51
|
Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis. Curr Pharm Des 2020; 26:2591-2601. [DOI: 10.2174/1381612826666200318152049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Background and objective:
Atherosclerosis is one of the leading causes of human morbidity globally
and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of
the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine)
or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as
impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine)
or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites
with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO
bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal
plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and
treatment of atherosclerosis.
Methods:
The material in this article was obtained from noteworthy scientific databases, including Web of Science,
PubMed, Science Direct, Scopus and Google Scholar.
Results:
Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms
including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C
(PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite
reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine
protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.
Conclusion:
Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic
options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.
Collapse
Affiliation(s)
| | - Robert D.E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
52
|
Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon 2020; 6:e03803. [PMID: 32337383 PMCID: PMC7177035 DOI: 10.1016/j.heliyon.2020.e03803] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOXO), a potent and widely used chemotherapeutic agent, causes irreversible heart failure by increasing oxidative stress, which limits its clinical utility. Nuclear factor erythroid-derived 2 -like 2 (Nrf2) is a prominent central regulator of cellular impenetrable to oxidants. The purpose of the study is to assess the ameliorative outcome of quercetin in cardiomyopathic rats induced by doxorubicin. Cardiomyopathy was produced in rats by single intraperitoneal weekly with DOXO (2 mg/kg) for 4 weeks. The rats were divided into five groups: (I) control group; (II) DOXO (2 mg/kg, i.p.) group; (III-V) DOXO + quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally), and were treated for 7 weeks. At the end of the treatment duration, cardiac function and biochemical parameters were assessed. Quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally) treatment reduced the raised blood pressure (BP) and left ventricular dysfunction. Withal, it prevented the rise in CKMB and LDH, suggesting the effect of quercetin in the maintaining the integrity of the cell membrane Besides, it also prevented the alteration in electrolyte levels, the activity of ATPase, and antioxidant status. Quercetin increased Nrf2 mRNA expression and reduced histological abnormalities compared to the DOXO control group. In conclusion, quercetin protected against DOXO- induced cardiomyopathy, by increasing expression of NRF2, and thereby increasing antioxidant defense and restoring biochemical and histological abnormalities.
Collapse
|
53
|
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front Pharmacol 2020; 11:422. [PMID: 32317975 PMCID: PMC7155419 DOI: 10.3389/fphar.2020.00422] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant health burden with an ever-increasing prevalence. They remain the leading causes of morbidity and mortality worldwide. The use of medicinal herbs continues to be an alternative treatment approach for several diseases including CVDs. Currently, there is an unprecedented drive for the use of herbal preparations in modern medicinal systems. This drive is powered by several aspects, prime among which are their cost-effective therapeutic promise compared to standard modern therapies and the general belief that they are safe. Nonetheless, the claimed safety of herbal preparations yet remains to be properly tested. Consequently, public awareness should be raised regarding medicinal herbs safety, toxicity, potentially life-threatening adverse effects, and possible herb–drug interactions. Over the years, laboratory data have shown that medicinal herbs may have therapeutic value in CVDs as they can interfere with several CVD risk factors. Accordingly, there have been many attempts to move studies on medicinal herbs from the bench to the bedside, in order to effectively employ herbs in CVD treatments. In this review, we introduce CVDs and their risk factors. Then we overview the use of herbs for disease treatment in general and CVDs in particular. Further, data on the ethnopharmacological therapeutic potentials and medicinal properties against CVDs of four widely used plants, namely Ginseng, Ginkgo biloba, Ganoderma lucidum, and Gynostemma pentaphyllum, are gathered and reviewed. In particular, the employment of these four plants in the context of CVDs, such as myocardial infarction, hypertension, peripheral vascular diseases, coronary heart disease, cardiomyopathies, and dyslipidemias has been reviewed, analyzed, and critically discussed. We also endeavor to document the recent studies aimed to dissect the cellular and molecular cardio-protective mechanisms of the four plants, using recently reported in vitro and in vivo studies. Finally, we reviewed and reported the results of the recent clinical trials that have been conducted using these four medicinal herbs with special emphasis on their efficacy, safety, and toxicity.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Duong Thi Bich Thuan
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hoa Thi Phu
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thi Hieu Dung Nguyen
- Department of Physiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
54
|
Esmaeilzadeh D, Razavi BM, Hosseinzadeh H. Effect of Abelmoschus esculentus (okra) on metabolic syndrome: A review. Phytother Res 2020; 34:2192-2202. [PMID: 32222004 DOI: 10.1002/ptr.6679] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 01/01/2023]
Abstract
Metabolic syndrome is a disorder characterized by dyslipidemia, insulin resistance, abdominal fat, high blood pressure, hypertriglyceridemia, and diminished high density lipoprotein cholesterol. Okra (Abelmoschus esculentus L.), routinely called lady's finger, has belonged to the Malvaceae family. Okra is considered as a valuable crop due to the multiple functions of its leaves, buds, flowers, pods, stems, and seeds in traditional and modern medicines. Several bioactive components are presented in different parts of okra including polyphenolic compounds especially oligomeric catechins and flavonol derivatives such as quercetin. The antioxidant, anti-inflammatory, anticancer, immunomodulatory, gastroprotective, neuroprotective, lipid lowering, and antidiabetic effects of okra have been established. Although different in vivo and in vitro studies revealed that okra has an ability to overcome metabolic syndrome symptoms, the lack of clinical studies is notable. So, further clinical trials should be accomplished to confirm the role of okra in metabolic syndrome. The aims of this review are to gather different studies regarding the potential efficacy of okra in metabolic syndrome.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
55
|
Preventive Beneficial Effect of an Aqueous Extract of Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae) on DOCA-Salt-Induced Hypertension, Cardiac Hypertrophy and Dysfunction, and Endothelial Dysfunction in Rats. J Cardiovasc Pharmacol 2020; 75:573-583. [PMID: 32187164 DOI: 10.1097/fjc.0000000000000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the preventive effect of an aqueous extract of the whole plant of Phyllanthus amarus (AEPA) on blood pressure, cardiac, and endothelial function in the deoxycorticosterone acetate (DOCA) salt-induced hypertensive rat model. Male Wistar rats were assigned into 5 groups receiving either vehicle (control and DOCA salt), DOCA salt combined with AEPA at 100 or 300 mg/kg, or AEPA (100 mg/kg) alone for 5 weeks. In addition, DOCA salt-treated rats were allowed free access to water containing 1% NaCl. Systolic blood pressure, left ventricle parameters, vascular reactivity of primary mesenteric artery rings, the vascular level of oxidative stress, and the level of target proteins were determined, using respectively tail-cuff sphygmomanometry, echocardiography, organ chambers, dihydroethidium staining, and immunofluorescence methods. After 5 weeks, AEPA treatments (100 or 300 mg/kg per day) significantly prevented the increase in systolic blood pressure in DOCA salt-treated rats, respectively, by about 24 and 21 mm Hg, improved cardiac diastolic function, and reduced significantly the increased posterior and septum diastolic wall thickness and the left ventricle mass in hypertensive rats. Moreover, the DOCA salt-induced endothelial dysfunction and the blunted nitric oxide- and endothelium-dependent hyperpolarization-mediated relaxations in primary mesenteric artery were improved after the AEPA treatments. AEPA also reduced the level of vascular oxidative stress and the expression level of target proteins (eNOS, COX-2, NADPH oxidase subunit p22) in DOCA salt rats. Altogether, AEPA prevented hypertension, improved cardiac structure and function, and improved endothelial function in DOCA salt rats. Such beneficial effects seem to be related, at least in part, to normalization of the vascular level of oxidative stress.
Collapse
|
56
|
Baky MH, Gabr NM, Shawky EM, Elgindi MR, Mekky RH. A Rare Triterpenoidal Saponin Isolated and Identified from
Tetraena simplex
(L.) Beier &Thulin (Syn.
Zygophyllum simplex
L.). ChemistrySelect 2020. [DOI: 10.1002/slct.201903454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mostafa H. Baky
- Pharmacognosy Department, Faculty of Pharmacy Egyptian Russian University, Badr City 11829 Cairo Egypt
| | - Nagwan M. Gabr
- Pharmacognosy Department, Faculty of Pharmacy Helwan University 11795 Cairo Egypt
| | - Enas M. Shawky
- Pharmacognosy Department, Faculty of Pharmacy Egyptian Russian University, Badr City 11829 Cairo Egypt
| | - Mohamed R. Elgindi
- Pharmacognosy Department, Faculty of Pharmacy Helwan University 11795 Cairo Egypt
| | - Reham H. Mekky
- Pharmacognosy Department, Faculty of Pharmacy Egyptian Russian University, Badr City 11829 Cairo Egypt
| |
Collapse
|
57
|
Perdicaro DJ, Rodriguez Lanzi C, Gambarte Tudela J, Miatello RM, Oteiza PI, Vazquez Prieto MA. Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. J Nutr Biochem 2020; 79:108352. [PMID: 32145471 DOI: 10.1016/j.jnutbio.2020.108352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
An impaired capacity of adipose tissue expansion leads to adipocyte hypertrophy, inflammation and insulin resistance (IR) under positive energy balance. We previously showed that a grape pomace extract, rich in flavonoids including quercetin (Q), attenuates adipose hypertrophy. This study investigated whether dietary Q supplementation promotes adipogenesis in the epididymal white adipose tissue (eWAT) of rats consuming a high-fat diet, characterizing key adipogenic regulators in 3T3-L1 pre-adipocytes. Consumption of a high-fat diet for 6 weeks caused IR, increased plasma TNFα concentrations, eWAT weight, adipocyte size and the eWAT/brown adipose tissue (BAT) ratio. These changes were accompanied by decreased levels of proteins involved in angiogenesis, VEGF-A and its receptor 2 (VEGF-R2), and of two central adipogenic regulators, i.e. PPARγ and C/EBPα, and proteins involved in mature adipocyte formation, i.e. fatty acid synthase (FAS) and adiponectin. Q significantly reduced adipocyte size and enhanced angiogenesis and adipogenesis without changes in eWAT weight and attenuated systemic IR and inflammation. In addition, high-fat diet consumption increased eWAT hypoxia inducible factor-1 alpha (HIF-1α) levels and those of proteins involved in adipose inflammation (TLR-4, CD68, MCP-1, JNK) and activation of endoplasmic reticulum (ER) stress, i.e. ATF-6 and XBP-1. Q mitigated all these events. Q and quercetin 3-glucoronide prevented TNFα-mediated downregulation of adipogenesis during 3T3-L1 pre-adipocytes early differentiation. Together, Q capacity to promote a healthy adipose expansion enhancing angiogenesis and adipogenesis may contribute to reduced adipose hypertrophy, inflammation and IR. Consumption of diets rich in Q could be useful to counteract the adverse effects of high-fat diet-induced adipose dysfunction.
Collapse
Affiliation(s)
- Diahann J Perdicaro
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cecilia Rodriguez Lanzi
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Roberto M Miatello
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, USA
| | - Marcela A Vazquez Prieto
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
58
|
Escher GB, Marques MB, do Carmo MAV, Azevedo L, Furtado MM, Sant'Ana AS, da Silva MC, Genovese MI, Wen M, Zhang L, Oh WY, Shahidi F, Rosso ND, Granato D. Clitoria ternatea L. petal bioactive compounds display antioxidant, antihemolytic and antihypertensive effects, inhibit α-amylase and α-glucosidase activities and reduce human LDL cholesterol and DNA induced oxidation. Food Res Int 2020; 128:108763. [DOI: 10.1016/j.foodres.2019.108763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
|
59
|
Pourteymour Fard Tabrizi F, Hajizadeh-Sharafabad F, Vaezi M, Jafari-Vayghan H, Alizadeh M, Maleki V. Quercetin and polycystic ovary syndrome, current evidence and future directions: a systematic review. J Ovarian Res 2020; 13:11. [PMID: 32005271 PMCID: PMC6993490 DOI: 10.1186/s13048-020-0616-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a polygenic endocrine disorder and the most common gynecological endocrinopathy among reproductive-aged women. Current remedies are often used only to control its signs and symptoms, while they are not thoroughly able to prevent complications. Quercetin is an herbal bioactive flavonoid commonly used for the treatment of metabolic and inflammatory disorders. Thus, this systematic review was conducted to evaluate the efficacy of quercetin supplementation in subjects with PCOS. Databases until March 2019 were searched. All human clinical trials and animal models evaluating the effects of quercetin on PCOS women were included. Out of 253 articles identified in our search, 8 eligible articles (5 animal studies and 3 clinical trials) were reviewed. The majority of studies supported the beneficial effects of quercetin on the ovarian histomorphology, folliculogenesis, and luteinisation processes. The effects of quercetin on reducing the levels of testosterone, luteinizing hormone (LH), and insulin resistance were also reported. Although quercetin improved dyslipidemia, no significant effect was reported for weight loss. It is suggested that the benefits of quercetin may be more closely related to antioxidant and anti-inflammatory features of quercetin rather than weight-reducing effects. Therefore, this review article provides evidence that quercetin could be considered as a potential agent to attenuate PCOS complications. However, due to the paucity of high-quality clinical trials, further studies are needed.
Collapse
Affiliation(s)
| | - Fatemeh Hajizadeh-Sharafabad
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Vaezi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Obstetrics and Gynecology, AL Zahra Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Maleki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
60
|
Shellenberger NW, Collinsworth KK, Subbiah S, Klein D, Neary JM. Hypoxia induces an increase in intestinal permeability and pulmonary arterial pressures in neonatal Holstein calves despite feeding the flavonoid rutin. J Dairy Sci 2020; 103:2821-2828. [PMID: 31954560 DOI: 10.3168/jds.2019-17289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
The purposes of this study were to determine whether the naturally occurring flavonoid quercetin, as its glucorhamnoside rutin, reduces intestinal permeability and susceptibility to hypoxia-induced pulmonary hypertension in neonatal Holstein calves. A 2 × 2 between-subjects factorial design was conducted using Holstein steers (n = 16). Factors included oxygen level (simulated altitude of 4,572 m vs. 975 m) and quercetin supplementation as its glucorhamnoside rutin (4 g of quercetin per day vs. 0 g per day). Two days after arrival (d 0 of study) the calves were blocked by body mass into treatment groups, and treatments were initiated. Pulmonary arterial pressure, echocardiography, and serum concentrations of orally administered lactulose (0.45 g/kg) and mannitol (0.15 g/kg) were measured on d 12, 13, and 14, respectively. Calves were euthanized on d 15 and pulmonary tissues collected for semiquantitative scoring of histological lesions. Data were analyzed using linear regression, generalized estimating equations, and 2-sample proportion tests. Hypoxia, but not rutin, was found to be associated with intestinal permeability. The lactulose-mannitol ratio was 0.54 ± 0.13 (standard error) in hypoxic calves and 0.02 ± 0.13 in normoxic controls. Hypoxia increased mean pulmonary arterial pressure. Calves fed rutin under hypoxic conditions tended to have a lower mean pulmonary arterial pressure (59 ± 7 mmHg) than control calves (80 ± 7 mmHg) but similar pressures under normoxic conditions. Paradoxically, however, a greater proportion of calves fed rutin had histological evidence of pulmonary arteriolar medial hypertrophy and adventitial hyperplasia than did controls. In conclusion, the findings of this study indicate that hypoxia increased intestinal permeability in neonatal calves. The flavonoid quercetin, as its glucorhamnoside rutin, had no protective effect on intestinal permeability, and, although it tended to reduce the severity of hypoxia-induced pulmonary hypertension, a greater proportion of calves fed rutin had histological lesions consistent with pulmonary arteriolar remodeling.
Collapse
Affiliation(s)
- Nicholas W Shellenberger
- Department of Animal and Food Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock 79409
| | - Keleigh K Collinsworth
- Department of Animal and Food Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock 79409
| | - Seenivasan Subbiah
- Department of Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock 79409
| | - David Klein
- Department of Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock 79409
| | - Joseph M Neary
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, CH64 7TE, UK.
| |
Collapse
|
61
|
Correddu F, Lunesu MF, Buffa G, Atzori AS, Nudda A, Battacone G, Pulina G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals (Basel) 2020; 10:ani10010131. [PMID: 31947543 PMCID: PMC7022336 DOI: 10.3390/ani10010131] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the Mediterranean area, where dairy sheep and goats are widespread, the use of by-products in the diet of small ruminants is an ancient practice. Today the great availability of industrial by-products produced at the local level (e.g., grape, olive, tomato and myrtle residues), appears to be a promising strategy for reducing competition with human edible foods and the cost of off-farm produced feeds since they are imported worldwide. Moreover, these co-feeds can contribute to reducing the ecological and water footprint associated with crop cultivation. The presence of bioactive compounds, such as polyphenols, confers added value to these materials. Several positive aspects are apparent when such by-products are included in the diets of small dairy ruminants, in particular on ruminal metabolism, animal health, and the quality of derived products. Abstract Recently, the interest in industrial by-products produced at the local level in Mediterranean areas, resulting from fruit and vegetable processes, has increased because of their considerable amounts of bioactive compounds, including polyphenols. In this review, we analyze the most recent scientific results concerning the use of agro-industrial by-products, naturally rich in polyphenols (BPRP), in the diets of small dairy ruminants. Effects on milk production, milk and rumen liquor fatty acid profile, metabolic parameters, and methane production are reviewed. The feed intake and digestibility coefficients were generally depressed by BPRP, even though they were not always reflected in the milk yield. The main observed positive effects of BPRP were on quality of the milk’s FA profile, antioxidant activity in milk and blood, a reduction of rumen ammonia, and, consequently, a reduction of milk and blood urea. The expected beneficial effects of dietary polyphenols in small ruminants were not always observed because of their complex and variable matrices. However, owing to the large quantities of these products available at low prices, the use of BPRB in small ruminant nutrition offers a convenient solution to the valorization of residues arising from agricultural activities, reducing feed costs for farmers and conferring added value to dairy products at the local level, in a sustainable way.
Collapse
|
62
|
Impact of Nutrition on Pulmonary Arterial Hypertension. Nutrients 2020; 12:nu12010169. [PMID: 31936113 PMCID: PMC7019983 DOI: 10.3390/nu12010169] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by sustained vasoconstriction, vascular remodeling, inflammation, and in situ thrombosis. Although there have been important advances in the knowledge of the pathophysiology of PAH, it remains a debilitating, limiting, and rapidly progressive disease. Vitamin D and iron deficiency are worldwide health problems of pandemic proportions. Notably, these nutritional alterations are largely more prevalent in PAH patients than in the general population and there are several pieces of evidence suggesting that they may trigger or aggravate disease progression. There are also several case reports associating scurvy, due to severe vitamin C deficiency, with PAH. Flavonoids such as quercetin, isoflavonoids such as genistein, and other dietary polyphenols including resveratrol slow the progression of the disease in animal models of PAH. Finally, the role of the gut microbiota and its interplay with the diet, host immune system, and energy metabolism is emerging in multiple cardiovascular diseases. The alteration of the gut microbiota has also been reported in animal models of PAH. It is thus possible that in the near future interventions targeting the nutritional status and the gut dysbiosis will improve the outcome of these patients.
Collapse
|
63
|
Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, Yin D, He H, He M. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHⅡ/eNOS/NO pathway. Eur J Pharmacol 2019; 868:172885. [PMID: 31870832 DOI: 10.1016/j.ejphar.2019.172885] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
The aberrant accumulation of iron causes vascular endothelium damage, which is thought to be associated with excess reactive oxygen species (ROS) generation. Quercetin (Que), as a flavonoid, has a certain ability to scavenge free radicals. Therefore, we aimed to explore the protective mechanism of Que on iron overload induced HUVECs injury focused on ROS/ADMA/DDAHⅡ/eNOS/NO pathway. In this study, HUVECs was treated with 50 μM iron dextran and 20 μM Que for 48 h. We found that Que attenuated the damages induced by iron, as evidenced by decreased ROS generation, increased DDAHⅡexpression and activity, reduced ADMA level, increased NO content and p-eNOS/eNOS ratio, and eventually caused a decrease in apoptosis. After addition of pAD/DDAHⅡ-shRNA, the effects of Que mentioned above were reversed. Meanwhile, iron overload induced mitochondrial oxidative stress, reduced mitochondrial membrane potential and increased mitochondrial permeability transition pores (mPTP) opening, which were also partially alleviated by Que. In addition, L-arginine (L-Arg), a ADMA competition substrate, ciclosporin A (CsA), a mPTP blocking agent, and edaravone (Eda), a free radical scavenger, were used as positive control reagents. The effects of Que were similar to that of L-Arg, CsA and Eda treatment. These results illustrated that Que could attenuate iron overload induced HUVECs mitochondrial dysfunction via ROS/ADMA/DDAHⅡ/eNOS/NO pathway.
Collapse
Affiliation(s)
- Xuepiao Chen
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Zhiqing Wang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China.
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| |
Collapse
|
64
|
Eren OC, Ortiz A, Afsar B, Covic A, Kuwabara M, Lanaspa MA, Johnson RJ, Kanbay M. Multilayered Interplay Between Fructose and Salt in Development of Hypertension. Hypertension 2019; 73:265-272. [PMID: 30595116 DOI: 10.1161/hypertensionaha.118.12150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ozgur C Eren
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey (O.C.E., M. Kanbay)
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Spain (A.O.)
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey (B.A.)
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, and 'Grigore T. Popa' University of Medicine, Iasi, Romania (A.C.)
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan (M. Kuwabara)
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora (M.A.L., R.J.J.)
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora (M.A.L., R.J.J.)
| | - Mehmet Kanbay
- From the Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey (M. Kanbay).,Department of Medicine, Koç University School of Medicine, Istanbul, Turkey (O.C.E., M. Kanbay)
| |
Collapse
|
65
|
Wang M, Xiao FL, Mao YJ, Ying LL, Zhou B, Li Y. Quercetin decreases the triglyceride content through the PPAR signalling pathway in primary hepatocytes of broiler chickens. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1635528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mi Wang
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- Department of Technology, Shenyang BOIN Feed Ltd., Shenyang, Liaoning, PR China
| | - Feng Lin Xiao
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yan Jun Mao
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lin Lin Ying
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Bo Zhou
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yao Li
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
66
|
Carrasco-Pozo C, Cires MJ, Gotteland M. Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J Med Food 2019; 22:753-770. [PMID: 31084513 DOI: 10.1089/jmf.2018.0193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is a worldwide epidemic, which is characterized by the excess accumulation of adipose tissue and to an extent that impairs both the physical and psychosocial health and well-being. There are several weight-loss strategies available, including dietary modification, pharmacotherapy, and bariatric surgery, but many are ineffective or not a long-term solution. Bioactive compounds present in medicinal plants and plant extracts, like polyphenols, constitute the oldest and most extensive form of alternative treatments for the prevention and management of obesity. Their consumption is currently increasing in the population due to the high cost, potential adverse effects, and limited benefits of the currently available pharmaceutical drugs. A great number of studies has explored how dietary polyphenols can interfere with the different mechanisms associated with obesity development. They suggest that these compounds can decrease energy and food intake, lipogenesis, and preadipocyte differentiation and proliferation, while increasing energy expenditure, lipolysis, and fat oxidation. Both quercetin, one of the most common dietary flavonols in the western diet, and epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea, exhibit antiobesity effects in adipocyte cultures and animal models. However, the extrapolation of these potential benefits to obese humans remains unclear. Although quercetin supplementation does not seem to exert any beneficial effects on body weight, this polyphenol could prevent the obesity-associated mortality by reducing cardiovascular disease risk. An important consideration for the design of further trials is the occurrence of gene polymorphisms in key enzymes involved in flavanol metabolism, which determines a subject's sensitivity to catechins and seems, therefore, crucial for the success of the antiobesity intervention. Although the evidence supporting antiobesity effects is more consistent in EGCG than with quercetin studies, they could still be beneficial by reducing the cardiovascular risk of obese subjects, rather than inducing body weight loss.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,2Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - María Jose Cires
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile
| | - Martin Gotteland
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,3Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
67
|
Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:329-360. [PMID: 30769039 DOI: 10.1016/j.jep.2019.02.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes and hypertension are pathophysiologically related diseases that co-exist with a wider complex of metabolic diseases having similar set of risk factors. There are numerous ethnopharmacological evidences on the anti-diabetic and/or anti-hypertensive properties of medicinal plants from various parts of the world, which are used as therapies to concomitantly manage diabetes and hypertension. AIM OF THE REVIEW This article reviewed findings on medicinal plants with both anti-diabetic and anti-hypertensive effects reported in same experimental study to facilitate the development of dual-acting therapies against diabetes and hypertension. MATERIALS AND METHODS A literature search was carried out on different scientific search engines including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify published data in which plants in same experimental studies were reported to possess both anti-hyperglycemic and anti-hypertensive effects. Subsequently, the anti-diabetic/anti-hypertensive potency ratio (ψ) of the medicinal plants was computed. RESULTS Sixty-four studies with 102 plant species matched the selection criteria. Members of the Fabaceae family were the most investigated plants, while the ψ greatly varied across the plants, with only 11 plants having a ψ ≃ 1. Withania somnifera Dunal was the only plant reported to show blood glucose-lowering and diuretic effects in humans, comparable to daonil. Caffeic acid, chlorogenic acid, caftaric acid, cichoric acid, verbascoside, leucosceptoside A, isoacteoside, fucoxanthin and nicotinamide were the reported dual acting anti-diabetic and anti-hypertensive compounds identified and/or isolated in the plants. CONCLUSIONS This review suggests that medicinal plants possess varied therapeutic dynamics against hypertension and diabetes that could be exploited for the discovery of therapeutic preparation(s) or agent(s) for treating the two diseases.
Collapse
Affiliation(s)
- Chika Ifeanyi Chukwuma
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | | | - Ochuko L Erukainure
- Biomedical Research Laboratory, Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Matimbha H Chabalala
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Biomedical Research Laboratory, Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
68
|
KAMOHARA T, KOSHIGUCHI M, MAEDA-YAMAMOTO M, SHINODA Y, KAMETANI N, HIRAI S, EGASHIRA Y. The Combination of ‘Benifuuki’ with Quercetin Suppresses Hepatic Fat Accumulation in High-Fat High-Cholesterol Diet-Fed Rats. J Nutr Sci Vitaminol (Tokyo) 2019; 65:196-201. [DOI: 10.3177/jnsv.65.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tomoko KAMOHARA
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University
| | - Manami KOSHIGUCHI
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University
| | | | - Yuki SHINODA
- Product Research & Development Headquarters, Asahi Soft Drinks Co., Ltd
| | - Norihiro KAMETANI
- Product Research & Development Headquarters, Asahi Soft Drinks Co., Ltd
| | - Shizuka HIRAI
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University
| | - Yukari EGASHIRA
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University
| |
Collapse
|
69
|
Chen K, Rekep M, Wei W, Wu Q, Xue Q, Li S, Tian J, Yi Q, Zhang G, Zhang G, Xiao Q, Luo J, Liu Y. Quercetin Prevents In Vivo and In Vitro Myocardial Hypertrophy Through the Proteasome-GSK-3 Pathway. Cardiovasc Drugs Ther 2019; 32:5-21. [PMID: 29435775 DOI: 10.1007/s10557-018-6771-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Quercetin, a flavonoid, has been reported to ameliorate cardiovascular diseases, such as cardiac hypertrophy. However, the mechanism is not completely understood. In this study, a mechanism related to proteasome-glycogen synthesis kinase 3 (GSK-3) was elucidated in rats and primary neonatal cardiomyocytes. METHODS Rats were subjected to sham or constriction of abdominal aorta surgery groups and treated with or without quercetin for 8 weeks. Angiotensin II (Ang II)-induced primary cardiomyocytes were cultured with quercetin treatment or not for 48 h. Echocardiography, real-time RT-PCR, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS Echocardiography showed that quercetin prevented constriction of abdominal aorta-induced cardiac hypertrophy and improved the cardiac diastolic function. In addition, quercetin also significantly reduced the Ang II-induced hypertrophic surface area and atrial natriuretic factor (ANF) mRNA level in primary cardiomyocytes. Proteasome activities were obviously inhibited in the quercetin-treated group both in vivo and in vitro. Quercetin also decreased the levels of proteasome subunit beta type (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome as well as the levels of proteasome regulatory particle (Rpt) 1 and Rpt4 of the 19S proteasome. In particular, the PSMB5 level in the nucleus was reduced after quercetin treatment. Furthermore, phosphorylated GSK-3α/β (inactivation of GSK-3) was decreased, which means that GSK-3 activity was increased. The phosphorylation levels of upstream AKT (PKB (protein kinase B)) and liver kinase B1/AMP activated protein kinase (LKB1/AMPKα) and those of downstream extracellular signal-regulated kinase (ERK), histone H3, β-catenin, and GATA binding protein 4 (GATA4) were reduced after quercetin treatment, while hypertrophy was reversed after treatment with the GSK-3 inhibitor. CONCLUSION In summary, quercetin prevents cardiac hypertrophy, which is related to proteasome inhibition and activation of GSK-3α/β. Upstream (AKT, LKB1/AMPKα) and downstream hypertrophic factors, such as ERK, histone H3, β-catenin, and GATA4, may also be involved.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors/pharmacology
- Quercetin/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Kuixiang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- Medical College of Jiaying University, Meizhou, 514031, China
| | - Mubarak Rekep
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, 510632, China
| | - Qian Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sujuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiahui Tian
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Quan Yi
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Genshui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guiping Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qing Xiao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiandong Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
70
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
71
|
Pharmacological Effect of Quercetin in Hypertension and Its Potential Application in Pregnancy-Induced Hypertension: Review of In Vitro, In Vivo, and Clinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7421489. [PMID: 30622610 PMCID: PMC6304490 DOI: 10.1155/2018/7421489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
Since improving maternal and child health is a public health priority worldwide, the main aim of treatment of hypertension in pregnant women is to prevent complications during pregnancy, labor, and postpartum. In consequence, much attention is paid to the use of antihypertensive drugs that can be used safely during pregnancy. Several side effects of methyldopa, which is currently the most commonly used antihypertensive drug in pregnant women, mean that the search for an effective and safe alternative still continues. Flavonoid compounds present in medicinal plants, vegetables, and fruits may be a promising source of new drugs. In this aspect, quercetin, a well-known flavonoid due to its antihypertensive action, may be considered a prototype for safe antihypertensive drugs. This review focuses on the selective activity of quercetin. Based on recent studies, a few problems were discussed, including (1) pathology of pregnancy-induced hypertension; (2) search for new pharmacological treatments of pregnancy-induced hypertension; (3) issues with the use of herbal extracts during pregnancy; (4) flavonoids as natural active chemical compounds; (5) quercetin: its action during pregnancy, in vitro and in vivo pharmacological activities, clinical trials, and meta-analysis; (6) quercetin intake during pregnancy; (7) other natural compounds tested during pregnancy; (8) potential problems with the use of quercetin; (9) safety profile of quercetin. Various studies have shown a beneficial effect of quercetin on vascular endothelial function and its antioxidative and anti-inflammatory activity on cellular and tissue level. It is known that in animal models quercetin affects positively the development of embryo, fetus, and placenta. Because this flavonoid did not have teratogenic and abortive effect, it is generally recognized as safe. For this reason it should be appreciated and studied in the aspect of its potential use in the prevention and treatment of pregnancy-induced hypertension among women in this risk group.
Collapse
|
72
|
Salma U, Khan T, Shah AJ. Antihypertensive effect of the methanolic extract from Eruca sativa Mill., (Brassicaceae) in rats: Muscarinic receptor-linked vasorelaxant and cardiotonic effects. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:409-420. [PMID: 29913298 DOI: 10.1016/j.jep.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/15/2017] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eruca sativa Mill., (Brassicaceae) is a popular remedy for the treatment of hypertension in Pakistan. However, direct effect of the extract and its fractions on blood pressure and vascular tone are unknown. AIM OF THE STUDY This investigation was aimed to explore the pharmacological base for the traditional use of E. sativa in hypertension. MATERIALS AND METHODS In-vivo blood pressure study was carried out using normotensive and high salt-induced hypertensive rats under anaesthesia. The cardiovascular mechanisms were explored using rat aorta and atria in-vitro. Preliminary phytochemical analysis, spectrophotometric detection of total phenols, flavonoids and HPLC analysis of crude extract were performed using quercetin and erucin as marker compounds. RESULTS Intravenous injection of crude extract induced a fall in mean arterial pressure (MAP) in both normotensive (max fall: 41.79 ± 1.55% mmHg) and hypertensive (max fall: 58.25 ± 0.91% mmHg) rats. Atropine (1 mg/kg) pretreatment attenuated this effect significantly (p < 0.001), suggesting the involvement of muscarinic receptor in its antihypertensive effect. Fractions also induced atropine-sensitive antihypertensive effect. Similarly, oral administration of crude and aqueous extracts resulted a fall in MAP in the hypertensive rats. In isolated rat aortic rings from normotensive rats, crude extract and fractions induced an endothelium-dependent relaxation. This relaxation was partially inhibited with L-NAME and atropine pretreatment and with denudation of aortic rings, indicating involvement of muscarinic receptor-linked nitric oxide (NO). In aorta from the hypertensive rats, crude extract and fractions induced endothelium-independent relaxation. This relaxation was not affected by pretreatment with L-NAME or atropine. Crude extract and fractions also suppressed phenylephrine contractions in Ca+2 free/EGTA medium. In isolated rat atrial preparations, crude extract and fractions induced negative inotropic and chronotropic effects with a positive inotropic effect by the n-hexane fraction, which were not affected with atropine pretreatment. Phytochemical screening and spectrophotometric analysis indicated the presence of phenols and flavonoids, whereas HPLC analysis of crude extract revealed the presence of quercetin (flavonoid) and erucin (isothiocyanate). CONCLUSION The results suggest that E. sativa is an antihypertensive remedy which is mainly due to its vasodilatory and partly cardiac effects. Muscarinic receptors-linked NO release and dual inhibitory effect on Ca+2 influx and release underlie the vasodilation. This finding provides pharmacological base to the traditional use of E. sativa in hypertension. The presence of quercetin and erucin further support this finding.
Collapse
Affiliation(s)
- Umme Salma
- Cardiovascular Research Group; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, KPK, Pakistan
| | - Taous Khan
- Cardiovascular Research Group; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, KPK, Pakistan.
| | - Abdul Jabbar Shah
- Cardiovascular Research Group; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, KPK, Pakistan.
| |
Collapse
|
73
|
Kumar H, Devaraji V, Joshi R, Wankar S, Ghosh SK. A Chalcone-Based Potential Therapeutic Small Molecule That Binds to Subdomain IIA in HSA Precisely Controls the Rotamerization of Trp-214. ACS OMEGA 2018; 3:10114-10128. [PMID: 31459141 PMCID: PMC6644364 DOI: 10.1021/acsomega.8b01079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 06/10/2023]
Abstract
The principal intent of this work is to explore whether the site-specific binding of a newly synthesized quinoline-appended anthracenyl chalcone, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ), with an extracellular protein of the human circulatory system, human serum albumin (HSA), can control the rotamerization of its sole tryptophan residue, Trp-214. With this aim, we have systematically studied the binding affinity, interactions, and localization pattern of the title compound inside the specific binding domain of the transport protein and any conformation alteration caused therein. Multiple spectroscopic experiments substantiated by an in silico molecular modeling exercise provide evidence for the binding of the guest ADMQ in the hydrophobic domain of HSA, which is primarily constituted by residues Trp-214, Arg-218, Arg-222, Asp-451, and Tyr-452. Rotationally restricted ADMQ prefers to reside in Sudlow site I (subdomain IIA) of HSA in close proximity (2.45 nm) to the intrinsic fluorophore Trp-214 and is interestingly found to control its vital rotamerization process. The driving force for this rotational interconversion is predominantly found to be governed by the direct interaction of ADMQ with Trp-214. However, the role of induced conformational perturbation in the biomacromolecule itself upon ADMQ adoption cannot be ruled out completely, as indicated by circular dichroism, 3D fluorescence, root-mean-square deviation, root-mean-square fluctuation, and secondary structure element observations. The comprehensive spectroscopic study outlined herein provides important information on the biophysical interaction of a chalcone-based potential therapeutic candidate with a carrier protein, exemplifying its utility in having a regulatory effect on the microconformations of Trp-214.
Collapse
Affiliation(s)
- Himank Kumar
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| | - Vinod Devaraji
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600003, India
| | - Ritika Joshi
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| | - Sneha Wankar
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| | - Sujit Kumar Ghosh
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| |
Collapse
|
74
|
Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J. Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorders. Mar Drugs 2018; 16:E250. [PMID: 30060542 PMCID: PMC6117645 DOI: 10.3390/md16080250] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
The beneficial effects of various polyphenols with plant origins on different cardiovascular-associated disorders, such as hypertension, diabetes mellitus type 2 and metabolic syndrome are well known. Recently, marine crude-drugs are emerging as potential treatments in many noncommunicable conditions, including those involving the cardiovascular system. Among the active compounds responsible for these activities, seaweed polyphenols seem to play a key role. The aim of the present review is to summarise the current knowledge about the beneficial effects reported for edible seaweed polyphenols in the amelioration of these prevalent conditions, focusing on both preclinical and clinical studies. This review will help to establish the basis for future studies in this promising field.
Collapse
Affiliation(s)
- Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
| | - Alba Rodríguez-Nogales
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain.
| | - Francesca Algieri
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain.
| | - Julio Gálvez
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain.
| |
Collapse
|
75
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
76
|
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155:889-904. [PMID: 29966915 DOI: 10.1016/j.ejmech.2018.06.053] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Flavonoids are integral components of various vegetation and in foods; consequently, they represent an inevitable part of the diet. Historical and epidemiological proof recommend that diet plans consisting of flavonoids such as quercetin have positive health benefits, especially on the heart. Flavonoids have been proven to be active against hypertension, inflammation, diabetes and vascular diseases. Quercetin exhibits significant heart related benefits as inhibition of LDL oxidation, endothelium-independent vasodilator effects, reduction of adhesion molecules and other inflammatory markers, the protective effect on nitric oxide and endothelial function under conditions of oxidative stress, prevention of neuronal oxidative and inflammatory damage and platelet antiaggregant effects. Searching for experimental evidence to validate the cardioprotective effects of quercetin, we review here the recent detailed in vivo studies. Quercetin and its derivatives lead to an enhancement in heart features, indicating the prospective for quercetin to be used therapeutically in the treatment of cardiac diseases. Several evidence-based studies suggest mechanisms to observe cardiovascular diseases such as aging effects, hypertension, angiotensin-converting enzyme activity and endothelial-dependent and independent functions. Different animal models including human are also used to elucidate the in vivo role of quercetin in cardiovascular diseases. The role of quercetin and its derivatives may go beyond their existence in food and has potential as a lead molecule in drug development programs.
Collapse
Affiliation(s)
- Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyenggi-do, 410820, Republic of Korea.
| | - Bhupendra M Mistry
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyenggi-do, 410820, Republic of Korea
| | - Surendra K Shinde
- College of Life Science and Biotechnology, Department of Biological and Environmental Science, Dongguk University, 32, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-820, Republic of Korea
| | - Riyaz Syed
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085, India
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul, 143 701, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyenggi-do, 410820, Republic of Korea.
| |
Collapse
|
77
|
Wang J, Qian X, Gao Q, Lv C, Xu J, Jin H, Zhu H. Quercetin increases the antioxidant capacity of the ovary in menopausal rats and in ovarian granulosa cell culture in vitro. J Ovarian Res 2018; 11:51. [PMID: 29929541 PMCID: PMC6013856 DOI: 10.1186/s13048-018-0421-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/23/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Menopause is the most important sign of aging in women, and the ovary is the organ most sensitive to aging. Quercetin is a potential antioxidant and free radical scavenger that is widely found in fruits, vegetables, and leaves. However, the effect of quercetin on ovarian aging has not been elucidated, and the mechanism underlying its antioxidative effect remains unclear. The purpose of the current study was to investigate whether quercetin protects ovarian function by decreasing oxidative stress. METHODS In an in vivo experiment, female menopausal rats (12 months old) were intragastrically administered quercetin at three doses (12.5 mg/kg, 25 mg/kg, and 50 mg/kg) for 90 days, and the estrous cycles were determined by vaginal smearing. In an in vitro experiment, rat primary ovarian granulosa cells were cultured and treated with H2O2 (400 μM) alone or H2O2 plus quercetin at 5 μM, 20 μM, or 50 μM. The levels of the hormones estradiol (E2), progesterone (P), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were detected by radioimmunoassay. The serum levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) and glutathione S-transferase (GST) were examined. The expression levels of the oxidative stress-related genes SOD-1, catalase (CAT) and glutathione synthetase (GSS) in the ovaries and ovarian granulosa cells were detected by Western blot. RESULTS The in vivo results demonstrated that quercetin had no effects on ovarian morphology, hormone secretion, or the estrous cycle in menopausal rats. Although no significant changes were detected in the serum levels of T-AOC, SOD, GSH, GSH-PX, and GST between the quercetin and control groups, the mRNA and protein expression levels of the oxidative stress-related genes SOD-1, CAT and GSS in menopausal rat ovaries were increased by low-dose quercetin. Moreover, the in vitro results demonstrated that quercetin significantly rescued the decrease in cell viability by H2О2-induced oxidative stress and enhanced the H2O2-induced decrease in expression of oxidative stress-related proteins. CONCLUSIONS Together, the results of this study indicated that quercetin increased the antioxidant capacity of the ovary by upregulating the expression of some oxidative stress-related genes both in vivo and in vitro.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xin Qian
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qiang Gao
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jie Xu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongbo Jin
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Hui Zhu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
78
|
Caleja C, Ribeiro A, Barreiro MF, Ferreira ICFR. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr Pharm Des 2018; 23:2787-2806. [PMID: 28025943 DOI: 10.2174/1381612822666161227153906] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. METHODS One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. RESULTS However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. CONCLUSION Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market.
Collapse
Affiliation(s)
- Cristina Caleja
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| | - Andreia Ribeiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| |
Collapse
|
79
|
López-Romero JC, Ayala-Zavala JF, González-Aguilar GA, Peña-Ramos EA, González-Ríos H. Biological activities of Agave by-products and their possible applications in food and pharmaceuticals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2461-2474. [PMID: 29023758 DOI: 10.1002/jsfa.8738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/19/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Agave leaves are considered a by-product of alcoholic beverage production (tequila, mezcal and bacanora) because they are discarded during the production process, despite accounting for approximately 50% of the total plant weight. These by-products constitute a potential source of Agave extracts rich in bioactive compounds, such as saponins, phenolic compounds and terpenes, and possess different biological effects, as demonstrated by in vitro and in vivo tests (e.g. antimicrobial, antifungal, antioxidant, anti-inflammatory, antihypertensive, immunomodulatory, antiparasitic and anticancer activity). Despite their positive results in biological assays, Agave extracts have not been widely evaluated in food systems and pharmaceutical areas, and these fields represent a potential route to improve the usage of Agave plants as food additives and agents for treating medical diseases. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Etna Aida Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, AC, Hermosillo, Sonora, Mexico
| | | |
Collapse
|
80
|
Calabró V, Litterio MC, Fraga CG, Galleano M, Piotrkowski B. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Arch Biochem Biophys 2018; 647:47-53. [PMID: 29621523 DOI: 10.1016/j.abb.2018.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of a quercetin-supplemented diet on the biochemical changes installed in the heart of NO-deficient rats in terms of oxidants production and NO bioavailability determinants. Sprague-Dawley rats were subjected to Nω-nitro-l-arginine methyl ester (l-NAME) treatment (360 mg/L l-NAME in the drinking water, 4 d) with or without supplementation with quercetin (4 g/kg diet). l-NAME administration led to increased blood pressure (BP) (30%), decreased nitric oxide synthase (NOS) activity (50%), and increases in NADPH oxidase (NOX)-dependent superoxide anion production (60%) and p47phox protein level (65%). The co-administration of quercetin prevented the increase in BP and the activation of NOX but did not modify the decrease in NOS activity caused by l-NAME. In addition, quercetin affected oxidative stress parameters as glutathione oxidation, and the activities of oxidant detoxifying enzymes superoxide dismutase, glutathione peroxidase, and catalase. Thus, quercetin administration counteracts l-NAME effects on NO bioavailability determinants in vivo, essentially through controlling NOX-mediated superoxide anion production.
Collapse
Affiliation(s)
- Valeria Calabró
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - María C Litterio
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, USA
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| | - Barbara Piotrkowski
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
81
|
Thimóteo NSB, Scavuzzi BM, Simão ANC, Dichi I. The impact of cranberry (Vaccinium macrocarpon) and cranberry products on each component of the metabolic syndrome: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0048-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
82
|
Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol Res 2017; 124:34-42. [PMID: 28757189 DOI: 10.1016/j.phrs.2017.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Myocarditis is an inflammatory disease of the myocardium associated with immune dysfunction which may frequently lead to the development of dilated cardiomyopathy. Experimental autoimmune myocarditis is an animal model which mimics myocarditis in order to allow assessment of the therapeutic effects of different molecules on this disease. We aimed to review the inflammatory and immunological mechanisms involved in the pathogenesis of the myocarditis and finding natural products and phytochemicals with anti-myocarditis activities based on studies of cardiac myosin-induced experimental autoimmune myocarditis in rodents. A number of natural molecules (e.g. apigenin, berberine and quercetin) along with some plant extracts were found to be effective in alleviating experimental autoimmune myocarditis. Upregulation of Th1-type cytokines and elevation of the Th2-type cytokines (IL-4 and IL-10), mitigation of oxidative stress, modulation of mitogen-activated protein kinase signaling pathways and increasing Sarco-endoplasmic reticulum Ca2+-ATPase levels are among the most important anti-myocarditis mechanisms for the retrieved molecules and extracts. Interestingly, there are structural similarities between the anti-EAM compounds, suggesting the presence of similar pharmacophore and enzymatic targets for these molecules. Naturally occurring molecules discussed in the present article are potential anti-myocarditis drugs and future additional animal studies and clinical trials would shed more light on their effectiveness in the treatment of myocarditis and prevention of dilated cardiomyopathy.
Collapse
|
83
|
Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5716204. [PMID: 28691026 PMCID: PMC5485304 DOI: 10.1155/2017/5716204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/04/2017] [Indexed: 11/17/2022]
Abstract
Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.
Collapse
|
84
|
Bartekova M, Radosinska J, Pancza D, Barancik M, Ravingerova T. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent. Physiol Res 2017; 65 Suppl 1:S101-7. [PMID: 27643931 DOI: 10.33549/physiolres.933390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Quercetin, a polyphenolic compound present in various types of food, has been shown to exert beneficial effects in different cardiac as well as non-cardiac ischemia/reperfusion (I/R) models in adult animals. However, there is no evidence about the effects of quercetin on I/R injury in non-mature animals, despite the fact that efficiency of some interventions against I/R is age-dependent. This study was aimed to investigate the effects of chronic quercetin treatment on I/R injury in juvenile and adult rat hearts. Juvenile (4-week-old) as well as adult (12-week-old) rats were treated with quercetin (20 mg/kg/day) for 4 weeks, hearts were excised and exposed to 25-min global ischemia followed by 40-min reperfusion. Functional parameters of hearts and occurrence of reperfusion arrhythmias were registered to assess the cardiac function. Our results have shown that quercetin improved post-ischemic recovery of LVDP, as well as recovery of markers of contraction and relaxation, +(dP/dt)max and -(dP/dt)max, respectively, in juvenile hearts, but not in adult hearts. Quercetin had no impact on incidence as well as duration of reperfusion arrhythmias in animals of both ages. We conclude that the age of rats plays an important role in heart response to quercetin treatment in the particular dose and duration of the treatment. Therefore, the age of the treated subjects should be taken into consideration when choosing the dose of quercetin and duration of its application in prevention and/or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- M Bartekova
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
85
|
Boslett J, Hemann C, Zhao YJ, Lee HC, Zweier JL. Luteolinidin Protects the Postischemic Heart through CD38 Inhibition with Preservation of NAD(P)(H). J Pharmacol Exp Ther 2017; 361:99-108. [PMID: 28108596 PMCID: PMC5363772 DOI: 10.1124/jpet.116.239459] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
We recently showed that ischemia/reperfusion (I/R) of the heart causes CD38 activation with resultant depletion of the cardiac NADP(H) pool, which is most marked in the endothelium. This NADP(H) depletion was shown to limit the production of nitric oxide by endothelial nitric oxide synthase (eNOS), which requires NADPH for nitric oxide production, resulting in greatly altered endothelial function. Therefore, intervention with CD38 inhibitors could reverse postischemic eNOS-mediated endothelial dysfunction. Here, we evaluated the potency of the CD38 inhibitor luteolinidin, an anthocyanidin, at blocking CD38 activity and preserving endothelial and myocardial function in the postischemic heart. Initially, we characterized luteolinidin as a CD38 inhibitor in vitro to determine its potency and mechanism of inhibition. We then tested luteolinidin in the ex vivo isolated heart model, where we determined luteolinidin uptake with aqueous and liposomal delivery methods. Optimal delivery methods were then further tested to determine the effect of luteolinidin on postischemic NAD(P)(H) and tetrahydrobiopterin levels. Finally, through nitric oxide synthase-dependent coronary flow and left ventricular functional measurements, we evaluated the efficacy of luteolinidin to protect vascular and contractile function, respectively, after I/R. With enhanced postischemic preservation of NADPH and tetrahydrobiopterin, there was a dose-dependent effect of luteolinidin on increasing recovery of endothelium-dependent vasodilatory function, as well as enhancing the recovery of left ventricular contractile function with increased myocardial salvage. Thus, luteolinidin is a potent CD38 inhibitor that protects the heart against I/R injury with preservation of eNOS function and prevention of endothelial dysfunction.
Collapse
Affiliation(s)
- James Boslett
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio (J.B., C.H., J.L.Z.); and Laboratory of Cytophysiology, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China (Y.J.Z., H.-C.L.)
| | - Craig Hemann
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio (J.B., C.H., J.L.Z.); and Laboratory of Cytophysiology, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China (Y.J.Z., H.-C.L.)
| | - Yong Juan Zhao
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio (J.B., C.H., J.L.Z.); and Laboratory of Cytophysiology, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China (Y.J.Z., H.-C.L.)
| | - Hon-Cheung Lee
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio (J.B., C.H., J.L.Z.); and Laboratory of Cytophysiology, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China (Y.J.Z., H.-C.L.)
| | - Jay L Zweier
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio (J.B., C.H., J.L.Z.); and Laboratory of Cytophysiology, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China (Y.J.Z., H.-C.L.)
| |
Collapse
|
86
|
Baral S, Pariyar R, Kim J, Lee HS, Seo J. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol Aging 2017; 52:39-52. [DOI: 10.1016/j.neurobiolaging.2016.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/10/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
|
87
|
Menezes R, Rodriguez-Mateos A, Kaltsatou A, González-Sarrías A, Greyling A, Giannaki C, Andres-Lacueva C, Milenkovic D, Gibney ER, Dumont J, Schär M, Garcia-Aloy M, Palma-Duran SA, Ruskovska T, Maksimova V, Combet E, Pinto P. Impact of Flavonols on Cardiometabolic Biomarkers: A Meta-Analysis of Randomized Controlled Human Trials to Explore the Role of Inter-Individual Variability. Nutrients 2017; 9:E117. [PMID: 28208791 PMCID: PMC5331548 DOI: 10.3390/nu9020117] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/03/2017] [Indexed: 02/05/2023] Open
Abstract
Several epidemiological studies have linked flavonols with decreased risk of cardiovascular disease (CVD). However, some heterogeneity in the individual physiological responses to the consumption of these compounds has been identified. This meta-analysis aimed to study the effect of flavonol supplementation on biomarkers of CVD risk such as, blood lipids, blood pressure and plasma glucose, as well as factors affecting their inter-individual variability. Data from 18 human randomized controlled trials were pooled and the effect was estimated using fixed or random effects meta-analysis model and reported as difference in means (DM). Variability in the response of blood lipids to supplementation with flavonols was assessed by stratifying various population subgroups: age, sex, country, and health status. Results showed significant reductions in total cholesterol (DM = -0.10 mmol/L; 95% CI: -0.20, -0.01), LDL cholesterol (DM = -0.14 mmol/L; Nutrients 2017, 9, 117 2 of 21 95% CI: -0.21, 0.07), and triacylglycerol (DM = -0.10 mmol/L; 95% CI: -0.18, 0.03), and a significant increase in HDL cholesterol (DM = 0.05 mmol/L; 95% CI: 0.02, 0.07). A significant reduction was also observed in fasting plasma glucose (DM = -0.18 mmol/L; 95%CI: -0.29, -0.08), and in blood pressure (SBP: DM = -4.84 mmHg; 95% CI: -5.64, -4.04; DBP: DM = -3.32 mmHg; 95% CI: -4.09, -2.55). Subgroup analysis showed a more pronounced effect of flavonol intake in participants from Asian countries and in participants with diagnosed disease or dyslipidemia, compared to healthy and normal baseline values. In conclusion, flavonol consumption improved biomarkers of CVD risk, however, country of origin and health status may influence the effect of flavonol intake on blood lipid levels.
Collapse
Affiliation(s)
- Regina Menezes
- iBET/ITQB, Molecular Nutrition & Health Laboratory, 2780-157 Oeiras, Portugal;
| | - Ana Rodriguez-Mateos
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
| | - Antonia Kaltsatou
- FAME Laboratory, School of Exercise Science, University of Thessaly, 42100 Volos, Greece;
| | | | | | | | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Faculty of Pharmacy and Food Sciences, University of Barcelona, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain; (C.A.-L.); (M.G.-A.)
| | - Dragan Milenkovic
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, Clermont Université, Université d’Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France;
| | | | - Julie Dumont
- Université Lille, INSERM, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Manuel Schär
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK;
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Faculty of Pharmacy and Food Sciences, University of Barcelona, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain; (C.A.-L.); (M.G.-A.)
| | | | | | | | - Emilie Combet
- Human Nutrition, University of Glasgow, Glasgow G31 2ER, UK; (S.A.P.-D.); (E.C.)
| | - Paula Pinto
- iBET/ITQB, Molecular Nutrition & Health Laboratory, 2780-157 Oeiras, Portugal;
- Polytechnic Institute of Santarem, ESA, Department of Food Technology, Biotechnology and Nutrition, 2001-904 Santarém, Portugal
| |
Collapse
|
88
|
Electrospun Nanofibers Loaded with Quercetin Promote the Recovery of Focal Entrapment Neuropathy in a Rat Model of Streptozotocin-Induced Diabetes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2017493. [PMID: 28251151 PMCID: PMC5304310 DOI: 10.1155/2017/2017493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022]
Abstract
In this study, quercetin-loaded zein-based nanofibers were developed using electrospinning technique. The therapeutic effect of these quercetin-loaded nanofibers on neuropathy in streptozotocin- (STZ-) induced diabetes in rats was assessed. Diabetic condition was induced in male Wistar rats by STZ, after which a crush injury of the right sciatic nerve was performed to induce mononeuropathy. Functional recovery was assessed using walking track analysis, measurements of foot withdrawal reflex, nerve conduction velocity, and morphological analysis. The oxidative stress status and the ratio of phosphorylated extracellular recognition kinase (pERK)/extracellular recognition kinase (ERK) expression in the nerve lesion were also assessed in order to elucidate the potential mechanisms involved. Results showed that quercetin-loaded zein-based nanofibers slightly enhanced functional recovery from neuropathy in STZ-diabetic rats. The potential mechanism might partially involve improvements in oxidative stress status and the ratio of pERK/ERK expression in the nerve lesion.
Collapse
|
89
|
Zhang L, Ren T, Wang Z, Wang R, Chang J. Comparative study of the binding of 3 flavonoids to the fat mass and obesity-associated protein by spectroscopy and molecular modeling. J Mol Recognit 2017; 30. [PMID: 28058739 DOI: 10.1002/jmr.2606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/26/2016] [Indexed: 12/31/2022]
Abstract
This study aims to investigate the interaction between 3 flavonoids (quercetin, apigenin, and naringenin) and fat mass and obesity-associated protein by fluorescence, ultraviolet-visible absorption spectroscopy, and molecular modeling. Results indicate that the intrinsic fluorescence of fat mass and obesity-associated protein can be quenched by the 3 flavonoids through a static quenching procedure. Thermodynamic analysis and molecular modeling results suggest that hydrophobic interaction and hydrogen bond forces play the major roles in the binding process. Moreover, results also show that the rank order of quenching constant and binding constant is quercetin > apigenin > naringenin.
Collapse
Affiliation(s)
- Lijiao Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Ting Ren
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Zechun Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
90
|
Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N. A Review Study on Phytochemistry and Pharmacology Applications of Juglans Regia Plant. Pharmacogn Rev 2017; 11:145-152. [PMID: 28989250 PMCID: PMC5628521 DOI: 10.4103/phrev.phrev_10_17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent years, the use of medicinal plants increased considerably; so that today, the use of traditional medicine, as well as medicinal plants is necessary for the aim of producing more effective drugs with fewer side effects and determining the effective doses. With the scientific name of Juglans regia, walnut plant is a medicinal plant with different properties that is considered less, despite having great therapeutic potential in the traditional medicine. The aim of this study was to review the dispersal of walnut plants, the chemical compounds, and therapeutic effects of walnuts on antioxidant activity, antidiabetic, hypolipidemic, antimicrobial, and antihypertensive activities, as well as liver protection. Data of this review study have been collected from the books and scientific articles published in databases such as Science Direct, Web of Science, Scopus, PubMed, and Scientific Information Database. While this plant having high antioxidant capabilities, walnuts are composed of many chemical compounds such as ascorbic acid, flavonoids, quercetin, and caffeic acid. Experimental studies have shown that walnuts reduced blood glucose and lipids and also decreased blood pressure. They have antioxidant, antidiabetic, antimicrobial, and liver-protective properties. The use of walnuts in traditional medicine and review of experimental studies demonstrated the presence of multiple, effective, and useful compounds which may provide the opportunity for the production of lipid-lowering, antidiabetes, and liver protective drugs. Due to the effects of walnuts on improving the complications of various diseases, the need for doing comprehensive clinical trials for the use of walnuts in the treatment of diseases is necessary.
Collapse
Affiliation(s)
- Hamdollah Delaviz
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jamshid Mohammadi
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahram Mohammadi
- Department of Pediatrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Naser Farhadi
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
91
|
Chamorro V, Pandolfi R, Moreno L, Barreira B, Martínez-Ramas A, Morales-Cano D, Ruiz-Cabello J, Lorente JA, Duarte J, Cogolludo Á, Alvarez-Sala JL, Perez-Vizcaino F. Effects of Quercetin in a Rat Model of Hemorrhagic Traumatic Shock and Reperfusion. Molecules 2016; 21:molecules21121739. [PMID: 27999410 PMCID: PMC6273949 DOI: 10.3390/molecules21121739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background: We hypothesized that treatment with quercetin could result in improved hemodynamics, lung inflammatory parameters and mortality in a rat model of hemorrhagic shock. Methods: Rats were anesthetized (80 mg/kg ketamine plus 8 mg/kg xylazine i.p.). The protocol included laparotomy for 15 min (trauma), hemorrhagic shock (blood withdrawal to reduce the mean arterial pressure to 35 mmHg) for 75 min and resuscitation by re-infusion of all the shed blood plus lactate Ringer for 90 min. Intravenous quercetin (50 mg/kg) or vehicle were administered during resuscitation. Results: There was a trend for increased survival 84.6% (11/13) in the treated group vs. the shock group 68.4% (13/19, p > 0.05 Kaplan–Meier). Quercetin fully prevented the development of lung edema. The activity of aSMase was increased in the shock group compared to the sham group and the quercetin prevented this effect. However, other inflammatory markers such as myeloperoxidase activity, interleukin-6 in plasma or bronchoalveolar fluid were similar in the sham and shock groups. We found no bacterial DNA in plasma in these animals. Conclusions: Quercetin partially prevented the changes in blood pressure and lung injury in shock associated to hemorrhage and reperfusion.
Collapse
Affiliation(s)
- Virginia Chamorro
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - Rachele Pandolfi
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - Bianca Barreira
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - Andrea Martínez-Ramas
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - Daniel Morales-Cano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - Jesús Ruiz-Cabello
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - José Angel Lorente
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Servicio de Medicina Intensiva, Hospital Universitario de Getafe, Getafe, Madrid 28905, Spain.
- Universidad Europea de Madrid, Madrid 28905, Spain.
| | - Juan Duarte
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada 18071, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (Ciberec), Madrid 28029, Spain.
| | - Ángel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| | - José Luis Alvarez-Sala
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Servicio de Neumología, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain.
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid 28007, Spain.
| |
Collapse
|
92
|
Varzakas T, Zakynthinos G, Verpoort F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016; 5:E88. [PMID: 28231183 PMCID: PMC5302437 DOI: 10.3390/foods5040088] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.
Collapse
Affiliation(s)
- Theodoros Varzakas
- TEI Peloponnese, Department of Food Technology, Kalamata 24100, Greece.
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
| | | | - Francis Verpoort
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia.
| |
Collapse
|
93
|
Patten GS, Abeywardena MY, Bennett LE. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit Rev Food Sci Nutr 2016; 56:181-214. [PMID: 24915402 DOI: 10.1080/10408398.2011.651176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertension is a major risk factor for coronary heart disease, kidney disease, and stroke. Interest in medicinal or nutraceutical plant bioactives to reduce hypertension has increased dramatically. The main biological regulation of mammalian blood pressure is via the renin-angiotensin-aldosterone system. The key enzyme is angiotensin converting enzyme (ACE) that converts angiotensin I into the powerful vasoconstrictor, angiotensin II. Angiotensin II binds to its receptors (AT1) on smooth muscle cells of the arteriole vasculature causing vasoconstriction and elevation of blood pressure. This review focuses on the in vitro and in vivo reports of plant-derived extracts that inhibit ACE activity, block angiotensin II receptor binding and demonstrate hypotensive activity in animal or human studies. We describe 74 families of plants that exhibited significant ACE inhibitory activity and 16 plant families with potential AT1 receptor blocking activity, according to in vitro studies. From 43 plant families including some of those with in vitro bioactivity, the extracts from 73 plant species lowered blood pressure in various normotensive or hypertensive in vivo models by the oral route. Of these, 19 species from 15 families lowered human BP when administered orally. Some of the active plant extracts, isolated bioactives and BP-lowering mechanisms are discussed.
Collapse
Affiliation(s)
- Glen S Patten
- a CSIRO Preventative Health National Research Flagship, Animal, Food and Health Sciences , Adelaide , South Australia , Australia
| | - Mahinda Y Abeywardena
- a CSIRO Preventative Health National Research Flagship, Animal, Food and Health Sciences , Adelaide , South Australia , Australia
| | - Louise E Bennett
- b CSIRO Preventative Health National Research Flagship, Animal, Food and Health Sciences, Werribee , Victoria , British Columbia , Australia
| |
Collapse
|
94
|
Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7364138. [PMID: 27651855 PMCID: PMC5019908 DOI: 10.1155/2016/7364138] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | - Valeria Conti
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Antonio Damato
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | | | - Annibale A. Puca
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
- IRCCS Multimedica, Milan, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Carmine Vecchione
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Albino Carrizzo
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| |
Collapse
|
95
|
Lim EJ, Heo J, Kim YH. Quercetin induces cell death by caspase-dependent and p38 MAPK pathway in EGFR mutant lung cancer cells. KOSIN MEDICAL JOURNAL 2016. [DOI: 10.7180/kmj.2016.31.1.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objectives The aim of this study was whether quercetin induces cell death by caspase and MAPK signaling pathway in EGFR mutant lung cancer cells Methods PC-9 cells, EGFR mutant lung cancer cells, were treated various times and concentrations of quercetin and harvested and measured using MTT assay, DNA fragmentation, Western blotting, and FACS analysis. Results Treatment with quercetin in PC-9 cells resulted in inhibition of cell growth through apoptosis. Quercetin-induced apoptosis was associated with caspase-dependent manner. Quercetin also significantly increased levels of phosphor-p38 and decreased levels of phosphor-ERK, indicating that quercetin induces p38 MAPK signaling pathway in PC-9 cells. Quecetin treatment also generated the release of cytochrome c in PC-9 cells; however, pretreatment with rotenone or z-LEHD-fmk, significantly attenuated quercetin-induced apoptosis. Conclusions Our data indicate that quercetin exhibits EGFR mutant lung cancer effects through apoptosis by caspase dependent and mitochondrial pathway.
Collapse
|
96
|
The Possible Role of Flavonoids in the Prevention of Diabetic Complications. Nutrients 2016; 8:nu8050310. [PMID: 27213445 PMCID: PMC4882722 DOI: 10.3390/nu8050310] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus is a disease that affects many metabolic pathways. It is associated with insulin resistance, impaired insulin signaling, β-cell dysfunction, abnormal glucose levels, altered lipid metabolism, sub-clinical inflammation and increased oxidative stress. These and other unknown mechanisms lead to micro- and macro-complications, such as neuropathy, retinopathy, nephropathy and cardiovascular disease. Based on several in vitro animal models and some human studies, flavonoids appear to play a role in many of the metabolic processes involved in type 2 diabetes mellitus. In this review, we seek to highlight the most recent papers focusing on the relationship between flavonoids and main diabetic complications.
Collapse
|
97
|
Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2016; 33:1119-27. [PMID: 25875025 DOI: 10.1097/hjh.0000000000000585] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hibiscus sabdariffa L. is a tropical wild plant rich in organic acids, polyphenols, anthocyanins, polysaccharides, and volatile constituents that are beneficial for the cardiovascular system. Hibiscus sabdariffa beverages are commonly consumed to treat arterial hypertension, yet the evidence from randomized controlled trials (RCTs) has not been fully conclusive. Therefore, we aimed to assess the potential antihypertensive effects of H. sabdariffa through systematic review of literature and meta-analysis of available RCTs. METHODS The search included PUBMED, Cochrane Library, Scopus, and EMBASE (up to July 2014) to identify RCTs investigating the efficacy of H. sabdariffa supplementation on SBP and DBP values. Two independent reviewers extracted data on the study characteristics, methods, and outcomes. Quantitative data synthesis and meta-regression were performed using a fixed-effect model, and sensitivity analysis using leave-one-out method. Five RCTs (comprising seven treatment arms) were selected for the meta-analysis. In total, 390 participants were randomized, of whom 225 were allocated to the H. sabdariffa supplementation group and 165 to the control group in the selected studies. RESULTS Fixed-effect meta-regression indicated a significant effect of H. sabdariffa supplementation in lowering both SBP (weighed mean difference -7.58 mmHg, 95% confidence interval -9.69 to -5.46, P < 0.00001) and DBP (weighed mean difference -3.53 mmHg, 95% confidence interval -5.16 to -1.89, P < 0.0001). These effects were inversely associated with baseline BP values, and were robust in sensitivity analyses. CONCLUSION This meta-analysis of RCTs showed a significant effect of H. sabdariffa in lowering both SBP and DBP. Further well designed trials are necessary to validate these results.
Collapse
|
98
|
Abdel-Kawi SH, Hashem KS, Abd-Allah S. Mechanism of diethylhexylphthalate (DEHP) induced testicular damage and of grape seed extract-induced protection in the rat. Food Chem Toxicol 2016; 90:64-75. [DOI: 10.1016/j.fct.2016.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
|
99
|
Abstract
As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.
Collapse
|
100
|
Gupta A, Birhman K, Raheja I, Sharma SK, Kar HK. Quercetin: A wonder bioflavonoid with therapeutic potential in disease management. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)61024-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|