patients, where significant morbidity and mortality can occur. Currently approved drugs for treating HCMV-related disease [including ganciclovir (GCV), valganciclovir (VGCV), cidofovir (CDV) and foscarnet (FOS)] all target the viral DNA polymerase and suffer from dose-limiting toxicity and resistance issues. The most recently approved drug, letermovir (LMV), was approved only for prophylaxis in adult HCMV-seropositive stem cell transplant recipients. Although LMV is highly potent, high-grade resistance mutations in the terminase gene were shown to readily emerge in vitro and in treated patients. Therefore, there is a need for new drugs that can be used for combinatorial therapeutic and/or prophylactic regimens to counteract the emergence of resistant mutants. Filociclovir (FCV), also known as cyclopropavir or MBX-400, is a methylenecyclopropane nucleoside analog, which has successfully completed Phase I safety studies, and is now entering Phase II clinical efficacy studies for the treatment of HCMV-related disease in transplant patients. FCV is 10-fold more active than GCV against HCMV in vitro, and has activity against all human herpesviruses except HSV-1 and HSV-2. Recently, FCV was also shown to be highly potent against human adenoviruses. This activity spectrum suggests that FCV could be used to treat/prevent infection with several viruses that pose significant risk to transplant patients. The active triphosphate form of FCV (FCV-TP) reaches higher peak levels than GCV-TP in HCMV-infected cells, and exhibits about 10-fold higher affinity to HCMV DNA polymerase UL54. Furthermore, FCV was shown to retain activity against a panel of GCV-resistant HCMV isolates, suggesting that it could be a useful alternative therapy for treating patients infected with some GCV-resistant HCMV strains. This review summarizes the early discovery work of FCV and highlights the recent advances in the continued development of this clinical candidate.
Collapse
Affiliation(s)
| | - Jennifer Brooks
- Microbiotix, Inc., One Innovation Drive, Worcester, MA, 01605, USA
| | - Terry L Bowlin
- Microbiotix, Inc., One Innovation Drive, Worcester, MA, 01605, USA.
| |
Collapse
|
80
|
Song IH, Ilic K, Murphy J, Lasseter K, Martin P. Effects of Maribavir on P-Glycoprotein and CYP2D6 in Healthy Volunteers. J Clin Pharmacol 2020; 60:96-106. [PMID: 31385617 PMCID: PMC6972521 DOI: 10.1002/jcph.1504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Abstract
Maribavir is an investigational drug being evaluated in transplant recipients with cytomegalovirus infection. To understand potential drug-drug interactions, we examined the effects of multiple doses of maribavir on cytochrome P450 (CYP) 2D6 and P-glycoprotein (P-gp) activity using probe substrates in healthy volunteers. During this phase 1 open-label study (NCT02775240), participants received the probe substrates digoxin (0.5 mg) and dextromethorphan (30 mg) before and after maribavir (400 mg twice daily for 8 days). Serial plasma samples were analyzed for digoxin, dextromethorpha, dextrorphan, and maribavir concentrations. Pharmacokinetic parameters were calculated (noncompartmental analysis) and analyzed with a linear mixed-effects model for treatment comparison to estimate geometric mean ratios (GMRs) and 90% confidence intervals (CIs). CYP2D6 polymorphisms were genotyped using polymerase chain reaction. Overall, 17 of 18 participants (94.4%) completed the study. All participants were genotyped as CYP2D6 intermediate/extensive metabolizers. GMR (90%CI) of digoxin Cmax , AUClast , and AUC0-∞ with and without maribavir was 1.257 (1.139-1.387), 1.187 (1.088-1.296), and 1.217 (1.110-1.335), respectively, outside the "no-effect" window (0.8-1.25). GMR (90%CI) of dextromethorphan AUClast and AUClast ratio of dextromethorphan/dextrorphan were 0.877 (0.692-1.112) and 0.901 (0.717-1.133), respectively, marginally outside the no-effect window, although large variability was observed in these pharmacokinetic parameters. Pharmacokinetic parameters of dextrorphan were unaffected. Maribavir inhibited P-gp activity but did not affect CYP2D6 activity. Maribavir's effect on the pharmacokinetics of P-gp substrates should be evaluated individually, and caution should be exercised with P-gp substrates with narrow therapeutic windows.
Collapse
Affiliation(s)
- Ivy H. Song
- Shire, a Takeda companyLexingtonMassachusettsUSA
| | | | | | | | | |
Collapse
|
81
|
Haddad LE, Ghantoji SS, Park AK, Batista M, Schelfhout J, Hachem J, Lobo Y, Jiang Y, Rondon G, Champlin R, Chemaly RF. Clinical and economic burden of pre-emptive therapy of cytomegalovirus infection in hospitalized allogeneic hematopoietic cell transplant recipients. J Med Virol 2020; 92:86-95. [PMID: 31448830 PMCID: PMC6842396 DOI: 10.1002/jmv.25574] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
Cytomegalovirus (CMV) infection remains a major complication after allogeneic hematopoietic cell transplantation (allo-HCT). We conducted a retrospective study to determine the clinical and economic burden of pre-emptive therapy (PET) for CMV infection in 100 consecutive hospitalized adult CMV positive serostatus allo-HCT recipients and compared their hospitalization cost with allo-HCT recipients hospitalized with graft vs host disease without CMV infection (control group) and across 19 US cancer centers for hospitalized patients with CMV infection between 2012 and 2015 (Vizient database). A total of 192 CMV episodes of PET for CMV infection occurred within 1 year post-HCT. PET consisted of ganciclovir (41% of episodes), foscarnet (40%), and valganciclovir (38%) with the longest average length of stay in foscarnet-treated patients (41 days). The average direct cost per patient admitted for PET was $116 976 (range: $7866-$641 841) compared with $12 496 (range: $2004-$43 069) in the control group (P < .0001). The total direct cost per encounter was significantly higher in patients treated with foscarnet and had nephrotoxicity ($284 006) compared with those who did not ($112 195). The average cost amongst the 19 US cancer centers, including our institution, was $42 327 with major disparities in cost and clinical outcomes. PET for CMV infection is associated with high economic burden in allo-HCT recipients.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shashank S. Ghantoji
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne K. Park
- Office of Performance Improvement, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marjorie Batista
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jack Hachem
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yadira Lobo
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Jiang
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
82
|
Schelfhout J, Bonafede M, Cappell K, Cole AL, Manjelievskaia J, Raval AD. Impact of cytomegalovirus complications on resource utilization and costs following hematopoietic stem cell transplant. Curr Med Res Opin 2020; 36:33-41. [PMID: 31490093 DOI: 10.1080/03007995.2019.1664826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: The impact of cytomegalovirus (CMV) infection on healthcare resource utilization (HCRU) and costs post-allogeneic hematopoietic stem cell transplant (allo-HSCT) has not been well studied in the US. This retrospective, observational cohort study examined such outcomes in the first year following allo-HSCT.Methods: The IBM MarketScan administrative claims database was used to identify adults who underwent a first allo-HSCT between 1 January 2010 and 30 April 2015. Patients were required to have continuous medical and pharmacy enrollment for ≥12 months before and after the allo-HSCT. HCRU and medical costs (2016 US$) were compared by the presence or absence of CMV infection over 1-year follow-up.Results: A total of 1825 adults met the inclusion criteria (57.5% male; mean age 50.8 years). During the follow-up period, 410 (22.5%) patients had a CMV-related claim. Patients with CMV infection were significantly more likely to have a 60-day-(31.2 vs. 19.4%), 100-day-(50.0 vs. 30.5%) or 365-day readmission (78.0 vs. 57.8%) compared to those without a CMV-related event (all p < .001). During follow-up, patients with CMV infection had significantly greater mean total costs, reflecting higher inpatient costs ($677,240 vs. $462,562), outpatient costs ($141,366 vs. $94,312) and prescription drug costs ($27,391 vs. $22,082) (all p < .001). Valganciclovir (59.8%) and ganciclovir (33.7%) were the most commonly utilized anti-viral agents in patients with CMV.Conclusions: CMV infection was associated with significantly higher healthcare resource utilization and costs during the first year post-allo-HSCT. Additional research is warranted to further evaluate the consequences of post-HSCT CMV infection, as well as cost-effective measures to minimize its occurrence.
Collapse
|
83
|
Neofytos D. Antimicrobial Prophylaxis and Preemptive Approaches for the Prevention of Infections in the Stem Cell Transplant Recipient, with Analogies to the Hematologic Malignancy Patient. Infect Dis Clin North Am 2019; 33:361-380. [PMID: 31005133 DOI: 10.1016/j.idc.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious complications represent one of the most common causes of morbidity and mortality in allogeneic hematopoietic cell transplant (HCT) recipients. Prophylactic and preemptive treatment strategies against bacterial, fungal, viral, and parasitic pathogens are routinely implemented during high-risk post-HCT periods at most transplant centers. The basic concepts and review of current guidelines of antibiotic prophylaxis and empirical/preemptive antibiotic treatment in allogeneic HCT recipients are reviewed in this article.
Collapse
Affiliation(s)
- Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva CH-1211, Switzerland.
| |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW Transplant recipients are at risk for cytomegalovirus (CMV) infection and associated morbidity and mortality. We summarize recently introduced or currently investigated modalities for prevention and treatment of CMV infection in hematopoietic cell (HCT) and solid organ transplant (SOT) recipients. RECENT FINDINGS Letermovir was recently approved for CMV prevention in HCT recipients. Data from real world studies support its role to improve outcomes in this population. Letermovir is currently under investigation for broader patient populations and indications. Maribavir is in late stages of development for CMV treatment and may provide a safer alternative to currently available anti-CMV drugs. Promising CMV vaccine candidates and adoptive cell therapy approaches are under evaluation. CMV immune monitoring assays are predicted to play a more central role in our clinical decision making. In recent years, major advances have been made in CMV prevention and treatment in transplant recipients. Rigorous research is ongoing and is anticipated to further impact our ability to improve outcomes in this population.
Collapse
Affiliation(s)
- Anat Stern
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, NY1250 1st Avenue, New York, NY, 10065, USA
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, NY1250 1st Avenue, New York, NY, 10065, USA.
| |
Collapse
|
85
|
Oiknine-Djian E, Bar-On S, Laskov I, Lantsberg D, Haynes RK, Panet A, Wolf DG. Artemisone demonstrates synergistic antiviral activity in combination with approved and experimental drugs active against human cytomegalovirus. Antiviral Res 2019; 172:104639. [PMID: 31654672 DOI: 10.1016/j.antiviral.2019.104639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
Abstract
We have recently shown that the artemisinin derivative artemisone, which was screened against malaria in human clinical studies, is a potent inhibitor of human cytomegalovirus (HCMV). Here we evaluated the antiviral effect of artemisone when employed in 2-drug combinations with approved and experimental anti-HCMV agents. Using the Chou-Talalay method, we found that in-vitro combination of artemisone with cidofovir, brincidofovir, or with the HCMV UL97 inhibitor maribavir resulted in antiviral synergism and the combination of artemisone with ganciclovir or with the viral terminase inhibitors letermovir and BDCRB resulted in moderate synergism. Importantly, the combination of artemisone with maribavir demonstrated synergistic antiviral activity ex-vivo, in a clinically-relevant multicellular model of human placental tissues maintained in organ culture. Our findings provide the basis for the use of artemisone in synergistically acting drug combinations, to enhance viral control and reduce antiviral drug toxicities.
Collapse
Affiliation(s)
- Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel; The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University, Israel
| | - Shikma Bar-On
- Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Laskov
- Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Lantsberg
- Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard K Haynes
- Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Amos Panet
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University, Israel.
| |
Collapse
|
86
|
Faist B, Schlott F, Stemberger C, Dennehy KM, Krackhardt A, Verbeek M, Grigoleit GU, Schiemann M, Hoffmann D, Dick A, Martin K, Hildebrandt M, Busch DH, Neuenhahn M. Targeted in-vitro-stimulation reveals highly proliferative multi-virus-specific human central memory T cells as candidates for prophylactic T cell therapy. PLoS One 2019; 14:e0223258. [PMID: 31568490 PMCID: PMC6768573 DOI: 10.1371/journal.pone.0223258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Adoptive T cell therapy (ACT) has become a treatment option for viral reactivations in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). Animal models have shown that pathogen-specific central memory T cells (TCM) are protective even at low numbers and show long-term survival, extensive proliferation and high plasticity after adoptive transfer. Concomitantly, our own recent clinical data demonstrate that minimal doses of purified (not in-vitro- expanded) human CMV epitope-specific T cells can be sufficient to clear viremia. However, it remains to be determined if human virus-specific TCM show the same promising features for ACT as their murine counterparts. Using a peptide specific proliferation assay (PSPA) we studied the human Adenovirus- (AdV), Cytomegalovirus- (CMV) and Epstein-Barr virus- (EBV) specific TCM repertoires and determined their functional and proliferative capacities in vitro. TCM products were generated from buffy coats, as well as from non-mobilized and mobilized apheresis products either by flow cytometry-based cell sorting or magnetic cell enrichment using reversible Fab-Streptamers. Adjusted to virus serology and human leukocyte antigen (HLA)-typing, donor samples were analyzed with MHC multimer- and intracellular cytokine staining (ICS) before and after PSPA. TCM cultures showed strong proliferation of a plethora of functional virus-specific T cells. Using PSPA, we could unveil tiniest virus epitope-specific TCM populations, which had remained undetectable in conventional ex-vivo-staining. Furthermore, we could confirm these characteristics for mobilized apheresis- and GMP-grade Fab-Streptamer-purified TCM products. Consequently, we conclude that TCM bare high potential for prophylactic low-dose ACT. In addition, use of Fab-Streptamer-purified TCM allows circumventing regulatory restrictions typically found in conventional ACT product generation. These GMP-compatible TCM can now be used as a broad-spectrum antiviral T cell prophylaxis in alloHSCT patients and PSPA is going to be an indispensable tool for advanced TCM characterization during concomitant immune monitoring.
Collapse
Affiliation(s)
- Benjamin Faist
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Fabian Schlott
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | | | - Kevin M. Dennehy
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Institute for Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Angela Krackhardt
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mareike Verbeek
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Götz U. Grigoleit
- Department of Internal Medicine II, University of Würzburg, Wuerzburg, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dieter Hoffmann
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute for Virology, Technische Universität München, Munich, Germany
| | - Andrea Dick
- Department of Transfusion Medicine and Haemostaseology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus Martin
- Institute of Anaesthesiology, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Munich, Germany
| | - Martin Hildebrandt
- TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany
- * E-mail:
| |
Collapse
|
87
|
Chou S, Wu J, Song K, Bo T. Novel UL97 drug resistance mutations identified at baseline in a clinical trial of maribavir for resistant or refractory cytomegalovirus infection. Antiviral Res 2019; 172:104616. [PMID: 31568799 DOI: 10.1016/j.antiviral.2019.104616] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
In a Phase 2 clinical trial, 120 subjects with cytomegalovirus (CMV) infection refractory or resistant to standard therapy were randomized equally to 3 doses of oral maribavir treatment, and 70% achieved undetectable plasma CMV DNA within 12 weeks. At study entry, standard diagnostic UL97 genotyping was available for 71 subjects, with 60 (85%) revealing well-characterized ganciclovir resistance mutations that did not preclude a therapeutic response to maribavir. Central laboratory testing of a range of UL97 codons (288-468) not fully covered by standard genotyping was done on 93 subjects at baseline. This detected no previously known maribavir resistance mutations, but identified atypical mutations in 3 subjects, including a P-loop substitution F342Y, and ATP-binding region substitutions K359E/Q. By recombinant phenotyping, K359E and K359Q each conferred a nearly 4-fold increased ganciclovir 50% inhibitory concentration (EC50) without maribavir resistance, whereas F342Y conferred a 6-fold increased ganciclovir EC50 and a 4.5-fold increased maribavir EC50. The subject with F342Y detected at baseline did not achieve plasma CMV DNA clearance after 12 weeks of maribavir therapy and later developed an additional UL97 substitution H411Y known to confer 12- to 20-fold increased MBV EC50 by itself. The combination of F342Y and H411Y was shown to increase the maribavir EC50 by 56-fold. Diagnostic genotyping of UL97 should be expanded to cover the ATP-binding region beginning at codon 335 to enable the detection of atypical resistance mutations and further correlation of their clinical significance.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Department of Veterans Affairs Medical Center, Portland, Oregon, USA.
| | | | | | - Tien Bo
- Shire, a Takeda Company, Lexington, MA, USA
| |
Collapse
|
88
|
Vora SB, Brothers AW, Waghmare A, Englund JA. Antiviral combination therapy for cytomegalovirus infection in high-risk infants. Antivir Ther 2019; 23:505-511. [PMID: 29790481 DOI: 10.3851/imp3238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a major risk factor for mortality in infants with severe combined immunodeficiency (SCID) and other profound immune defects. Specific antiviral therapy must be initiated early and aggressively because of the potential for antiviral resistance, rapid dissemination and poor transplant outcomes. Combination antiviral therapy is routinely administered for some viral infections, but the value of this approach for the treatment of CMV is unclear. Here we explore a strategy of initial combination therapy for high-risk infants with CMV infection. METHODS We reviewed medical records of infants ≤6 months of age hospitalized between 2007-2015 who received ganciclovir (GCV) or foscarnet (FOS) monotherapy or initial combination GCV + FOS for CMV disease. The combination therapy group consisted of severely immunocompromised infants being considered for haematopoietic cell transplantation (HCT). RESULTS Four patients received initial combination antiviral therapy and 26 patients received initial monotherapy during the study period. Combination antiviral recipients demonstrated initial improvement in viraemia and two of three who continued with this therapy survived the infection. Clinically significant resistance mutations did not emerge. Toxicity was common; neutropenia, thrombocytopenia and electrolyte abnormalities were the most frequent adverse events in both groups. Creatinine elevation was uncommon in both groups. CONCLUSIONS Combination GCV + FOS therapy may be a safe alternative to monotherapy in high-risk infants, especially those who are pre-transplant with primary immune deficiency syndromes and high viral loads.
Collapse
Affiliation(s)
- Surabhi B Vora
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - Adam W Brothers
- Department of Pharmacy, Seattle Children's Hospital, Seattle, WA, USA
| | - Alpana Waghmare
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Janet A Englund
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
89
|
Krishna BA, Wills MR, Sinclair JH. Advances in the treatment of cytomegalovirus. Br Med Bull 2019; 131:5-17. [PMID: 31580403 PMCID: PMC6821982 DOI: 10.1093/bmb/ldz031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a threat to immunologically weak patients. HCMV cannot yet be eliminated with a vaccine, despite recent advances. SOURCES OF DATA Sources of data are recently published research papers and reviews about HCMV treatments. AREAS OF AGREEMENT Current antivirals target the UL54 DNA polymerase and are limited by nephrotoxicity and viral resistance. Promisingly, letermovir targets the HCMV terminase complex and has been recently approved by the FDA and EMA. AREAS OF CONTROVERSY Should we screen newborns for HCMV, and use antivirals to treat sensorineural hearing loss after congenital HCMV infection? GROWING POINTS Growing points are developing drugs against latently infected cells. In addition to small molecule inhibitors, a chemokine-based fusion toxin protein, F49A-FTP, has shown promise in killing both lytically and latently infected cells. AREAS TIMELY FOR DEVELOPING RESEARCH We need to understand what immune responses are required to control HCMV, and how best to raise these immune responses with a vaccine.
Collapse
Affiliation(s)
- B A Krishna
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M R Wills
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - J H Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
90
|
Maertens J, Cordonnier C, Jaksch P, Poiré X, Uknis M, Wu J, Wijatyk A, Saliba F, Witzke O, Villano S. Maribavir for Preemptive Treatment of Cytomegalovirus Reactivation. N Engl J Med 2019; 381:1136-1147. [PMID: 31532960 DOI: 10.1056/nejmoa1714656] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Maribavir is a benzimidazole riboside with activity against cytomegalovirus (CMV). The safety and efficacy of maribavir for preemptive treatment of CMV infection in transplant recipients is not known. METHODS In a phase 2, open-label, maribavir dose-blinded trial, recipients of hematopoietic-cell or solid-organ transplants (≥18 years of age, with CMV reactivation [1000 to 100,000 DNA copies per milliliter]) were randomly assigned to receive maribavir at a dose of 400, 800, or 1200 mg twice daily or the standard dose of valganciclovir for no more than 12 weeks. The primary efficacy end point was the percentage of patients with a response to treatment, defined as confirmed undetectable CMV DNA in plasma, within 3 weeks and 6 weeks after the start of treatment. The primary safety end point was the incidence of adverse events that occurred or worsened during treatment. RESULTS Of the 161 patients who underwent randomization, 159 received treatment, and 156 had postbaseline data available - 117 in the maribavir group and 39 in the valganciclovir group. The percentage of patients with postbaseline data available who had a response to treatment within 3 weeks was 62% among those who received maribavir and 56% among those who received valganciclovir. Within 6 weeks, 79% and 67% of patients, respectively, had a response (risk ratio, 1.20; 95% confidence interval, 0.95 to 1.51). The percentages of patients with a response to treatment were similar among the maribavir dose groups. Two patients who had a response to treatment had a recurrence of CMV infection within 6 weeks after starting maribavir at a dose of 800 mg twice daily; T409M resistance mutations in CMV UL97 protein kinase developed in both patients. The incidence of serious adverse events that occurred or worsened during treatment was higher in the maribavir group than in the valganciclovir group (52 of 119 patients [44%] vs. 13 of 40 [32%]). A greater percentage of patients in the maribavir group discontinued the trial medication because of an adverse event (27 of 119 [23%] vs. 5 of 40 [12%]). A higher incidence of gastrointestinal adverse events was reported with maribavir, and a higher incidence of neutropenia was reported with valganciclovir. CONCLUSIONS Maribavir at a dose of at least 400 mg twice daily had efficacy similar to that of valganciclovir for clearing CMV viremia among recipients of hematopoietic-cell or solid-organ transplants. A higher incidence of gastrointestinal adverse events - notably dysgeusia - and a lower incidence of neutropenia were found in the maribavir group. (Funded by ViroPharma/Shire Development; EudraCT number, 2010-024247-32.).
Collapse
Affiliation(s)
- Johan Maertens
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Catherine Cordonnier
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Peter Jaksch
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Xavier Poiré
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Marc Uknis
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Jingyang Wu
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Anna Wijatyk
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Faouzi Saliba
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Oliver Witzke
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Stephen Villano
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| |
Collapse
|
91
|
Leung PYM, Tran T, Testro A, Paizis K, Kwong J, Whitlam JB. Ganciclovir-resistant post-transplant cytomegalovirus infection due to combined deletion mutation at codons 595-596 of the UL97 gene. Transpl Infect Dis 2019; 21:e13168. [PMID: 31498954 DOI: 10.1111/tid.13168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/23/2019] [Accepted: 08/25/2019] [Indexed: 12/26/2022]
Abstract
The development of antiviral-resistant cytomegalovirus (CMV) infection complicates the management of transplant recipients. We describe the case of a 65-year-old male who developed CMV disease on valganciclovir prophylaxis (donor CMV IgG positive, recipient CMV IgG indeterminate) 30 days after combined liver-kidney transplantation for alcoholic cirrhosis and hepato-renal syndrome. After an initial complete response to treatment dose oral valganciclovir, he developed recurrent CMV viraemia. Resistance testing revealed a UL97 mutation with in-frame deletions of codons 595-596. He was treated successfully with foscarnet and reduction in immunosuppression. This mutation has not been described previously and was suspected to confer ganciclovir resistance. Ganciclovir resistance occurs most commonly due to mutations in the UL97 or UL54 genes, which encode a protein kinase and a DNA polymerase, respectively. The UL97-encoded protein kinase phosphorylates ganciclovir to ganciclovir triphosphate, which competitively inhibits viral replication. Mutations in the UL97 gene are typically point mutations or deletions. We describe a new mutation, del595-596 in the CMV UL97 gene, occurring in the context of clinical treatment failure with standard and double-dose ganciclovir, and successful virological control achieved with foscarnet. This mutation is likely to result in ganciclovir resistance, although recombinant phenotyping is required for confirmation.
Collapse
Affiliation(s)
- Po Yee Mia Leung
- Department of Nephrology, Austin Health, Melbourne, Vic., Australia
| | - Thomas Tran
- Virus Identification Laboratory, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Health, Melbourne, Vic., Australia
| | - Kathy Paizis
- Department of Nephrology, Austin Health, Melbourne, Vic., Australia
| | - Jason Kwong
- Department of Infectious Diseases, Austin Health, Melbourne, Vic., Australia
| | - John B Whitlam
- Department of Nephrology, Austin Health, Melbourne, Vic., Australia.,Department of Medicine, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
92
|
Beyar-Katz O, Bitterman R, Zuckerman T, Ofran Y, Yahav D, Paul M. Anti-herpesvirus prophylaxis, pre-emptive treatment or no treatment in adults undergoing allogeneic transplant for haematological disease: systematic review and meta-analysis. Clin Microbiol Infect 2019; 26:189-198. [PMID: 31536817 DOI: 10.1016/j.cmi.2019.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Herpesviridae infections incur significant morbidity and indirect effects on mortality among allogeneic haematopoietic cell transplant (allo-HCT) recipients. OBJECTIVES To study the effects of antiviral prevention strategies among haemato-oncological individuals undergoing allo-HCT. DATA SOURCES Cochrane Central Register of Controlled Trials, MEDLINE, Embase and LILACS. We further searched for conference proceedings and trial registries. STUDY ELIGIBILITY CRITERIA Randomized controlled trials (RCTs). PARTICIPANTS Adults with haematological malignancy undergoing allo-HCT. INTERVENTIONS Antiviral prophylaxis versus no treatment/placebo or pre-emptive treatment and pre-emptive treatment versus prophylaxis with the same agent. METHODS Random-effects meta-analysis was conducted computing pooled risk ratios (RR) with 95% CI and the inconsistency measure (I2). The certainty of the evidence was appraised by GRADE. RESULTS We included 22 RCTs. Antiviral prophylaxis reduced all-cause mortality (RR 0.83, 95% CI 0.7-0.99; 15 trials, I2 = 0%), cytomegalovirus (CMV) disease (RR 0.54, 95% CI 0.34-0.85; n = 15, I2 = 20%) and herpes simplex virus (HSV) disease (RR 0.29, 95% CI 0.2-0.43; n = 13, I2 = 18%) compared with no treatment/placebo or pre-emptive treatment, all with high-certainty evidence. Furthermore, antivirals reduced HSV infection, CMV pneumonitis, CMV infection and varicella zoster virus disease. Anti-CMV prophylaxis (+/- pre-emptive treatment) compared with pre-emptive treatment alone reduced non-significantly all-cause mortality (RR 0.78, 95% CI 0.6-1.02; n = 8, I2 = 0%), CMV disease (RR 0.47, 95% CI 0.23-0.97; n = 9, I2 = 30%) and HSV disease (RR 0.41, 95% CI 0.24-0.67; n = 4, I2 = 0%) with high-certainty evidence, as well as CMV and HSV infections. Antiviral prophylaxis did not result in increased adverse event rates overall or more discontinuation due to adverse events. CONCLUSIONS Antiviral prophylaxis directed against herpesviruses is highly effective and safe, reducing mortality, HSV and CMV disease, as well as herpesvirus reactivations among allo-HCT recipients. Anti-CMV prophylaxis is more effective than pre-emptive treatment alone with respect to HSV and CMV disease and infection.
Collapse
Affiliation(s)
- O Beyar-Katz
- Haematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.
| | - R Bitterman
- Division of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
| | - T Zuckerman
- Haematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Y Ofran
- Haematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - D Yahav
- Department of Medicine E, Beilinson Hospital, Rabin Medical Centre, Petah Tikva, Israel
| | - M Paul
- Division of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
93
|
El Helou G, Razonable RR. Safety considerations with current and emerging antiviral therapies for cytomegalovirus infection in transplantation. Expert Opin Drug Saf 2019; 18:1017-1030. [PMID: 31478398 DOI: 10.1080/14740338.2019.1662787] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) is a major contributor of morbidity and mortality, and its management is essential for the successful outcome of solid organ and hematopoietic stem cell transplantation. Areas covered: This review discusses the safety profiles of currently available and emerging antiviral drugs and the other strategies for HCMV prevention and treatment after transplantation. Expert opinion: Strategies for management of HCMV rely largely on the use of antiviral agents that inhibit viral DNA polymerase (ganciclovir/valganciclovir, foscarnet, and cidofovir/brincidofovir) and viral terminase complex (letermovir), with different types and degrees of adverse effects. An investigational agent, maribavir, exerts its anti-CMV effect through UL97 inhibition, and its safety profile is under clinical evaluation. In choosing the antiviral medication to use, it is important to consider these safety profiles in addition to overall efficacy. In addition to antiviral drugs, reduction of immunosuppression is often generally needed in the management of HCMV infection, but with a potential risk of allograft rejection or graft-versus-host disease. The use of HCMV-specific or non-specific intravenous immunoglobulins remains debated, while adoptive HCMV-specific T cell therapy remains investigational, and associated with unique set of adverse effects.
Collapse
Affiliation(s)
- Guy El Helou
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
94
|
Maffini E, Busca A, Costa C, Giaccone L, Cerrano M, Curtoni A, Cavallo R, Bruno B. An update on the treatment of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2019; 12:937-945. [PMID: 31423858 DOI: 10.1080/17474086.2019.1657399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Human Cytomegalovirus (CMV) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Standard treatment options have for long been limited to a small number of effective drugs with significant toxicities.Areas covered: In this manuscript, the authors update a previous review summarizing recent developments in the virology lab and their possible implications for treatment strategies at bedside. In particular, the authors focused on new antiviral drugs already available and under investigation in clinical trials and innovative immunotherapeutic approaches, including adoptive T-cell therapy and vaccines.Expert opinion: Broader knowledge of CMV biology and its relationship with the host immune system is greatly contributing to the development of novel therapeutic approaches. The availability of new drugs, the improved techniques for virological testing and the more accurate patient risk stratification allow to better individualize treatment, limiting toxicity while sparing antiviral effects. The role of immunotherapy is clearly emerging and will further expand our treatment armamentarium.
Collapse
Affiliation(s)
- Enrico Maffini
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandro Busca
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Costa
- SC Microbiology and Virology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luisa Giaccone
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marco Cerrano
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Antonio Curtoni
- SC Microbiology and Virology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Rossana Cavallo
- SC Microbiology and Virology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
95
|
Girmenia C, Lazzarotto T, Bonifazi F, Patriarca F, Irrera G, Ciceri F, Aversa F, Citterio F, Cillo U, Cozzi E, Gringeri E, Baldanti F, Cavallo R, Clerici P, Barosi G, Grossi P. Assessment and prevention of cytomegalovirus infection in allogeneic hematopoietic stem cell transplant and in solid organ transplant: A multidisciplinary consensus conference by the Italian GITMO, SITO, and AMCLI societies. Clin Transplant 2019; 33:e13666. [PMID: 31310687 DOI: 10.1111/ctr.13666] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Cytomegalovirus (CMV) remains a major cause of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (allo-HSCT) and solid organ transplantation (SOT) recipients. In view of the uncertainties on the assessment and prevention of CMV infection in both transplant procedures, three Italian scientific societies for HSCT and SOT and for Clinical Microbiology appointed a panel of experts to compose a framework of recommendations. Recommendations were derived from a comprehensive analysis of the scientific literature and from a multidisciplinary consensus conference process. The lack of adequate clinical trials focused on certain diagnostic procedures, and antiviral intervention forced the panel to use the methods of consensus for shaping some recommendations. Recommendations concerning the two types of transplant were given for the following issues: assessment of pretransplant CMV serostatus, immunological monitoring after transplant, CMV prophylaxis with antivirals, CMV preemptive strategy, and CMV prophylaxis with immunoglobulin infusion and with adoptive immunotherapy. The questions raised by and the recommendations resulting from this consensus conference project may contribute to the improvement of certain crucial aspects of the management of CMV infections in allo-HSCT and in SOT populations.
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia e Dermatologia, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Tiziana Lazzarotto
- Department of Specialized, Experimental, and Diagnostic Medicine, Operative Unit of Clinical Microbiology, St. Orsola-Malpighi Polyclinic, University of Bologna, Bologna, Italy
| | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seragnoli", University Hospital, Bologna, Italy
| | | | - Giuseppe Irrera
- Divisione di Ematologia Centro Unico Regionale TMO e Terapie Emato-Oncologiche Sovramassimali "A. Neri" Ospedale Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milano, Italy
| | - Franco Aversa
- Hematology and BMT Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Franco Citterio
- Kidney Transplantation, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | | | - Emanuele Cozzi
- Transplant Immunology Unit, University of Padua, Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
| | - Rossana Cavallo
- Department of Public Health and Pediatrics, Laboratory of Microbiology and Virology, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Pierangelo Clerici
- Unità Operativa di Microbiologia, ASST-Ovest Milanese, Ospedale di Legnano, Legnano-MI, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCC Policlinico S. Matteo Foundation, Pavia, Italy
| | - Paolo Grossi
- Section of Infectious and Tropical Diseases, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
96
|
Gerna G, Lilleri D, Baldanti F. An overview of letermovir: a cytomegalovirus prophylactic option. Expert Opin Pharmacother 2019; 20:1429-1438. [PMID: 31282759 DOI: 10.1080/14656566.2019.1637418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) or human herpesvirus 5 (HHV-5) is a β-herpesvirus that causes widespread infection in nearly all members of the human population worldwide. Its persistence in humans after primary infection in a latent phase as well as a partial non-protective immune response is the basis for repeated re-activation/re-infection episodes occurring both in immunocompetent and immunocompromised subjects. In the latter patient populations, which include hematopoietic stem cell transplant (HSCT) recipients, HCMV reactivation episodes may be particularly severe, leading to both systemic and end-organ diseases. Since the 90s, at least four antiviral drugs targeting the DNA polymerase complex have been developed for the prevention and treatment of HCMV infections in transplant recipients, used as first-line (ganciclovir and valganciclovir) and second-line therapy (foscarnet and cidofovir). However, due to their toxicity and drug-resistance induction, new drugs with different targets were needed. Areas covered: In 2017, a new drug named letermovir (LTV), which targets the HCMV DNA terminase complex, was licensed for prophylaxis of HCMV infections in HSCT recipients. This is the focus of this review. Expert opinion: LTV safety and efficacy are promising. However, long-term adverse events and the emergence of drug-resistant HCMV strains must be investigated in extended clinical trials prior to drawing final conclusions.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, and Biotechnology Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Daniele Lilleri
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, and Biotechnology Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia , Pavia , Italy
| |
Collapse
|
97
|
Griffiths P. New vaccines and antiviral drugs for cytomegalovirus. J Clin Virol 2019; 116:58-61. [PMID: 31132546 DOI: 10.1016/j.jcv.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 11/23/2022]
Abstract
The natural history of cytomegalovirus (CMV) infection in transplant patients has been well established. This virus may originate from the recipient, the donor or both. When pre-transplant IgG antibodies in the recipient are taken into account, three types of infection are possible: primary, reactivation or reinfection. The risks of high viral load and end-organ disease are highest after primary infection and lowest after reactivation. Serial monitoring of patients by quantitative polymerase chain reaction for CMV DNA allows antiviral drugs to be deployed for pre-emptive therapy or an antiviral drug may be given prophylactically. Both of these strategies are effective, but pre-emptive therapy has the advantage that randomised allocation of a new drug or placebo given prophylactically may show a reduced need for pre-emptive valganciclovir. In this review, I will consider what has been learned from use of ganciclovir and valganciclovir and apply this information to clinical trials that have evaluated maribavir, brincidofovir and letermovir. In addition, pre-emptive therapy has the advantage of facilitating the discovery of vaccines against CMV using a pharmacodynamic approach. Briefly, patients awaiting transplantation are given vaccine or placebo pre-transplant. When they proceed to transplantation, various parameters of viral load can be compared to determine if the vaccine has an effect against CMV when compared to patients randomised to receive placebo. If there is evidence of control of CMV, this can be related to immune responses induced by the vaccine to define a correlate of protection. This review will summarise the published evidence available.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity & Transplantation, Royal Free Campus, UCL, London, NW3 2PF, United Kingdom.
| |
Collapse
|
98
|
Cho SY, Lee DG, Kim HJ. Cytomegalovirus Infections after Hematopoietic Stem Cell Transplantation: Current Status and Future Immunotherapy. Int J Mol Sci 2019; 20:2666. [PMID: 31151230 PMCID: PMC6600658 DOI: 10.3390/ijms20112666] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) infection after hematopoietic stem cell transplantation (HSCT) is one of the critical infectious complications related to host immune recovery. The spectrum of CMV infection is quite extensive, from asymptomatic CMV reactivation presenting mainly as CMV DNAemia to fatal CMV diseases involving gut, liver, lungs, or brain. In addition to organ involvement, CMV reactivation can exert indirect effects such as immunosuppression or graft failure that may result in the development of concurrent infectious complications. Currently, preemptive therapy, which is based on PCR-based monitoring of CMV from blood, is a mainstay enabling improvement in CMV-related outcomes. During the past decades, new antiviral drugs, clinical trials for prophylaxis in high-risk groups, and vaccines for preventing CMV infection have been introduced. In addition, data for immunologic monitoring and adoptive immunotherapy have also been accumulated. Here, we review the current status and recent updates in this field, with future perspectives including immunotherapy in HSCT recipients.
Collapse
Affiliation(s)
- Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Hee-Je Kim
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
99
|
Ljungman P, de la Camara R, Robin C, Crocchiolo R, Einsele H, Hill JA, Hubacek P, Navarro D, Cordonnier C, Ward KN. Guidelines for the management of cytomegalovirus infection in patients with haematological malignancies and after stem cell transplantation from the 2017 European Conference on Infections in Leukaemia (ECIL 7). THE LANCET. INFECTIOUS DISEASES 2019; 19:e260-e272. [PMID: 31153807 DOI: 10.1016/s1473-3099(19)30107-0] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/05/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Cytomegalovirus is one of the most important infections to occur after allogeneic haematopoietic stem cell transplantation (HSCT), and an increasing number of reports indicate that cytomegalovirus is also a potentially important pathogen in patients treated with recently introduced drugs for hematological malignancies. Expert recommendations have been produced by the 2017 European Conference on Infections in Leukaemia (ECIL 7) after a review of the literature on the diagnosis and management of cytomegalovirus in patients after HSCT and in patients receiving other types of therapy for haematological malignancies. These recommendations cover diagnosis, preventive strategies such as prophylaxis and pre-emptive therapy, and management of cytomegalovirus disease. Antiviral drugs including maribavir and letermovir are in development and prospective clinical trials have recently been completed. However, management of patients with resistant or refractory cytomegalovirus infection or cytomegalovirus disease is a challenge. In this Review we summarise the reviewed literature and the recommendations of the ECIL 7 for management of cytomegalovirus in patients with haematological malignancies.
Collapse
Affiliation(s)
- Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, and Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | - Christine Robin
- Assistance Publique-Hopitaux de Paris, Department of Hematology, Henri Mondor Hospital and Université Paris-Est Créteil, Créteil, France
| | - Roberto Crocchiolo
- Servizio Immunoematologia e Medicina Trasfusionale, Azienda Socio Sanitaria Territoriale di Bergamo Ovest, Treviglio, Italy
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Julius Maximilians Universitaet, Würzburg, Germany
| | - Joshua A Hill
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Petr Hubacek
- Department of Medical Microbiology and Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Motol University Hospital and Charles University, Prague, Czech Republic
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain; Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Catherine Cordonnier
- Assistance Publique-Hopitaux de Paris, Department of Hematology, Henri Mondor Hospital and Université Paris-Est Créteil, Créteil, France
| | - Katherine N Ward
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
100
|
Khurana MP, Lodding IP, Mocroft A, Sørensen SS, Perch M, Rasmussen A, Gustafsson F, Lundgren JD. Risk Factors for Failure of Primary (Val)ganciclovir Prophylaxis Against Cytomegalovirus Infection and Disease in Solid Organ Transplant Recipients. Open Forum Infect Dis 2019; 6:ofz215. [PMID: 31211159 PMCID: PMC6559280 DOI: 10.1093/ofid/ofz215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Rates and risk factors for cytomegalovirus (CMV) prophylaxis breakthrough and discontinuation were investigated, given uncertainty regarding optimal dosing for CMV primary (val)ganciclovir prophylaxis after solid organ transplantation (SOT). Methods Recipients transplanted from 2012 to 2016 and initiated on primary prophylaxis were followed until 90 days post-transplantation. A (val)ganciclovir prophylaxis score for each patient per day was calculated during the follow-up time (FUT; score of 100 corresponding to manufacturers’ recommended dose for a given estimated glomerular filtration rate [eGFR]). Cox models were used to estimate hazard ratios (HRs), adjusted for relevant risk factors. Results Of 585 SOTs (311 kidney, 117 liver, 106 lung, 51 heart) included, 38/585 (6.5%) experienced prophylaxis breakthrough and 35/585 (6.0%) discontinued prophylaxis for other reasons. CMV IgG donor+/receipient- mismatch (adjusted HR [aHR], 5.37; 95% confidence interval [CI], 2.63 to 10.98; P < 0.001) and increasing % FUT with a prophylaxis score <90 (aHR, 1.16; 95% CI, 1.04 to 1.29; P = .01 per 10% longer FUT w/ score <90) were associated with an increased risk of breakthrough. Lung recipients were at a significantly increased risk of premature prophylaxis discontinuation (aHR, 20.2 vs kidney; 95% CI, 3.34 to 121.9; P = .001), mainly due to liver or myelotoxicity. Conclusions Recipients of eGFR-adjusted prophylaxis doses below those recommended by manufacturers were at an increased risk of prophylaxis breakthrough, emphasizing the importance of accurate dose adjustment according to the latest eGFR and the need for novel, less toxic agents.
Collapse
Affiliation(s)
- Mark P Khurana
- Centre for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Correspondence: M. P. Khurana, BSc, Department of Infectious Diseases, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark ()
| | - Isabelle P Lodding
- Centre for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Amanda Mocroft
- Institute for Global Health, Infection and Population Health, University College of London (UCL), London, United Kingdom
| | - Søren S Sørensen
- Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Perch
- Section for Lung Transplantation, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Abdominal Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens D Lundgren
- Centre for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|