51
|
Jurček O, Chattopadhyay S, Kalenius E, Linnanto JM, Kiesilä A, Jurček P, Radiměřský P, Marek R. Unsymmetric Chiral Ligands for Large Metallo-Macrocycles: Selectivity of Orientational Self-Sorting. Angew Chem Int Ed Engl 2024; 63:e202409134. [PMID: 38845398 DOI: 10.1002/anie.202409134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 08/02/2024]
Abstract
Nature uses various chiral and unsymmetric building blocks to form substantial and complex supramolecular assemblies. In contrast, the majority of organic ligands used in metallosupramolecular chemistry are symmetric and achiral. Here we extend the group of unsymmetric chiral bile acids used as a scaffold for organic bispyridyl ligands by employing chenodeoxycholic acid (CDCA), an epimer of the previously used ursodeoxycholic acid (UDCA). The epimerism, flexibility, and bulkiness of the ligands leads to large structural differences in coordination products upon reaction with Pd(NO3)2. The UDCA-bispyridyl ligand self-assembles quantitatively into a single crown-like Pd3L6 complex, whereas the CDCA ligand provides a mixture of coordination complexes of general formula PdnL2n, i.e., Pd2L4, Pd3L6, Pd4L8, Pd5L10, and even Pd6L12 containing an impressive 120 chiral centers. The coordination products were studied by a combination of analytical methods, with ion-mobility mass spectrometry (IM-MS) providing valuable details on their structure and allowed an effective separation of m/z 1461 to individual signals according to the arrival time distribution, thereby revealing four different ions of [Pd3L6(NO3)3]3+, [Pd4L8(NO3)4]4+, [Pd5L10(NO3)5]5+, and [Pd6L12(NO3)6]6+. The structures of all the complexes were modelled using DFT calculations. Finally, the challenges and conclusions in determining the specific structural identity of these unsymmetric species are discussed.
Collapse
Affiliation(s)
- Ondřej Jurček
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-61200, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Subhasis Chattopadhyay
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Elina Kalenius
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Juha M Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Street 1, 50411, Tartu, Estonia
| | - Anniina Kiesilä
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Pia Jurček
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Petr Radiměřský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Radek Marek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| |
Collapse
|
52
|
Ross DH, Bredeweg EL, Eder JG, Orton DJ, Burnet MC, Kyle JE, Nakayasu ES, Zheng X. A deep learning-guided automated workflow in LipidOz for detailed characterization of fungal fatty acid unsaturation by ozonolysis. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5078. [PMID: 39132905 DOI: 10.1002/jms.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Understanding fungal lipid biology and metabolism is critical for antifungal target discovery as lipids play central roles in cellular processes. Nuances in lipid structural differences can significantly impact their functions, making it necessary to characterize lipids in detail to understand their roles in these complex systems. In particular, lipid double bond (DB) locations are an important component of lipid structure that can only be determined using a few specialized analytical techniques. Ozone-induced dissociation mass spectrometry (OzID-MS) is one such technique that uses ozone to break lipid DBs, producing pairs of characteristic fragments that allow the determination of DB positions. In this work, we apply OzID-MS and LipidOz software to analyze the complex lipids of Saccharomyces cerevisiae yeast strains transformed with different fatty acid desaturases from Histoplasma capsulatum to determine the specific unsaturated lipids produced. The automated data analysis in LipidOz made the determination of DB positions from this large dataset more practical, but manual verification for all targets was still time-consuming. The DL model reduces manual involvement in data analysis, but since it was trained using mammalian lipid extracts, the prediction accuracy on yeast-derived data was reduced. We addressed both shortcomings by retraining the DL model to act as a pre-filter to prioritize targets for automated analysis, providing confident manually verified results but requiring less computational time and manual effort. Our workflow resulted in the determination of detailed DB positions and enzymatic specificity.
Collapse
Affiliation(s)
- Dylan H Ross
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Erin L Bredeweg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Josie G Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Meagan C Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
53
|
Stow SM, Gibbons BC, Rorrer Iii LC, Royer L, Glaskin RS, Slysz GW, Kurulugama RT, Fjeldsted JC, DeBord D, Bilbao A. Exploring Ion Mobility Mass Spectrometry Data File Conversions to Leverage Existing Tools and Enable New Workflows. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1991-2001. [PMID: 39056469 DOI: 10.1021/jasms.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ion mobility (IM) is often combined with LC-MS experiments to provide an additional dimension of separation for complex sample analysis. While highly complex samples are better characterized by the full dimensionality of LC-IM-MS experiments to uncover new information, downstream data analysis workflows are often not equipped to properly mine the additional IM dimension. For many samples the data acquisition benefits of including IM separations are all that is necessary to uncover sample information and the full dimensionality of the data is not required for data analysis. Postacquisition reduction and adaptation of the dimensions of LC-IM-MS and IM-MS experiments into an LC-MS format opens the possibility to use a plethora of existing software tools. In this work, we developed data file conversion tools to reduce the complexity of IM data analysis. Three data file transformations are introduced in the PNNL PreProcessor software: (1) mapping the IM axis to the LC axis for IM-MS data, (2) converting the drift time vs m/z space to CCS/z vs m/z space, and (3) transforming All Ions IM/MS mobility aligned fragmentation data to a standard LC-MS DDA data file format. These new data file conversions are demonstrated with corresponding lipidomics and proteomics workflows that leverage existing LC-MS data analysis software to highlight the benefits of the data transformations.
Collapse
Affiliation(s)
- Sarah M Stow
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Bryson C Gibbons
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lauren Royer
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | | | - Gordon W Slysz
- Agilent Technologies, Santa Clara, California 95051, United States
| | | | - John C Fjeldsted
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Daniel DeBord
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Aivett Bilbao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
54
|
Blakley B, Zlibut E, Gupta RM, May JC, McLean JA. Direct Enantiomer Differentiation of Drugs and Drug-Like Compounds via Noncovalent Copper-Amino Acid Complexation and Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:12892-12900. [PMID: 39051631 PMCID: PMC11307251 DOI: 10.1021/acs.analchem.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Drug enantiomers can possess vastly different pharmacological properties, yet they are identical in their chemical composition and structural connectivity. Thus, resolving enantiomers poses a great challenge in the field of separation science. Enantiomer separations necessitate interaction of the analyte with a chiral environment─in mass spectrometry-based analysis, a common approach is through a three-point interaction with a chiral selector commonly introduced during sample preparation. In select cases, the structural difference imparted through noncovalent complexation results in enantiomer-specific structural differences, facilitating measurement using a structurally selective analytical technique such as ion mobility-mass spectrometry (IM-MS). In this work, we investigate the direct IM-MS differentiation of chiral drug compounds using mononuclear copper complexes incorporating an amino acid chiral selector. A panel of 20 chiral drugs and drug-like compounds were investigated for separation, and four l-amino acids (l-histidine, l-tryptophan, l-proline, and l-tyrosine) were evaluated as chiral selectors (CS) to provide the chiral environment necessary for differentiation. Enantiomer differentiation was achieved for four chiral molecule pairs (R/S-thalidomide, R/S-baclofen, R/S-metoprolol, and d/l-panthenol) with two-peak resolution (Rp-p) values ranging from 0.7 (>10% valley) to 1.5 (baseline separation). Calibration curves relating IM peak areas to enantiomeric concentrations enabled enantiomeric excess quantitation of racemic thalidomide and metoprolol with residuals of 5.7 and 2.5%, respectively. Theoretical models suggest that CuII and l-histidine complexation around the analyte chiral center is important for gas-phase stereoselectivity. This study demonstrates the potential of combining enantioselective noncovalent copper complexation with structurally selective IM-MS for differentiating chiral drugs and drug-like compounds.
Collapse
Affiliation(s)
- Benjamin
K. Blakley
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| | | | - Rashi M. Gupta
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| | - Jody C. May
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| | - John A. McLean
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| |
Collapse
|
55
|
Habibi SC, Bradford VR, Baird SC, Lucas SW, Chouinard CD, Nagy G. Development of a cyclic ion mobility spectrometry-mass spectrometry-based collision cross-section database of permethylated human milk oligosaccharides. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5076. [PMID: 39041358 PMCID: PMC11283840 DOI: 10.1002/jms.5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Human milk oligosaccharides (HMOs) are an important class of biomolecules responsible for the healthy development of the brain-gut axis of infants. Unfortunately, their accurate characterization is largely precluded due to a variety of reasons - there are over 200 possible HMO structures whereas only 10s of these are available as authentic analytical standards. Furthermore, their isomeric heterogeneity stemming from their many possible glycosidic linkage positions and corresponding α/β anomericities further complicates their analyses. While liquid chromatography coupled to tandem mass spectrometry remains the gold standard for HMO analyses, it often times cannot resolve all possible isomeric species and thus warrants the development of other orthogonal approaches. High-resolution ion mobility spectrometry coupled to mass spectrometry has emerged as a rapid alternative to condensed-phase separations but largely has remained limited to qualitative information related to the resolution of isomers. In this work, we have assessed the use of permethylation to improve both the resolution and sensitivity of HMO analyses with cyclic ion mobility separations coupled with mass spectrometry. In addition to this, we have developed the first-ever high-resolution collision cross-section database for permethylated HMOs using our previously established calibration protocol. We envision that this internal reference database generated from high-resolution cyclic ion mobility spectrometry-mass spectrometry will greatly aid in the accurate characterization of HMOs and provide a valuable, orthogonal, approach to existing liquid chromatography-tandem mass spectrometry-based methods.
Collapse
Affiliation(s)
- Sanaz C. Habibi
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Victoria R. Bradford
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Sophie C. Baird
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | | | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
56
|
Johnson CR, Sabatini HM, Aderorho R, Chouinard CD. Dependency of fentanyl analogue protomer ratios on solvent conditions as measured by ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5070. [PMID: 38989742 DOI: 10.1002/jms.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Recently, our group has shown that fentanyl and many of its analogues form prototropic isomers ("protomers") during electrospray ionization. These different protomers can be resolved using ion mobility spectrometry and annotated using mobility-aligned tandem mass spectrometry fragmentation. However, their formation and the extent to which experimental variables contribute to their relative ratio remain poorly understood. In the present study, we systematically investigated the effects of mixtures of common chromatographic solvents (water, methanol, and acetonitrile) and pH on the ratio of previously observed protomers for 23 fentanyl analogues. Interestingly, these ratios (N-piperidine protonation vs. secondary amine/O = protonation) decreased significantly for many analogues (e.g., despropionyl ortho-, meta-, and para-methyl fentanyl), increased significantly for others (e.g., cis-isofentanyl), and remained relatively constant for the others as solvent conditions changed from 100% organic solvent (methanol or acetonitrile) to 100% water. Interestingly, pH also had significant effects on this ratio, causing the change in ratio to switch in many cases. Lastly, increasing conditions to pH ≥ 4.0 also prompted the appearance of new mobility peaks for ortho- and para-methyl acetyl fentanyl, where all previous studies had only showed one single distribution. Because these ratios have promise to be used qualitatively for identification of these (and emerging) fentanyl analogues, understanding how various conditions (i.e., mobile phase selection and/or chromatographic gradient) affect their ratios is critically important to the development of advanced ion mobility and mass spectrometry methodologies to identify fentanyl analogues.
Collapse
Affiliation(s)
| | - Heidi M Sabatini
- Department of Chemistry, Clemson University, Clemson, SC, USA, 29634
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA, 29634
| | | |
Collapse
|
57
|
Su P, Zhu X, Wilson SM, Feng Y, Samayoa-Oviedo HY, Sonnendecker C, Smith AJ, Zimmermann W, Laskin J. The effect of host size on binding in host-guest complexes of cyclodextrins and polyoxometalates. Chem Sci 2024; 15:11825-11836. [PMID: 39092096 PMCID: PMC11290418 DOI: 10.1039/d4sc01061b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Harnessing flexible host cavities opens opportunities for the design of novel supramolecular architectures that accommodate nanosized guests. This research examines unprecedented gas-phase structures of Keggin-type polyoxometalate PW12O40 3- (WPOM) and cyclodextrins (X-CD, X = α, β, γ, δ, ε, ζ) including previously unexplored large, flexible CDs. Using ion mobility spectrometry coupled to mass spectrometry (IM-MS) in conjunction with molecular dynamics (MD) simulations, we provide first insights into the binding modes between WPOM and larger CD hosts as isolated structures. Notably, γ-CD forms two distinct structures with WPOM through binding to its primary and secondary faces. We also demonstrate that ε-CD forms a deep inclusion complex, which encapsulates WPOM within its annular inner cavity. In contrast, ζ-CD adopts a saddle-like conformation in its complex with WPOM, which resembles its free form in solution. More intriguingly, the gas-phase CD-WPOM structures are highly correlated with their counterparts in solution as characterized by nuclear magnetic resonance (NMR) spectroscopy. The strong correlation between the gas- and solution phase structures of CD-WPOM complexes highlight the power of gas-phase IM-MS for the structural characterization of supramolecular complexes with nanosized guests, which may be difficult to examine using conventional approaches.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Xiao Zhu
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
- Rosen Center for Advanced Computing, Purdue University West Lafayette Indiana 47907 USA
| | - Solita M Wilson
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Hugo Y Samayoa-Oviedo
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Christian Sonnendecker
- Institute of Analytical Chemistry, Universität Leipzig Johannisallee 29 Leipzig 04103 Germany
| | - Andrew J Smith
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Wolfgang Zimmermann
- Institute of Analytical Chemistry, Universität Leipzig Johannisallee 29 Leipzig 04103 Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| |
Collapse
|
58
|
Metz TO, Chang CH, Gautam V, Anjum A, Tian S, Wang F, Colby SM, Nunez JR, Blumer MR, Edison AS, Fiehn O, Jones DP, Li S, Morgan ET, Patti GJ, Ross DH, Shapiro MR, Williams AJ, Wishart DS. Introducing 'identification probability' for automated and transferable assessment of metabolite identification confidence in metabolomics and related studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605945. [PMID: 39131324 PMCID: PMC11312557 DOI: 10.1101/2024.07.30.605945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Methods for assessing compound identification confidence in metabolomics and related studies have been debated and actively researched for the past two decades. The earliest effort in 2007 focused primarily on mass spectrometry and nuclear magnetic resonance spectroscopy and resulted in four recommended levels of metabolite identification confidence - the Metabolite Standards Initiative (MSI) Levels. In 2014, the original MSI Levels were expanded to five levels (including two sublevels) to facilitate communication of compound identification confidence in high resolution mass spectrometry studies. Further refinement in identification levels have occurred, for example to accommodate use of ion mobility spectrometry in metabolomics workflows, and alternate approaches to communicate compound identification confidence also have been developed based on identification points schema. However, neither qualitative levels of identification confidence nor quantitative scoring systems address the degree of ambiguity in compound identifications in context of the chemical space being considered, are easily automated, or are transferable between analytical platforms. In this perspective, we propose that the metabolomics and related communities consider identification probability as an approach for automated and transferable assessment of compound identification and ambiguity in metabolomics and related studies. Identification probability is defined simply as 1/N, where N is the number of compounds in a reference library or chemical space that match to an experimentally measured molecule within user-defined measurement precision(s), for example mass measurement or retention time accuracy, etc. We demonstrate the utility of identification probability in an in silico analysis of multi-property reference libraries constructed from the Human Metabolome Database and computational property predictions, provide guidance to the community in transparent implementation of the concept, and invite the community to further evaluate this concept in parallel with their current preferred methods for assessing metabolite identification confidence.
Collapse
Affiliation(s)
- Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Christine H. Chang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Vasuk Gautam
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Afia Anjum
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Siyang Tian
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fei Wang
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Jamie R. Nunez
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Madison R. Blumer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Arthur S. Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Edward T. Morgan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J. Patti
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri, USA
| | - Dylan H. Ross
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Madelyn R. Shapiro
- Artificial Intelligence & Data Analytics Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), Research Triangle Park, NC USA
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
59
|
May JC, Zlibut E, Blakley BK, Wood CS, Wei Y, Showalter B, Dybeck E, Remish ER, Guidolin V, Bernat BA, McLean JA. Ion Mobility-Mass Spectrometry Strategies to Elucidate the Anhydrous Structure of Noncovalent Guest/Host Complexes. Anal Chem 2024; 96. [PMID: 39012783 PMCID: PMC11295130 DOI: 10.1021/acs.analchem.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Structural mass spectrometry (MS) techniques are fast and sensitive analytical methods to identify noncovalent guest/host complexation phenomena for desirable solution-phase properties. Current MS-based studies on guest/host complexes of drug and drug-like molecules are sparse, and there is limited guidance on how to interpret MS information in the context of host nanoencapsulation and inclusion. Here, we use structural MS strategies, combining energy-resolved MS (ERMS), ion mobility-MS (IM-MS), and computational modeling, to characterize 14 chemically distinct drug and drug-like compounds for their propensity to form guest/host complexes with the widely used excipient, beta-cyclodextrin (βCD). The majority (11/14) yielded a 1:1 guest/host complex, and ion mobility collision cross section (CCS) analysis provided subtle evidence of gas-phase compaction of complexes in both polarities. The three distinct dissociation channels observed in ERMS (i.e., charged βCD, charged guest, and partial guest loss) were used to direct charge-site assignments for computational modeling, and structural candidates were prioritized using helium-derived CCS measurements combined with root-mean-square distance analysis. The combined analytical information from ERMS, IM-MS, and computational modeling suggested that the majority of anhydrous complexes are inclusion complexes with βCD. Taken together, this work demonstrates a roadmap for how multiple MS-based analytical measurements can be combined to interpret the structures that guest/host complexes adopt in the absence of water.
Collapse
Affiliation(s)
- Jody C. May
- Department
of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Emanuel Zlibut
- Department
of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Benjamin K. Blakley
- Department
of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Constance S. Wood
- Pfizer,
Inc., Worldwide Research, Development, and Medical, Lake Forest, Illinois 60045, United States
| | - Yansheng Wei
- Pfizer,
Inc., Worldwide Research, Development, and Medical, Lake Forest, Illinois 60045, United States
| | - Brandon Showalter
- Pfizer,
Inc., Worldwide Research, Development, and Medical, Lake Forest, Illinois 60045, United States
| | - Eric Dybeck
- Pfizer,
Inc., Cambridge, Massachusetts 02139, United States
| | - Emma R. Remish
- Pfizer,
Inc., Worldwide Research, Development, and Medical, Lake Forest, Illinois 60045, United States
| | - Valeria Guidolin
- Pfizer,
Inc., Pharmaceutical Sciences Small Molecule (PSSM), Groton, Connecticut 06340, United States
| | - Bryan A. Bernat
- Pfizer,
Inc., Worldwide Research, Development, and Medical, Lake Forest, Illinois 60045, United States
| | - John A. McLean
- Department
of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
60
|
Wootton CA, Maillard J, Theisen A, Brabeck GF, Schat CL, Rüger CP, Afonso C, Giusti P. A Gated TIMS FTICR MS Instrument to Decipher Isomeric Content of Complex Organic Mixtures. Anal Chem 2024; 96:11343-11352. [PMID: 38973712 DOI: 10.1021/acs.analchem.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Modern research faces increasingly complex materials with a constant need for new analytical strategies that can provide deeper levels of chemical insight. Ultrahigh resolution mass spectrometry (MS), particularly Fourier transform ion cyclotron resonance (FTICR) MS, has provided a robust analytical foundation. However, MS alone offers limited structural information. Here, we present the first implementation and results from an FTICR MS with fully integrated dual accumulation analysis with gated trapped ion mobility spectrometry (gTIMS) capability. The drastically extended charge capacity and parallel accumulation facilitate the analysis of complex mixtures. We achieved a high dynamic range of 4 orders of magnitude within a single FTICR acquisition event. Simultaneously, the valuable linear relationship between the TIMS elution voltage and reduced mobility was retained over a wide mobility range. Benchmarking the instrument performance with Suwannee River fulvic acid (SRFA) by variable ramp gTIMS analysis allowed separation and unambiguous assignment of different charge state distributions. Application to bio-oils has proven the capability to distinguish the isomeric diversity in these ultracomplex samples, while maintaining the expected FTICR MS resolving power and mass accuracy. Valuable information about the molecular distribution, isomeric diversity, and main molecular differences could directly be extracted within the analysis time of a classical "dilute and shoot" direct infusion experiment. The development of this fully integrated and flexible gTIMS with FTICR MS analysis possesses the potential to significantly change the current landscape of high-resolution mass spectrometric analysis of complex mixtures through the added insight of isomeric complexity afforded by TIMS. The exploration of the added IMS dimension promises transformative effects across diverse fields including energy transition, environmental studies, and biological research.
Collapse
Affiliation(s)
| | - Julien Maillard
- TotalEnergies One Tech, R&D, Downstream Processes & Polymers, TotalEnergies Research & Technology Gonfreville, BP 27, 76700 Harfleur, France
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Alina Theisen
- Bruker Daltonics GmbH & Co. Kg, 28359 Bremen, Germany
| | | | | | - Christopher P Rüger
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Carlos Afonso
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| | - Pierre Giusti
- TotalEnergies One Tech, R&D, Downstream Processes & Polymers, TotalEnergies Research & Technology Gonfreville, BP 27, 76700 Harfleur, France
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| |
Collapse
|
61
|
Haack A, Schaefer C, Zimmermann S. On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry. Anal Chem 2024; 96. [PMID: 39009503 PMCID: PMC11295131 DOI: 10.1021/acs.analchem.4c02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte's structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di-tert-butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte's CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Sensors and
Measurement Technology, Institute of Electrical Engineering and Measurement
Technology, Leibniz University Hannover, 30167 Hannover, Germany
| | - Christoph Schaefer
- Department of Sensors and
Measurement Technology, Institute of Electrical Engineering and Measurement
Technology, Leibniz University Hannover, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Department of Sensors and
Measurement Technology, Institute of Electrical Engineering and Measurement
Technology, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
62
|
Kwantwi-Barima P, Hollerbach AL, Attah IK, Norheim RV, Ibrahim YM. Ion Mobility Separations Using Cocentric Architecture. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1576-1583. [PMID: 38859729 DOI: 10.1021/jasms.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ion mobility separations, especially using drift tube ion mobility spectrometers, are usually performed in linear channels, which can have a large footprint when extended to achieve higher resolving powers. In this work, we explored the performance of an ion mobility device with a curved architecture, which can have a more compact form. The cocentric ion mobility spectrometer (CoCIMS) manipulates ions between two cocentric surfaces containing a serpentine track. The mobility separation inside the CoCIMS is achieved using traveling waveforms (TWs). We initially evaluated the device using ion trajectory simulations using SIMION, which indicated that when ions traveled circularly inside the CoCIMS they resulted in similar resolving powers and transmitted m/z range as traveling in a straight path. We then performed experimental validation of the CoCIMS in conjunction with a TOF MS. The CoCIMS was made of two flexible printed circuit board materials folded into cocentric cylinders separated by a gap of 2.8 mm. The device was about 50 mm diameter ×152 mm long and provided 1.846 m of serpentine path length. Three sets of mixtures (Agilent tune mixture, tetraalkylammonium salts, and an eight-peptide mixture) and four traveling waveform profiles (square, sine, triangle, and sawtooth) were used. The sawtooth TW profile produced a slightly higher resolving power for the Agilent tuning mixture and tetraalkylammonium ions. The average resolving power for Agilent tune mixture ions ranged from 37 (using sawtooth TW) to 27 (using square TW). The average resolving powers ranged from 45 (sawtooth TW) to 31 (square TW) for tetraalkylammonium ions. The resolving power of the peptide mixture ions was similar among the four TW profiles and ranged from 51 to 56. The average percent error in TWCCS for the peptide mixture ions was about 0.4%. The new device showed promising results, but improvements are needed to further increase the resolving power.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
63
|
Ross DH, Lee JY, Gao Y, Hollerbach AL, Bilbao A, Shi T, Ibrahim YM, Smith RD, Zheng X. Evaluation of a Reference-Free Collision Cross Section Calibration Strategy for Proteomics Using SLIM-Based High-Resolution Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1539-1549. [PMID: 38864778 DOI: 10.1021/jasms.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Ion mobility spectrometry (IMS) is a gas-phase analytical technique that separates ions with different sizes and shapes and is compatible with mass spectrometry (MS) to provide an additional separation dimension. The rapid nature of the IMS separation combined with the high sensitivity of MS-based detection and the ability to derive structural information on analytes in the form of the property collision cross section (CCS) makes IMS particularly well-suited for characterizing complex samples in -omics applications. In such applications, the quality of CCS from IMS measurements is critical to confident annotation of the detected components in the complex -omics samples. However, most IMS instrumentation in mainstream use requires calibration to calculate CCS from measured arrival times, with the most notable exception being drift tube IMS measurements using multifield methods. The strategy for calibrating CCS values, particularly selection of appropriate calibrants, has important implications for CCS accuracy, reproducibility, and transferability between laboratories. The conventional approach to CCS calibration involves explicitly defining calibrants ahead of data acquisition and crucially relies upon availability of reference CCS values. In this work, we present a novel reference-free approach to CCS calibration which leverages trends among putatively identified features and computational CCS prediction to conduct calibrations post-data acquisition and without relying on explicitly defined calibrants. We demonstrated the utility of this reference-free CCS calibration strategy for proteomics application using high-resolution structures for lossless ion manipulations (SLIM)-based IMS-MS. We first validated the accuracy of CCS values using a set of synthetic peptides and then demonstrated using a complex peptide sample from cell lysate.
Collapse
Affiliation(s)
- Dylan H Ross
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jung Yun Lee
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuqian Gao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam L Hollerbach
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aivett Bilbao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tujin Shi
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
64
|
Bouwmeester R, Richardson K, Denny R, Wilson ID, Degroeve S, Martens L, Vissers JPC. Predicting ion mobility collision cross sections and assessing prediction variation by combining conventional and data driven modeling. Talanta 2024; 274:125970. [PMID: 38621320 DOI: 10.1016/j.talanta.2024.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
The use of collision cross section (CCS) values derived from ion mobility studies is proving to be an increasingly important tool in the characterization and identification of molecules detected in complex mixtures. Here, a novel machine learning (ML) based method for predicting CCS integrating both molecular modeling (MM) and ML methodologies has been devised and shown to be able to accurately predict CCS values for singly charged small molecular weight molecules from a broad range of chemical classes. The model performed favorably compared to existing models, improving compound identifications for isobaric analytes in terms of ranking and assigning identification probability values to the annotation. Furthermore, charge localization was seen to be correlated with CCS prediction accuracy and with gas-phase proton affinity demonstrating the potential to provide a proxy for prediction error based on chemical structural properties. The presented approach and findings represent a further step towards accurate prediction and application of computationally generated CCS values.
Collapse
Affiliation(s)
- Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | | | | | - Ian D Wilson
- Computational & Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, United Kingdom
| | - Sven Degroeve
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | |
Collapse
|
65
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
66
|
Benoit F, Wang X, Dai J, Geue N, England RM, Bristow AWT, Barran PE. Exploring the Conformational Landscape of Poly(l-lysine) Dendrimers Using Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:9390-9398. [PMID: 38812282 PMCID: PMC11170554 DOI: 10.1021/acs.analchem.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) measures the mass, size, and shape of ions in the same experiment, and structural information is provided via collision cross-section (CCS) values. The majority of commercially available IM-MS instrumentation relies on the use of CCS calibrants, and here, we present data from a family of poly(l-lysine) dendrimers and explore their suitability for this purpose. In order to test these compounds, we employed three different IM-MS platforms (Agilent 6560 IM-QToF, Waters Synapt G2, and a home-built variable temperature drift tube IM-MS) and used them to investigate six different generations of dendrimers in two buffer gases (helium and nitrogen). Each molecule gives a highly discrete CCS distribution suggestive of single conformers for each m/z value. The DTCCSN2 values of this series of molecules (molecular weight: 330-16,214 Da) range from 182 to 2941 Å2, which spans the CCS range that would be found by many synthetic molecules including supramolecular compounds and many biopolymers. The CCS values for each charge state were highly reproducible in day-to-day analysis on each instrument, although we found small variations in the absolute CCS values between instruments. The rigidity of each dendrimer was probed using collisionally activated and high-temperature IM-MS experiments, where no evidence for a significant CCS change ensued. Taken together, this data indicates that these polymers are candidates for CCS calibration and could also help to reconcile differences found in CCS measurements on different instrument geometries.
Collapse
Affiliation(s)
- Florian Benoit
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Xudong Wang
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Junxiao Dai
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Richard M. England
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Anthony W. T. Bristow
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
67
|
Sekera ER, Somogyi Á, Takáts Z, Stappert F, Thom C, Schmitz OJ, Moeckel C, Paizs B, Sommertune J. Utilization of bis-MPA Dendrimers for the Calibration of Ion Mobility Collision Cross Section Calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1101-1109. [PMID: 38739888 DOI: 10.1021/jasms.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ion mobility-mass spectrometry (IM-MS) has become increasingly popular with the rapid expansion of available techniques and instrumentation. To enable accuracy, standardization, and repeatability of IM-MS measurements, the community requires reliable and well-defined reference materials for calibration and tuning of the equipment. To address this need, synthetic dendrimers of high chemical and structural purity were tested on three ion mobility platforms as potential calibrants. First, synthesized dendrimers were characterized by drift tube ion mobility (DTIMS), using an Agilent 6560 IM-qTOF-MS to assess their drift tube collision cross section (DTCCS) values. Then, assessment of obtained CCS values on trapped ion mobility (TIMS) and traveling wave ion mobility (TWIMS) ion mobility platforms were compared to those found by DTIMS. Across all three systems, dendrimers were found to have high potential for m/z and ion mobility calibration in the CCS range of 160-1700 Å2. To further validate their use as calibrants, drift tube calculated CCS values for dendrimers were utilized to calibrate calculations of CCS for known standards including Agilent Tuning mix, the CCS Major mix from Waters, and SPLASH LIPIDOMIX. Additionally, structures of sodiated dendrimers were computated along with theoretical CCS values which showed good agreement with the experimental CCS values. On the basis of the results presented, we recommend the use of dendrimers as alternatives and/or complementary compounds to commonly used calibrants for ion mobility platforms.
Collapse
Affiliation(s)
- Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Árpád Somogyi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zoltan Takáts
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, U.K
| | - Florian Stappert
- University of Duisburg-Essen, Applied Analytical Chemistry, 45141 Essen, Germany
| | - Cedric Thom
- University of Duisburg-Essen, Applied Analytical Chemistry, 45141 Essen, Germany
| | - Oliver J Schmitz
- University of Duisburg-Essen, Applied Analytical Chemistry, 45141 Essen, Germany
| | - Claudia Moeckel
- Stockholm University, Department of Materials and Environmental Chemistry, 10691 Stockholm, Sweden
| | - Béla Paizs
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, U.K
| | | |
Collapse
|
68
|
Kumari S, Causon T. CCSfind: A tool for chemically informed LC-IM-MS database building. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5040. [PMID: 38736147 DOI: 10.1002/jms.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., "protomers" or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Core Facility Bioinformatics, BOKU University, Vienna, Austria
| | - Tim Causon
- Department of Chemistry, Institute of Analytical Chemistry, BOKU University, Vienna, Austria
| |
Collapse
|
69
|
George AC, Schmitz I, Rouvière F, Alves S, Colsch B, Heinisch S, Afonso C, Fenaille F, Loutelier-Bourhis C. Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections. Anal Chim Acta 2024; 1304:342535. [PMID: 38637036 DOI: 10.1016/j.aca.2024.342535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The implementation of ion mobility spectrometry (IMS) in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflows has become a valuable tool for improving compound annotation in metabolomics analyses by increasing peak capacity and by adding a new molecular descriptor, the collision cross section (CCS). Although some studies reported high repeatability and reproducibility of CCS determination and only few studies reported good interplatform agreement for small molecules, standardized protocols are still missing due to the lack of reference CCS values and reference materials. We present a comparison of CCS values of approximatively one hundred lipid species either commercially available or extracted from human plasma. We used three different commercial ion mobility technologies from different laboratories, drift tube IMS (DTIMS), travelling wave IMS (TWIMS) and trapped IMS (TIMS), to evaluate both instrument repeatability and interlaboratory reproducibility. We showed that CCS discrepancies of 0.3% (average) could occur depending on the data processing software tools. Moreover, eleven CCS calibrants were evaluated yielding mean RSD below 2% for eight calibrants, ESI Low concentration tuning mix (Tune Mix) showing the lowest RSD (< 0.5%) in both ion modes. Tune Mix calibrated CCS from the three different IMS instruments proved to be well correlated and highly reproducible (R2 > 0.995 and mean RSD ≤ 1%). More than 90% of the lipid CCS had deviations of less than 1%, demonstrating high comparability between techniques, and the possibility to use the CCS as molecular descriptor. We highlighted the need of standardized procedures for calibration, data acquisition, and data processing. This work demonstrates that using harmonized analytical conditions are required for interplatform reproducibility for CCS determination of human plasma lipids.
Collapse
Affiliation(s)
- Anaïs C George
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Florent Rouvière
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Sandra Alves
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France.
| |
Collapse
|
70
|
Hildebrand F, Koellensperger G, Causon T. MobiLipid: A Tool for Enhancing CCS Quality Control of Ion Mobility-Mass Spectrometry Lipidomics by Internal Standardization. Anal Chem 2024; 96:7380-7385. [PMID: 38693701 PMCID: PMC11099887 DOI: 10.1021/acs.analchem.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Ion mobility-mass spectrometry (IM-MS) offers benefits for lipidomics by obtaining IM-derived collision cross sections (CCS), a conditional property of an ion that can enhance lipid identification. While drift tube (DT) IM-MS retains a direct link to the primary experimental method to derive CCS values, other IM technologies rely solely on external CCS calibration, posing challenges due to dissimilar chemical properties between lipids and calibrants. To address this, we introduce MobiLipid, a novel tool facilitating the CCS quality control of IM-MS lipidomics workflows by internal standardization. MobiLipid utilizes a newly established DTCCSN2 library for uniformly (U)13C-labeled lipids, derived from a U13C-labeled yeast extract, containing 377 DTCCSN2 values. This automated open-source R Markdown tool enables internal monitoring and straightforward compensation for CCSN2 biases. It supports lipid class- and adduct-specific CCS corrections, requiring only three U13C-labeled lipids per lipid class-adduct combination across 10 lipid classes without requiring additional external measurements. The applicability of MobiLipid is demonstrated for trapped IM (TIM)-MS measurements of an unlabeled yeast extract spiked with U13C-labeled lipids. Monitoring the CCSN2 biases of TIMCCSN2 values compared to DTCCSN2 library entries utilizing MobiLipid resulted in mean absolute biases of 0.78% and 0.33% in positive and negative ionization mode, respectively. By applying the CCS correction integrated into the tool for the exemplary data set, the mean absolute CCSN2 biases of 10 lipid classes could be reduced to approximately 0%.
Collapse
Affiliation(s)
- Felina Hildebrand
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna
Metabolomics Center (VIME), University of
Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Tim Causon
- BOKU
University, Department of Chemistry, Institute
of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
71
|
Lu G, Tran VNH, Wu W, Ma M, Li L. Neuropeptidomics of the American Lobster Homarus americanus. J Proteome Res 2024; 23:1757-1767. [PMID: 38644788 PMCID: PMC11118981 DOI: 10.1021/acs.jproteome.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.
Collapse
Affiliation(s)
- Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Vu Ngoc Huong Tran
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
72
|
Nagy G. High-resolution ion mobility separations coupled to mass spectrometry: What's next? JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5014. [PMID: 38605463 DOI: 10.1002/jms.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Herein, I provide a personal perspective on high-resolution multipass ion mobility spectrometry-mass spectrometry (IMS-MS), with a specific emphasis on cyclic (cIMS) and structures for lossless ion manipulations (SLIM IMS)-based separations. My overarching goal for this perspective was to detail what I believe will be the key important areas in which IMS-MS will help shape the bioanalytical community and especially omics-based research.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
73
|
Kurilung A, Limjiasahapong S, Kaewnarin K, Wisanpitayakorn P, Jariyasopit N, Wanichthanarak K, Sartyoungkul S, Wong SCC, Sathirapongsasuti N, Kitiyakara C, Sirivatanauksorn Y, Khoomrung S. Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples. J Pharm Anal 2024; 14:100921. [PMID: 38799238 PMCID: PMC11127212 DOI: 10.1016/j.jpha.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 05/29/2024] Open
Abstract
The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.
Collapse
Affiliation(s)
- Alongkorn Kurilung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Khwanta Kaewnarin
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- SingHealth Duke-NUS Institute of Biodiversity Medicine, National Cancer Centre Singapore, 168583, Singapore
| | - Pattipong Wisanpitayakorn
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narumol Jariyasopit
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanjeera Wanichthanarak
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sitanan Sartyoungkul
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
74
|
Kinlein Z, Clowers BH. Altering Conformational States of Dynamic Ion Populations using Traveling Wave Structures for Lossless Ion Manipulations. Anal Chem 2024; 96:6450-6458. [PMID: 38603648 PMCID: PMC11823086 DOI: 10.1021/acs.analchem.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
With its capacity to store and translate ions across considerable distances and times, traveling wave structures for lossless ion manipulations (TW-SLIM) provide the foundation to expand the scope of ion mobility spectrometry (IMS) experiments. While promising, the dynamic electric fields and consequential ion-neutral collisions used to realize extensive degrees of separation have a considerable impact on the empirical results and the fundamental interpretation of observed arrival time distributions. Using a custom-designed set of TW-SLIM boards (∼9 m) coupled with a time-of-flight mass spectrometer (SLIM-ToF), we detail the capacity to systematically alter the gas-phase distribution of select peptide conformers. In addition to discussing the role charge-transfer may play in TW-SLIM experiments that occur at extended time scales, the ability of the SLIM-ToF to perform tandem IMS was leveraged to confirm that both the compact and elongated conformers of bradykinin2+ undergo interconversion within the SLIM. Storage experiments in which ions are confined within SLIM using static potential wells suggest that factors aside from TW-induced ion motion contribute to interconversion. Further investigation into this matter suggests that the use of radio frequency (RF) fields to confine ions within SLIM may play a role in ion heating. Aside from interconversion, storage experiments also provide insight into charge transfer behavior over the course of extended periods. The results of the presented experiments suggest that considerations should be taken when analyzing labile species and inform strategies for the TW-SLIM design and method development.
Collapse
Affiliation(s)
- Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
75
|
Cropley TC, Liu FC, Chai M, Bush MF, Bleiholder C. Metastability of Protein Solution Structures in the Absence of a Solvent: Rugged Energy Landscape and Glass-like Behavior. J Am Chem Soc 2024:10.1021/jacs.3c12892. [PMID: 38598661 PMCID: PMC11464637 DOI: 10.1021/jacs.3c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Native ion mobility/mass spectrometry is well-poised to structurally screen proteomes but characterizes protein structures in the absence of a solvent. This raises long-standing unanswered questions about the biological significance of protein structures identified through ion mobility/mass spectrometry. Using newly developed computational and experimental ion mobility/ion mobility/mass spectrometry methods, we investigate the unfolding of the protein ubiquitin in a solvent-free environment. Our data suggest that the folded, solvent-free ubiquitin observed by ion mobility/mass spectrometry exists in a largely native fold with an intact β-grasp motif and α-helix. The ensemble of folded, solvent-free ubiquitin ions can be partitioned into kinetically stable subpopulations that appear to correspond to the structural heterogeneity of ubiquitin in solution. Time-resolved ion mobility/ion mobility/mass spectrometry measurements show that folded, solvent-free ubiquitin exhibits a strongly stretched-exponential time dependence, which simulations trace to a rugged energy landscape with kinetic traps. Unfolding rate constants are estimated to be approximately 800 to 20,000 times smaller than in the presence of water, effectively quenching the unfolding process on the time scale of typical ion mobility/mass spectrometry measurements. Our proposed unfolding pathway of solvent-free ubiquitin shares substantial characteristics with that established for the presence of solvent, including a polarized transition state with significant native content in the N-terminal β-hairpin and α-helix. Our experimental and computational data suggest that (1) the energy landscape governing the motions of folded, solvent-free proteins is rugged in analogy to that of glassy systems; (2) large-scale protein motions may at least partially be determined by the amino acid sequence of a polypeptide chain; and (3) solvent facilitates, rather than controls, protein motions.
Collapse
Affiliation(s)
- Tyler. C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Fanny. C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
76
|
Critch-Doran O, Jenkins K, Hashemihedeshi M, Mommers AA, Green MK, Dorman FL, Jobst KJ. Toward Part-per-Million Precision in the Determination of an Ion's Collision Cross Section Using Multipass Cyclic Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:775-783. [PMID: 38498916 DOI: 10.1021/jasms.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In cyclic ion mobility (cIMS), ions are permitted to travel multiple passes around the drift cell, increasing the distance traveled and the relative separation between ions. This study tests the hypothesis that multiple passes around the cell can also result in improved precision when measuring an ion's mobility and the collision cross section (TWCCS) derived therefrom. Experiments were performed with a diverse set of compounds, including 16 polycyclic aromatic hydrocarbons using gas chromatographic atmospheric pressure chemical ionization and a set of drug molecules by direct infusion electrospray ionization. The average periodic drift time, viz., the average time required for the ion to travel around the cIMS cell once, shifts dramatically, approaching part-per-million (ppm) precision as the number of passes increases to ∼100. Extrapolation of the precision of the CCS values with respect to the number of passes led to the prediction that the precision will reach 1000 ppm after 50 passes, 100 ppm after 100 passes, and <10 ppm after 150 passes. Experiments wherein the number of passes exceeded 100 produced TWCCS values having within-run precisions ranging between 15 and 117 ppm. The improved precision with an increasing number of passes may be a consequence of mitigating space-charge effects by allowing the ions to occupy a larger region of the cIMS cell. A method is proposed to enable practical measurements of TWCCS with ppm precision and is demonstrated to characterize an unknown drug mixture.
Collapse
Affiliation(s)
- Olivia Critch-Doran
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Kevin Jenkins
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Alexander A Mommers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - M Kirk Green
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Frank L Dorman
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
- Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
77
|
Buzitis NW, Clowers BH. Development of a Modular, Open-Source, Reduced-Pressure, Drift Tube Ion Mobility Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:804-813. [PMID: 38512132 PMCID: PMC11753826 DOI: 10.1021/jasms.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Toward the goal of minimizing construction costs while maintaining high performance, a new, reduced-pressure, drift tube ion mobility system is coupled with an ion trap mass analyzer through a custom ion shuttle. The availability of reduced-pressure ion mobility systems remains limited due to comparatively expensive commercial options and limited shared design features in the open literature. This report details the complete design and benchmarking characteristics of a reduced-pressure ion mobility system. The system is constructed from FR4 PCB electrodes and encased in a PTFE vacuum enclosure with custom torque-tightened couplers to utilize standard KF40 bulkheads. The PTFE enclosure directly minimizes the overall system expenses, and the implementation of threaded brass inserts allows for facile attachments to the vacuum enclosure without damaging the thermoplastic housing. Front and rear ion funnels maximize ion transmission and help mitigate the effects of radial ion diffusion. A custom planar ion shuttle transports ions from the exit of the rear ion funnel into the ion optics of an ion trap mass analyzer. The planar ion shuttle can couple the IM system to any contemporary Thermo Scientific ion trap mass analyzer. Signal stability and ion intensity remain unchanging following the implementation of the planar ion shuttle when compared to the original stacked ring ion guide. The constructed IM system showed resolving powers up to 85 for various small molecules and proteins using the Fourier transform from a ∼1 m drift tube. Recorded mobilities derived from first principles agree with published literature results with an average error of 1.1% and an average error toward literature values using single field calibration of <1.3%.
Collapse
Affiliation(s)
- Nathan W. Buzitis
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
78
|
Stroganova I, Willenberg H, Tente T, Depraz Depland A, Bakels S, Rijs AM. Exploring the Aggregation Propensity of PHF6 Peptide Segments of the Tau Protein Using Ion Mobility Mass Spectrometry Techniques. Anal Chem 2024; 96:5115-5124. [PMID: 38517679 PMCID: PMC10993201 DOI: 10.1021/acs.analchem.3c04974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Peptide and protein aggregation involves the formation of oligomeric species, but the complex interplay between oligomers of different conformations and sizes complicates their structural elucidation. Using ion mobility mass spectrometry (IM-MS), we aim to reveal these early steps of aggregation for the Ac-PHF6-NH2 peptide segment from tau protein, thereby distinguishing between different oligomeric species and gaining an understanding of the aggregation pathway. An important factor that is often neglected, but which can alter the aggregation propensity of peptides, is the terminal capping groups. Here, we demonstrate the use of IM-MS to probe the early stages of aggregate formation of Ac-PHF6-NH2, Ac-PHF6, PHF6-NH2, and uncapped PHF6 peptide segments. The aggregation propensity of the four PHF6 segments is confirmed using thioflavin T fluorescence assays and transmission electron microscopy. A novel approach based on post-IM fragmentation and quadrupole selection on the TIMS-Qq-ToF (trapped ion mobility) spectrometer was developed to enhance oligomer assignment, especially for the higher-order aggregates. This approach pushes the limits of IM identification of isobaric species, whose signatures appear closer to each other with increasing oligomer size, and provides new insights into the interpretation of IM-MS data. In addition, TIMS collision cross section values are compared with traveling wave ion mobility (TWIMS) data to evaluate potential instrumental bias in the trapped ion mobility results. The two IM-MS instrumental platforms are based on different ion mobility principles and have different configurations, thereby providing us with valuable insight into the preservation of weakly bound biomolecular complexes such as peptide aggregates.
Collapse
Affiliation(s)
- Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Hannah Willenberg
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| | - Thaleia Tente
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| | - Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sjors Bakels
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
79
|
Aderorho R, Chouinard CD. Improved separation of fentanyl isomers using metal cation adducts and high-resolution ion mobility-mass spectrometry. Drug Test Anal 2024; 16:369-379. [PMID: 37491787 DOI: 10.1002/dta.3550] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Fentanyl is a potent synthetic opioid that has attracted significant attention due to its illegal production and distribution, resulting in misuse, overdose, and fatalities. Because numerous fentanyl analogs, including structural isomers, with different potency have been discovered in the field, there is a critical need to continue developing analytical methodologies capable of accurate identification in forensic and clinical laboratories. This study aimed to develop a rapid method for detecting and separating fentanyl isomers based on ion mobility-mass spectrometry (IM-MS), where IM separates gas-phase ions based on differences in their size, shape, and charge. Several strategies for improved differentiation were implemented, including using unconventional cation adducts (e.g., alkali and transition metals) and data post-processing by high-resolution demultiplexing. A collection of collision cross section (CCS) values for the various metal ion adducts was gathered, which can be used to improve confidence of identification in future samples. Notable examples, such as [M + Cu]+ and [M + Ag]+ adducts, contributed to significant improvement of resolution between isomers. Furthermore, the addition of high-resolution post-processing provided resolving power of >150, which constitutes a significant increase in comparison with the normal 50-60 obtained with low-resolution drift tube instruments. Collectively, these improved separation strategies allowed for confident detection and subsequent quantitative analysis. The optimized IM-MS method resulted in quantification of fentanyl in human urine with limits of detection and quantification of 13 pg/mL and 40 pg/mL, respectively.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
80
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
81
|
Bechtella L, Chunsheng J, Fentker K, Ertürk GR, Safferthal M, Polewski Ł, Götze M, Graeber SY, Vos GM, Struwe WB, Mall MA, Mertins P, Karlsson NG, Pagel K. Ion mobility-tandem mass spectrometry of mucin-type O-glycans. Nat Commun 2024; 15:2611. [PMID: 38521783 PMCID: PMC10960840 DOI: 10.1038/s41467-024-46825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
The dense O-glycosylation of mucins plays an important role in the defensive properties of the mucus hydrogel. Aberrant glycosylation is often correlated with inflammation and pathology such as COPD, cancer, and Crohn's disease. The inherent complexity of glycans and the diversity in the O-core structure constitute fundamental challenges for the analysis of mucin-type O-glycans. Due to coexistence of multiple isomers, multidimensional workflows such as LC-MS are required. To separate the highly polar carbohydrates, porous graphitized carbon is often used as a stationary phase. However, LC-MS workflows are time-consuming and lack reproducibility. Here we present a rapid alternative for separating and identifying O-glycans released from mucins based on trapped ion mobility mass spectrometry. Compared to established LC-MS, the acquisition time is reduced from an hour to two minutes. To test the validity, the developed workflow was applied to sputum samples from cystic fibrosis patients to map O-glycosylation features associated with disease.
Collapse
Affiliation(s)
- Leïla Bechtella
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Jin Chunsheng
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Fentker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Güney R Ertürk
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Marc Safferthal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Łukasz Polewski
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Michael Götze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gaël M Vos
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany.
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany.
| |
Collapse
|
82
|
Wisanpitayakorn P, Sartyoungkul S, Kurilung A, Sirivatanauksorn Y, Visessanguan W, Sathirapongsasuti N, Khoomrung S. Accurate Prediction of Ion Mobility Collision Cross-Section Using Ion's Polarizability and Molecular Mass with Limited Data. J Chem Inf Model 2024; 64:1533-1542. [PMID: 38393779 PMCID: PMC10934814 DOI: 10.1021/acs.jcim.3c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
The rotationally averaged collision cross-section (CCS) determined by ion mobility-mass spectrometry (IM-MS) facilitates the identification of various biomolecules. Although machine learning (ML) models have recently emerged as a highly accurate approach for predicting CCS values, they rely on large data sets from various instruments, calibrants, and setups, which can introduce additional errors. In this study, we identified and validated that ion's polarizability and mass-to-charge ratio (m/z) have the most significant predictive power for traveling-wave IM CCS values in relation to other physicochemical properties of ions. Constructed solely based on these two physicochemical properties, our CCS prediction approach demonstrated high accuracy (mean relative error of <3.0%) even when trained with limited data (15 CCS values). Given its ability to excel with limited data, our approach harbors immense potential for constructing a precisely predicted CCS database tailored to each distinct experimental setup. A Python script for CCS prediction using our approach is freely available at https://github.com/MSBSiriraj/SVR_CCSPrediction under the GNU General Public License (GPL) version 3.
Collapse
Affiliation(s)
- Pattipong Wisanpitayakorn
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sitanan Sartyoungkul
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Alongkorn Kurilung
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wonnop Visessanguan
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Nuankanya Sathirapongsasuti
- Section
of Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Research
Network of NANOTEC - MU Ramathibodi on Nanomedicine, Bangkok 12120, Thailand
| | - Sakda Khoomrung
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Center
of Excellence for Innovation in Chemistry (PERCH−CIC), Faculty of Science Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
83
|
Reder GK, Bjurström EY, Brunnsåker D, Kronström F, Lasin P, Tiukova I, Savolainen OI, Dodds JN, May JC, Wikswo JP, McLean JA, King RD. AutonoMS: Automated Ion Mobility Metabolomic Fingerprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:542-550. [PMID: 38310603 PMCID: PMC10921458 DOI: 10.1021/jasms.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.
Collapse
Affiliation(s)
- Gabriel K. Reder
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Department
of Applied Physics, SciLifeLab, KTH Royal
Institute of Technology, Solna 171 21, Sweden
| | - Erik Y. Bjurström
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Daniel Brunnsåker
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Filip Kronström
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Praphapan Lasin
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Ievgeniia Tiukova
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Otto I. Savolainen
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 702 11, Finland
| | - James N. Dodds
- Chemistry
Department, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jody C. May
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John P. Wikswo
- Vanderbilt
Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - John A. McLean
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ross D. King
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
- The Alan
Turing Institute, London NW1 2DB, U.K.
| |
Collapse
|
84
|
Aderorho R, Lucas SW, Chouinard CD. Separation and Characterization of Synthetic Cannabinoid Metabolite Isomers Using SLIM High-Resolution Ion Mobility-Tandem Mass Spectrometry (HRIM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:582-589. [PMID: 38361441 DOI: 10.1021/jasms.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
85
|
Lee J, Ahn Y, Kim M, Seo J. Isomerism of Cyclodextrin Tetramer Induced by Alkali Halide Cluster Ions Observed by Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:622-630. [PMID: 38330264 DOI: 10.1021/jasms.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cyclodextrins (CDs) exhibit versatile self-assembly properties due to their hydrophilic and hydrophobic components, with applications such as drug delivery and selective binding. While research on CD self-assembly is extensive, limited studies have explored their aggregation behavior, particularly in interactions with small ionic guests. The present work investigates the structure of β-CD tetramers aggregated with alkali metal chloride clusters using ion mobility spectrometry-mass spectrometry (IMS-MS). The results revealed that diverse structures emerge in the tetramer depending on the alkali metal cluster size. Notably, the doubly charged tetramer exhibits distinct aggregation trends with specific numbers of MCl clusters for Na+ and K+ ions. After initially adopting a bucket-wheel structure with two internal cations, the structure transforms into a new isomer with a tetrahedral configuration upon cluster addition. The formation of the new isomer structure is closely linked to filling the cavity volume with MCl clusters and ionic interactions, which possibly compensate for the weakened hydrogen bonds between CDs. Theoretical calculations further support the structures, showing well-matched collision cross-section (CCS) values compared with the experimental CCS values. This study highlights the role of alkali metal chloride clusters as potential templates, leading to the formation of novel CD assemblies.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Yunyoung Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
86
|
Carpenter JM, Hynds HM, Bimpeh K, Hines KM. HILIC-IM-MS for Simultaneous Lipid and Metabolite Profiling of Bacteria. ACS MEASUREMENT SCIENCE AU 2024; 4:104-116. [PMID: 38404491 PMCID: PMC10885331 DOI: 10.1021/acsmeasuresciau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 02/27/2024]
Abstract
Although MALDI-ToF platforms for microbial identifications have found great success in clinical microbiology, the sole use of protein fingerprints for the discrimination of closely related species, strain-level identifications, and detection of antimicrobial resistance remains a challenge for the technology. Several alternative mass spectrometry-based methods have been proposed to address the shortcomings of the protein-centric approach, including MALDI-ToF methods for fatty acid/lipid profiling and LC-MS profiling of metabolites. However, the molecular diversity of microbial pathogens suggests that no single "ome" will be sufficient for the accurate and sensitive identification of strain- and susceptibility-level profiling of bacteria. Here, we describe the development of an alternative approach to microorganism profiling that relies upon both metabolites and lipids rather than a single class of biomolecule. Single-phase extractions based on butanol, acetonitrile, and water (the BAW method) were evaluated for the recovery of lipids and metabolites from Gram-positive and -negative microorganisms. We found that BAW extraction solutions containing 45% butanol provided optimal recovery of both molecular classes in a single extraction. The single-phase extraction method was coupled to hydrophilic interaction liquid chromatography (HILIC) and ion mobility-mass spectrometry (IM-MS) to resolve similar-mass metabolites and lipids in three dimensions and provide multiple points of evidence for feature annotation in the absence of tandem mass spectrometry. We demonstrate that the combined use of metabolites and lipids can be used to differentiate microorganisms to the species- and strain-level for four of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa) using data from a single ionization mode. These results present promising, early stage evidence for the use of multiomic signatures for the identification of microorganisms by liquid chromatography, ion mobility, and mass spectrometry that, upon further development, may improve upon the level of identification provided by current methods.
Collapse
Affiliation(s)
- Jana M. Carpenter
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kingsley Bimpeh
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
87
|
Jaag S, Valadbeigi Y, Causon T, Gross H, Lämmerhofer M. Three-Minute Enantioselective Amino Acid Analysis by Ultra-High-Performance Liquid Chromatography Drift Tube Ion Mobility-Mass Spectrometry Using a Chiral Core-Shell Tandem Column Approach. Anal Chem 2024; 96:2666-2675. [PMID: 38297457 PMCID: PMC10867800 DOI: 10.1021/acs.analchem.3c05426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.
Collapse
Affiliation(s)
- Simon
Jonas Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Younes Valadbeigi
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, Nowrouzian, 3414896818 Qazvin, Iran
| | - Tim Causon
- University
of Natural Resources and Life Sciences, Vienna Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Harald Gross
- Pharmaceutical
Biology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
88
|
McMillan AS, Zhang G, Dougherty MK, McGill SK, Gulati AS, Baker ES, Theriot CM. Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579219. [PMID: 38370838 PMCID: PMC10871284 DOI: 10.1101/2024.02.07.579219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.
Collapse
|
89
|
Chung NA, May JC, Robinson RAS, McLean JA. Solvent Composition Can Have a Measurable Influence on the Ion Mobility-Derived Collision Cross Section of Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:234-243. [PMID: 38082535 DOI: 10.1021/jasms.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Ion mobility (IM) is an important analytical technique for increasing identification coverage of metabolites in untargeted studies, especially when integrated into traditional liquid chromatography-mass spectrometry workflows. While there has been extensive work surrounding best practices to obtain and standardize collision cross section (CCS) measurements necessary for comparing across different IM techniques and laboratories, there has been little investigation into experimental factors beyond the mobility separation region that could potentially influence CCS measurements. The first-principles derived CCS of 15 chemical standards were evaluated across 27 aqueous:organic solvent compositions using a high-precision drift tube instrument. A small but measurable dependency of the CCS on the solvent composition was observed, with the larger analytes from this study (m/z > 400) exhibiting a characteristic increase in CCS at the intermediate (40-60%) solvent compositions. Parallels to the behavior of solvent viscosity and protonation site tautomers (protomers) were noted, although the origin of these solvent-dependent CCS trends is as yet unclear. Taken together, these findings document a solvent dependency on CCS, which, while minor (<0.5%), identifies an important need for reporting the solvent system when utilizing CCS in comparative ion mobility studies.
Collapse
Affiliation(s)
- Nadjali A Chung
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C May
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
90
|
Kwantwi-Barima P, Garimella SVB, Attah IK, Zheng X, Ibrahim YM, Smith RD. Accumulation of Large Ion Populations with High Ion Densities and Effects Due to Space Charge in Traveling Wave-Based Structures for Lossless Ion Manipulations (SLIM) IMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:365-377. [PMID: 38175933 PMCID: PMC10853970 DOI: 10.1021/jasms.3c00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/19/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
The accumulation of very large ion populations in traveling wave (TW)-based Structures for Lossless ion Manipulations (SLIM) has been studied to better understand aspects of "in-SLIM" ion accumulation, and particularly its use in conjunction with ion mobility spectrometry (IMS). A linear SLIM ion path was implemented that had a "gate" for blocking and accumulating ions for arbitrary time periods. Removing the gate potential caused ions to exit, and the spatial distributions of accumulated ions examined. The ion populations for a set of peptides increased approximately linearly with increased accumulation times until space change effects became significant, after which the peptide precursor ion populations decreased due to growing space charge-related ion activation, reactions, and losses. Ion activation increased with added storage times and the TW amplitude. Lower amplitude TWs in the accumulation/storage region prevented or minimized ion losses or ion heating effects that can also lead to fragmentation. Our results supported the use of an accumulation region close to the SLIM entrance for speeding accumulation, minimizing ion heating, and avoiding ion population profiles that result in IMS peak tailing. Importantly, space charge-driven separations were observed for large populations of accumulated species and attributed to the opposing effects of space charge and the TW. In these separations, ion species form distributions or peaks, sometimes moving against the TW, and are ordered in the SLIM based on their mobilities. Only the highest mobility ions located closest to the gate in the trapped ion population (and where the highest ion densities were achieved) were significantly activated. The observed separations may offer utility for ion prefractionation of ions and increasing the dynamic range measurements, increasing the resolving power of IMS separations by decreasing peak widths for accumulated ion populations, and other purposes benefiting from separations of extremely large ion populations.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
91
|
Chatterjee P, Dutta SS, Agarwal M, Dey S, Chakraborty T. UV-A-Induced Photoisomerization and Photodimerization of Curcumin: An Ion Mobility Mass Spectrometry Study. J Phys Chem A 2024; 128:548-562. [PMID: 38206070 DOI: 10.1021/acs.jpca.3c05933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Curcumin, the bioactive compound present in spice plant turmeric, has been shown to exhibit selective phototoxic activities toward mammalian cancer cells, and it is being used extensively as a photosensitizer (PS) in photodynamic therapies (PDT). However, so far, the fate of curcumin toward photochemical transformations is not well understood. Here we report our findings of a number of novel photochemical reaction channels of curcumin in water-methanol mixture, like photoisomerization, photodimerization, and photooxidation (H2-loss). The reaction was performed by irradiating the curcumin solution with ultraviolet (UV) light of wavelength 350 nm, which is abundant in the earth's troposphere. Product identification and structure elucidation are done by employing an integrated method of drift tube ion mobility mass spectrometry (DTIMS) in combination with high-performance liquid chromatography (HPLC) and collision-induced dissociation (CID) of the mass-selected molecular ions. Two photoisomers of curcumin produced as a result of trans-cis configurational changes about C═C double bonds in the excited state have been identified, and it has been shown that they could serve as the precursors for formation of isomeric dimers via [2 + 2] cycloaddition and H2-loss products. Comparisons of the experimentally measured collision cross-section (CCS) values of the reactant and product ions obtained by the DTIMS method with those predicted by the electronic structure theory are found to be very effective for the discrimination of the produced photoisomers. The observed photochemical reaction channels are potentially significant toward uses of curcumin as a photosensitizer in photodynamic therapy.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Megha Agarwal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Supriyo Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
92
|
Ye J, Du J, Wang B, Yan Y, Ding CF. Identification and quantification of bipyridyl dicarboxylic acid isomers by ion mobility spectrometry. J Chromatogr A 2024; 1715:464630. [PMID: 38184990 DOI: 10.1016/j.chroma.2024.464630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The identification of positional isomers is of interest because different isomers have different chemical or biological functions and applications. The analysis of positional isomers is sometimes challenging since they have similar chemical structures and properties. For example, the analysis of mass cannot identify different positional isomers because they have identical mass-to-charge ratios and show a single mass peak in mass spectrometry. In this study, an efficient and simple qualitative and quantitative analytical method for differentiating 2,2'-bipyridine-3,3'-dicarboxylic acid (3,3'-BDA), 2,2'-bipyridine-4,4'-dicarboxylic acid (4,4'-BDA), and 2,2'-bipyridine-5,5'-dicarboxylic acid (5,5'-BDA) was developed by using ion mobility spectrometry (IMS). The results revealed that the three BDA isomers formed non-covalent complexes with cyclodextrins (CDs) and Mg2+ ions in the gas phase: [β-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ and [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+, which were distinguished by measuring the mobility of the complexes because of their spatial conformational differences. The peak-to-peak resolution (Rp-p) values of the three isomers of [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ reached 2.983 and 2.892, respectively. The conformations of the ternary complexes simulated by the theoretical calculations revealed the different interactions and shapes of the stereoisomers, and the predicted results agreed with the experimental results. Simultaneously, further studies on the collisional dissociation of the ternary complexes revealed that the dissociation energies of the different complex ions varied were different owing to the diverse different conformations. Finally, the relative quantitative analysis of the different isomers in mixed samples was performed and satisfactory linearity results (R2 > 0.99) were obtained. Thus, an effective analytical method was proposed for the identification and quantification of BDA isomers without chemical derivatization, offering a promising approach for the identification of similar derivatives or positional isomers that could be applied in various fields including chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jiacheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianglong Du
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
93
|
Hynds H, Hines KM. MOCCal: A Multiomic CCS Calibrator for Traveling Wave Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:1185-1194. [PMID: 38194410 PMCID: PMC10809277 DOI: 10.1021/acs.analchem.3c04290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) is a rapid, gas-phase separation technology that can resolve ions on the basis of their size-to-charge and mass-to-charge ratios. Since each class of biomolecule has a unique relationship between size and mass, IM-MS spectra of complex biological samples are organized into trendlines that each contain one type of biomolecule (i.e., lipid, peptide, metabolite). These trendlines can aid in the identification of unknown ions by providing a general classification, while more specific identifications require the conversion of IM arrival times to collision cross section (CCS) values to minimize instrument-to-instrument variability. However, the process of converting IM arrival times to CCS values varies between the different IM devices. Arrival times from traveling wave ion mobility (TWIM) devices must undergo a calibration process to obtain CCS values, which can impart biases if the calibrants are not structurally similar to the analytes. For multiomic mixtures, several different types of calibrants must be used to obtain the most accurate CCS values from TWIM platforms. Here we describe the development of a multiomic CCS calibration tool, MOCCal, to automate the assignment of unknown features to the power law calibration that provides the most accurate CCS value. MOCCal calibrates every experimental arrival time with up to three class-specific calibration curves and uses the difference (in Å2) between the calibrated TWCCSN2 value and DTCCSN2 vs m/z regression lines to determine the best calibration curve. Using real and simulated multiomic samples, we demonstrate that MOCCal provides accurately calibrated TWCCSN2 values for small molecules, lipids, and peptides.
Collapse
Affiliation(s)
- Hannah
M. Hynds
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| |
Collapse
|
94
|
Lanshoeft C, Schütz R, Lozac'h F, Schlotterbeck G, Walles M. Potential of measured relative shifts in collision cross section values for biotransformation studies. Anal Bioanal Chem 2024; 416:559-568. [PMID: 38040943 PMCID: PMC10761390 DOI: 10.1007/s00216-023-05063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) separates gas phase ions due to differences in drift time from which reproducible and analyte-specific collision cross section (CCS) values can be derived. Internally conducted in vitro and in vivo metabolism (biotransformation) studies indicated repetitive shifts in measured CCS values (CCSmeas) between parent drugs and their metabolites. Hence, the purpose of the present article was (i) to investigate if such relative shifts in CCSmeas were biotransformation-specific and (ii) to highlight their potential benefits for biotransformation studies. First, mean CCSmeas values of 165 compounds were determined (up to n = 3) using a travelling wave IMS-MS device with nitrogen as drift gas (TWCCSN2, meas). Further comparison with their predicted values (TWCCSN2, pred, Waters CCSonDemand) resulted in a mean absolute error of 5.1%. Second, a reduced data set (n = 139) was utilized to create compound pairs (n = 86) covering eight common types of phase I and II biotransformations. Constant, discriminative, and almost non-overlapping relative shifts in mean TWCCSN2, meas were obtained for demethylation (- 6.5 ± 2.1 Å2), oxygenation (hydroxylation + 3.8 ± 1.4 Å2, N-oxidation + 3.4 ± 3.3 Å2), acetylation (+ 13.5 ± 1.9 Å2), sulfation (+ 17.9 ± 4.4 Å2), glucuronidation (N-linked: + 41.7 ± 7.5 Å2, O-linked: + 38.1 ± 8.9 Å2), and glutathione conjugation (+ 49.2 ± 13.2 Å2). Consequently, we propose to consider such relative shifts in TWCCSN2, meas (rather than absolute values) as well for metabolite assignment/confirmation complementing the conventional approach to associate changes in mass-to-charge (m/z) values between a parent drug and its metabolite(s). Moreover, the comparison of relative shifts in TWCCSN2, meas significantly simplifies the mapping of metabolites into metabolic pathways as demonstrated.
Collapse
Affiliation(s)
- Christian Lanshoeft
- Biomedical Research, PK Sciences, Novartis Pharma AG, Fabrikstrasse 14 (Novartis Campus), 4056, Basel, Switzerland.
| | - Raphael Schütz
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Frédéric Lozac'h
- Biomedical Research, PK Sciences, Novartis Pharma AG, Fabrikstrasse 14 (Novartis Campus), 4056, Basel, Switzerland
| | - Götz Schlotterbeck
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
- Department of Forensic Chemistry and Toxicology, Institute of Forensic Medicine, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Markus Walles
- Biomedical Research, PK Sciences, Novartis Pharma AG, Fabrikstrasse 14 (Novartis Campus), 4056, Basel, Switzerland
| |
Collapse
|
95
|
Shi Y, Jin HF, Ma XR, Cao J. Highly sensitive determination of multiple pesticide residues in foods by supercritical fluid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Food Res Int 2024; 175:113769. [PMID: 38129060 DOI: 10.1016/j.foodres.2023.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
This experiment aimed to establish a green, simple and highly sensitive method (supercritical fluid chromatography (SFC) coupled with ion mobility quadrupole time-of-flight mass spectrometry (IM-Q-TOF/MS)) for the detection of multiple pesticides in foods. During the experiments, several important SFC parameters, such as stationary phase, modifier, make-up solution, back-temperature and back-pressure were optimized. Here, single-field collision cross section (CCS) values and multifield CCS values of 20 pesticides were examined by IM-Q-TOF/MS as highly specific parameters with excellent experimental precision. In addition, based on accurate mass matching and fragment ion comparison, mass fragments were obtained by IM-Q-TOF/MS, which elucidated the regularities of compound structure and characteristic fragment ions. Under the optimized conditions, satisfactory linearity (R2 ≥ 0.9989) and recoveries (79.60 % to 112.97 %) were obtained. The intra- and interday precisions were favorable, with RSDs lower than 4.91 and 7.65 %, respectively. Additionally, the method showed low limits of detection (0.1-8.8 ng/mL). The proposed method has been successfully applied to the highly sensitive detection of phenylurea herbicide, triazine herbicides, organophosphorus pesticide, pyrethroid insecticide and acaricide in yam and potato.
Collapse
Affiliation(s)
- Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xin-Ran Ma
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
96
|
Lee J, Kim H, Lee H, Boraste DR, Kim K, Seo J. Protomer of Imipramine Captured in Cucurbit[7]uril. J Phys Chem A 2023; 127:10758-10765. [PMID: 38091518 DOI: 10.1021/acs.jpca.3c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Small molecules possessing multiple proton-accessible sites are important not only to many biological systems but also to host-guest chemistry; their protonation states are causal to boosting or hindering specific host-guest interactions. However, determining the protonation site is not trivial. Herein, we conduct electrospray ionization ion mobility spectrometry-mass spectrometry to imipramine, a known molecule with two protonation sites, based on the introduction of cucurbit[7]uril as a host molecule. For protonated imipramine, the proposed strategy allows clear distinction of the two protomers as host-guest complex ions and can be leveraged to capture the energetically less preferable protomer of the protonated imipramine.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyerim Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hochan Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Deepak R Boraste
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
97
|
Song XC, Canellas E, Dreolin N, Goshawk J, Lv M, Qu G, Nerin C, Jiang G. Application of Ion Mobility Spectrometry and the Derived Collision Cross Section in the Analysis of Environmental Organic Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21485-21502. [PMID: 38091506 PMCID: PMC10753811 DOI: 10.1021/acs.est.3c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis. An up-to-date CCS compendium for environmental contaminants was produced by combining CCS databases and data sets of particular types of environmental OMPs, including pesticides, drugs, mycotoxins, steroids, plastic additives, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), as well as their well-known transformation products. A total of 9407 experimental CCS values from 4170 OMPs were retrieved from 23 publications, which contain both drift tube CCS in nitrogen (DTCCSN2) and traveling wave CCS in nitrogen (TWCCSN2). A selection of publicly accessible and in-house CCS prediction tools were also investigated; the chemical space covered by the training set and the quality of CCS measurements seem to be vital factors affecting the CCS prediction accuracy. Then, the applications of IMS and the derived CCS in the screening of various OMPs were summarized, and the benefits of IMS and CCS, including increased peak capacity, the elimination of interfering ions, the separation of isomers, and the reduction of false positives and false negatives, were discussed in detail. With the improvement of the resolving power of IMS and enhancements of experimental CCS databases, the practicability of IMS in the analysis of environmental OMPs will continue to improve.
Collapse
Affiliation(s)
- Xue-Chao Song
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Meilin Lv
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, 110819 Shenyang, China
| | - Guangbo Qu
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Guibin Jiang
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
98
|
Ryan JP, Kostelic MM, Hsieh CC, Powers J, Aspinwall C, Dodds JN, Schiel JE, Marty MT, Baker ES. Characterizing Adeno-Associated Virus Capsids with Both Denaturing and Intact Analysis Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2811-2821. [PMID: 38010134 DOI: 10.1021/jasms.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Adeno-associated virus (AAV) capsids are among the leading gene delivery platforms used to treat a vast array of human diseases and conditions. AAVs exist in a variety of serotypes due to differences in viral protein (VP) sequences with distinct serotypes targeting specific cells and tissues. As the utility of AAVs in gene therapy increases, ensuring their specific composition is imperative for the correct targeting and gene delivery. From a quality control perspective, current analytical tools are limited in their selectivity for viral protein (VP) subunits due to their sequence similarities, instrumental difficulties in assessing the large molecular weights of intact capsids, and the uncertainty in distinguishing empty and filled capsids. To address these challenges, we combined two distinct analytical workflows that assess the intact capsids and VP subunits separately. First, a selective temporal overview of resonant ion (STORI)-based charge detection-mass spectrometry (CD-MS) was applied for characterization of the intact capsids. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations were then used for the capsid denaturing measurements. This multimethod combination was applied to three AAV serotypes (AAV2, AAV6, and AAV8) to evaluate their intact empty and filled capsid ratios and then examine the distinct VP sequences and modifications present.
Collapse
Affiliation(s)
- Jack P Ryan
- University of North Carolina, Department of Chemistry, Chapel Hill, North Carolina 27599, United States
| | - Marius M Kostelic
- University of Arizona, Department of Chemistry and Biochemistry, Tucson, Arizona 85721, United States
| | - Chih-Chieh Hsieh
- University of Arizona, Department of Chemistry and Biochemistry, Tucson, Arizona 85721, United States
| | - Joshua Powers
- Institute for Bioscience and Biotechnology Research (NIST), Gaithersburg Maryland 20899, United States
- North Carolina State University, Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina 27695, United States
| | - Craig Aspinwall
- University of Arizona, Department of Chemistry and Biochemistry, Tucson, Arizona 85721, United States
| | - James N Dodds
- University of North Carolina, Department of Chemistry, Chapel Hill, North Carolina 27599, United States
| | - John E Schiel
- Institute for Bioscience and Biotechnology Research (NIST), Gaithersburg Maryland 20899, United States
| | - Michael T Marty
- University of Arizona, Department of Chemistry and Biochemistry, Tucson, Arizona 85721, United States
| | - Erin S Baker
- University of North Carolina, Department of Chemistry, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
99
|
Baker ES, Hoang C, Uritboonthai W, Heyman HM, Pratt B, MacCoss M, MacLean B, Plumb R, Aisporna A, Siuzdak G. METLIN-CCS: an ion mobility spectrometry collision cross section database. Nat Methods 2023; 20:1836-1837. [PMID: 37932399 PMCID: PMC10843661 DOI: 10.1038/s41592-023-02078-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- Erin S Baker
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Corey Hoang
- Scripps Center of Metabolomics and Mass Spectrometry, La Jolla, CA, USA
| | | | - Heino M Heyman
- Bruker Daltonics, Bruker Scientific LLC, Billerica, MA, USA
- Metabolon Inc., Morrisville, NC, USA
| | - Brian Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Robert Plumb
- Waters Corporation, Scientific Operations, IMMERSE, Cambridge, MA, USA
| | - Aries Aisporna
- Scripps Center of Metabolomics and Mass Spectrometry, La Jolla, CA, USA
| | - Gary Siuzdak
- Scripps Center of Metabolomics and Mass Spectrometry, La Jolla, CA, USA.
- Department of Chemistry, Molecular and Computational Biology, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
100
|
Juliano BR, Keating JW, Li HW, Anders AG, Xie Z, Ruotolo BT. Development of an Automated, High-Throughput Methodology for Native Mass Spectrometry and Collision-Induced Unfolding. Anal Chem 2023; 95:16717-16724. [PMID: 37924308 PMCID: PMC11081713 DOI: 10.1021/acs.analchem.3c03788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Native ion mobility mass spectrometry (nIM-MS) has emerged as a useful technology for the rapid evaluation of biomolecular structures. When combined with collisional activation in a collision-induced unfolding (CIU) experiment, nIM-MS experimentation can be leveraged to gain greater insight into biomolecular conformation and stability. However, nIM-MS and CIU remain throughput limited due to nonautomated sample preparation and introduction. Here, we explore the use of a RapidFire robotic sample handling system to develop an automated, high-throughput methodology for nMS and CIU. We describe native RapidFire-MS (nRapidFire-MS) capable of performing online desalting and sample introduction in as little as 10 s per sample. When combined with CIU, our nRapidFire-MS approach can be used to collect CIU fingerprints in 30 s following desalting by using size exclusion chromatography cartridges. When compared to nMS and CIU data collected using standard approaches, ion signals recorded by nRapidFire-MS exhibit identical ion collision cross sections, indicating that the same conformational populations are tracked by the two approaches. Our data further suggest that nRapidFire-MS can be extended to study a variety of biomolecular classes, including proteins and protein complexes ranging from 5 to 300 kDa and oligonucleotides. Furthermore, nRapidFire-MS data acquired for biotherapeutics suggest that nRapidFire-MS has the potential to enable high-throughput nMS analyses of biopharmaceutical samples. We conclude by discussing the potential of nRapidFire-MS for enabling the development of future CIU assays capable of catalyzing breakthroughs in protein engineering, inhibitor discovery, and formulation development for biotherapeutics.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna G Anders
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhuoer Xie
- Attribute Sciences, Process Development, Amgen, Thousand Oaks, California 91320, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|