51
|
Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The amalgamation of flexible electronics in biological systems has shaped the way health and medicine are administered. The growing field of flexible electrochemical bioelectronics enables the in situ quantification of a variety of chemical constituents present in the human body and holds great promise for personalized health monitoring owing to its unique advantages such as inherent wearability, high sensitivity, high selectivity, and low cost. It represents a promising alternative to probe biomarkers in the human body in a simpler method compared to conventional instrumental analytical techniques. Various bioanalytical technologies are employed in flexible electrochemical bioelectronics, including ion-selective potentiometry, enzymatic amperometry, potential sweep voltammetry, field-effect transistors, affinity-based biosensing, as well as biofuel cells. Recent key innovations in flexible electrochemical bioelectronics from electrochemical sensing modalities, materials, systems, fabrication, to applications are summarized and highlighted. The challenges and opportunities in this field moving forward toward future preventive and personalized medicine devices are also discussed.
Collapse
Affiliation(s)
- You Yu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wei Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
52
|
Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O'Connor BT, Zhu Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902343. [PMID: 31464046 DOI: 10.1002/adma.201902343] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Indexed: 05/02/2023]
Abstract
Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ping Ren
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Runqiao Song
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qijin Huang
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Jingyan Dong
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
53
|
Gong S, Yap LW, Zhu B, Cheng W. Multiscale Soft-Hard Interface Design for Flexible Hybrid Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902278. [PMID: 31468635 DOI: 10.1002/adma.201902278] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Emerging next-generation soft electronics will require versatile properties functioning under mechanical compliance, which will involve the use of different types of materials. As a result, control over material interfaces (particularly soft/hard interfaces) has become crucial and is now attracting intensive worldwide research efforts. A series of material and structural interface designs has been devised to improve interfacial adhesion, preventing failure of electromechanical properties under mechanical deformation. Herein, different soft/hard interface design strategies at multiple length scales in the context of flexible hybrid electronics are reviewed. The crucial role of soft ligands and/or polymers in controlling the morphologies of active nanomaterials and stabilizing them is discussed, with a focus on understanding the soft/hard interface at the atomic/molecular scale. Larger nanoscopic and microscopic levels are also discussed, to scrutinize viable intrinsic and extrinsic interfacial designs with the purpose of promoting adhesion, stretchability, and durability. Furthermore, the macroscopic device/human interface as it relates to real-world applications is analyzed. Finally, a perspective on the current challenges and future opportunities in the development of truly seamlessly integrated soft wearable electronic systems is presented.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, 151 Wellington Road, Victoria, 3800, Australia
| | - Lim Wei Yap
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, 151 Wellington Road, Victoria, 3800, Australia
| | - Bowen Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, 151 Wellington Road, Victoria, 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, 151 Wellington Road, Victoria, 3800, Australia
| |
Collapse
|
54
|
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yongzhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
55
|
|
56
|
Wang S, Bai Y, Yang X, Liu L, Li L, Lu Q, Li T, Zhang T. Highly stretchable potentiometric ion sensor based on surface strain redistributed fiber for sweat monitoring. Talanta 2020; 214:120869. [PMID: 32278417 DOI: 10.1016/j.talanta.2020.120869] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Development of stretchable potentiometric ion sensors has the observable potential for wearable devices to continuously monitoring of electrolytes in body fluids. However, the mechanical mismatch between soft elastomeric substrate and ion-selective electrode components greatly hinders sensor's fabrication and its stretching stability for long-term use. Here, we propose a new strategy to construct a potentiometric ion sensor on a surface strain redistributed elastic fiber (SSRE-fiber) with both high stretchability and high sensing stability. The SSRE-fiber is designed with a unique unilateral bead structure, which significantly changes its surface strain distribution during deformation. Benefit from this platform, the active sensing materials with high Young's modulus fabricated on the unilateral bead region can keep unchanged during stretching (0-200%). Thus, the as-prepared potentiometric sensors (ion-selective electrode and polymer/inorganic salt membrane-coated reference electrode) can perform with stable functions ignoring the stretching of the fiber. This new SSRE-fiber platform paves a way for the design of highly stretchable and stable electrochemical sensor capable of integrating into textiles for wearable biochemical detection applications.
Collapse
Affiliation(s)
- Shuqi Wang
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yuanyuan Bai
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Xianqing Yang
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Lin Liu
- Xi'an Jiaotong Liverpool University, Department of Environmental Science, 111 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - Lianhui Li
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Qifeng Lu
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Tie Li
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Ting Zhang
- I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
57
|
Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. MICROMACHINES 2020; 11:E243. [PMID: 32111023 PMCID: PMC7143805 DOI: 10.3390/mi11030243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Automotive Engineering, Beihang University, Beijing 100191, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huanyu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
58
|
Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020; 49:1812-1866. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.
Collapse
Affiliation(s)
- Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | | | | |
Collapse
|
59
|
Parate K, Rangnekar SV, Jing D, Mendivelso-Perez DL, Ding S, Secor EB, Smith EA, Hostetter JM, Hersam MC, Claussen JC. Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8592-8603. [PMID: 32040290 DOI: 10.1021/acsami.9b22183] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 μm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.
Collapse
Affiliation(s)
- Kshama Parate
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Sonal V Rangnekar
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory , Iowa State University , Ames , Iowa 50010 , Unites States
| | | | - Shaowei Ding
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Ethan B Secor
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Jesse M Hostetter
- College of Veterinary Medicine , Iowa State University , Ames , Iowa 50011 , United States
| | - Mark C Hersam
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
60
|
Wang T, Wang M, Yang L, Li Z, Loh XJ, Chen X. Cyber-Physiochemical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905522. [PMID: 31944425 DOI: 10.1002/adma.201905522] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Living things rely on various physical, chemical, and biological interfaces, e.g., somatosensation, olfactory/gustatory perception, and nervous system response. They help organisms to perceive the world, adapt to their surroundings, and maintain internal and external balance. Interfacial information exchanges are complicated but efficient, delicate but precise, and multimodal but unisonous, which has driven researchers to study the science of such interfaces and develop techniques with potential applications in health monitoring, smart robotics, future wearable devices, and cyber physical/human systems. To understand better the issues in these interfaces, a cyber-physiochemical interface (CPI) that is capable of extracting biophysical and biochemical signals, and closely relating them to electronic, communication, and computing technology, to provide the core for aforementioned applications, is proposed. The scientific and technical progress in CPI is summarized, and the challenges to and strategies for building stable interfaces, including materials, sensor development, system integration, and data processing techniques are discussed. It is hoped that this will result in an unprecedented multi-disciplinary network of scientific collaboration in CPI to explore much uncharted territory for progress, providing technical inspiration-to the development of the next-generation personal healthcare technology, smart sports-technology, adaptive prosthetics and augmentation of human capability, etc.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhuyun Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
61
|
Liu YL, Chen Y, Fan WT, Cao P, Yan J, Zhao XZ, Dong WG, Huang WH. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020; 59:4075-4081. [PMID: 31829491 DOI: 10.1002/anie.201913953] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/04/2019] [Indexed: 12/17/2022]
Abstract
The role of endogenous serotonin (5-HT) in gastrointestinal motility is still highly controversial. Although electrochemical techniques allow for direct and real-time recording of biomolecules, the dynamic monitoring of 5-HT release from elastic and tubular intestine during motor reflexes remains a great challenge because of the specific peristalsis patterns and inevitable passivation of the sensing interface. A stretchable sensor with antifouling and decontamination properties was assembled from gold nanotubes, titanium dioxide nanoparticles, and carbon nanotubes. The sandwich-like structure endowed the sensor with satisfying mechanical stability and electrochemical performance, high resistance against physical adsorption, and superior efficiency in the photodegradation of biofouling molecules. Insertion of the sensor into the lumen of rat ileum (the last section of the small intestine) successfully mimics intestinal peristalsis, and simultaneous real-time monitoring of distension-evoked 5-HT release was possible for the first time. Our results unambiguously reveal that mechanical distension of the intestine induces endogenous 5-HT overflow, and 5-HT level is closely associated with the physiological or pathological states of the intestine.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Chen
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Pan Cao
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wei-Guo Dong
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
62
|
Liu Y, Chen Y, Fan W, Cao P, Yan J, Zhao X, Dong W, Huang W. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yan‐Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan Chen
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Wen‐Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Pan Cao
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Jing Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xing‐Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Wei‐Guo Dong
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Wei‐Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
63
|
Leal C, Lopes PA, Serra A, Coelho JFJ, de Almeida AT, Tavakoli M. Untethered Disposable Health Monitoring Electronic Patches with an Integrated Ag 2O-Zn Battery, a AgInGa Current Collector, and Hydrogel Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3407-3414. [PMID: 31888325 DOI: 10.1021/acsami.9b18462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable electronics stickers that adhere to the human skin and collect biopotentials are becoming increasingly popular for biomonitoring applications. Such stickers include electrodes, stretchable interconnects, silicon chips for processing and communication, and batteries. Here, we demonstrate a material architecture and fabrication technique for a multilayer, stretchable, low-cost, rapidly deployable, and disposable sticker that integrates skin-interfacing hydrogel electrodes, stretchable interconnects, and a Ag2O-Zn (silver oxide-zinc) battery. In addition, the application of a printed biphasic current collector (AgInGa) for the Ag2O-Zn battery is reported for the first time. Surprisingly, and unlike previously reported batteries, the battery capacity increases after being subjected to strain cycles and reaches a record-breaking areal capacity of 6.88 mAh cm-2 post stretch. As a proof of concept, an application of heart rate monitoring is presented. The disposable patch is interfaced with a miniature battery-free electronics circuit for data acquisition, processing, and wireless transmission. A version of the patch partially covering the patient's chest can supply enough energy for continuous operation for ∼6 days.
Collapse
Affiliation(s)
- Cristina Leal
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Arménio Serra
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Aníbal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| |
Collapse
|
64
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
65
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
66
|
Yoon JH, Kim SM, Eom Y, Koo JM, Cho HW, Lee TJ, Lee KG, Park HJ, Kim YK, Yoo HJ, Hwang SY, Park J, Choi BG. Extremely Fast Self-Healable Bio-Based Supramolecular Polymer for Wearable Real-Time Sweat-Monitoring Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46165-46175. [PMID: 31774642 DOI: 10.1021/acsami.9b16829] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sensors with autonomous self-healing properties offer enhanced durability, reliability, and stability. Although numerous self-healing polymers have been attempted, achieving sensors with fast and reversible recovery under ambient conditions with high mechanical toughness remains challenging. Here, a highly sensitive wearable sensor made of a robust bio-based supramolecular polymer that is capable of self-healing via hydrogen bonding is presented. The integration of carbon fiber thread into a self-healing polymer matrix provides a new toolset that can easily be knitted into textile items to fabricate wearable sensors that show impressive self-healing efficiency (>97.0%) after 30 s at room temperature for K+/Na+ sensing. The wearable sweat-sensor system-coupled with a wireless electronic circuit board capable of transferring data to a smart phone-successfully monitors electrolyte ions in human perspiration noninvasively in real time, even in the healed state during indoor exercise. Our smart sensors represent an important advance toward futuristic personalized healthcare applications.
Collapse
Affiliation(s)
- Jo Hee Yoon
- Department of Chemical Engineering , Kangwon National University , Samcheok , Gangwon-do 25913 , Republic of Korea
| | - Seon-Mi Kim
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Ulsan 44429 , Republic of Korea
| | - Youngho Eom
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Ulsan 44429 , Republic of Korea
- Department of Polymer Engineering , Pukyong National University , Busan 48513 , Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Ulsan 44429 , Republic of Korea
| | - Han-Won Cho
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Tae Jae Lee
- Nano-Bio Application Team , National Nanofab Center , Daejeon 34141 , Republic of Korea
| | - Kyoung G Lee
- Nano-Bio Application Team , National Nanofab Center , Daejeon 34141 , Republic of Korea
| | - Hong Jun Park
- Department of Chemical Engineering , Kangwon National University , Samcheok , Gangwon-do 25913 , Republic of Korea
| | - Yeong Kyun Kim
- Department of Chemical Engineering , Kangwon National University , Samcheok , Gangwon-do 25913 , Republic of Korea
| | - Hyung-Joun Yoo
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Ulsan 44429 , Republic of Korea
- Advanced Materials and Chemical Engineering , University of Science and Technology (UST) , Daejeon 34113 , Republic of Korea
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Ulsan 44429 , Republic of Korea
- Advanced Materials and Chemical Engineering , University of Science and Technology (UST) , Daejeon 34113 , Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering , Kangwon National University , Samcheok , Gangwon-do 25913 , Republic of Korea
| |
Collapse
|
67
|
Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904765. [PMID: 31538370 DOI: 10.1002/adma.201904765] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 05/17/2023]
Abstract
Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.
Collapse
Affiliation(s)
- Jun Chang Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Steve Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
68
|
Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various carbon allotropes are fundamental components in electrochemical energy-conversion and energy-storage devices, e.g., biofuel cells (BFCs) and supercapacitors. Recently, biodevices, particularly wearable and implantable devices, are of distinct interest in biomedical, fitness, academic, and industrial fields due to their new fascinating capabilities for personalized applications. However, all biodevices require a sustainable source of energy, bringing widespread attention to energy research. In this review, we detail the progress in BFCs and supercapacitors attributed to carbon materials. Self-powered biosensors for futuristic biomedical applications are also featured. To develop these energy devices, many challenges needed to be addressed. For this reason, there is a need to: optimize the electron transfer between the enzymatic site and electrode; enhance the power efficiency of the device in fluctuating oxygen conditions; strengthen the efficacy of enzymatic reactions at the carbon-based electrodes; increase the electrochemically accessible surface area of the porous electrode materials; and refine the flexibility of traditional devices by introducing a mechanical resiliency of electrochemical devices to withstand daily multiplexed movements. This article will also feature carbon nanomaterial research alongside opportunities to enhance energy technology and address the challenges facing the field of personalized applications. Carbon-based energy devices have proved to be sustainable and compatible energy alternatives for biodevices within the human body, serving as attractive options for further developing diverse domains, including individual biomedical applications.
Collapse
|
69
|
Wang S, Qu C, Liu L, Li L, Li T, Qin S, Zhang T. Rhinophore bio-inspired stretchable and programmable electrochemical sensor. Biosens Bioelectron 2019; 142:111519. [DOI: 10.1016/j.bios.2019.111519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 01/19/2023]
|
70
|
Cánovas R, Padrell Sánchez S, Parrilla M, Cuartero M, Crespo GA. Cytotoxicity Study of Ionophore-Based Membranes: Toward On-Body and in Vivo Ion Sensing. ACS Sens 2019; 4:2524-2535. [PMID: 31448593 DOI: 10.1021/acssensors.9b01322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present the most complete study to date comprising in vitro cytotoxicity tests of ion-selective membranes (ISMs) in terms of cell viability, proliferation, and adhesion assays with human dermal fibroblasts. ISMs were prepared with different types of plasticizers and ionophores to be tested in combination with assays that focus on the medium-term and long-term leaching of compounds. Furthermore, the ISMs were prepared in different configurations considering (i) inner-filling solution-type electrodes, (ii) all-solid-state electrodes based on a conventional drop-cast of the membrane, (iii) peeling after the preparation of a wearable sensor, and (iv) detachment from a microneedle-based sensor, thus covering a wide range of membrane shapes. One of the aims of this study, other than the demonstration of the biocompatibility of various ISMs and materials tested herein, is to create an awareness in the scientific community surrounding the need to perform biocompatibility assays during the very first steps of any sensor development with an intended biomedical application. This will foster meeting the requirements for subsequent on-body application of the sensor and avoiding further problems during massive validations toward the final in vivo use and commercialization of such devices.
Collapse
Affiliation(s)
- Rocío Cánovas
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Sara Padrell Sánchez
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, SE-141 86 Stockholm, Sweden
| | - Marc Parrilla
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - María Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
71
|
Yin S, Jin Z, Miyake T. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens Bioelectron 2019; 141:111471. [DOI: 10.1016/j.bios.2019.111471] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
|
72
|
Ma J, Jiang Y, Shen L, Ma H, Sun T, Lv F, Kiran A, Zhu N. Wearable biomolecule smartsensors based on one-step fabricated berlin green printed arrays. Biosens Bioelectron 2019; 144:111637. [PMID: 31494509 DOI: 10.1016/j.bios.2019.111637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The wearable smart detection of body biomolecules and biomarkers is being of significance in the practical fields. Hydrogen peroxide (H2O2) is a product of some enzyme-catalyzed biomolecular reactions. The detection of H2O2 could reflect the concentration information of the enzyme reaction biomolecule substrate such as glucose. A high-performance berlin green (BG) carbon ink for monitoring H2O2 was prepared in this work. And we have successfully developed the wearable smartsensors for detecting H2O2 and glucose based on one-step fabricated BG arrays by screen-printing technology. Comparing with other detection methods, these sensors are wearable, movable, flexible and biocompatible for monitoring biomolecules. As a result, the sensors exhibited good sensitivity, specificity, stability and reproductivity towards H2O2 and glucose. Additionally, there also received stable response after near one hundred times stretching and thousands of bending. Moreover, the wearable sensors could be easily remotely controlled by a smart phone, when integrated with wireless into the device. In prospective studies, the one-step fabricated wearable smartsensors is of great significance in developing a straightforward, highly-efficient and low-cost method for actual detection of biomolecules reflecting body health status, and would potentially be applied in the artificial intelligence (AI) fields.
Collapse
Affiliation(s)
- Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Almas Kiran
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
73
|
Park YG, Min H, Kim H, Zhexembekova A, Lee CY, Park JU. Three-Dimensional, High-Resolution Printing of Carbon Nanotube/Liquid Metal Composites with Mechanical and Electrical Reinforcement. NANO LETTERS 2019; 19:4866-4872. [PMID: 30983359 DOI: 10.1021/acs.nanolett.9b00150] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation of three-dimensional (3D) interconnections is essential in integrated circuit packaging technology. However, conventional interconnection methods, including the wire-bonding process, were developed for rigid structures of electronic devices, and they are not applicable to the integration of soft and stretchable electronic devices. Hence, there is a strong demand for 3D interconnection technology that is applicable to soft, stretchable electronic devices. Herein, we introduce the material and the processing required for stretchable 3D interconnections on the soft forms of devices and substrates with high resolutions. Liquid-metal-based composites for use as stretchable interconnection materials were developed by uniformly dispersing Pt-decorated carbon nanotubes in a liquid metal matrix. The inclusion of carbon nanotubes in the liquid metal improves the mechanical strength of the composite, thereby overcoming the limitation of the liquid metal that has a low mechanical strength. The composites can be 3D printed with various dimensions: the minimum diameters are about 5 μm and have a breakdown current density comparable to that of metal wires.
Collapse
Affiliation(s)
- Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Republic of Korea
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Hyegi Min
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyobeom Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Republic of Korea
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Anar Zhexembekova
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Republic of Korea
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| |
Collapse
|
74
|
Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. Wearable Sensors for Biochemical Sweat Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:1-22. [PMID: 30786214 DOI: 10.1146/annurev-anchem-061318-114910] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation. This review presents a broad overview of sweat-based biochemical sensor technologies with an emphasis on enabling materials, designs, and target analytes of interest. The article concludes with a summary of challenges and opportunities for researchers and clinicians in this swiftly growing field.
Collapse
Affiliation(s)
- Amay J Bandodkar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Epicore Biosystems, Inc., Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Departments of Electrical Engineering and Computer Science, Neurological Surgery, Chemistry, and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
75
|
Giraldo JP, Wu H, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. NATURE NANOTECHNOLOGY 2019; 14:541-553. [PMID: 31168083 DOI: 10.1038/s41565-019-0470-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/08/2019] [Indexed: 05/18/2023]
Abstract
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
Collapse
Affiliation(s)
- Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, USA.
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Sebastian Kruss
- Institute of Physical Chemistry, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
76
|
Cui Z, Poblete FR, Zhu Y. Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17836-17842. [PMID: 30985098 DOI: 10.1021/acsami.9b04045] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Body temperature is an important indicator of the health condition. It is of critical importance to develop a smart temperature sensor for wearable applications. Silver nanowire (AgNW) is a promising conductive material for developing flexible and stretchable electrodes. Here, a stretchable and breathable thermoresistive temperature sensor based on AgNW composites is developed, where a AgNW percolation network is encased in a thin polyimide film. The temperature coefficient of resistance of the AgNW network is tailored by modifying nanowire density and thermal annealing temperature. The temperature sensor is patterned with a Kirigami structure, which enables constant resistance under a large tensile strain (up to 100%). Demonstrated applications in monitoring the temperatures at biceps and knees using the stretchable temperature sensor illustrate the promising potential for wearable applications.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Felipe Robles Poblete
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27606 , United States
| |
Collapse
|
77
|
Zhao Y, Zhai Q, Dong D, An T, Gong S, Shi Q, Cheng W. Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Anal Chem 2019; 91:6569-6576. [PMID: 31006229 DOI: 10.1021/acs.analchem.9b00152] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of high-performance fiber-shaped wearable sensors is of great significance for next-generation smart textiles for real-time and out-of-clinic health monitoring. The previous focus has been mainly on monitoring physical parameters such as pressure and strains associated with human activities. Development of an enzyme-based non-invasive wearable electrochemical sensor to monitor biochemical vital signs of health such as the glucose level in sweat has attracted increasing attention recently, due to the unmet clinical needs for the diabetic patients. To achieve this, the key challenge lies in the design of a highly stretchable fiber with high conductivity, facile enzyme immobilization, and strain-insensitive properties. Herein, we demonstrate an elastic gold fiber-based three-electrode electrochemical platform that can meet the aforementioned criteria toward wearable textile glucose biosensing. The gold fiber could be functionalized with Prussian blue and glucose oxidase to obtain the working electrode and modified by Ag/AgCl to serve as the reference electrode; and the nonmodified gold fiber could serve as the counter electrode. The as-fabricated textile glucose biosensors achieved a linear range of 0-500 μM and a sensitivity of 11.7 μA mM-1 cm-2. Importantly, such sensing performance could be maintained even under a large strain of 200%, indicating the potential applications in real-world wearable biochemical diagnostics from human sweat.
Collapse
Affiliation(s)
- Yunmeng Zhao
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Qingfeng Zhai
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Dashen Dong
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Tiance An
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Shu Gong
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Qianqian Shi
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Wenlong Cheng
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| |
Collapse
|
78
|
Li Y, Li N, Ge J, Xue Y, Niu W, Chen M, Du Y, Ma PX, Lei B. Biodegradable thermal imaging-tracked ultralong nanowire-reinforced conductive nanocomposites elastomers with intrinsical efficient antibacterial and anticancer activity for enhanced biomedical application potential. Biomaterials 2019; 201:68-76. [PMID: 30798021 DOI: 10.1016/j.biomaterials.2019.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Biodegradable elastomers with good biocompatibility have attracted much attention in biomedical diagnosis/therapy/regenerative medicine, as bioresorbable electronics and implanted devices. The bacterial infection, tissue toxicity, serious inflammatory response and tumorigenesis for implanted devices are still the important obstacles for their biomedical applications. Herein, we reported biodegradable ultralong copper sulfide nanowire-reinforced poly(citrates-siloxane) (PCS-CSNW) nanocomposites elastomers with inherent multifunctional properties for potential biomedical applications. The structure-homogeneous nanocomposites were formed through the hydrophobic-hydrophobic interaction between the oleylamine capped CSNW and polymer chain. PCS-CSNW showed controlled elastomeric mechanical behavior, tunable electronic conductivity and broad-spectrum antibacterial activity against gram-positive/gram-negative bacterium in vitro/in vivo. PCS-CSNW also exhibited tailored photoluminescent property and strong near-infrared (NIR) photothermal capacity which enabled the high-resolution in vivo thermal imaging and biodegradation tracking. Additionally, PCS-CSNW also demonstrated good cell biocompatibility and decreased inflammatory reaction in vivo. The cancer cells on PCS-CSNW nanocomposites were efficiently killed through a selective NIR-induced photothermal therapy. This work may provide a new strategy to design next-regeneration smart implanted devices for biomedical applications in bioresorbable electronics, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yannan Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Na Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yaping Du
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular Science and Engineering Center, The University of Michigan, Ann Arbor, MI, 48109-1078, USA
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
79
|
Kim K, Park YG, Hyun BG, Choi M, Park JU. Recent Advances in Transparent Electronics with Stretchable Forms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804690. [PMID: 30556173 DOI: 10.1002/adma.201804690] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Advances in materials science and the desire for next-generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.
Collapse
Affiliation(s)
- Kukjoo Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byung Gwan Hyun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minjae Choi
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
80
|
Han T, Nag A, Afsarimanesh N, Mukhopadhyay SC, Kundu S, Xu Y. Laser-Assisted Printed Flexible Sensors: A Review. SENSORS 2019; 19:s19061462. [PMID: 30934649 PMCID: PMC6471508 DOI: 10.3390/s19061462] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a substantial review of some of the significant research done on the fabrication and implementation of laser-assisted printed flexible sensors. In recent times, using laser cutting to develop printed flexible sensors has become a popular technique due to advantages such as the low cost of production, easy sample preparation, the ability to process a range of raw materials, and its usability for different functionalities. Different kinds of laser cutters are now available that work on samples very precisely via the available laser parameters. Thus, laser-cutting techniques provide huge scope for the development of prototypes with a varied range of sizes and dimensions. Meanwhile, researchers have been constantly working on the types of materials that can be processed, individually or in conjugation with one another, to form samples for laser-ablation. Some of the laser-printed techniques that are commonly considered for fabricating flexible sensors, which are discussed in this paper, include nanocomposite-based, laser-ablated, and 3D-printing. The developed sensors have been used for a range of applications, such as electrochemical and strain-sensing purposes. The challenges faced by the current printed flexible sensors, along with a market survey, are also outlined in this paper.
Collapse
Affiliation(s)
- Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | | | | | - Sudip Kundu
- CSIR-Central Mechanical Engineering Research Institute Durgapur, West Bengal 713209, India.
| | - Yongzhao Xu
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| |
Collapse
|
81
|
Zhai Q, Gong S, Wang Y, Lyu Q, Liu Y, Ling Y, Wang J, Simon GP, Cheng W. Enokitake Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9724-9729. [PMID: 30816047 DOI: 10.1021/acsami.8b19383] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have recently demonstrated that Enokitake mushroom-like gold with nanoparticles as the "head" and nanowires as the "tail" could grow directly on elastomeric substrates, which are extremely stretchable electrodes that can be used as wearable sensors for detecting strain and pressure. In this work, we show that such electrodes can also be used as intrinsically stretchable glucose biosensors. By modifying the vertical gold nanowire electrodes with glucose oxidase and Prussian blue nanoparticles, a limit of detection of 10 μM, sensitivity of 23.72 μA·mM-1·cm-2, and high selectivity can be achieved. The as-obtained glucose biosensors were able to maintain a high sensing performance under various mechanical deformations. Even for 30% strain, a sensitivity of 4.55 μA·mM-1·cm-2 toward glucose detection in the artificial sweat was possible. Furthermore, it was found that strains could be simultaneously detected with a gauge factor of 2.30 (strain 0-10%) and 22.64 (strain 10-20%), demonstrating the potential of such bimodal sensors to allow simultaneous monitoring of physical and biological signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wang
- Department of Nanoengineering , University of California, San Diego , La Jolla , California 92093 , United States
| | | | - Wenlong Cheng
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| |
Collapse
|
82
|
Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced Carbon for Flexible and Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801072. [PMID: 30300444 DOI: 10.1002/adma.201801072] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Chunya Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Kailun Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhe Yin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
83
|
Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019; 119:5461-5533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Citation(s) in RCA: 483] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.
Collapse
Affiliation(s)
- Tyler R Ray
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jungil Choi
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amay J Bandodkar
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Siddharth Krishnan
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Philipp Gutruf
- Department of Biomedical Engineering University of Arizona Tucson , Arizona 85721 , United States
| | - Limei Tian
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Roozbeh Ghaffari
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
84
|
Co3O4 nanostructures on flexible carbon cloth for crystal plane effect of nonenzymatic electrocatalysis for glucose. Biosens Bioelectron 2019; 123:25-29. [DOI: 10.1016/j.bios.2018.07.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022]
|
85
|
|
86
|
Affiliation(s)
- Lee J. Hubble
- Department of NanoEngineeringUniversity of California San Diego La Jolla, CA 92093 USA
- CSIRO Manufacturing Lindfield, New South Wales 2070 Australia
| | - Joseph Wang
- Department of NanoEngineeringUniversity of California San Diego La Jolla, CA 92093 USA
| |
Collapse
|
87
|
Ma Z, Li S, Wang H, Cheng W, Li Y, Pan L, Shi Y. Advanced electronic skin devices for healthcare applications. J Mater Chem B 2018; 7:173-197. [PMID: 32254546 DOI: 10.1039/c8tb02862a] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic skin, a kind of flexible electronic device and system inspired by human skin, has emerged as a promising candidate for wearable personal healthcare applications. Wearable electronic devices with skin-like properties will provide platforms for continuous and real-time monitoring of human physiological signals such as tissue pressure, body motion, temperature, metabolites, electrolyte balance, and disease-related biomarkers. Transdermal drug delivery devices can also be integrated into electronic skin to enhance its non-invasive, real-time dynamic therapy functions. This review summarizes the recent progress in electronic skin devices for applications in human health monitoring and therapy systems as well as several potential mass production technologies such as inkjet printing and 3D printing. The opportunities and challenges in broadening the applications of electronic skin devices in practical healthcare are also discussed.
Collapse
Affiliation(s)
- Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
88
|
Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, Hubble LJ, Wang J. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Acc Chem Res 2018; 51:2820-2828. [PMID: 30398344 DOI: 10.1021/acs.accounts.8b00451] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this Account, we detail recent progress in wearable bioelectronic devices and discuss the future challenges and prospects of on-body noninvasive bioelectronic systems. Bioelectronics is a fast-growing interdisciplinary research field that involves interfacing biomaterials with electronics, covering an array of biodevices, encompassing biofuel cells, biosensors, ingestibles, and implantables. In particular, enzyme-based bioelectronics, built on diverse biocatalytic reactions, offers distinct advantages and represents a centerpiece of wearable biodevices. Such wearable bioelectronic devices predominately rely on oxidoreductase enzymes and have already demonstrated considerable promise for on-body applications ranging from highly selective noninvasive biomarker monitoring to epidermal energy harvesting. These systems can thus greatly increase the analytical capability of wearable devices from the ubiquitous monitoring of mobility and vital signs, toward the noninvasive analysis of important chemical biomarkers. Wearable enzyme electrodes offer exciting opportunities to a variety of areas, spanning from healthcare, sport, to the environment or defense. These include real-time noninvasive detection of biomarkers in biofluids (such as sweat, saliva, interstitial fluid and tears), and the monitoring of environmental pollutants and security threats in the immediate surrounding of the wearer. Furthermore, the interface of enzymes with conducting flexible electrode materials can be exploited for developing biofuel cells, which rely on the bioelectrocatalytic oxidation of biological fuels, such as lactate or glucose, for energy harvesting applications. Crucial for such successful application of enzymatic bioelectronics is deep knowledge of enzyme electron-transfer kinetics, enzyme stability, and enzyme immobilization strategies. Such understanding is critical for establishing efficient electrical contacting between the redox enzymes and the conducting electrode supports, which is of fundamental interest for the development of robust and efficient bioelectronic platforms. Furthermore, stretchable and flexible bioelectronic platforms, with mechanical properties similar to those of biological tissues, are essential for handling the rigors of on-body operation. As such, special attention must be given to changes in the behavior of enzymes due to the uncontrolled conditions of on-body operation (including diverse outdoor activities and different biofluids), for maintaining the attractive performance that these bioelectronics devices display in controlled laboratory settings. Therefore, a focus of this Account is on interfacing biocatalytic layers onto wearable electronic devices for creating efficient and stable on-body electrochemical biosensors and biofuel cells. With proper attention to key challenges and by leveraging the advantages of biocatalysis, electrochemistry, and flexible electronics, wearable bioelectronic devices could have a tremendous impact on diverse biomedical, fitness, and defense fields.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Juliane R. Sempionatto
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Abbas Barfidokht
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rupesh K. Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Alan S. Campbell
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lee J. Hubble
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- CSIRO Manufacturing, Lindfield, New South Wales 2070, Australia
| | - Joseph Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
89
|
Zhai Q, Wang Y, Gong S, Ling Y, Yap LW, Liu Y, Wang J, Simon GP, Cheng W. Vertical Gold Nanowires Stretchable Electrochemical Electrodes. Anal Chem 2018; 90:13498-13505. [PMID: 30350612 DOI: 10.1021/acs.analchem.8b03423] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Conventional electrodes produced from gold or glassy carbon are outstanding electrochemical platforms for biosensing applications due to their chemical inertness and wide electrochemical window, but are intrinsically rigid and planar in nature. Hence, it is challenging to seamlessly integrate them with soft and curvilinear biological tissues for real-time wearable or implantable electronics. In this work, we demonstrate that vertically gold nanowires (v-AuNWs) possess an enokitake-like structure, with the nanoparticle (head) on one side and nanowires (tail) on the opposite side of the structure, and can serve as intrinsically stretchable, electrochemical electrodes due to the stronger nanowire-elastomer bonding forces preventing from interfacial delamination under strains. The exposed head side of the electrode comprising v-AuNWs can achieve a detection limit for H2O2 of 80 μM, with a linear range of 0.2-10.4 mM at 20% strain, with a reasonably high sensitivity using chronoamperometry. This excellent electrochemical performance in the elongated state, in conjunction with low-cost wet-chemistry fabrication, demonstrates that v-AuNWs electrodes may become a next-generation sensing platform for conformally integrated, in vivo biodiagnostics.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia
| | - Yan Wang
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia
| | - Shu Gong
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia
| | - Yunzhi Ling
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia
| | - Lim Wei Yap
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia
| | - Yiyi Liu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia
| | - Joseph Wang
- Department of Nanoengineering , University of California, San Diego , La Jolla , California 92093 , United States
| | - George P Simon
- New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia.,Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Wenlong Cheng
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.,New Horizon Research Centre , Monash University , Clayton , Victoria 3800 , Australia.,The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| |
Collapse
|
90
|
Ding S, Das SR, Brownlee BJ, Parate K, Davis TM, Stromberg LR, Chan EKL, Katz J, Iverson BD, Claussen JC. CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. Biosens Bioelectron 2018; 117:68-74. [PMID: 29886188 DOI: 10.1016/j.bios.2018.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 11/28/2022]
Abstract
Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered significant attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDEs were functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)-an oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant label-free immunosensor was capable of detecting CIP2A across a wide linear sensing range (1-100 pg/mL) with a detection limit of 0.24 pg/mL within saliva supernatant-a range that is more sensitive than the corresponding CIP2A enzyme linked immunosorbent assay (ELISA). These results help pave the way for rapid cancer screening tests at the point-of-care (POC) such as for the early-stage diagnosis of oral cancer at a dentist's office.
Collapse
Affiliation(s)
- Shaowei Ding
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Suprem R Das
- Ames (DOE) Laboratory, Ames, IA 50011, USA; Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Benjamin J Brownlee
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Kshama Parate
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Taylor M Davis
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Loreen R Stromberg
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainsville, FL, 32610, USA
| | - Joseph Katz
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida, Gainsville, FL 32610, USA
| | - Brian D Iverson
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA.
| | - Jonathan C Claussen
- Ames (DOE) Laboratory, Ames, IA 50011, USA; Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
91
|
Yin L, Seo JK, Kurniawan J, Kumar R, Lv J, Xie L, Liu X, Xu S, Meng YS, Wang J. Highly Stable Battery Pack via Insulated, Reinforced, Buckling-Enabled Interconnect Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800938. [PMID: 29971916 DOI: 10.1002/smll.201800938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Indexed: 06/08/2023]
Abstract
This work describes a flexible and stretchable battery pack configuration that exhibits highly stable performance under large deformation up to 100% biaxial stretching. Using stress-enduring printable inks and serpentine interconnects, the new screen-printing route offers an attractive solution for converting rigid battery units into a flexible, stretchable energy storage device. Coin-cell lithium ion batteries are thus assembled onto the island regions of a screen-printed, buckling-enabled, polymer-reinforced interconnect "island-bridge" array. Most of the strain on the new energy-storage device is thus accommodated by the stress-enduring serpentine structures, and the array is further reinforced by mechanically strong "backbone" layers. Battery pack arrays are assembled and tested under different deformation levels, demonstrating a highly stable performance (<2.5% change) under all test conditions. A light emitting diode band powered by the battery pack is tested on-body, showing uninterrupted illumination regardless of any degrees of deformation. Moreover, battery-powered devices that are ultrastable under large deformation can be easily fabricated by incorporating different electronics parts such as sensors or integrated circuits on the same platform. Such ability to apply traditionally rigid, bulky lithium ion batteries onto flexible and stretchable printed surfaces holds considerable promise for diverse wearable applications.
Collapse
Affiliation(s)
- Lu Yin
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Joon Kyo Seo
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Jonas Kurniawan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Rajan Kumar
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Jian Lv
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Lingye Xie
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Xinyu Liu
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Ying S Meng
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
92
|
Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, Campbell AS, Mercier PP, Wang J. Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800880. [PMID: 30356971 PMCID: PMC6193173 DOI: 10.1002/advs.201800880] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Indexed: 05/03/2023]
Abstract
The development of wearable biosensors for continuous noninvasive monitoring of target biomarkers is limited to assays of a single sampled biofluid. An example of simultaneous noninvasive sampling and analysis of two different biofluids using a single wearable epidermal platform is demonstrated here. The concept is successfully realized through sweat stimulation (via transdermal pilocarpine delivery) at an anode, alongside extraction of interstitial fluid (ISF) at a cathode. The system thus allows on-demand, controlled sampling of the two epidermal biofluids at the same time, at two physically separate locations (on the same flexible platform) containing different electrochemical biosensors for monitoring the corresponding biomarkers. Such a dual biofluid sampling and analysis concept is implemented using a cost-effective screen-printing technique with body-compliant temporary tattoo materials and conformal wireless readout circuits to enable real-time measurement of biomarkers in the sampled epidermal biofluids. The performance of the developed wearable device is demonstrated by measuring sweat-alcohol and ISF-glucose in human subjects consuming food and alcoholic drinks. The different compositions of sweat and ISF with good correlations of their chemical constituents to their blood levels make the developed platform extremely attractive for enhancing the power and scope of next-generation noninvasive epidermal biosensing systems.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of NanoengineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | | | - Somayeh Imani
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | - Martin C. Hartel
- Department of NanoengineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | - Abbas Barfidokht
- Department of NanoengineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | - Guangda Tang
- Department of NanoengineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | - Alan S. Campbell
- Department of NanoengineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | - Patrick P. Mercier
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| | - Joseph Wang
- Department of NanoengineeringUniversity of CaliforniaSan Diego, La JollaCA92093USA
| |
Collapse
|
93
|
Sharma S. Glassy Carbon: A Promising Material for Micro- and Nanomanufacturing. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1857. [PMID: 30274225 PMCID: PMC6213281 DOI: 10.3390/ma11101857] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
When certain polymers are heat-treated beyond their degradation temperature in the absence of oxygen, they pass through a semi-solid phase, followed by the loss of heteroatoms and the formation of a solid carbon material composed of a three-dimensional graphenic network, known as glassy (or glass-like) carbon. The thermochemical decomposition of polymers, or generally of any organic material, is defined as pyrolysis. Glassy carbon is used in various large-scale industrial applications and has proven its versatility in miniaturized devices. In this article, micro and nano-scale glassy carbon devices manufactured by (i) pyrolysis of specialized pre-patterned polymers and (ii) direct machining or etching of glassy carbon, with their respective applications, are reviewed. The prospects of the use of glassy carbon in the next-generation devices based on the material's history and development, distinct features compared to other elemental carbon forms, and some large-scale processes that paved the way to the state-of-the-art, are evaluated. Selected support techniques such as the methods used for surface modification, and major characterization tools are briefly discussed. Barring historical aspects, this review mainly covers the advances in glassy carbon device research from the last five years (2013⁻2018). The goal is to provide a common platform to carbon material scientists, micro/nanomanufacturing experts, and microsystem engineers to stimulate glassy carbon device research.
Collapse
Affiliation(s)
- Swati Sharma
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76334 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
94
|
Brownlee BJ, Bahari M, Harb JN, Claussen JC, Iverson BD. Electrochemical Glucose Sensors Enhanced by Methyl Viologen and Vertically Aligned Carbon Nanotube Channels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28351-28360. [PMID: 30067019 DOI: 10.1021/acsami.8b08997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Freestanding, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating at a low potential of -0.2 V vs Ag/AgCl. As a comparison, enzymatic VACNT sensors with platinum nano-urchins were functionalized with glucose oxidase by covalent binding (1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide/ N-hydroxysuccinimide) or by polymer entrapment [poly(3,4-ethylene-dioxythiophene)] and operated in phosphate buffered saline. With normalization by the overall cross-sectional area of the flow (0.713 cm2), the sensitivity of the MV, enzyme-in-solution, and covalent sensors were 45.93, 18.77, and 1.815 mA cm-2 mM-1, respectively. Corresponding limits of detection were 100, 194, and 311 nM glucose. The linear sensing ranges for the sensors were 250 nM to 200 μM glucose for the MV sensor, 500 nM to 200 μM glucose for the enzyme-in-solution sensor, and 1 μM to 6 mM glucose for the covalent sensor. The flow cell and sensor cross-sectional area were scaled down (0.020 cm2) to enable detection from 200 μL of glucose with MV by flow injection analysis. The sensitivity of the small MV sensor was 5.002 mA cm-2 mM-1, with a limit of detection of 360 nM glucose and a linear range up to at least 150 μM glucose. The small MV sensor has the potential to measure glucose levels found in 200 μL of saliva.
Collapse
Affiliation(s)
| | | | | | - Jonathan C Claussen
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | | |
Collapse
|
95
|
Sim HJ, Lee DY, Kim H, Choi YB, Kim HH, Baughman RH, Kim SJ. Stretchable Fiber Biofuel Cell by Rewrapping Multiwalled Carbon Nanotube Sheets. NANO LETTERS 2018; 18:5272-5278. [PMID: 29995416 DOI: 10.1021/acs.nanolett.8b02256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fiber-type biofuel cell is attractive as an implantable energy source because the fiber can modify various structures and the wound can be stitched like a suture. In addition, in daily life, the biofuel cell is forced by human motion, and stretchability is a critical requirement for real applications. Therefore, we introduce a new type of highly stretchable, stable, soft fiber biofuel cell with microdiameter dimensions as an energy harvester. The completed biofuel cell operated well in fluids similar to human fluids, such as 20 mM phosphate-buffered 0.14 M NaCl solution (39.5 mW/cm2) and human serum (36.6 μW/cm2). The fiber-type biofuel cell can be reversibly stretched up to 100% in tensile direction while producing sustainable electrical power. In addition, the unique rewrapping structure, which traps the enzyme between multiwalled carbon nanotube sheets, enormously enhanced the stability of the biofuel cell when the biofuel cell was repeatedly stretched (the power density retention increased from 63 to 99%) and operated in human serum (the power density retention increased from 29 to 86%). The fiber can be easily woven into various structures, such as McKibben braid yarn, and scaled up by series and parallel connections.
Collapse
Affiliation(s)
- Hyeon Jun Sim
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Dong Yeop Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Hyunsoo Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Young-Bong Choi
- Department of Chemistry , Dankook University , Cheonan 31116 , Korea
| | - Hyug-Han Kim
- Department of Chemistry , Dankook University , Cheonan 31116 , Korea
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75083 , United States
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| |
Collapse
|
96
|
Vikesland PJ. Nanosensors for water quality monitoring. NATURE NANOTECHNOLOGY 2018; 13:651-660. [PMID: 30082808 DOI: 10.1038/s41565-018-0209-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 05/20/2023]
Abstract
Nanomaterial-enabled sensors are being designed for high-efficiency, multiplex-functionality and high-flexibility sensing applications. Many existing nanosensors have the inherent capacity to achieve such goals; however, they require further development into consumer- and operator-friendly tools with the ability to detect analytes in previously inaccessible locations, as well as at a greater scale than heretofore possible. Here, I discuss how nanotechnology-enabled sensors have great, as yet unmet, promise to provide widespread and potentially low-cost monitoring of chemicals, microbes and other analytes in drinking water.
Collapse
Affiliation(s)
- Peter J Vikesland
- Via Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA.
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA.
| |
Collapse
|
97
|
Li W, Long R, Hou Z, Tang J, Prezhdo OV. Influence of Encapsulated Water on Luminescence Energy, Line Width, and Lifetime of Carbon Nanotubes: Time Domain Ab Initio Analysis. J Phys Chem Lett 2018; 9:4006-4013. [PMID: 29969269 DOI: 10.1021/acs.jpclett.8b02049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a broad range of applications, carbon nanotubes (CNTs) are in direct contact with a condensed-phase environment that perturbs CNT properties. Experiments show that water molecules encapsulated inside of semiconducting CNTs reduce the electronic energy gap, enhance elastic and inelastic electron-phonon scattering, and shorten the excited-state lifetime. We rationalize the observed effects at the atomistic level using real-time time-dependent density functional theory combined with nonadiabatic molecular dynamics. Encapsulated water makes the nanotube more rigid, suppressing radial breathing modes while enhancing and slightly shifting the optical G-mode. Water screens Coulomb interactions and shifts charge carrier energies and wave functions. The screening, together with distortion of the CNT geometry and lifting of orbital degeneracy, produces a luminescence red shift. Enhanced elastic and inelastic electron-phonon scattering explains line width broadening and shortening of the excited-state lifetime. The influence of water on the CNT properties is similar to that of defects; however, in contrast to defects, water creates no new phonon modes or electronic states in the CNTs. The atomistic understanding of the influence of the condensed-phase environment on CNT optical, electronic, and vibrational properties, and electron-vibrational dynamics guides design of novel CNT-based materials.
Collapse
Affiliation(s)
- Wei Li
- College of Science , Hunan Agricultural University , Changsha 410128 , People's Republic of China
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Run Long
- College of Chemistry , Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Zhufeng Hou
- National Institute for Materials Science (NIMS) , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Jianfeng Tang
- College of Science , Hunan Agricultural University , Changsha 410128 , People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
98
|
Kim T, Cho M, Yu KJ. Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1163. [PMID: 29986539 PMCID: PMC6073353 DOI: 10.3390/ma11071163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
Scientific and engineering progress associated with increased interest in healthcare monitoring, therapy, and human-machine interfaces has rapidly accelerated the development of bio-integrated multifunctional devices. Recently, compensation for the cons of existing materials on electronics for health care systems has been provided by carbon-based nanomaterials. Due to their excellent mechanical and electrical properties, these materials provide benefits such as improved flexibility and stretchability for conformal integration with the soft, curvilinear surfaces of human tissues or organs, while maintaining their own unique functions. This review summarizes the most recent advanced biomedical devices and technologies based on two most popular carbon based materials, carbon nanotubes (CNTs) and graphene. In the beginning, we discuss the biocompatibility of CNTs and graphene by examining their cytotoxicity and/or detrimental effects on the human body for application to bioelectronics. Then, we scrutinize the various types of flexible and/or stretchable substrates that are integrated with CNTs and graphene for the construction of high-quality active electrode arrays and sensors. The convergence of these carbon-based materials and bioelectronics ensures scalability and cooperativity in various fields. Finally, future works with challenges are presented in bio-integrated electronic applications with these carbon-based materials.
Collapse
Affiliation(s)
- Taemin Kim
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Myeongki Cho
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Ki Jun Yu
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
99
|
Hoekstra R, Blondeau P, Andrade FJ. Distributed electrochemical sensors: recent advances and barriers to market adoption. Anal Bioanal Chem 2018; 410:4077-4089. [PMID: 29806065 DOI: 10.1007/s00216-018-1104-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Francisco J Andrade
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
100
|
Hoekstra R, Blondeau P, Andrade FJ. IonSens: A Wearable Potentiometric Sensor Patch for Monitoring Total Ion Content in Sweat. ELECTROANAL 2018. [DOI: 10.1002/elan.201800128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| | - Francisco J. Andrade
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| |
Collapse
|