51
|
Cai D, Xiao M, Xu P, Xu YC, Du W. An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens. LAB ON A CHIP 2014; 14:3917-3924. [PMID: 25082458 DOI: 10.1039/c4lc00669k] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The early identification of causative pathogens in clinical specimens that require no cultivation is essential for directing evidence-based antimicrobial treatments in resource limited settings. Here, we describe an integrated microfluidic device for the rapid identification of pathogens in complex physiological matrices such as blood. The device was designed and fabricated using SlipChip technologies, which integrated four channels processing independent samples and identifying up to twenty different pathogens. Briefly, diluted whole human blood samples were directly injected into the device for analysis. The pathogens were extracted from the blood by dielectrophoresis, retained in an array of grooves, and identified by multiplex array PCR in nanoliter volumes with end-point fluorescence detection. The universality of the dielectrophoretic separation of pathogens from physiological fluids was evaluated with a panel of clinical isolates covering predominant bacterial and fungal species. Using this system, we simultaneously identified Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli O157:H7 within 3 h. In addition to the prompt diagnosis of bloodstream infections, this method may also be utilized for differentiating microorganisms in contaminated water and environmental samples.
Collapse
Affiliation(s)
- Dongyang Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China.
| | | | | | | | | |
Collapse
|
52
|
Chudobova D, Cihalova K, Skalickova S, Zitka J, Rodrigo MAM, Milosavljevic V, Hynek D, Kopel P, Vesely R, Adam V, Kizek R. 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles. Electrophoresis 2014; 36:457-66. [PMID: 25069433 DOI: 10.1002/elps.201400321] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen occurring not only in hospitals but also in foodstuff. Currently, discussions on the issue of the increasing resistance, and timely and rapid diagnostic of resistance strains have become more frequent and sought. Therefore, the aim of this study was to design an effective platform for DNA isolation from different species of microorganisms as well as the amplification of mecA gene that encodes the resistance to β-lactam antibiotic formation and is contained in MRSA. For this purpose, we fabricated 3D-printed chip that was suitable for bacterial cultivation, DNA isolation, PCR, and detection of amplified gene using gold nanoparticle (AuNP) probes as an indicator of MRSA. Confirmation of the MRSA presence in the samples was based on a specific interaction between mecA gene with the AuNP probes and a colorimetric detection, which utilized the noncross-linking aggregation phenomenon of DNA-functionalized AuNPs. To test the whole system, we analyzed several real refractive indexes, in which two of them were positively scanned to find the presence of mecA gene. The aggregation of AuNP probes were reflected by 75% decrease of absorbance (λ = 530 nm) and change in AuNPs size from 3 ± 0.05 to 4 ± 0.05 nm (n = 5). We provide the one-step identification of mecA gene using the unique platform that employs the rapid, low-cost, and easy-to-use colorimetric method for MRSA detection in various samples.
Collapse
Affiliation(s)
- Dagmar Chudobova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Shen C, Xu P, Huang Z, Cai D, Liu SJ, Du W. Bacterial chemotaxis on SlipChip. LAB ON A CHIP 2014; 14:3074-80. [PMID: 24968180 DOI: 10.1039/c4lc00213j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper describes a simple and reusable microfluidic SlipChip device for studying bacterial chemotaxis based on free interface diffusion. The device consists of two glass plates with reconfigurable microwells and ducts, which can set up 20 parallel chemotaxis units as duplicates. In each unit, three nanoliter microwells and connecting ducts were assembled for pipette loading of a chemoeffector solution, bacterial suspension, and 1X PBS buffer solution. By a simple slipping operation, three microwells were disconnected from other units and interconnected by the ducts, which allowed the formation of diffusion concentration gradients of the chemoeffector for inducing cell migration from the cell microwell towards the other two microwells. The migration of cells in the microwells was monitored and accurately counted to evaluate chemotaxis. Moreover, the migrated cells were easily collected by pipetting for further studies after a slip step to reconnect the chemoeffector microwells. The performance of the device was characterized by comparing chemotaxis of two Escherichia coli species, using aspartic acid as the attractant and nitrate sulfate as the repellent. It also enables the separation of bacterial species from a mixture, based on the difference of chemotactic abilities, and collection of the cells with strong chemotactic phenomena for further studies off the chip.
Collapse
Affiliation(s)
- Chaohua Shen
- Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | | | | | | | | | | |
Collapse
|
54
|
Zec H, Shin DJ, Wang TH. Novel droplet platforms for the detection of disease biomarkers. Expert Rev Mol Diagn 2014; 14:787-801. [PMID: 25109704 DOI: 10.1586/14737159.2014.945437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Personalized medicine - healthcare based on individual genetic variation - has the potential to transform the way healthcare is delivered to patients. The promise of personalized medicine has been predicated on the predictive and diagnostic power of genomic and proteomic biomarkers. Biomarker screening may help improve health outcomes, for example, by identifying individuals' susceptibility to diseases and predicting how patients will respond to drugs. Microfluidic droplet technology offers an exciting opportunity to revolutionize the accessibility of personalized medicine. A framework for the role of droplet microfluidics in biomarker detection can be based on two main themes. Emulsion-based microdroplet platforms can provide new ways to measure and detect biomolecules. In addition, microdroplet platforms facilitate high-throughput screening of biomarkers. Meanwhile, surface-based droplet platforms provide an opportunity to develop miniaturized diagnostic systems. These platforms may function as portable benchtop environments that dramatically shorten the transition of a benchtop assay into a point-of-care format.
Collapse
Affiliation(s)
- Helena Zec
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | | | | |
Collapse
|
55
|
Ma L, Datta SS, Karymov MA, Pan Q, Begolo S, Ismagilov RF. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr Biol (Camb) 2014; 6:796-805. [PMID: 24953827 PMCID: PMC4131746 DOI: 10.1039/c4ib00109e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization.
Collapse
Affiliation(s)
- Liang Ma
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa. Proc Natl Acad Sci U S A 2014; 111:9768-73. [PMID: 24965364 DOI: 10.1073/pnas.1404753111] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper describes a microfluidics-based workflow for genetically targeted isolation and cultivation of microorganisms from complex clinical samples. Data sets from high-throughput sequencing suggest the existence of previously unidentified bacterial taxa and functional genes with high biomedical importance. Obtaining isolates of these targets, preferably in pure cultures, is crucial for advancing understanding of microbial genetics and physiology and enabling physical access to microbes for further applications. However, the majority of microbes have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species. We describe a method that enables genetically targeted cultivation of microorganisms through a combination of microfluidics and on- and off-chip assays. This method involves (i) identification of cultivation conditions for microbes using growth substrates available only in small quantities as well as the correction of sampling bias using a "chip wash" technique; and (ii) performing on-chip genetic assays while also preserving live bacterial cells for subsequent scale-up cultivation of desired microbes, by applying recently developed technology to create arrays of individually addressable replica microbial cultures. We validated this targeted approach by cultivating a bacterium, here referred to as isolate microfluidicus 1, from a human cecal biopsy. Isolate microfluidicus 1 is, to our knowledge, the first successful example of targeted cultivation of a microorganism from the high-priority group of the Human Microbiome Project's "Most Wanted" list, and, to our knowledge, the first cultured representative of a previously unidentified genus of the Ruminococcaceae family.
Collapse
|
57
|
Wang S, Chen S, Wang J, Xu P, Luo Y, Nie Z, Du W. Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry. Electrophoresis 2014; 35:2528-33. [DOI: 10.1002/elps.201400083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Shujun Wang
- Department of Chemistry; Renmin University of China; Beijing China
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Suming Chen
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Jianing Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Peng Xu
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Department of Chemistry; Renmin University of China; Beijing China
| |
Collapse
|
58
|
Zhu Q, Qiu L, Yu B, Xu Y, Gao Y, Pan T, Tian Q, Song Q, Jin W, Jin Q, Mu Y. Digital PCR on an integrated self-priming compartmentalization chip. LAB ON A CHIP 2014; 14:1176-85. [PMID: 24481046 DOI: 10.1039/c3lc51327k] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An integrated on-chip valve-free and power-free microfluidic digital PCR device is for the first time developed by making use of a novel self-priming compartmentalization and simple dehydration control to realize 'divide and conquer' for single DNA molecule detection. The high gas solubility of PDMS is exploited to provide the built-in power of self-priming so that the sample and oil are sequentially sucked into the device to realize sample self-compartmentalization based on surface tension. The lifespan of its self-priming capability was about two weeks tested using an air-tight packaging bottle sealed with a small amount of petroleum jelly, which is significant for a practical platform. The SPC chip contains 5120 independent 5 nL microchambers, allowing the samples to be compartmentalized completely. Using this platform, three different abundances of lung cancer related genes are detected to demonstrate the feasibility and flexibility of the microchip for amplifying a single nucleic acid molecule. For maximal accuracy, within less than 5% of the measurement deviation, the optimal number of positive chambers is between 400 and 1250 evaluated by the Poisson distribution, which means one panel can detect an average of 480 to 4804 template molecules. This device without world-to-chip connections eliminates the constraint of the complex pipeline control, and is an integrated on-chip platform, which would be a significant improvement to digital PCR automation and more user-friendly.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Khodakov DA, Ellis AV. Recent developments in nucleic acid identification using solid-phase enzymatic assays. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1167-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
60
|
Begolo S, Shen F, Ismagilov RF. A microfluidic device for dry sample preservation in remote settings. LAB ON A CHIP 2013; 13:4331-42. [PMID: 24056744 PMCID: PMC3851311 DOI: 10.1039/c3lc50747e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper describes a microfluidic device for dry preservation of biological specimens at room temperature that incorporates chemical stabilization matrices. Long-term stabilization of samples is crucial for remote medical analysis, biosurveillance, and archiving, but the current paradigm for transporting remotely obtained samples relies on the costly "cold chain" to preserve analytes within biospecimens. We propose an alternative approach that involves the use of microfluidics to preserve samples in the dry state with stabilization matrices, developed by others, that are based on self-preservation chemistries found in nature. We describe a SlipChip-based device that allows minimally trained users to preserve samples with the three simple steps of placing a sample at an inlet, closing a lid, and slipping one layer of the device. The device fills automatically, and a pre-loaded desiccant dries the samples. Later, specimens can be rehydrated and recovered for analysis in a laboratory. This device is portable, compact, and self-contained, so it can be transported and operated by untrained users even in limited-resource settings. Features such as dead-end and sequential filling, combined with a "pumping lid" mechanism, enable precise quantification of the original sample's volume while avoiding overfilling. In addition, we demonstrated that the device can be integrated with a plasma filtration module, and we validated device operations and capabilities by testing the stability of purified RNA solutions. These features and the modularity of this platform (which facilitates integration and simplifies operation) would be applicable to other microfluidic devices beyond this application. We envision that as the field of stabilization matrices develops, microfluidic devices will be useful for cost-effectively facilitating remote analysis and biosurveillance while also opening new opportunities for diagnostics, drug development, and other medical fields.
Collapse
Affiliation(s)
- Stefano Begolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
61
|
Selck DA, Karymov MA, Sun B, Ismagilov RF. Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements. Anal Chem 2013; 85:11129-36. [PMID: 24199852 DOI: 10.1021/ac4030413] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantitative bioanalytical measurements are commonly performed in a kinetic format and are known to not be robust to perturbation that affects the kinetics itself or the measurement of kinetics. We hypothesized that the same measurements performed in a "digital" (single-molecule) format would show increased robustness to such perturbations. Here, we investigated the robustness of an amplification reaction (reverse-transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in temperature and time when this reaction is used for quantitative measurements of HIV-1 RNA molecules under limited-resource settings (LRS). The digital format that counts molecules using dRT-LAMP chemistry detected a 2-fold change in concentration of HIV-1 RNA despite a 6 °C temperature variation (p-value = 6.7 × 10(-7)), whereas the traditional kinetic (real-time) format did not (p-value = 0.25). Digital analysis was also robust to a 20 min change in reaction time, to poor imaging conditions obtained with a consumer cell-phone camera, and to automated cloud-based processing of these images (R(2) = 0.9997 vs true counts over a 100-fold dynamic range). Fluorescent output of multiplexed PCR amplification could also be imaged with the cell phone camera using flash as the excitation source. Many nonlinear amplification schemes based on organic, inorganic, and biochemical reactions have been developed, but their robustness is not well understood. This work implies that these chemistries may be significantly more robust in the digital, rather than kinetic, format. It also calls for theoretical studies to predict robustness of these chemistries and, more generally, to design robust reaction architectures. The SlipChip that we used here and other digital microfluidic technologies already exist to enable testing of these predictions. Such work may lead to identification or creation of robust amplification chemistries that enable rapid and precise quantitative molecular measurements under LRS. Furthermore, it may provide more general principles describing robustness of chemical and biological networks in digital formats.
Collapse
Affiliation(s)
- David A Selck
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | | | |
Collapse
|
62
|
|
63
|
Abstract
With the experimental tools and knowledge that have accrued from a long history of reductionist biology, we can now start to put the pieces together and begin to understand how biological systems function as an integrated whole. Here, we describe how microfabricated tools have demonstrated promise in addressing experimental challenges in throughput, resolution, and sensitivity to support systems-based approaches to biological understanding.
Collapse
Affiliation(s)
- Mei Zhan
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Loice Chingozha
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
64
|
Li B, Zhang W, Chen L, Lin B. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device. Electrophoresis 2013; 34:2162-8. [DOI: 10.1002/elps.201300138] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Bowei Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai; P. R. China
| | | | - Lingxin Chen
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai; P. R. China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; P. R. China
| |
Collapse
|
65
|
Li P, Grigorenko E, Funari V, Enright E, Zhang H, Kim HL. Evaluation of a high-throughput, microfluidics platform for performing TaqMan™ qPCR using formalin-fixed paraffin-embedded tumors. Bioanalysis 2013; 5:1623-33. [PMID: 23822126 PMCID: PMC3816109 DOI: 10.4155/bio.13.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Compared with the standard qPCR, nanoliter-scale qPCR can use smaller quantities of RNA and increase throughput. The TaqMan™ OpenArray® NT Cycler System was assessed for use with degraded RNA from formalin-fixed paraffin-embedded (FFPE) tumors. RESULTS Expression of candidate prognostic genes was quantified using the OpenArray platform and matching fresh frozen and FFPE patient renal cell carcinomas. Reverse transcription, with gene-specific reverse transcription and preamplification, optimized the percentage of detectable transcripts. When using high quality RNA from fresh frozen tumors, the OpenArray platform identified 30 prognostic genes. However, when using RNA from FFPE tumors, only 13 prognostic genes were identified, but this increased to 33 with addition of preamplification. CONCLUSION The OpenArray platform can be optimized to quantify gene expressions from FFPE tumors.
Collapse
Affiliation(s)
- Ping Li
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Vince Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Enright
- Life Technologies, Beverly, MA, USA and San Diego, CA, USA
| | - Hao Zhang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
66
|
Liu H, Li X, Crooks RM. Paper-Based SlipPAD for High-Throughput Chemical Sensing. Anal Chem 2013; 85:4263-7. [DOI: 10.1021/ac4008623] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Liu
- Department of Chemistry
and Biochemistry, The University of Texas at Austin, 105 East 24th Street,
Stop A5300, Austin, Texas 78712-1224, United States
| | - Xiang Li
- Department of Chemistry
and Biochemistry, The University of Texas at Austin, 105 East 24th Street,
Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry
and Biochemistry, The University of Texas at Austin, 105 East 24th Street,
Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
67
|
Schneider T, Kreutz J, Chiu DT. The potential impact of droplet microfluidics in biology. Anal Chem 2013; 85:3476-82. [PMID: 23495853 DOI: 10.1021/ac400257c] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Droplet microfluidics, which involves micrometer-sized emulsion droplets on a microfabricated platform, is an active research endeavor that evolved out of the larger field of microfluidics. Recently, this subfield of microfluidics has started to attract greater interest because researchers have been able to demonstrate applications of droplets as miniaturized laboratories for biological measurements. This perspective explores the recent developments and the potential future biological applications of droplet microfluidics.
Collapse
Affiliation(s)
- Thomas Schneider
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
68
|
Sun B, Shen F, McCalla SE, Kreutz JE, Karymov MA, Ismagilov RF. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal Chem 2013; 85:1540-6. [PMID: 23324061 DOI: 10.1021/ac3037206] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we used a SlipChip microfluidic device to evaluate the performance of digital reverse transcription-loop-mediated isothermal amplification (dRT-LAMP) for quantification of HIV viral RNA. Tests are needed for monitoring HIV viral load to control the emergence of drug resistance and to diagnose acute HIV infections. In resource-limited settings, in vitro measurement of HIV viral load in a simple format is especially needed, and single-molecule counting using a digital format could provide a potential solution. We showed here that when one-step dRT-LAMP is used for quantification of HIV RNA, the digital count is lower than expected and is limited by the yield of desired cDNA. We were able to overcome the limitations by developing a microfluidic protocol to manipulate many single molecules in parallel through a two-step digital process. In the first step we compartmentalize the individual RNA molecules (based on Poisson statistics) and perform reverse transcription on each RNA molecule independently to produce DNA. In the second step, we perform the LAMP amplification on all individual DNA molecules in parallel. Using this new protocol, we increased the absolute efficiency (the ratio between the concentration calculated from the actual count and the expected concentration) of dRT-LAMP 10-fold, from ∼2% to ∼23%, by (i) using a more efficient reverse transcriptase, (ii) introducing RNase H to break up the DNA:RNA hybrid, and (iii) adding only the BIP primer during the RT step. We also used this two-step method to quantify HIV RNA purified from four patient samples and found that in some cases, the quantification results were highly sensitive to the sequence of the patient's HIV RNA. We learned the following three lessons from this work: (i) digital amplification technologies, including dLAMP and dPCR, may give adequate dilution curves and yet have low efficiency, thereby providing quantification values that underestimate the true concentration. Careful validation is essential before a method is considered to provide absolute quantification; (ii) the sensitivity of dLAMP to the sequence of the target nucleic acid necessitates additional validation with patient samples carrying the full spectrum of mutations; (iii) for multistep digital amplification chemistries, such as a combination of reverse transcription with amplification, microfluidic devices may be used to decouple these steps from one another and to perform them under different, individually optimized conditions for improved efficiency.
Collapse
Affiliation(s)
- Bing Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | | | | | | | |
Collapse
|
69
|
Kim YT, Choi JY, Chen Y, Seo TS. Integrated slidable and valveless polymerase chain reaction–capillary electrophoresis microdevice for pathogen detection. RSC Adv 2013. [DOI: 10.1039/c3ra41402g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
70
|
Choi JY, Kim YT, Byun JY, Ahn J, Chung S, Gweon DG, Kim MG, Seo TS. An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing. LAB ON A CHIP 2012; 12:5146-5154. [PMID: 23037501 DOI: 10.1039/c2lc40878c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An integrated allele-specific polymerase chain reaction (AS PCR) and microarray chip has been developed for multiplex single nucleotide polymorphism (SNP) typing on a portable genetic analyzer instrumentation. We applied the integrated PCR-microarray system for on-site Hanwoo (Korean indigenous beef cattle) identification. Eleven sets of primers were designed, among which ten sets of primers targeted ten SNP loci to discriminate Hanwoo from the imported beef cattle and one primer set was used as a positive PCR control. The AS PCR for multiplex SNP typing was conducted on a glass-based microchip consisting of four layers: a microchannel plate for microfluidic control, a Pt-electrode plate for a resistance temperature detector (RTD), a poly(dimethylsiloxane) (PDMS) membrane and a manifold glass for micropump and microvalve function. The resultant AS PCR products were mixed with a hybridization buffer in a micromixer channel through the micropumping operation, and then the microarray assay was performed in the downstream process. Eleven duplicate probes were spotted in a glass slide, which was connected at the end of the micromixer channel unit. When the mixed solution was injected into the disposable microarray chip, pneumatically actuated micropumping was executed to speed up the hybridization process by inducing the convective flow. The fluorescence signals on each spot were monitored by a miniaturized fluorescence scanner, and the Hanwoo was verified by detecting the number of fluorescent spots with three or fewer among eleven. An integrated portable PCR-microarray genetic analysis microsystem was first demonstrated for rapid, accurate, and on-site multiplex SNP typing to differentiate animal species.
Collapse
Affiliation(s)
- Jong Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Program), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhu Q, Gao Y, Yu B, Ren H, Qiu L, Han S, Jin W, Jin Q, Mu Y. Self-priming compartmentalization digital LAMP for point-of-care. LAB ON A CHIP 2012; 12:4755-63. [PMID: 22986619 DOI: 10.1039/c2lc40774d] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Digital nucleic acid amplification provides unprecedented opportunities for absolute nucleic acid quantification by counting of single molecules. This technique is useful for molecular genetic analysis in cancer, stem cell, bacterial, non-invasive prenatal diagnosis in which many biologists are interested. This paper describes a self-priming compartmentalization (SPC) microfluidic chip platform for performing digital loop-mediated amplification (LAMP). The energy for the pumping is pre-stored in the degassed bulk PDMS by exploiting the high gas solubility of PDMS; therefore, no additional structures other than channels and reservoirs are required. The sample and oil are sequentially sucked into the channels, and the pressure difference of gas dissolved in PDMS allows sample self-compartmentalization without the need for further chip manipulation such as with pneumatic microvalves and control systems, and so on. The SPC digital LAMP chip can be used like a 384-well plate, so, the world-to-chip fluidic interconnections are avoided. The microfluidic chip contains 4 separate panels, each panel contains 1200 independent 6 nL chambers and can be used to detect 4 samples simultaneously. Digital LAMP on the microfluidic chip was tested quantitatively by using β-actin DNA from humans. The self-priming compartmentalization behavior is roughly predictable using a two-dimensional model. The uniformity of compartmentalization was analyzed by fluorescent intensity and fraction of volume. The results showed that the feasibility and flexibility of the microfluidic chip platform for amplifying single nucleic acid molecules in different chambers made by diluting and distributing sample solutions. The SPC chip has the potential to meet the requirements of a general laboratory: power-free, valve-free, operating at isothermal temperature, inexpensive, sensitive, economizing labour time and reagents. The disposable analytical devices with appropriate air-tight packaging should be useful for point-of-care, and enabling it to become one of the common tools for biology research, especially, in point-of-care testing.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Funes-Huacca M, Wu A, Szepesvari E, Rajendran P, Kwan-Wong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Portable self-contained cultures for phage and bacteria made of paper and tape. LAB ON A CHIP 2012; 12:4269-78. [PMID: 22895550 DOI: 10.1039/c2lc40391a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we demonstrate that a functional, portable device for the growth of bacteria or amplification of bacteriophage can be created using simple materials. These devices are comprised of packing tape, sheets of paper patterned by hydrophobic printer ink, and a polydimethyl siloxane (PDMS) membrane, which is selectively permeable to oxygen but non-permeable to water. These devices supply bacteria with oxygen and prevent the evaporation of media for a period over 48 h. The division time of E. coli and the amplification of the phage M13 in this device are similar to the rates measured on agar plates and in shaking cultures. The growth of bacteria with a fluorescent mCherry reporter can be quantified using a flatbed scanner or a cell phone camera. Permeating devices with commercial viability dye (PrestoBlue) can be used to detect low copy number of E. coli (1-10 CFU in 100 μL) and visualize microorganisms in environmental samples. The platform, equipped with bacteria that carry inducible mCherry reporter could also be used to quantify the concentration of the inducer (here, arabinose). Identical culture platforms can, potentially, be used to quantify the induction of gene expression by an engineered phage or by synthetic transcriptional regulators that respond to clinically relevant molecules. The majority of measurement and fabrication procedures presented in this report have been replicated by low-skilled personnel (high-school students) in a low-resource environment (high-school classroom). The fabrication and performance of the device have also been tested in a low-resource laboratory setting by researchers in Nairobi, Kenya. Accordingly, this platform can be used as both an educational tool and as a diagnostic tool in low-resource environments worldwide.
Collapse
|
73
|
Zhao X, Dong T. Multifunctional sample preparation kit and on-chip quantitative nucleic acid sequence-based amplification tests for microbial detection. Anal Chem 2012; 84:8541-8. [PMID: 22985130 DOI: 10.1021/ac3020609] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study reports a quantitative nucleic acid sequence-based amplification (Q-NASBA) microfluidic platform composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip for environmental investigations on aquatic microorganisms. This low-cost and highly efficient sampling module, having seamless connection with the subsequent steps of sample preparation and quantitative detection, is designed for the collection of microbial communities from aquatic environments. Eight kinds of commercial membrane filters are relevantly analyzed using Saccharomyces cerevisiae, Escherichia coli, and Staphylococcus aureus as model microorganisms. After the microorganisms are concentrated on the membrane filters, the retentate can be easily conserved in a transport medium (TM) buffer and sent to a remote laboratory. A Q-NASBA-oriented sample preparation cassette is originally designed to extract DNA/RNA molecules directly from the captured cells on the membranes. Sequentially, the extract is analyzed within Q-NASBA chips that are compatible with common microplate readers in laboratories. Particularly, a novel analytical algorithmic method is developed for simple but robust on-chip Q-NASBA assays. The reported multifunctional microfluidic system could detect a few microorganisms quantitatively and simultaneously. Further research should be conducted to simplify and standardize ecological investigations on aquatic environments.
Collapse
Affiliation(s)
- Xinyan Zhao
- (IMST) Department of Micro and Nano Systems Technology, Faculty of Engineering and Marine Sciences, (HiVE) Vestfold University College, Norway
| | | |
Collapse
|
74
|
Taly V, Pekin D, Abed AE, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012; 18:405-16. [DOI: 10.1016/j.molmed.2012.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
|
75
|
Choi JY, Kim YT, Ahn J, Kim KS, Gweon DG, Seo TS. Integrated allele-specific polymerase chain reaction-capillary electrophoresis microdevice for single nucleotide polymorphism genotyping. Biosens Bioelectron 2012; 35:327-334. [PMID: 22464916 DOI: 10.1016/j.bios.2012.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/09/2012] [Accepted: 03/08/2012] [Indexed: 11/30/2022]
Abstract
An integrated allele-specific (AS) polymerase chain reaction (PCR) and capillary electrophoresis (CE) microdevice has been developed for multiplex single nucleotide polymorphism (SNP) genotyping on a portable instrumentation, which was applied for on-site identification of HANWOO (Korean indigenous beef cattle). Twelve sets of primers were designed for targeting beef cattle's eleven SNP loci for HANWOO verification and one primer set for a positive PCR control, and the success rate for identification of HANWOO was demonstrated statistically. The AS PCR and CE separation for multiplex SNP typing was carried out on a glass-based microchip consisting of four layers: a microchannel plate for microfluidic control, a Pt-electrode plate for a resistance temperature detector (RTD), a poly(dimethylsiloxane) (PDMS) membrane and a manifold glass for microvalve function. The operation of the sample loading, AS PCR, microvalve, and CE on a chip was automated with a portable genetic analyzer, and the laser-induced fluorescence detection was performed on a miniaturized fluorescence detector. The blind samples were correctly identified as a HANWOO by showing one or two amplicon peaks in the electropherogram, while the imported beef cattle revealed more than five peaks. Our genetic analysis platform provides rapid, accurate, and on-site multiplex SNP typing.
Collapse
Affiliation(s)
- Jong Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Program) and KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program) and KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jinwoo Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Dahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Kwan Suk Kim
- College of Agriculture, Life and Environment Sciences, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Dae-Gab Gweon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Dahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 Program) and KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
76
|
Angione SL, Chauhan A, Tripathi A. Real-Time Droplet DNA Amplification with a New Tablet Platform. Anal Chem 2012; 84:2654-61. [DOI: 10.1021/ac202532a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Stephanie L. Angione
- Center for Biomedical Engineering,
School of Engineering and Division of Biology and Medicine, Brown University, Providence, Rhode Island, United
States
| | - Anuj Chauhan
- Department of Chemical
Engineering, University of Florida, Gainesville,
Florida, United
States
| | - Anubhav Tripathi
- Center for Biomedical Engineering,
School of Engineering and Division of Biology and Medicine, Brown University, Providence, Rhode Island, United
States
| |
Collapse
|
77
|
Pompano RR, Platt CE, Karymov MA, Ismagilov RF. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1931-41. [PMID: 22233156 PMCID: PMC3271727 DOI: 10.1021/la204399m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This Article describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A stepwise change in capillary force was initiated on a hydrophobic SlipChip by slipping a shallow channel containing an aqueous droplet into contact with a slightly deeper channel filled with immiscible oil. This action induced spontaneous flow of the droplet into the deeper channel. A model predicting the rate of spontaneous flow was developed on the basis of the balance of net capillary force with viscous flow resistance, using as inputs the liquid-liquid surface tension, the advancing and receding contact angles at the three-phase aqueous-oil-surface contact line, and the geometry of the devices. The impact of contact angle hysteresis, the presence or absence of a lubricating oil layer, and adsorption of surface-active compounds at liquid-liquid or liquid-solid interfaces were quantified. Two regimes of flow spanning a 10(4)-fold range of flow rates were obtained and modeled quantitatively, with faster (mm/s) flow obtained when oil could escape through connected channels as it was displaced by flowing aqueous solution, and slower (micrometer/s) flow obtained when oil escape was mostly restricted to a micrometer-scale gap between the plates of the SlipChip ("dead-end flow"). Rupture of the lubricating oil layer (reminiscent of a Cassie-Wenzel transition) was proposed as a cause of discrepancy between the model and the experiment. Both dilute salt solutions and complex biological solutions such as human blood plasma could be flowed using this approach. We anticipate that flow driven by capillary pressure will be useful for the design and operation of flow in microfluidic applications that do not require external power, valves, or pumps, including on SlipChip and other droplet- or plug-based microfluidic devices. In addition, this approach may be used as a sensitive method of evaluating interfacial tension, contact angles, and wetting phenomena on chip.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | | | |
Collapse
|
78
|
Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal Chem 2012; 84:516-40. [PMID: 21967743 PMCID: PMC3264799 DOI: 10.1021/ac202611x] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Phillip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph Balowski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lila Farrag
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
79
|
Shen F, Sun B, Kreutz JE, Davydova EK, Du W, Reddy PL, Joseph LJ, Ismagilov RF. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc 2011; 133:17705-12. [PMID: 21995644 PMCID: PMC3216675 DOI: 10.1021/ja2060116] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, we are working toward a problem of great importance to global health: determination of viral HIV and hepatitis C (HCV) loads under point-of-care and resource limited settings. While antiretroviral treatments are becoming widely available, viral load must be evaluated at regular intervals to prevent the spread of drug resistance and requires a quantitative measurement of RNA concentration over a wide dynamic range (from 50 up to 10(6) molecules/mL for HIV and up to 10(8) molecules/mL for HCV). "Digital" single molecule measurements are attractive for quantification, but the dynamic range of such systems is typically limited or requires excessive numbers of compartments. Here we designed and tested two microfluidic rotational SlipChips to perform multivolume digital RT-PCR (MV digital RT-PCR) experiments with large and tunable dynamic range. These designs were characterized using synthetic control RNA and validated with HIV viral RNA and HCV control viral RNA. The first design contained 160 wells of each of four volumes (125 nL, 25 nL, 5 nL, and 1 nL) to achieve a dynamic range of 5.2 × 10(2) to 4.0 × 10(6) molecules/mL at 3-fold resolution. The second design tested the flexibility of this approach, and further expanded it to allow for multiplexing while maintaining a large dynamic range by adding additional wells with volumes of 0.2 nL and 625 nL and dividing the SlipChip into five regions to analyze five samples each at a dynamic range of 1.8 × 10(3) to 1.2 × 10(7) molecules/mL at 3-fold resolution. No evidence of cross-contamination was observed. The multiplexed SlipChip can be used to analyze a single sample at a dynamic range of 1.7 × 10(2) to 2.0 × 10(7) molecules/mL at 3-fold resolution with limit of detection of 40 molecules/mL. HIV viral RNA purified from clinical samples were tested on the SlipChip, and viral load results were self-consistent and in good agreement with results determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test. With further validation, this SlipChip should become useful to precisely quantify viral HIV and HCV RNA for high-performance diagnostics in resource-limited settings. These microfluidic designs should also be valuable for other diagnostic and research applications, including detecting rare cells and rare mutations, prenatal diagnostics, monitoring residual disease, and quantifying copy number variation and gene expression patterns. The theory for the design and analysis of multivolume digital PCR experiments is presented in other work by Kreutz et al.
Collapse
Affiliation(s)
- Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Bing Sun
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Jason E. Kreutz
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Elena K. Davydova
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Wenbin Du
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Poluru L. Reddy
- Department of Pathology, University of Chicago Medical Center, 5481 S. Maryland Ave, Chicago, IL 60637
| | - Loren J. Joseph
- Department of Pathology, University of Chicago Medical Center, 5481 S. Maryland Ave, Chicago, IL 60637
| | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| |
Collapse
|
80
|
Li Y, Guo SJ, Shao N, Tu S, Xu M, Ren ZR, Ling X, Wang GQ, Lin ZX, Tao SC. A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray. LAB ON A CHIP 2011; 11:3609-3618. [PMID: 21909519 DOI: 10.1039/c1lc20526a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Both basic research and clinical medicine have urgent demands for highly efficient strategies to simultaneously identify many different DNA sequences within a single tube. Effective and simultaneous amplification of multiple target sequences is a prerequisite for any successful multiple nucleic acid detection method. Multiplex PCR is one of the best choices for this purpose. However, due to the intrinsic interference and competition among primer pairs in the same tube, multiple rounds of highly empirical optimization procedures are usually required to establish a successful multiplex PCR reaction. To address this challenge, we report here a universal multiplex PCR strategy that is capable of over 100-plex amplification using a specially designed microarray in which hydrophilic microwells are patterned on a hydrophobic chip. On such an array, primer pairs tagged with a universal sequence are physically separated in individual hydrophilic microwells on an otherwise hydrophobic chip, enabling many unique PCR reactions to be proceeded simultaneously during the first step of the procedure. The PCR products are then isolated and further amplified from the universal sequences, producing a sufficient amount of material for analysis by conventional gel electrophoresis or DNA microarray technology. This strategy is abbreviated as "MPH&HPM" for "Multiplex PCR on a Hydrophobically and Hydrophilically Patterned Microarray". The feasibility of this method is first demonstrated by a multiplex PCR reaction for the simultaneous detection of eleven pneumonia-causing pathogens. Further, we demonstrate the power of this strategy with a highly successful 116-plex PCR reaction that required only little prior optimization. The effectiveness of the MPH&HPM strategy with clinical samples is then illustrated with the detection of deleted exons of the Duchenne Muscular Dystrophy (DMD) gene, the results are in excellent agreement with the clinical records. Because of its generality, simplicity, flexibility, specificity and capacity of more than 100-plex amplification, the MPH&HPM strategy should have broad applications in both laboratory research and clinical applications when multiplex nucleic acid analysis is required.
Collapse
Affiliation(s)
- Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Kreutz JE, Munson T, Huynh T, Shen F, Du W, Ismagilov RF. Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. Anal Chem 2011; 83:8158-68. [PMID: 21981344 PMCID: PMC3216679 DOI: 10.1021/ac201658s] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper presents a protocol using theoretical methods and free software to design and analyze multivolume digital PCR (MV digital PCR) devices; the theory and software are also applicable to design and analysis of dilution series in digital PCR. MV digital PCR minimizes the total number of wells required for "digital" (single molecule) measurements while maintaining high dynamic range and high resolution. In some examples, multivolume designs with fewer than 200 total wells are predicted to provide dynamic range with 5-fold resolution similar to that of single-volume designs requiring 12,000 wells. Mathematical techniques were utilized and expanded to maximize the information obtained from each experiment and to quantify performance of devices and were experimentally validated using the SlipChip platform. MV digital PCR was demonstrated to perform reliably, and results from wells of different volumes agreed with one another. No artifacts due to different surface-to-volume ratios were observed, and single molecule amplification in volumes ranging from 1 to 125 nL was self-consistent. The device presented here was designed to meet the testing requirements for measuring clinically relevant levels of HIV viral load at the point-of-care (in plasma, <500 molecules/mL to >1,000,000 molecules/mL), and the predicted resolution and dynamic range was experimentally validated using a control sequence of DNA. This approach simplifies digital PCR experiments, saves space, and thus enables multiplexing using separate areas for each sample on one chip, and facilitates the development of new high-performance diagnostic tools for resource-limited applications. The theory and software presented here are general and are applicable to designing and analyzing other digital analytical platforms including digital immunoassays and digital bacterial analysis. It is not limited to SlipChip and could also be useful for the design of systems on platforms including valve-based and droplet-based platforms. In a separate publication by Shen et al. (J. Am. Chem. Soc., 2011, DOI: 10.1021/ja2060116), this approach is used to design and test digital RT-PCR devices for quantifying RNA.
Collapse
Affiliation(s)
- Jason E. Kreutz
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929, East. 57th St., Chicago, Illinois 60637
| | - Todd Munson
- University of Chicago, Computation Institute, Chicago, IL 60637 USA and Argonne Natl Lab, Argonne, IL 60439 USA
| | - Toan Huynh
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929, East. 57th St., Chicago, Illinois 60637
| | - Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929, East. 57th St., Chicago, Illinois 60637
| | - Wenbin Du
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929, East. 57th St., Chicago, Illinois 60637
| | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929, East. 57th St., Chicago, Illinois 60637
| |
Collapse
|
82
|
Ceylan Koydemir H, Külah H, Özgen C, Alp A, Hasçelik G. MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosens Bioelectron 2011; 29:1-12. [DOI: 10.1016/j.bios.2011.07.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/18/2011] [Accepted: 07/29/2011] [Indexed: 01/28/2023]
|
83
|
Petrik J, Coste J, Fournier-Wirth C. Advances in transfusion medicine in the first decade of the 21st century: Advances in miniaturized technologies. Transfus Apher Sci 2011; 45:45-51. [PMID: 21715229 DOI: 10.1016/j.transci.2011.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several miniaturized high throughput technologies have been developed in the last decade, primarily to study genomic structures and gene expression patterns under various conditions. At the same time, the microarrays, biosensors, integrated microfluidic lab-on-a-chip devices, next generation sequencing or digital PCR are gradually finding their diagnostic applications, although their suitability for specialised diagnostic fields has still to be assessed. In this review we discuss the potential applications of the new technologies to blood testing.
Collapse
Affiliation(s)
- J Petrik
- Scottish National Blood Transfusion Service, Edinburgh, UK.
| | | | | |
Collapse
|
84
|
Vinuselvi P, Park S, Kim M, Park JM, Kim T, Lee SK. Microfluidic technologies for synthetic biology. Int J Mol Sci 2011; 12:3576-93. [PMID: 21747695 PMCID: PMC3131579 DOI: 10.3390/ijms12063576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 12/24/2022] Open
Abstract
Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.
Collapse
Affiliation(s)
- Parisutham Vinuselvi
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Ulsan 689–798, Korea; E-Mails: (P.V.); (J.M.P.)
| | - Seongyong Park
- School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Ulsan 689–798, Korea; E-Mails: (S.P.); (M.K.)
| | - Minseok Kim
- School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Ulsan 689–798, Korea; E-Mails: (S.P.); (M.K.)
| | - Jung Min Park
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Ulsan 689–798, Korea; E-Mails: (P.V.); (J.M.P.)
| | - Taesung Kim
- School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Ulsan 689–798, Korea; E-Mails: (S.P.); (M.K.)
| | - Sung Kuk Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Ulsan 689–798, Korea; E-Mails: (P.V.); (J.M.P.)
| |
Collapse
|
85
|
Shen F, Davydova EK, Du W, Kreutz JE, Piepenburg O, Ismagilov RF. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem 2011; 83:3533-40. [PMID: 21476587 PMCID: PMC3101872 DOI: 10.1021/ac200247e] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader range of applications.
Collapse
Affiliation(s)
- Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57 St, Chicago, IL 60637
| | - Elena K. Davydova
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57 St, Chicago, IL 60637
| | - Wenbin Du
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57 St, Chicago, IL 60637
| | - Jason E. Kreutz
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57 St, Chicago, IL 60637
| | | | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57 St, Chicago, IL 60637
| |
Collapse
|
86
|
Liu C, Geva E, Mauk M, Qiu X, Abrams WR, Malamud D, Curtis K, Owen SM, Bau HH. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 2011; 136:2069-76. [PMID: 21455542 DOI: 10.1039/c1an00007a] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, point of care, inexpensive, disposable cassette for the detection of nucleic acids extracted from pathogens was designed, constructed, and tested. The cassette utilizes a single reaction chamber for isothermal amplification of nucleic acids. The chamber is equipped with an integrated, flow-through, Flinders Technology Associates (Whatman FTA®) membrane for the isolation, concentration, and purification of DNA and/or RNA. The nucleic acids captured by the membrane are used directly as templates for amplification without elution, thus simplifying the cassette's flow control. The FTA membrane also serves another critical role-enabling the removal of inhibitors that dramatically reduce detection sensitivity. Thermal control is provided with a thin film heater external to the cassette. The amplification process was monitored in real time with a portable, compact fluorescent reader. The utility of the integrated, single-chamber cassette was demonstrated by detecting the presence of HIV-1 in oral fluids. The HIV RNA was reverse transcribed and subjected to loop-mediated, isothermal amplification (LAMP). A detection limit of less than 10 HIV particles was demonstrated. The cassette is particularly suitable for resource poor regions, where funds and trained personnel are in short supply. The cassette can be readily modified to detect nucleic acids associated with other pathogens borne in saliva, urine, and other body fluids as well as in water and food.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, 19104-6315, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Pompano RR, Liu W, Du W, Ismagilov RF. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:59-81. [PMID: 21370983 DOI: 10.1146/annurev.anchem.012809.102303] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spatially defined arrays of droplets differ from bulk emulsions in that droplets in arrays can be indexed on the basis of one or more spatial variables to enable identification, monitoring, and addressability of individual droplets. Spatial indexing is critical in experiments with hundreds to millions of unique compartmentalized microscale processes--for example, in applications such as digital measurements of rare events in a large sample, high-throughput time-lapse studies of the contents of individual droplets, and controlled droplet-droplet interactions. This review describes approaches for spatially organizing and manipulating droplets in one-, two-, and three-dimensional structured arrays, including aspiration, laminar flow, droplet traps, the SlipChip, self-assembly, and optical or electrical fields. This review also presents techniques to analyze droplets in arrays and applications of spatially defined arrays, including time-lapse studies of chemical, enzymatic, and cellular processes, as well as further opportunities in chemical, biological, and engineering sciences, including perturbation/response experiments and personal and point-of-care diagnostics.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
89
|
Bithi SS, Vanapalli SA. Behavior of a train of droplets in a fluidic network with hydrodynamic traps. BIOMICROFLUIDICS 2010; 4:44110. [PMID: 21264057 PMCID: PMC3025453 DOI: 10.1063/1.3523053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/28/2010] [Indexed: 05/10/2023]
Abstract
The behavior of a droplet train in a microfluidic network with hydrodynamic traps in which the hydrodynamic resistive properties of the network are varied is investigated. The flow resistance of the network and the individual droplets guide the movement of droplets in the network. In general, the flow behavior transitions from the droplets being immobilized in the hydrodynamic traps at low flow rates to breaking up and squeezing of the droplets at higher flow rates. A state diagram characterizing these dynamics is presented. A simple hydrodynamic circuit model that treats droplets as fluidic resistors is discussed, which predicts the experimentally observed flow rates for droplet trapping in the network. This study should enable the rational design of microfuidic devices for passive storage of nanoliter-scale drops.
Collapse
Affiliation(s)
- Swastika S Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | | |
Collapse
|
90
|
Jensen EC, Zeng Y, Kim J, Mathies RA. Microvalve Enabled Digital Microfluidic Systems for High Performance Biochemical and Genetic Analysis. ACTA ACUST UNITED AC 2010; 15:455-463. [PMID: 21218162 DOI: 10.1016/j.jala.2010.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microfluidic devices offer unparalleled capability for digital microfluidic automation of sample processing and complex assay protocols in medical diagnostic and research applications. In our own work, monolithic membrane valves have enabled the creation of two platforms that precisely manipulate discrete, nanoliter-scale volumes of sample. The digital microfluidic Automaton uses two-dimensional microvalve arrays to combinatorially process nanoliter-scale sample volumes. This programmable system enables rapid integration of diverse assay protocols using a universal processing architecture. Microfabricated emulsion generator array (MEGA) devices integrate actively controlled 3-microvalve pumps to enable on-demand generation of uniform droplets for statistical encapsulation of microbeads and cells. A MEGA device containing 96 channels confers the capability of generating up to 3.4 × 10(6) nanoliter-volume droplets per hour for ultrahigh-throughput detection of rare mutations in a vast background of normal genotypes. These novel digital microfluidic platforms offer significant enhancements in throughput, sensitivity, and programmability for automated sample processing and analysis.
Collapse
Affiliation(s)
- Erik C Jensen
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | | | | | | |
Collapse
|
91
|
Abstract
This paper describes a SlipChip to perform digital PCR in a very simple and inexpensive format. The fluidic path for introducing the sample combined with the PCR mixture was formed using elongated wells in the two plates of the SlipChip designed to overlap during sample loading. This fluidic path was broken up by simple slipping of the two plates that removed the overlap among wells and brought each well in contact with a reservoir preloaded with oil to generate 1280 reaction compartments (2.6 nL each) simultaneously. After thermal cycling, end-point fluorescence intensity was used to detect the presence of nucleic acid. Digital PCR on the SlipChip was tested quantitatively by using Staphylococcus aureus genomic DNA. As the concentration of the template DNA in the reaction mixture was diluted, the fraction of positive wells decreased as expected from the statistical analysis. No cross-contamination was observed during the experiments. At the extremes of the dynamic range of digital PCR the standard confidence interval determined using a normal approximation of the binomial distribution is not satisfactory. Therefore, statistical analysis based on the score method was used to establish these confidence intervals. The SlipChip provides a simple strategy to count nucleic acids by using PCR. It may find applications in research applications such as single cell analysis, prenatal diagnostics, and point-of-care diagnostics. SlipChip would become valuable for diagnostics, including applications in resource-limited areas after integration with isothermal nucleic acid amplification technologies and visual readout.
Collapse
|
92
|
Affiliation(s)
- Dario Lombardi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - Petra S Dittrich
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| |
Collapse
|
93
|
Lidstrom ME, Konopka MC. The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 2010; 6:705-12. [PMID: 20852608 DOI: 10.1038/nchembio.436] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the ability to analyze individual cells in microbial populations expands, it is becoming apparent that isogenic microbial populations contain substantial cell-to-cell differences in physiological parameters such as growth rate, resistance to stress and regulatory circuit output. Subpopulations exist that are manyfold different in these parameters from the population average, and these differences arise by stochastic processes. Such differences can dramatically affect the response of cells to perturbations, especially stress, which in turn dictates overall population response. Defining the role of cell-to-cell heterogeneity in population behavior is important for understanding population-based research problems, including those involving infecting populations, normal flora and bacterial populations in water and soils. Emerging technological breakthroughs are poised to transform single-cell analysis and are critical for the next phase of insights into physiological heterogeneity in the near future. These include technologies for multiparameter analysis of live cells, with downstream processing and analysis.
Collapse
Affiliation(s)
- Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
94
|
|
95
|
Li L, Karymov MA, Nichols KP, Ismagilov RF. Dead-end filling of SlipChip evaluated theoretically and experimentally as a function of the surface chemistry and the gap size between the plates for lubricated and dry SlipChips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12465-71. [PMID: 20575548 PMCID: PMC2923639 DOI: 10.1021/la101460z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we describe a method to load a microfluidic device, the SlipChip, via dead-end filling. In dead-end filling, the lubricating fluid that fills the SlipChip after assembly is dissipated through the gap between the two plates of the SlipChip instead of flowing through an outlet at the end of the fluidic path. We describe a theoretical model and associated predictions of dead-end filling that takes into consideration the interfacial properties and the gap size between plates of SlipChips. In this method, filling is controlled by the balance of pressures: for filling to occur without leaking, the inlet pressure must be greater than the capillary pressure but less than the maximum sealing pressure. We evaluated our prediction with experiments, and our empirical results agreed well with theory. Internal reservoirs were designed to prevent evaporation during loading of multiple solutions. Solutions were first loaded one at a time into inlet reservoirs; by applying a single pressure source to the device, we were able to fill multiple fluidic paths simultaneously. We used this method to fill both lubricated and dry SlipChips. Dry-loaded SlipChips were fabricated from fluorinated ethylene propylene (FEP) by using hot embossing techniques, and were successfully filled and slipped to perform a simple chemical reaction. The SlipChip design was also modified to enable ease of filling by using multiple access holes to the inlet reservoir.
Collapse
|
96
|
|