51
|
Tolić Čop K, Perin N, Hranjec M, Runje M, Vianello R, Gazivoda Kraljević T, Mutavdžić Pavlović D. Insight into the degradation of amino substituted benzimidazo[1,2-a]quinolines via a combined experimental and density functional theory study. J Pharm Biomed Anal 2024; 237:115767. [PMID: 37832474 DOI: 10.1016/j.jpba.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Heterocyclic compounds have been shown to be potential chemotherapeutic agents, especially the benzimidazole derivatives studied in this work. The ultimate goal in the search for biologically active and effective molecules is to commercialize a product whose stability must be reliable. Therefore, in the development of drugs, forced degradation experiments are performed under the environmental conditions to which they are subjected during transportation and storage to ensure quality and safety before marketing. Hydrolytic, thermal, photolytic, and degradation in the presence of hydrogen peroxide are experimental stress tests to which the newly synthesized compounds were subjected to gain insight into the degradation pathways of the analytes. Degradation of two benzimidazole derivatives was observed under all applied conditions while the major impact showed photolysis with ten and four degradation products, respectively. In total, eighteen major degradation products were detected and identified using high-resolution mass spectrometry. Computer models in the TEST program were applied to the proposed structures to evaluate the bioaccumulation factor, toxicity, and mutagenicity of the analyzed compounds, while density functional theory analysis (DFT) revealed factors affecting the vulnerability of systems towards exceeding acidic/basic conditions and H2O2.
Collapse
Affiliation(s)
- Kristina Tolić Čop
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Analytical Chemistry, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Nataša Perin
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marijana Hranjec
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Mislav Runje
- Pliva Croatia TAPI R&D, Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Tatjana Gazivoda Kraljević
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Dragana Mutavdžić Pavlović
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Analytical Chemistry, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|
52
|
Qu G, Jia P, Tang S, Pervez MN, Pang Y, Li B, Cao C, Zhao Y. Enhanced peroxymonosulfate activation via heteroatomic doping defects of pyridinic and pyrrolic N in 2D N‑doped carbon nanosheets for BPA degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132626. [PMID: 37769450 DOI: 10.1016/j.jhazmat.2023.132626] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Understanding the role of intrinsic defects and nonmetallic heteroatom doping defects in activating peroxymonosulfate (PMS) and subsequently degrading endocrine-disrupting compounds is crucial for designing more efficient carbon catalysts. Therefore, we synthesized N-rich carbon nanosheets (NCs) through pyrolysis of a glutamic acid and melamine mixture and utilized them to activate PMS for bisphenol A (BPA) degradation. Different weight ratios of the above mixtures were allowed for manipulating NCs' defect level and N configuration. The reaction rate constant (k) was significantly positively correlated with the pyridinic and pyrrolic N content, and negatively and weakly positively correlated with graphite N and intrinsic defects, respectively. These findings suggest pyridinic and pyrrolic N, rather than graphitic N and intrinsic defects, enhance PMS activation to generate reactive oxygen species (specifically O•-2 and 1O2) and oxidize BPA. The NC-activated PMS system with the highest N content (17.9 atom%) demonstrated a remarkably high k (0.127 min-1) using minimal concentrations of PMS (0.4 mM) and NC (0.15 g/L), highlighting the system's efficiency. Excess halide anions led to significantly increased k with only a limited formation of trichloromethane (disinfection byproducts) in presence of 100 mM Cl-. This study offers novel perspectives on identifying catalytic sites within N-doped carbonaceous materials.
Collapse
Affiliation(s)
- Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Jia
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Sea-Area Management Technology (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yixiong Pang
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Bin Li
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
53
|
Wu Y, Wang X, She T, Li T, Wang Y, Xu Z, Jin X, Song H, Yang S, Li S, Yan S, He H, Zhang L, Zou Z. Iron 3D-Orbital Configuration Dependent Electron Transfer for Efficient Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306464. [PMID: 37658488 DOI: 10.1002/smll.202306464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (FeOh ) and tetrahedral (FeTd ) sites in spinel ZnFe2 O4 and FeAl2 O4 , respectively. ZnFe2 O4 (136.58 min-1 F-1 cm2 ) presented higher specific activity than FeAl2 O4 (97.47 min-1 F-1 cm2 ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe2 O4 has a larger bond order to decompose PMS. Using this descriptor, high-spin FeOh is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin FeTd prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of 1 O2 on ZnFe2 O4 and O2 •- on FeAl2 O4 via quenching experiments. Electrochemical determinations reveal that FeOh has superior capability than FeTd for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe2 O4 is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.
Collapse
Affiliation(s)
- Yijie Wu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, P. R. China
| | - Tiantian She
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Taozhu Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yunheng Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhe Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Jin
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Haiou Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shaogui Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shiyin Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shicheng Yan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Huan He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Limin Zhang
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, School of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
54
|
Ma H, Feng G, Zhang X, Song C, Xu R, Shi Y, Wang P, Xu Z, Wang G, Fan X, Pan Z. New insights into Co 3O 4-carbon nanotube membrane for enhanced water purification: Regulated peroxymonosulfate activation mechanism via nanoconfinement. CHEMOSPHERE 2024; 347:140698. [PMID: 37967680 DOI: 10.1016/j.chemosphere.2023.140698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Co-based peroxymonosulfate (PMS) activation system with fascinating catalytic performance has become a promising technology for water purification, but it always suffers from insufficient mass transfer, less exposed active sites and toxic metal leaching. In this work, a carbon nanotube membrane confining Co3O4 inside (Co3O4-in-CNT) was prepared and was coupled with PMS activation (catalytic membrane process) for sulfamethoxazole (SMX) removal. Compared with counterpart with surface-loaded Co3O4 (Co3O4-out-CNT), the Co3O4-in-CNT catalytic membrane process exhibited enhanced SMX removal (99.5% vs. 89.1%) within residence time of 2.89 s, reduced Co leaching (20 vs. 147 μg L-1) and more interestingly, the nonradical-to-radical mechanism transformation (from 1O2 and electron transfer to SO4•- and •OH). These phenomena were ascribed to the nanoconfinement effect in CNT, which enhanced mass transfer (2.80 × 10-4 vs. 5.98 × 10-5 m s-1), accelerated Co3+/Co2+ cycling (73.4% vs. 65.0%) and showed higher adsorption energy for PMS (cleavage of O-O bond). Finally, based on the generated abundant reactive oxygen species (ROS), the seven degradation pathways of SMX were formed in system.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Zhouhang Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
55
|
Jiang Y, Yu Z, Lv Y, Li X, Lin C, Ye X, Yang G, Liu Y, Dai L, Liu M, Ruan R. Insights to PFOS elimination with peroxydisulfate activation mediated by boron modified Fe/C catalysts: Enhancing mechanism of boron and PFOS degradation pathway. J Colloid Interface Sci 2023; 652:1743-1755. [PMID: 37672977 DOI: 10.1016/j.jcis.2023.08.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
In this study, the boron-doped iron-carbon composite (Fe@B/C-2) was prepared via a simple solvothermal and secondary calcination process by using iron metal-organic frameworks (Fe-MOFs) as precursor. The obtained Fe@B/C-2 possessed abundant active sites and low iron ion leaching, and exhibited excellent performance on peroxydisulfate (PDS) activation for efficient PFOS (10 mg/L) degradation (94 %) in 60 min, with 0.2 g/L of catalyst dosage, 1.0 g/L of PDS dosage and at 5.0 of initial pH. The radical scavenging and electron paramagnetic resonance (EPR) tests demonstrated that SO4·- and ·OH were the primary active species during PFOS elimination. Under the attack of these species, PFOS was first transformed into PFOA, followed by a sequential defluorination process, and lastly mineralized into CO2 and F-. Notably, DFT results revealed that Fe species, -BC3/-BC2O structures on the carbon matrix performed crucial roles in PDS activation. The extraordinary catalytic activity of Fe@B/C-2 was attributable to the synergistic effects of Fe nanoparticles and the B-doped on carbon matrix. The doped B not only could activate the inert carbon skeleton and provided more catalytic centers, but also could accelerate the electron transfer efficiency, leading to a boost in PDS decomposition.
Collapse
Affiliation(s)
- Yanting Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Zhendong Yu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Guifang Yang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China; Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou 350118, China.
| | - Leilei Dai
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, St. Paul, MN 55108, United States of America.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China.
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, St. Paul, MN 55108, United States of America.
| |
Collapse
|
56
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
57
|
Li Y, Xiang L, Li L, Gu X, Dong W, Wu Y. Enhanced degradation of chloramphenicol via heterogeneous activation of peroxymonosulfate by Fe 3O 4 and gallic acid. CHEMOSPHERE 2023; 344:140376. [PMID: 37806327 DOI: 10.1016/j.chemosphere.2023.140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
In this study, we demonstrated the effective degradation of wide-spectrum antibiotic chloramphenicol (CAP) by Fe3O4/peroxymonosulfate (PMS) system modified by gallic acid (GA). GA/Fe3O4/PMS showed a substantially higher degradation rate (77.6%) than Fe3O4/PMS (8.3%). The active components were detected by electron spin-resonance spectroscopy (ESR) and the quenching experiments. The results showed that the hydroxyl radical (HO•) was the main reason for the degradation of CAP. In the GA/Fe3O4/PMS system, the trace amount of dissolved iron ion were not the main species that activated PMS. Surface characterization and theoretical simulations showed that Fe atoms on Fe3O4 were responsible for PMS activation rather than a homogenous reaction. Five probable CAP degradation pathways were identified by density functional theory (DFT) calculations and liquid-phase mass spectrometry. Finally, the reusability of Fe3O4 was measured, and the GA/Fe3O4/PMS system maintained high efficiency after 5 times applications. The total organic carbon (TOC) removal rate reached 46.5% after reacting for 12 h. The gallic acid effectively promotes the circulation of Fe(II)/Fe(III) on solid surfaces and enhanced the degradation capacity of the original system. The research proposed a new way of directly employing plant polyphenols to boost the degradation ability of contaminants in heterogeneous systems.
Collapse
Affiliation(s)
- Yang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Liurui Xiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Linyi Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Xinyi Gu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
58
|
Hui D, Liu JY, Pan FL, Chen N, Wei ZX, Zeng Y, Yao SY, Du F. Binary Metallic CuCo 5 S 8 Anode for High Volumetric Sodium-Ion Storage. Chemistry 2023; 29:e202302244. [PMID: 37604794 DOI: 10.1002/chem.202302244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
With the rapid improvement of compact smart devices, fabricating anode materials with high volumetric capacity has gained substantial interest for future sodium-ion batteries (SIBs) applications. Herein, a novel bimetal sulfide CuCo5 S8 material is proposed with enhanced volumetric capacity due to the intrinsic metallic electronic conductivity of the material and multi-electron transfer during electrochemical procedures. Due to the intrinsic metallic behavior, the conducting additive (CA) could be removed from the electrode fabrication without scarifying the high rate capability. The CA-free CuCo5 S8 electrode can achieve a high volumetric capacity of 1436.4 mA h cm-3 at a current density of 0.2 A g-1 and 100 % capacity retention over 2000 cycles in SIBs, outperforming most metal chalcogenides, owing to the enhanced electrode density. Reversible conversion reactions are revealed by combined measurements for sodium systems. The proposed new strategy offers a viable approach for developing innovative anode materials with high-volumetric capacity.
Collapse
Affiliation(s)
- Da Hui
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Jingyi Y Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feilong L Pan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Nan Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Zhixuan X Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Yi Zeng
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shiyu Y Yao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
59
|
Ma H, Feng G, Li X, Pan Z, Xu R, Wang P, Fan X, Song C. A novel copper oxide/titanium membrane integrated with peroxymonosulfate activation for efficient phenolic pollutants degradation. J Colloid Interface Sci 2023; 650:1052-1063. [PMID: 37459729 DOI: 10.1016/j.jcis.2023.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Herein, a novel CuO catalyst functionalized Ti-based catalytic membrane (FCTM) was prepared via the regulated electro-deposition technique followed with low-temperature calcination. The morphology of CuO catalyst and oxygen vacancy (OV) content can be controlled by adjusting the preparation conditions, under optimal condition (400 °C, electrolyte as sulfuric acid), the fern-shaped CuO catalyst was formed and the OV content was up to its highest level. Under the optimal treatment condition, the 4-chlorophenol (4-CP) removal of the membrane filtration combined with peroxymonosulfate (PMS) activation (MFPA) process was up to 98.2% (TOC removal of 88.2%). Mechanism studying showed that the enhanced performance in this system was mainly due to the increased production of singlet oxygen (1O2) via the co-effect of fern-shaped CuO (increased specific surface area) and its fine-tuned OV (precursor of 1O2), which not only synergistically enhanced adsorption ability but also offered more active sites for PMS activation. Theoretical calculations showed that the OV-rich CuO displayed high adsorption energy for PMS molecule, leading to the change in OO and OH bond (tend to 1O2) of the PMS molecule. Finally, the possible three degradation pathways of 4-CP were formed by the electrophilic attacking of 1O2.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Xiaoyang Li
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
60
|
Wang XS, Ma CN, Liu YL, Wang GJ, Tang B, Song H, Gao Z, Ma J, Wang L. High efficiency removal of organic and inorganic iodine with ferrate[Fe(VI)] through oxidation and adsorption. WATER RESEARCH 2023; 246:120671. [PMID: 37804804 DOI: 10.1016/j.watres.2023.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
I- is a halogen species existing in natural waters, and the transformation of organic and inorganic iodine in natural and artificial processes would impact the quality of drinking water. Herein, it was found that Fe(VI) could oxidize organic and inorganic iodine to IO3-and simultaneously remove the resulted IO3- through Fe(III) particles. For the river water, wastewater treatment plant (WWTP) effluent, and shale gas wastewater treated by 5 mg/L of Fe(VI) (as Fe), around 63 %, 55 % and 71 % of total iodine (total-I) had been removed within 10 min, respectively. Fe(VI) was superior to coagulants in removing organic and inorganic iodine from the source water. Adsorption kinetic analysis suggested that the equilibrium adsorption amount of I- and IO3- were 11 and 10.1 μg/mg, respectively, and the maximum adsorption capacity of IO3- by Fe(VI) resulted Fe(III) particles was as high as 514.7 μg/mg. The heterogeneous transformation of Fe(VI) into Fe(III) effectively improved the interaction probability of IO3- with iron species. Density functional theory (DFT) calculation suggested that the IO3- was mainly adsorbed in the cavity (between the γ-FeOOH shell and γ-Fe2O3 core) of Fe(III) particles through electrostatic adsorption, van der Waals force and hydrogen bond. Fe(VI) treatment is effective for inhibiting the formation of iodinated disinfection by-products in chlor(am)inated source water.
Collapse
Affiliation(s)
- Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cai-Ni Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gui-Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
61
|
Tong Y, Gao P, Xu J, Liu S, Yang Y, Wang Y, Feng L, Han Q, Liu Y, Zhang L. Cobalt doped nitrogen-vacancies-rich C 3N 5 with optimizing local electron distribution boosts peroxymonsulfate activation for tetracycline degradation: Multiple electron transfer mechanisms. CHEMOSPHERE 2023; 339:139549. [PMID: 37499802 DOI: 10.1016/j.chemosphere.2023.139549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Heterogeneous photocatalysis coupled with peroxymonosulfate (PMS) activation is considered as an advanced water purification technology for emerging contaminates degradation. In this study, Cobalt (Co) doped nitrogen-vacancies-rich C3N5 photocatalysts (Co/Nv-C3N5) were designed to activate PMS for tetracycline removal. The photo-chemical oxidation system displayed superior advantage, in which the observed rate constant of tetracycline degradation (0.1488 min-1) was 10.86 and 1.82 times higher than that of photo-oxidation and chemical-oxidation systems. Density functional theory calculation results verified the reconstruction of local charge distribution during PMS activation, indicating Co doping and nitrogen-vacancy engineering not only promoted photoelectrons capture, but also boosted electron transfer from the C-N framework to PMS and the generation of active species. Furthermore, several unique multiple electron transfer mechanisms were found in nonradicals (h+, 1O2 and Co(IV)) pathways. Additionally, three possible tetracycline degradation pathways were proposed and the toxicity of the intermediates was evaluated. Overall, the findings from this study provided a novel strategy for developing high-efficient photocatalyst for the rapid degradation of organic pollutants.
Collapse
Affiliation(s)
- Yao Tong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jiacan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
62
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
63
|
Yu F, Jia C, Wu X, Sun L, Shi Z, Teng T, Lin L, He Z, Gao J, Zhang S, Wang L, Wang S, Zhu X. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat Commun 2023; 14:4975. [PMID: 37591830 PMCID: PMC10435566 DOI: 10.1038/s41467-023-40691-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Iron-based catalysts are promising candidates for advanced oxidation process-based wastewater remediation. However, the preparation of these materials often involves complex and energy intensive syntheses. Further, due to the inherent limitations of the preparation conditions, it is challenging to realise the full potential of the catalyst. Herein, we develop an iron-based nanomaterial catalyst via soft carbon assisted flash joule heating (FJH). FJH involves rapid temperature increase, electric shock, and cooling, the process simultaneously transforms a low-grade iron mineral (FeS) and soft carbon into an electron rich nano Fe0/FeS heterostructure embedded in thin-bedded graphene. The process is energy efficient and consumes 34 times less energy than conventional pyrolysis. Density functional theory calculations indicate that the electron delocalization of the FJH-derived heterostructure improves its binding ability with peroxydisulfate via bidentate binuclear model, thereby enhancing ·OH yield for organics mineralization. The Fe-based nanomaterial catalyst exhibits strong catalytic performance over a wide pH range. Similar catalysts can be prepared using other commonly available iron precursors. Finally, we also present a strategy for continuous and automated production of the iron-based nanomaterial catalysts.
Collapse
Affiliation(s)
- Fengbo Yu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Chao Jia
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Xuan Wu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Liming Sun
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Zhijian Shi
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Tao Teng
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Litao Lin
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Zhelin He
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Jie Gao
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, 200092, Shanghai, China
| | - Liang Wang
- School of Energy and Power, Jiangsu University of Science and Technology, 212003, Zhenjiang, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Xiangdong Zhu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China.
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, 215009, Suzhou, China.
| |
Collapse
|
64
|
Wang X, Zhang C, Li D, Sun Y, Ren J, Sun J, Yang D. Theoretical study of local S coordination environment on Fe single atoms for peroxymonosulfate-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131469. [PMID: 37116331 DOI: 10.1016/j.jhazmat.2023.131469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Tuning the electronic structure of single atom catalysts (SACs) is an effective strategy to promote the catalytic activity in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Herein, a series of Fe-based SACs with S1/2/3/4-coordination numbers on graphene were designed to regulate the electronic structural of SACs at molecular level, and their effects on PMS activation were investigated via density function theory (DFT). The calculation results demonstrate that the electron structure of the active center can be adjusted by coordination environment, which further affects the activation of PMS. Among the studied Fe-SX-C4-X catalysts, with the increase of the S coordination number, the electron density of the Fe-SX-C4-X active center was optimized. The active center of the Fe-S4-C0 catalyst has a largest positive charge density, exhibiting the highest number of electron transfer. It also has a lower kinetic energy barrier (0.28 eV) for PMS dissociation. Organic pollutant such as bisphenol A (BPA) can achieve stable adsorption on Fe-SX-C4-X catalysts, which is conducive to subsequent oxidation by radicals. The dual index ∆f(r) indicates that the para-carbon atom of the hydroxyl group on the benzene ring of BPA is vulnerable to radical attack. This study highlights a theoretical support and a certain guide for designing efficient SACs to activate PMS.
Collapse
Affiliation(s)
- Xiaoxia Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Congyun Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Daohao Li
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, China
| | - Jin Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
65
|
Yang B, Ma Q, Hao J, Huang J, Wang Q, Wang D, Zhang J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. CHEMOSPHERE 2023:139442. [PMID: 37422211 DOI: 10.1016/j.chemosphere.2023.139442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Periodate-based advanced oxidation processes (AOPs) have received mounting attention in scientific research in the past two decades due to their fair oxidizing capability for satisfactory decontamination performance. Unlike iodyl (IO3•) and hydroxyl (•OH) radicals are widely recognized as the predominant species generated from periodate activation, the role of high-valent metal as a dominant reactive oxidant has been proposed recently. Although several excellent reviews concerning periodate-based AOPs have been reported, there are still prevalent knowledge roadblocks to high-valent metals' formation and reaction mechanisms. Therefore, this work aims to provide a comprehensive overview of high-valent metals, especially concerning the identification methods (e.g., direct and indirect strategies), formation mechanisms (e.g., formation pathways and interpretation based on density functional theory calculation), reaction mechanisms (e.g., nucleophilic attack, electron transfer, oxygen-atom transfer, electrophilic addition, and hydride and hydrogen-atom transfer), and reactivity performance (e.g., chemical properties, influencing factors, and practical applications). Furthermore, points for critical thinking and further prospects for high-valent metal-mediated oxidation processes are suggested, emphasizing the need for parallel efforts to enhance the stability and reproducibility of high-valent metal-mediated oxidation processes in real world applications.
Collapse
Affiliation(s)
- Bowen Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Qingyuan Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
66
|
Wang X, Zhou Y, Wang N, Zhang J, Zhu L. Carbonate-induced enhancement of phenols degradation in CuS/peroxymonosulfate system: A clear correlation between this enhancement and electronic effects of phenols substituents. J Environ Sci (China) 2023; 129:139-151. [PMID: 36804230 DOI: 10.1016/j.jes.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/18/2023]
Abstract
This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst. It was found that the added CO32- increased both the catalytic activity and the stability of the catalyst. Under optimized reaction conditions in the presence of CO32-, the degradation removal of 4-methylphenol (4-MP) within 2 min reached 100%, and this was maintained in consecutive multi-cycle experiments. The degradation rate constant of 4-MP was 2.159 min-1, being 685% greater than that in the absence of CO32- (0.315 min-1). The comparison of dominated active species and 4-MP degradation pathways in both CO32--free and CO32--containing systems suggested that more CO3•-/1O2 was produced in the case of CO32-deducing an electron transfer medium, which tending to react with electron-rich moieties. Meanwhile, Characterization by X-ray photoelectron spectroscopic and cyclic voltammetry measurement verified CO32- enabled the effective reduction of Cu2+ to Cu+. By investigating the degradation of 11 phenolics with different substituents, the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constants σp of the aromatic phenolics and the logarithm of k in the CO32--containing system. This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies.
Collapse
Affiliation(s)
- Xiaobo Wang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Zhou
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nan Wang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jindong Zhang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
67
|
Li N, Ye J, Dai H, Shao P, Liang L, Kong L, Yan B, Chen G, Duan X. A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation. WATER RESEARCH 2023; 235:119926. [PMID: 37004307 DOI: 10.1016/j.watres.2023.119926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•-, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•- and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, 330063 Nanchang, China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Lingchao Kong
- School of Environmental Science & Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China.
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, 300134 Tianjin, China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005 Adelaide, SA, Australia
| |
Collapse
|
68
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
69
|
Wang L, Li J, Liu X, Zhang J, Zeng P, Song Y. Overestimation of 1O 2 role in N-doped carbon materials/peroxymonosulfate system: The misleading of furfuryl alcohol quenching effect. CHEMOSPHERE 2023; 324:138264. [PMID: 36858119 DOI: 10.1016/j.chemosphere.2023.138264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Singlet oxygen (1O2) is frequently observed in persulfate-based advanced oxidation processes (PS-AOPs), however its significance in the removal of organic compounds is debatable. To evaluate the role of 1O2, some organic pollutants that have been proven to be successfully degraded by 1O2 in earlier research were selected as the targeted pollutants of this study. In the activation of peroxymonosulfate (PMS) using Co-BTC (a type of metal-organic framework)/melamine derived nitrogen-doped carbon material (Co-BTC/10MNC) as the catalyst, 1O2 and surface-bound SO4•- are discovered, however only surface-bound SO4•- was the dominant species. The degree of inhibition of furfuryl alcohol (FFA) on the removal of organics is reliant on the reaction rates of SO4•- and organics, rather than on the quenching impact of FFA on 1O2. The lower kSO4•- organics have, the easier it is for FFA to inhibit their removal. In short, the quenching effect of FFA is not solid evidence to identify 1O2. Besides, it is found that the influence of HCO3- is related to the second order reaction rate constant (kHCO3•) between HCO3• and organics, implying that the selective removal of some organics is due to that corresponding inorganic radicals (Cl•, NO3•, HCO3• or HPO4•-) have good ability to degrade these organics, rather than 1O2 as the key reactive oxygen species.
Collapse
Affiliation(s)
- Liangjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiali Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
70
|
Miao J, Song J, Lang J, Zhu Y, Dai J, Wei Y, Long M, Shao Z, Zhou B, Alvarez PJJ, Zhang L. Single-Atom MnN 5 Catalytic Sites Enable Efficient Peroxymonosulfate Activation by Forming Highly Reactive Mn(IV)-Oxo Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4266-4275. [PMID: 36849443 DOI: 10.1021/acs.est.2c08836] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Four-nitrogen-coordinated transitional metal (MN4) configurations in single-atom catalysts (SACs) are broadly recognized as the most efficient active sites in peroxymonosulfate (PMS)-based advanced oxidation processes. However, SACs with a coordination number higher than four are rarely explored, which represents a fundamental missed opportunity for coordination chemistry to boost PMS activation and degradation of recalcitrant organic pollutants. We experimentally and theoretically demonstrate here that five-nitrogen-coordinated Mn (MnN5) sites more effectively activate PMS than MnN4 sites, by facilitating the cleavage of the O-O bond into high-valent Mn(IV)-oxo species with nearly 100% selectivity. The high activity of MnN5 was discerned to be due to the formation of higher-spin-state N5Mn(IV)═O species, which enable efficient two-electron transfer from organics to Mn sites through a lower-energy-barrier pathway. Overall, this work demonstrates the importance of high coordination numbers in SACs for efficient PMS activation and informs the design of next-generation environmental catalysts.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Song
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, U.K
| | - Jie Dai
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wei
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
71
|
Wang R, Zhang S, Chen H, He Z, Cao G, Wang K, Li F, Ren N, Xing D, Ho SH. Enhancing Biochar-Based Nonradical Persulfate Activation Using Data-Driven Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4050-4059. [PMID: 36802506 DOI: 10.1021/acs.est.2c07073] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Converting biomass into biochar (BC) as a functional biocatalyst to accelerate persulfate activation for water remediation has attracted much attention. However, due to the complex structure of BC and the difficulty in identifying the intrinsic active sites, it is essential to understand the link between various properties of BC and the corresponding mechanisms promoting nonradicals. Machine learning (ML) recently demonstrated significant potential for material design and property enhancement to help tackle this problem. Herein, ML techniques were applied to guide the rational design of BC for the targeted acceleration of nonradical pathways. The results showed a high specific surface area, and O% values can significantly enhance nonradical contribution. Furthermore, the two features can be regulated by simultaneously tuning the temperatures and biomass precursors for efficient directed nonradical degradation. Finally, two nonradical-enhanced BCs with different active sites were prepared based on the ML results. This work serves as a proof of concept for applying ML in the synthesis of tailored BC for persulfate activation, thereby revealing the remarkable capability of ML for accelerating bio-based catalyst development.
Collapse
Affiliation(s)
- Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Honglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Zixiang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Guoliang Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150040, PR China
| |
Collapse
|
72
|
Zhao Z, Wang P, Song C, Zhang T, Zhan S, Li Y. Enhanced Interfacial Electron Transfer by Asymmetric Cu-O v -In Sites on In 2 O 3 for Efficient Peroxymonosulfate Activation. Angew Chem Int Ed Engl 2023; 62:e202216403. [PMID: 36646650 DOI: 10.1002/anie.202216403] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Enhancing the peroxymonosulfate (PMS) activation efficiency to generate more radicals is vital to promote the Fenton-like reaction activity, however, how to promote the PMS adsorption and accelerate the interfacial electron transfer to boost its activation kinetics remains a great challenge. Herein, we prepared Cu-doped defect-rich In2 O3 (Cu-In2 O3 /Ov ) catalysts containing asymmetric Cu-Ov -In sites for PMS activation in water purification. The intrinsic catalytic activity is that the side-on adsorption configuration of the O-O bond (Cu-O-O-In) at the Cu-Ov -In sites significantly stretches the O-O bond length. Meanwhile, the Cu-Ov -In sites increase the electron density near the Fermi energy level, promoting more and faster electron transfer to the O-O bond for generating more SO4 ⋅- and ⋅OH. The degradation rate constant of tetracycline achieved by Cu-In2 O3 /Ov is 31.8 times faster than In2 O3 /Ov , and it shows the possibility of membrane reactor for practical wastewater treatment.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chunlin Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
73
|
Qian Z, Qin H, Yan W, Zhou G, Liu C, Zhang Z, Yin J, Li Q, Wang T, Zhang L. Enhancing charge transfer efficiency of cerium-iron oxides via Co regulated oxygen vacancies to boost peroxymonosulfate activation for tetracycline degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
74
|
Cheng G, Yuan C, Ruan W, Ma B, Zhang X, Yuan X, Li Z, Wang D, Teng F. Visible light enhanced persulfate activation for degradation of tetracycline via boosting adsorption of persulfate by ligand-deficient MIL-101(Fe) icosahedron. CHEMOSPHERE 2023; 317:137857. [PMID: 36642131 DOI: 10.1016/j.chemosphere.2023.137857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In this work, Fe-based metal-organic frameworks (Fe-MOFs) are prepared by a simple solvothermal method, in which acetic acid/N, N-dimethylformamide (HAc/DMF) mixture solvents are employed to regulate the particle morphology, exposed facets and ligand defects. At HAc/DMF = 0/50, 5/45 and 8/42 (volume ratio), the irregular particles (MIL-53(Fe)), elongated icosahedrons (5H-MIL-101(Fe)) and icosahedrons (8H-MIL-101(Fe)) are obtained, respectively. Under visible light irradiation (λ > 420 nm) and the addition of sodium persulfate (PS), 5H-MIL-101(Fe) shows the highest degradation activity for tetracycline (TC). Specifically, 80% of TC has been removed by 5H-MIL-101(Fe) within 25 min, and the degradation kinetics rate is 3.03 times higher than that over MIL-53(Fe). The improvement of catalytic activity is mainly attributed to the active facets exposed and ligand defects of 5H-MIL-101(Fe). Density functional theory (DFT) calculation further confirms that the active facets exposed and ligand defects of 5H-MIL-101(Fe) favor the adsorption and activation of PS, benefiting the generation of •SO4-. Besides, a probable degradation pathway of TC is proposed based on trapping experiments and liquid chromatography-mass spectrometry (LC-MS) test. Furthermore, the toxicities of intermediates are predicted by the quantitative structure-activity relationship (QSAR) mathematical model. This work demonstrates that visible light enhanced PS activation (Vis-PSA) can more effectively degrade organic pollutants, and this work also provides a simple strategy to precisely regulate ligand defects and actively exposed facets of Fe-MOFs to enhance the adsorption and activation of PS.
Collapse
Affiliation(s)
- Gangya Cheng
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Chen Yuan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wansheng Ruan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ben Ma
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyu Zhang
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinjing Yuan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Zhihui Li
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Dan Wang
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Fei Teng
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
75
|
Xu N, Hu C, Zhu Z, Wang W, Peng H, Liu B. Establishment of a novel system for photothermal removal of ampicillin under near-infrared irradiation: Persulfate activation, mechanism, pathways and bio-toxicology. J Colloid Interface Sci 2023; 640:472-486. [PMID: 36871512 DOI: 10.1016/j.jcis.2023.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
One of the most effective ways to address the problems of low solar spectrum utilization in photocatalysis and the high cost of persulfate activation technology is to create a cost-effective synergistic photothermal persulfate system. In this work, a brand-new composite catalyst called ZnFe2O4/Fe3O4@MWCNTs (ZFC) was developed to activate PDS (K2S2O8) from the aforementioned basis. ZFC's surface temperature could unbelievably reach 120.6 °C in 150 s together with the degrading synergistic system solution temperature could reach 48 °C under near-infrared light (NIR) in 30 min, thus accelerating the ZFC/PDS decolorization rate for reactive blue KN-R (150 mg/L) to 95% in 60 min. Furthermore, the ZFC's ferromagnetism bore it with good cycling performance, allowing it to maintain an 85% decolorization rate even after 5 cycles with OH·, SO4-·, 1O2, and O2-· dominating the degrading process. In the meantime, the DFT calculations of the kinetic constants for the entire process of S2O82- adsorption on Fe3O4 in dye degradation solution were in agreement with the outcomes of the experimental pseudo-first-order kinetic fitting. By analyzing the particular degradation route of ampicillin (50 mg/L) and the possible environmental impact of the intermediate using LC-MS and the toxicological analysis software (T.E.S.T.), respectively, it was shown that this system might function as an environmentally friendly method for removing antibiotics. This work may provide some productive research lines for the creation of a photothermal persulfate synergistic system and suggest fresh approaches to water treatment technology.
Collapse
Affiliation(s)
- Nan Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Huitao Peng
- ANTA (China) Co. Ltd., Jinjiang 362212, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
76
|
Liu F, Hou Y, Wang S, Li Z, Zhang B, Tong M. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms. WATER RESEARCH 2023; 230:119508. [PMID: 36610181 DOI: 10.1016/j.watres.2022.119508] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL-1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1-10 mg L-1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2- and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
77
|
Shi H, He Y, Li Y, Luo P. 2D MOF derived cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets for efficient Fenton-like catalysis: Tuning effect of oxygen functional groups in close vicinity to Co-N sites. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130345. [PMID: 36444076 DOI: 10.1016/j.jhazmat.2022.130345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/16/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Developing highly efficient catalysts for peroxymonosulfate (PMS) activation is an important issue in advanced oxidation processes (AOPs) technology. In this work, cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets derived from 2D metal-organic framework (MOF) were successfully fabricated. The as-prepared catalyst can effectively degrade tetracycline (TC) with a high reaction constant (0.088 min-1). Quenching test, electron paramagnetic resonance (EPR) technology, and the electrochemical test indicate that the radical pathway plays a minor role in the degradation process, the 1O2 based nonradical pathway dominates the reaction. Experimental and density functional theory (DFT) studies revealed that the Co-N sites on the carbon structure serve as the dominant active sites, and the oxygen functional groups in close vicinity to Co-N sites can dramatically influence local electronic structure and its interaction with PMS molecule, a high correlation between the reaction constant and hydroxy groups content could be due to the Co-N sites close to hydroxyl groups has a moderate PMS adsorption energy. This work provides new insight into the design of highly efficient Fenton-like catalysts.
Collapse
Affiliation(s)
- Heng Shi
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China
| | - Yi He
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, PR China.
| | - Yubin Li
- School of New Energy and Materials, Southwest Petroleum University, Sichuan 610500, PR China
| | - Pingya Luo
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China
| |
Collapse
|
78
|
Ma H, Zhang X, Feng G, Ren B, Pan Z, Shi Y, Xu Resource R, Wang P, Liu Y, Wang G, Fan X, Song C. Carbon nanotube membrane armed with confined iron for peroxymonosulfate activation towards efficient tetracycline removal. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
79
|
Qu W, Chen C, Tang Z, Wen H, Hu L, Xia D, Tian S, Zhao H, He C, Shu D. Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
80
|
Li Y, Li X, Wang B. Constructing tunable coordinatively unsaturated sites in Fe-based metal-organic framework for effective degradation of pharmaceuticals in water: Performance and mechanism. CHEMOSPHERE 2023; 310:136816. [PMID: 36272621 DOI: 10.1016/j.chemosphere.2022.136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Micropollutants are ubiquitously detected in the aqueous environment, which needs to be removed by novel materials effectively. Herein, we synthesized a photo-Fenton catalyst based on MIL-53 (Fe) to effectively degrade sulfadimidine, one of the micropollutants in water. Abundant Lewis acid active sites (54.26 μmol/g) were successfully constructed within the metal cluster using FeCl3·6H2O, 1,4-benzene dicarboxylate, and modulators. This study reports a strategy by effectively constructing tunable Lewis acid active sites within the cavities in MIL-53 (Fe) via a facile solvothermal reaction for sixteen micropollutants removal. The photo-Fenton degradation of sulfamethazine was completely removed (∼99%) within only 1 min with a small amount of hydrogen peroxide added. Both theoretical calculation and the experiment results prove that introducing the unsaturated coordinated/lewis acid sites can remarkably reduce the band gap energy and increase the charge-separation efficiency by changing the electron configuration with more distribution asymmetry of structures. The effective degradation of structurally diverse pharmaceuticals with environmentally relevant concentrations was studied by immobilizing MOF-catalyst into a PVDF support. This work advanced the development of effective approaches for emergency contaminants control.
Collapse
Affiliation(s)
- Yunyun Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China; College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shanxi, 716000, China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
81
|
Comparison of sulfate radical with other reactive species. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Zhang X, Li C, Wang X, Yang S, Tan Y, Yuan F, Zheng S, Dionysiou DD, Sun Z. Defect Engineering Modulated Iron Single Atoms with Assist of Layered Clay for Enhanced Advanced Oxidation Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204793. [PMID: 36344427 DOI: 10.1002/smll.202204793] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Single-atom catalysts (SACs) feature maximum atomic utilization efficiency; however, the loading amount, dispersibility, synthesis cost, and regulation of the electronic structure are factors that need to be considered in water treatment. In this study, kaolinite, a natural layered clay mineral, is applied as the support for g-C3 N4 and single Fe atoms (FeSA-NGK). The FeSA-NGK composite exhibits an impressive degradation performance toward the target pollutant (>98% degradation rate in 10 min), and catalytic stability across consecutive runs (90% reactivity maintained after three runs in a fluidized-bed catalytic unit) under peroxymonosulfate (PMS)/visible light (Vis) synergetic system. The introduction of kaolinite promotes the loading amount of single Fe atoms (2.57 wt.%), which is a 14.2% increase compared to using a bare catalyst without kaolinite, and improved the concentration of N vacancies, thereby optimizing the regulation of the electronic structure of the single Fe atoms. It is discovered that the single Fe atoms successfully occupied five coordinated N atoms and combined with a neighboring N vacancy. Consequently, this regulated the local electronic structure of single Fe atoms, which drives the electrons of N atoms to accumulate on the Fe centers. This study opens an avenue for the design of clay-based SACs for water purification.
Collapse
Affiliation(s)
- Xiangwei Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
| | - Xinlin Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
| | - Shanshan Yang
- School of Earth and Space Sciences, Peking University, Beijing, 100871, P.R. China
| | - Ye Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
| | - Fang Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
- Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P.R. China
| |
Collapse
|
83
|
Miao F, Yue X, Cheng C, Chen X, Ren W, Zhang H. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification. WATER RESEARCH 2022; 227:119346. [PMID: 36395567 DOI: 10.1016/j.watres.2022.119346] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Peracetic-acid-based advanced oxidation processes (PAA-AOPs) on metal-free catalysts have emerged as charming strategies for water contaminant removal. However, the involved reactive species and their corresponding active sites are ambiguous. Herein, using carbon nanotube (CNT) as a model carbocatalyst, we demonstrated that, under neutral conditions, the CNT-PAA* complex was the dominant reactive species to oxidize phenolic compounds via electron-transfer process (ETP), whereas the surface-bound hydroxyl radicals (·OHsurface) played a minor role on the basis of quenching and electrochemical tests as well as Raman spectroscopy. More importantly, the experimental and density functional theory (DFT) calculation results collaboratively proved that the active site for ETP was the sp2-hybridized carbon on the CNT bulk, while that for radical generation was the edge-located hydroxyl group (C-OH), which lowered the energy barrier for cleaving the O-O bond in CNT-PAA* complex. We further discerned the oxidation kinetic constants (koxid) of different pollutants from the apparent kinetic constants in CNT/PAA system. The significant negative linear correlation between lnkoxid and half-wave potential of phenolic compounds suggests that the pollutants with a lower one-electron oxidation potential (i.e., stronger electron-donating ability) are more easily oxidized. Overall, this study scrutinizes the hybrid radical and non-radical mechanism and the corresponding active sites of the CNT/PAA system, providing insights into the application of PAA-AOPs and the development of ETP in the remediation of emerging organic pollutants.
Collapse
Affiliation(s)
- Fei Miao
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiting Yue
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Cheng Cheng
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xuantong Chen
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
84
|
Zhan X, Liu J, Zhao Y, Sun Y, Gao R, Wang H, Shi H. MOF-derived tunable spin-state MnIII doped g-C3N4 photocatalysts with enhanced photocatalytic activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
85
|
Zhan X, Zhao Y, Sun Y, Lei C, Wang H, Shi H. Pyridazine doped g-C 3N 4 with nitrogen defects and spongy structure for efficient tetracycline photodegradation and photocatalytic H 2 evolution. CHEMOSPHERE 2022; 307:136087. [PMID: 36002059 DOI: 10.1016/j.chemosphere.2022.136087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, with thiourea and 3-aminopyridazine as precursors, the graphite-phase carbon nitride (ACN-x) with nitrogen defects and sponge structure is prepared via the introduction of the benzene-like ring structure of pyridazine replacing a "melem" group through hydrothermal procedure combined with calcination. It is made possible by the attraction of three hydrogen bond receptors for 3-aminopyrazine to lone pair electrons on the "melem" molecule. The remarkable extensively photocatalytic activity can be attributed to three effects of the introduction of 3-aminopyridazine: (i)formation of nitrogen defects between adjacent tri-s-triazine groups; (ii)formation of effective charge transfer channels within the tri-s-triazine group; (iii)the spongy structure exposed abundant amino groups(-NH3) at edge sites, combining with the internal amino group and as hole stabilizer to prolong the excited state life of photocatalyst. The photogenerated carrier migration and separation efficiency improved effectively through the tuning synergy. As a result, ACN-x exhibits excellent photocatalytic activity, with hydrogen production efficiency of up to 11331.74 μmol g-1 h-1, which is approximately 94.5 times that of the pristine g-C3N4 (119.88 μmol g-1 h-1). The degradation constants of TC and RhB are 0.0498min-1 and 0.129min-1, which are 3.32 and 6.35 times of the pristine g-C3N4, respectively. The TC degradation in different initial concentrations, pH, dissolved organic matter concentrations, and water sources is conducted to prove the environmental adaptability of the ACN-x system. The mechanism of the system indicates that ·O2- plays an important role, and the ·OH and h+ play a minor role in the TC photocatalytic degradation. Finally, the TC degradation possible pathway is proposed.
Collapse
Affiliation(s)
- Xiaohui Zhan
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yue Zhao
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yanping Sun
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen Lei
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - He Wang
- State Grid Zhejiang Electric Power Corporation Research Institute, Hangzhou, 310014, PR China
| | - Huixiang Shi
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
86
|
Cui L, Zhao X, Xie H, Zhang Z. Overcoming the Activity–Stability Trade-Off in Heterogeneous Electro-Fenton Catalysis: Encapsulating Carbon Cloth-Supported Iron Oxychloride within Graphitic Layers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lele Cui
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Xiaoyu Zhao
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, Zhejiang310003, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
87
|
Lin D, Fu Y, Li X, Wang L, Hou M, Hu D, Li Q, Zhang Z, Xu C, Qiu S, Wang Z, Boczkaj G. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129722. [PMID: 35963083 DOI: 10.1016/j.jhazmat.2022.129722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including solid waste treatment, resources recovery and regeneration of ecomaterials. PS applications mainly rely on direct oxidation by PS itself or the reactive sulfate radical (SO4•-) or hydroxyl radical (•OH) from the activation of peroxodisulfate (PDS, S2O82-) or peroxymonosulfate (PMS, HSO5-) in SO4•--based advanced oxidation processes (SO4•--AOPs). From a broader perspective of environmental cleanup and sustainability, this review summarizes the various applications of PS except pollutant decontamination and elaborates the possible reaction mechanisms. Additionally, the differences between PS treatment and conventional technologies are highlighted. Challenges, research needs and future prospect are thus discussed to promote the development of the applications of PS-based oxidation processes in niche environmental fields. In all, this review is a call to pay more attention to the possibilities of PS application in practical resource reutilization and environmental protection except widely reported pollutant degradation.
Collapse
Affiliation(s)
- Dagang Lin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodie Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Meiru Hou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dongdong Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
88
|
Chen C, Liu L, Li W, Lan Y, Li Y. Reutilization of waste self-heating pad by loading cobalt: A magnetic and green peroxymonosulfate activator for naphthalene degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129572. [PMID: 35863229 DOI: 10.1016/j.jhazmat.2022.129572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The disposal and recovery of solid wastes and the remediation of polycyclic aromatic hydrocarbons (PAHs) are the key issues of environmental pollution control. In this study, micro cobalt loaded on iron-carbon-vermiculite composite (Co-ICV) was prepared for the first time by the reutilization of waste self-heating pad as a carrier of cobalt catalyst, which exhibited better performance than bulk cobalt catalyst in peroxymonosulfate (PMS) activation for the degradation of naphthalene (NAP) in water. Above 98% of NAP (2.0 mg/L) was effectively eliminated within 15 min by the Co-ICV (0.2 g/L) activated PMS (0.5 mmol/L) in a pH range of 5.0-9.0. High magnetism and very limited cobalt leaching realized the convenient separation and stable reusability of Co-ICV. Mechanism investigation indicated that Co(II) species were the main active sites to activate PMS decomposition for the generation of SO4•- and •OH, contributing to the rapid degradation of NAP. Meanwhile, the NAP degradation pathways were deduced via combining the identification of intermediates and the calculation of frontier electron densities (FEDs). Furthermore, the ability of the Co-ICV/PMS system for the NAP degradation in actual lake water and the removal of other refractory pollutants demonstrated that the combination of Co-ICV and PMS was a prospective method for the removal of PAHs. Overall, Co-ICV is a green and promising activator of PMS, and the future development will provide more insights into the comprehensive utilization of solid wastes for the remediation of wastewater containing PAHs.
Collapse
Affiliation(s)
- Cheng Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Li Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Li
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ying Li
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
89
|
Fan M, Cui L, He X, Zou X. Emerging Heterogeneous Supports for Efficient Electrocatalysis. SMALL METHODS 2022; 6:e2200855. [PMID: 36070422 DOI: 10.1002/smtd.202200855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalysis plays a fundamental role in many fields, such as metallurgy, medicine, chemical industry, and energy conversion. Anchoring active electrocatalysts with controllable loading and uniform dispersion onto suitable supports has become an attractive topic. This is because the supports can not only have the potential to improve catalytic activity and stability through the interaction between support and catalytic center, but also can reduce precious metal consumption by improving atomic utilization. Herein, recent theoretical and experimental progresses concerning the development of supports to anchor electrocatalytic materials are first reviewed. Next, their controllable syntheses, characterization techniques, metal-support electronic interactions, and structure-performance relationships are presented. Some representative carbon supports and non-carbonaceous supports, as well as recently reported star supports such as 2D supports, single atom catalysts, and self-supported catalysts are also summarized. In addition, the significant role of support in stabilizing and regulating catalytic active sites is particularly emphasized. Finally, challenges, opportunities, key problems, and further promising solutions for supported catalysts are proposed.
Collapse
Affiliation(s)
- Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Lili Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
90
|
Liang J, Chen K, Duan X, Zhao L, Qiu H, Xu X, Cao X. pH-dependent generation of radical and nonradical species for sulfamethoxazole degradation in different carbon/persulfate systems. WATER RESEARCH 2022; 224:119113. [PMID: 36126633 DOI: 10.1016/j.watres.2022.119113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The impacts of pH on purification efficiency can be phenomenal in advanced oxidation processes (AOPs), because solution pH affects persulfate (PS) activation processes. However, consensus has not been reached on the regimes of pH-regulated oxidation in persulfate-based AOPs (PS-AOPs). Particularly, the impacts of pH on carbon-catalyzed generation of radical and nonradical species remain unclear. In this work, we evaluated three typical carbonaceous materials including pyrolytic carbon (PC), activated carbon (AC), and carbon nanotube (CNT) to activate PS for sulfamethoxazole (SMX) degradation within a pH range from 4 to 9. The experiment revealed pH-dependent SMX removal in PC/PS, AC/PS, and CNT/PS, and the kinetics followed an order of pH 4 > pH 7 > pH 9. Solution pH simultaneously affected SMX adsorption and degradation, but the latter was more profound. Chemical quenching experiment, electrochemical measurement, kinetics calculation, and ATR-FTIR tests collectively revealed that high pH was not favorable for both radical and nonradical oxidation. In the PC/PS system, increased pH decreased the amount of phenolic -OH on PC surface, thereby restraining the generation of SO4•- and •OH due to the lack of electron donors. For AC/PS system, elevated pH hindered the interactions between AC and PS, thus suppressing the formation of surface-bound radicals. CNT/PS initiated an electron-transfer pathway, and increased pH reduced the oxidation potential of surface CNT-PS* complex, which was not favorable for nonradical oxidation of adsorbed pollutants. Therefore, outcomes of this work will advance the current knowledge on the intrinsic impacts of pH in PS-AOPs catalyzed by carbonaceous materials for wastewater purification.
Collapse
Affiliation(s)
- Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia.
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
91
|
Jin C, Han P, Li G, Zhang Y, Sun H, Shen W, Sun C, Wei H. Space-Confined Surface Layer in Superstructured Ni-N-C Catalyst for Enhanced Catalytic Degradation of m-Cresol by PMS Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40834-40840. [PMID: 36053002 DOI: 10.1021/acsami.2c09111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The broad application of peroxymonosulfate (PMS)-assisted oxidation by heterogeneous catalysts for contaminant removal suffers from the limitation of low PMS decomposition efficiency and consequent excessive electrolyte residues. In this work, we report that a micrometer-scale superstructured Ni-N-C catalyst Ni-NCNT/CB with a nanotube-array surface layer exhibits ultrahigh m-cresol removal efficiency with low PMS input and possesses ∼17-fold higher catalytic specific activity (reaction rate constant normalized to per Ni-Nx site) compared to the traditional Ni-SAC catalyst. Electron paramagnetic resonance results indicate that 1O2 is the dominant oxygen species, and Ni-NCNT/CB with a space-confined layer exhibits high 1O2 utilization for m-cresol degradation. Electrochemical impedance spectroscopy and a normalized k value of Ni-NCNT/CB confirm the spatial confinement effect on the catalyst surface, which is beneficial for regulating the mass transfer and exerting the high activity of active sites. This study gives a new application for spatial confinement, and the configuration of Ni-NCNT/CB may guide a rational catalyst design for AOP wastewater treatment.
Collapse
Affiliation(s)
- Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Peiwei Han
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yanan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Hao Sun
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenjie Shen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
92
|
Yang Y, Li X, Jie B, Zheng Z, Li J, Zhu C, Wang S, Xu J, Zhang X. Electron structure modulation and bicarbonate surrounding enhance Fenton-like reactions performance of Co-Co PBA. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129372. [PMID: 35728314 DOI: 10.1016/j.jhazmat.2022.129372] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Although several strategies have been developed to improve the efficiency of heterogeneous Fenton-like reactions, investigating the relationship among the electronic properties of the catalyst surface, the complex water matrix and catalytic activity remains challenges. Herein, the electron density of the active site Co(II) in Co Prussian blue analogs (Co-PBAs) is proved to be modulated by the anion source method. The elevated electron density of Co(II) and the higher metallicity of the catalyst lead to an increase in electron transport efficiency as revealed by X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), and density functional theory (DFT) calculations. Furthermore, the negative shift of the D-band center of Co(II) can effectively release intermediates to avoid catalyst poisoning. Bicarbonate has been demonstrated to activate peroxymonosulfate (PMS) by weakening the peroxide bond. Its activation mechanism involves free radical mechanism and non-radical mechanism: the first step is the generation of HCO4-, then it is further hydrolyzed to generate •OH and 1O2, and the other is HCO4- interact with Co(III) to form Co(IV)=O. In addition, the degradation pathways of target contaminants p-nitrophenol and toxicity verification of intermediate products have been investigated. This study provides guidance for the research of Fenton-like reactions.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiding Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengfei Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shubin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
93
|
Li J, Zou Y, Li Z, Fu S, Lu Y, Li S, Zhu X, Zhang T. Modulating the Electronic Coordination Configuration and d-Band Center in Homo-Diatomic Fe 2N 6 Catalysts for Enhanced Peroxymonosulfate Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37865-37877. [PMID: 35971618 DOI: 10.1021/acsami.2c12036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electronic coordination configuration of metal active sites and the reaction mechanism were investigated by constructing homo-diatomic Fe sites for visible-light-assisted heterogeneous peroxymonosulfate (PMS) activation. A novel Fe2N6 catalyst was synthesized by selecting uniform pyridinic-N of graphitic carbon nitride (g-C3N4) as anchoring sites. The results demonstrated that homo-diatomic Fe sites modulated the d-band center and electron delocalization and thus enhanced the PMS activation kinetics (3.58 times vs single-atom Fe catalyst) with kobs of 0.111 min-1 owing to the synergistic effect between adjacent Fe atoms. New Fe-Fe coordination significantly decreased the contribution of the antibonding state in the Fe-O bond due to the coupling of the Fe-3d orbitals, which facilitated the O-O bond cleavage of the Fe2-HOO-SO3 complex with a reduced thermodynamic energy barrier of only -0.29 eV. This work provided comprehensive mechanistic insights into developing homo-diatomic catalysts governed by the coordination configuration and radical pathway for efficient heterogeneous PMS catalysis.
Collapse
Affiliation(s)
- Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yixiao Zou
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shuhan Fu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yong Lu
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
94
|
Yang M, Hou Z, Zhang X, Gao B, Li Y, Shang Y, Yue Q, Duan X, Xu X. Unveiling the Origins of Selective Oxidation in Single-Atom Catalysis via Co-N 4-C Intensified Radical and Nonradical Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11635-11645. [PMID: 35816761 DOI: 10.1021/acs.est.2c01261] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs)-based peroxymonosulfate (PMS) systems are highly selective to the type of organic pollutants while the mechanisms remain ambiguous. In this work, we carried out experimental and theoretical investigations to reveal the origins of selectivity of radical and nonradical pathways in a designated Co-N4-C/PMS system. Two typical pollutants [bisphenol A (BPA) and metronidazole (MNZ)] with different molecular structures were employed for comparison. We found that radical oxidation (SO4•- and HO•) and nonradical electron-transfer pathway (ETP) co-existed in the Co-N4-C/PMS system. Pollutants (e.g., MNZ) with a high redox potential were degraded primarily by free radicals rather than ETP, while the oxidization of low-redox pollutants (e.g., BPA) was dominated by ETP at the surface region of Co-N4-C which overwhelmed the contributions of radicals in the homogeneous phase. Intriguingly, the contributions of radical and nonradical pathways could be manipulated by the PMS loading, which simultaneously increased the radical population and elevated the oxidation potential of Co-N4-C-PMS* complexes in ETP. Findings from this work will unravel the mysterious selective behavior of the SACs/PMS systems in the oxidation of different micropollutants.
Collapse
Affiliation(s)
- Mengxue Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, P. R. China
| | - Yanan Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
95
|
Guo J, Xu J, Liu X, Dai L, Zhang C, Xiao X, Huo K. Enabling dual valorization of lignocellulose by fluorescent lignin carbon dots and biochar-supported persulfate activation: Towards waste-treats-pollutant. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129072. [PMID: 35650749 DOI: 10.1016/j.jhazmat.2022.129072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The rationally-designed lignocellulose valorization that promotes a novel "waste-treats-pollutant" standpoint is highly desired yet still challenging for the spread of biomass industry. At this point, a cascade technique with the assistance of deep eutectic solvent (DES) fractionation is tailored to dually valorize wheat straw into fluorescent lignin carbon dots (LCDs) and bimetallic Mg-Fe oxide-decorated biochar (MBC) via solvothermal engineering and co-precipitation/pyrolysis respectively. Benefitting from the abundance of β-aryl ether and hydroxyl groups in DES-extracted lignin, the photoluminescence LCDs emit blue color in a wide excitation span, which can be adopted to selectively detect ferric ions (Fe3+) in a broad dosage scale with a highly linear correlation of 10-50 μM. Taking advantages of the MBC-aided persulfate activation, we propose the efficient arbidol removal system with a universal concentration of 20-200 ppm in the scalable pH ranging from 3 to 11. The dominate migration pathways involving with active oxygen species and surface electron transfer are comprehensively studied via electron paramagnetic resonance, radical-quenching experiments, and theoretical arithmetic. With the endeavor of biorefineries, this full-scale platform ignites the dazzling wildfire from dual lignocellulose valorization that will also seek its accurate position in the kingdoms of functional materials and wastewater restoration.
Collapse
Affiliation(s)
- Jun Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xinyan Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuntao Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xiao Xiao
- College of Biomass Science and Engineering, Sichuan University, Sichuan 610065, China.
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
96
|
Wang Z, Almatrafi E, Wang H, Qin H, Wang W, Du L, Chen S, Zeng G, Xu P. Cobalt Single Atoms Anchored on Oxygen-Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angew Chem Int Ed Engl 2022; 61:e202202338. [PMID: 35514041 DOI: 10.1002/anie.202202338] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/20/2022]
Abstract
Simultaneous regulation of the coordination environment of single-atom catalysts (SACs) and engineering architectures with efficient exposed active sites are efficient strategies for boosting peroxymonosulfate (PMS) activation. We isolated cobalt atoms with dual nitrogen and oxygen coordination (Co-N3 O1 ) on oxygen-doped tubular carbon nitride (TCN) by pyrolyzing a hydrogen-bonded cyanuric acid melamine-cobalt acetate precursor. The theoretically constructed Co-N3 O1 moiety on TCN exhibited an impressive mass activity of 7.61×105 min-1 mol-1 with high 1 O2 selectivity. Theoretical calculations revealed that the cobalt single atoms occupied a dual nitrogen and oxygen coordination environment, and that PMS adsorption was promoted and energy barriers reduced for the key *O intermediate that produced 1 O2 . The catalysts were attached to a widely used poly(vinylidene fluoride) microfiltration membrane to deliver an antibiotic wastewater treatment system with 97.5 % ciprofloxacin rejection over 10 hours, thereby revealing the suitability of the membrane for industrial applications.
Collapse
Affiliation(s)
- Ziwei Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Eydhah Almatrafi
- Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Hong Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China.,Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education), Hunan University, Changsha, 410082, P. R. China.,Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
97
|
Lin J, Tian W, Zhang H, Duan X, Sun H, Wang H, Fang Y, Huang Y, Wang S. Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128866. [PMID: 35413519 DOI: 10.1016/j.jhazmat.2022.128866] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Solar-driven advanced oxidation processes (AOPs) via direct photodegradation or indirect photocatalytic activation of typical oxidants, such as hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and peroxydisulfate (PDS), have been deemed to be an efficient technology for wastewater remediation. Artificial Z-scheme structured materials represent a promising class of photocatalysts due to their spatially separated charge carriers and strong redox abilities. Herein, we summarize the development of metal-free graphitic carbon nitride (g-C3N4, CN)-based direct and indirect Z-scheme photocatalysts for solar-driven AOPs in removing organic pollutants from water. In the work, the classification of AOPs, definition and validation of Z-schemes are summarized firstly. The innovative engineering strategies (e.g., morphology and dimensionality control, element doping, defect engineering, cocatalyst loading, and tandem Z-scheme construction) over CN-based direct Z-scheme structure are then examined. Rational design of indirect CN-based Z-scheme systems using different charge mediators, such as solid conductive materials and soluble ion pairs, is further discussed. Through examining the relationship between the Z-scheme structure and activity (charge transfer and separation, light absorption, and reaction kinetics), we aim to provide more insights into the construction strategies and structure modification on CN-based Z-schemes towards improving their catalytic performances in AOPs. Lastly, limitations, challenges, and perspectives on future development in this emerging field are proposed.
Collapse
Affiliation(s)
- Jingkai Lin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Hao Wang
- Center for Future Materials, University of Southern Queensland, Toowoomba 4350, Australia
| | - Yanfen Fang
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Hubei 443002, China
| | - Yingping Huang
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Hubei 443002, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
98
|
Zhang P, Zhou P, Peng J, Liu Y, Zhang H, He C, Xiong Z, Liu W, Lai B. Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator. WATER RESEARCH 2022; 219:118626. [PMID: 35605393 DOI: 10.1016/j.watres.2022.118626] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Reports that the exploitation of metal-free carbon materials to enhance permanganate (PM) oxidation to abate organic pollution in water have emerged in recent publications. However, the activation mechanism and active sites involved are ambiguous because of the intricate physicochemical properties of carbon. In this study, reduced graphene oxide (rGO) as a typical carbon material exhibits excellent capability to boost permanganate oxidation for removing a wide array of organic contaminants. The simultaneous two reaction pathways in the rGO/PM system were justified: i) rGO donates to electrons to decompose PM and produce highly reactive intermediate Mn species for oxidizing organic contaminants; ii) rGO mediates electron transfer from organics to PM. Oxygen-containing groups (hydroxyl, carboxyl, and carbonyl) were justified as electron-donating groups, while structural defects (vacancy and edge defects) were shown to be critical for rGO-mediated electron transfer. Therefore, the oxidation pathway of the rGO/PM system can be controlled by regulating oxygen functional groups and structural defects. The changeover from electron donor to electron mediator by decorating surface active sites of carbon materials will be of great help to the design and application of carbocatalysts.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Jiali Peng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
99
|
Yao Y, Wang C, Yan X, Zhang H, Xiao C, Qi J, Zhu Z, Zhou Y, Sun X, Duan X, Li J. Rational Regulation of Co-N-C Coordination for High-Efficiency Generation of 1O 2 toward Nearly 100% Selective Degradation of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8833-8843. [PMID: 35618660 DOI: 10.1021/acs.est.2c00706] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single oxygen-based advanced oxidation processes (1O2-AOPs) exhibit great prospects in selective degradation of organic pollutants. However, efficient production of 1O2 via tailored design of catalysts to achieve selective oxidation of contaminants remains challenging. Herein, we develop a simple strategy to regulate the components and coordination of Co-N-C catalysts at the atomic level by adjusting the Zn/Co ratio of bimetallic zeolitic imidazolate frameworks (ZnxCo1-ZIFs). Zn4Co1-C demonstrates 98% selective removal of phenol in the mixed phenol/benzoic acid (phenol/BA) solutions. Density functional theory calculations and experiments reveal that more active CoN4 sites are generated in Zn4Co1-C, which are beneficial to peroxymonosulfate activation to generate 1O2. Furthermore, the correlation between the origin of selectivity and well-defined catalysts is systematically investigated by the electron paramagnetic resonance test and quenching experiments. This work may provide novel insights into selective removal of target pollutants in a complicated water matrix.
Collapse
Affiliation(s)
- Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
100
|
Yu G, Wu Y, Cao H, Ge Q, Dai Q, Sun S, Xie Y. Insights into the Mechanism of Ozone Activation and Singlet Oxygen Generation on N-Doped Defective Nanocarbons: A DFT and Machine Learning Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7853-7863. [PMID: 35615937 DOI: 10.1021/acs.est.1c08666] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O3 decomposes into an adsorbed atomic oxygen species (Oads) and an 3O2 on the active sites. The atomic charge and spin population on the Oads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O3 could be activated into 1O2 in addition to 3O2. The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature.
Collapse
Affiliation(s)
- Guangfei Yu
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Yiqiu Wu
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Qin Dai
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Sihan Sun
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Company Limited, Panzhihua 617000, China
| |
Collapse
|