51
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
52
|
Li J, Bo X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127014. [PMID: 34461543 DOI: 10.1016/j.jhazmat.2021.127014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Today's rampant abuse of antibiotics and lean meat powder disturbs environment and threatens public human health. Therefore, fast in-site detection of antibiotics or lean meat powder residue could avoid potential risks. In this work, flexible graphene electrodes (FGE) were easily and facilely patterned and prepared by CO2 laser at room environment, which was coupled with a portable electrochemical analyzer for electronic signal transmission. Laser-enabled flexible electrochemical sensor on finger can be used for rapid real-time in-site electrochemical identification of chloramphenicol (CAP), clenbuterol (CLB) and ractopamine (RAC) in meat. The electrochemical response of CAP, CLB and RAC is investigated with the limit of detection of 2.70, 1.29 and 7.81 μM and the linear range of 10-200, 5-80 and 25-250 μM in phosphate buffer saline (PBS) pH 7.0, correspondingly. The minimum detection concentrations of CAP, CLB and RAC were 20, 10 and 30 μM, respectively, in actual samples of pork. And the minimum detection concentrations of CAP, CLB and RAC were 10, 5 and 25 μM in milk, respectively. Such an integrated sensing platform enriches application of sensors on finger in food security and provides information that prevents drug containments from entering food chain.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
53
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
54
|
Electrochemical Devices to Monitor Ionic Analytes for Healthcare and Industrial Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent advances in electrochemical devices have sparked exciting opportunities in the healthcare, environment, and food industries. These devices can be fabricated at low costs and are capable of multiplex monitoring. This overcomes challenges presnted in traditional sensors for biomolecules and provides us a unique gateway toward comprehensive analyses. The advantages of electrochemical sensors are derived from their direct integration with electronics and their high selectivity along with sensitivity to sense a wide range of ionic analytes at an economical cost. This review paper aims to summarize recent innovations of a wide variety of electrochemical sensors for ionic analytes for health care and industrial applications. Many of these ionic analytes are important biomarkers to target for new diagnostic tools for medicine, food quality monitoring, and pollution detection. In this paper, we will examine various fabrication techniques, sensing mechanisms, and will also discuss various future opportunities in this research direction.
Collapse
|
55
|
Laochai T, Yukird J, Promphet N, Qin J, Chailapakul O, Rodthongkum N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/ MXene modified thread electrode. Biosens Bioelectron 2022; 203:114039. [DOI: 10.1016/j.bios.2022.114039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
|
56
|
Imran M, Singh VV, Garg P, Mazumder A, Pandey LK, Sharma PK, Acharya J, Ganesan K. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH) 4@W-ACF functional material for the development of next generation NBC protective gears. Sci Rep 2021; 11:24421. [PMID: 34952902 PMCID: PMC8709862 DOI: 10.1038/s41598-021-03786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022] Open
Abstract
Chemical warfare agents (CWAs) have become a pivotal concern for the global community and spurred a wide spectrum of research for the development of new generation protective materials. Herein, a highly effective self-detoxifying filter consisting of in-situ immobilized Zirconium hydroxide [Zr(OH)4] over woven activated carbon fabric [Zr(OH)4@W-ACF] is presented for the removal of CWAs. It was prepared to harness the synergistic effect of high surface area of W-ACF, leads to high dispersion of CWAs and high phosphilicity and reactivity of [Zr(OH)4]. The synthesized materials were characterized by ATR-FTIR, EDX, SEM, TEM, XPS, TGA, and BET surface area analyzer. The kinetics of in-situ degradation of CWAs over Zr(OH)4@W-ACF were studied and found to be following the first-order reaction kinetics. The rate constant was found to be 0.244 min-1 and 2.31 × 10-2 min-1 for sarin and soman, respectively over Zr(OH)4@W-ACF. The potential practical applicability of this work was established by fabricating Zr(OH)4@W-ACF as reactive adsorbent layer for protective suit, and found to be meeting the specified criteria in terms of air permeability, tearing strength and nerve agent permeation as per TOP-08-2-501A:2013 and IS-17380:2020. The degradation products of CWAs were analyzed with NMR and GC-MS. The combined properties of dual functional textile with reactive material are expected to open up new exciting avenues in the field of CWAs protective clothing and thus find diverse application in defence and environmental sector.
Collapse
Affiliation(s)
- Mohammad Imran
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Virendra V Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India.
| | - Prabhat Garg
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Avik Mazumder
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Lokesh K Pandey
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Pushpendra K Sharma
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Jyotiranjan Acharya
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Kumaran Ganesan
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| |
Collapse
|
57
|
Qu CC, Sun XY, Sun WX, Cao LX, Wang XQ, He ZZ. Flexible Wearables for Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104482. [PMID: 34796649 DOI: 10.1002/smll.202104482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Indexed: 05/27/2023]
Abstract
The excellent stretchability and biocompatibility of flexible sensors have inspired an emerging field of plant wearables, which enable intimate contact with the plants to continuously monitor the growth status and localized microclimate in real-time. Plant flexible wearables provide a promising platform for the development of plant phenotype and the construction of intelligent agriculture via monitoring and regulating the critical physiological parameters and microclimate of plants. Here, the emerging applications of plant flexible wearables together with their pros and cons from four aspects, including physiological indicators, surrounding environment, crop quality, and active control of growth, are highlighted. Self-powered energy supply systems and signal transmission mechanisms are also elucidated. Furthermore, the future opportunities and challenges of plant wearables are discussed in detail.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
- Sanya Institute of China Agricultural University, China Agricultural University, Hainan, 572000, China
| | - Xu-Yang Sun
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wen-Xiu Sun
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Ling-Xiao Cao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi-Qing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
58
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
59
|
Saini RV, Vaid P, Saini NK, Siwal SS, Gupta VK, Thakur VK, Saini AK. Recent Advancements in the Technologies Detecting Food Spoiling Agents. J Funct Biomater 2021; 12:67. [PMID: 34940546 PMCID: PMC8709279 DOI: 10.3390/jfb12040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers' health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens.
Collapse
Affiliation(s)
- Reena V. Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Prachi Vaid
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| | - Neeraj K. Saini
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Adesh K. Saini
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| |
Collapse
|
60
|
Ranjith Kumar D, Dhakal G, Nguyen VQ, Lee J, Lee YR, Shim JJ. Ammonium heptamolybdate preloaded on flexible carbon-matrix film electrode for the electrochemical phosphate sensor in a river water sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
61
|
Non-invasive wearable chemical sensors in real-life applications. Anal Chim Acta 2021; 1179:338643. [PMID: 34535258 DOI: 10.1016/j.aca.2021.338643] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, non-invasive wearable chemical sensors have gained tremendous attention in the field of personal health monitoring and medical diagnosis. These sensors provide non-invasive, real-time, and continuous monitoring of targeted biomarkers with more simplicity than the conventional diagnostic approaches. This review primarily describes the substrate materials used for sensor fabrication, sample collection and handling, and analytical detection techniques that are utilized to detect biomarkers in different biofluids. Common substrates including paper, textile, and hydrogel for wearable sensor fabrication are discussed. Principles and applications of colorimetric and electrochemical detection in wearable chemical sensors are illustrated. Data transmission systems enabling wireless communication between the sensor and output devices are also discussed. Finally, examples of different designs of wearable chemical sensors including tattoos, garments, and accessories are shown. Successful development of non-invasive wearable chemical sensors will effectively help users to manage their personal health, predict the potential diseases, and eventually improve the overall quality of life.
Collapse
|
62
|
Ulloa AM, Glassmaker N, Oduncu MR, Xu P, Wei A, Cakmak M, Stanciu L. Roll-to-Roll Manufactured Sensors for Nitroaromatic Organophosphorus Pesticides Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35961-35971. [PMID: 34313121 DOI: 10.1021/acsami.1c08700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fully roll-to-roll manufactured electrochemical sensor with high sensing and manufacturing reproducibility has been developed for the detection of nitroaromatic organophosphorus pesticides (NOPPs). This sensor is based on a flexible, screen-printed silver electrode modified with a graphene nanoplatelet (GNP) coating and a zirconia (ZrO2) coating. The combination of the metal oxide and the 2-D material provided advantageous electrocatalytic activity toward NOPPs. Manufacturing, scanning electron microscopy-scanning transmission electron microscopy image analysis, electrochemical surface characterization, and detection studies illustrated high sensitivity, selectivity, and stability (∼89% current signal retention after 30 days) of the platform. The enzymeless sensor enabled rapid response time (10 min) and noncomplex detection of NOPPs through voltammetry methods. Furthermore, the proposed platform was highly group-sensitive toward NOPPs (e.g., methyl parathion (MP) and fenitrothion) with a detection limit as low as 1 μM (0.2 ppm). The sensor exhibited a linear correlation between MP concentration and current response in a range from 1 μM (0.2 ppm) to 20 μM (4.2 ppm) and from 20 to 50 μM with an R2 of 0.992 and 0.991, respectively. Broadly, this work showcases the first application of GNPs/ZrO2 complex on flexible silver screen-printed electrodes fabricated by entirely roll-to-roll manufacturing for the detection of NOPPs.
Collapse
Affiliation(s)
- Ana M Ulloa
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas Glassmaker
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammed R Oduncu
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pengyu Xu
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Wei
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mukerrem Cakmak
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lia Stanciu
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
63
|
Liu L, Gao Y, Liu J, Li Y, Yin Z, Zhang Y, Pi F, Sun X. Sensitive Techniques for POCT Sensing on the Residues of Pesticides and Veterinary Drugs in Food. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:206-214. [PMID: 33129206 DOI: 10.1007/s00128-020-03035-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
For the immense requirement on agriculture and animal husbandry, application of pesticides and veterinary drugs had become a normal state in the farming and ranching areas. However, to intently pursue the yields, large quantities of residues of pesticides and veterinary drugs have caused serious harm to both the environment and the food industry. To control and solve such an issue, a variety of novel techniques were developed in recent years. In this review, the development and features about point-of-care-testing (POCT) detection on the residues of pesticides and veterinary drugs, such as, electrochemistry (EC), enzyme-linked immunosorbent assay (ELISA) and nano-techniques, were systematically introduced. For each topic, we first interpreted the strategies and detailed account of such technical contributions on detection and assessment of the residues. Finally, the advantages and perspectives about mentioned techniques for ultrasensitive assessment and sensing on pesticides and veterinary drugs were summarized.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yueying Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ziye Yin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
64
|
Kazemi KK, Zarifi T, Mohseni M, Narang R, Golovin K, Zarifi MH. Smart Superhydrophobic Textiles Utilizing a Long-Range Antenna Sensor for Hazardous Aqueous Droplet Detection plus Prevention. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34877-34888. [PMID: 34254781 DOI: 10.1021/acsami.1c07880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper demonstrates the feasibility of a long-range antenna sensor embedded underneath a liquid repellent fabric to be employed as a wearable sensor in personal protective fabrics. The sensor detects and monitors hazardous aqueous liquids on the outer layer of fabrics, to add an additional layer of safety for professionals working in hazardous environments. A modified patch antenna was designed to include a meandering-shaped resonant structure, which was embedded underneath the fabric. Superhydrophobic fabrics were prepared using silica nanoparticles and a low-surface-energy fluorosilane. 4 to 20 μL droplets representing hazardous aqueous solutions were drop-cast on the fabrics to investigate the performance of the embedded antenna sensor. Long-range (S21) measurements at a distance of 2-3 m were performed using the antenna sensor with treated and untreated fabrics. The antenna sensor successfully detected the liquid for both types of fabrics. The resonant frequency sensitivity of the antenna sensor underneath the treated fabric exhibiting superhydrophobicity was measured as 370 kHz/μL, and 1 MHz/μL for the untreated fabric. The results demonstrate that the antenna sensor is a good candidate for wearable hazardous aqueous droplet detection on fabrics.
Collapse
Affiliation(s)
- Kasra Khorsand Kazemi
- Okanagan MicroElectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, British Columbia, Canada
| | - Telnaz Zarifi
- Okanagan Polymer Engineering Research & Applications Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, British Columbia, Canada
| | - Majid Mohseni
- Okanagan Polymer Engineering Research & Applications Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, British Columbia, Canada
| | - Rakesh Narang
- Okanagan MicroElectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, British Columbia, Canada
| | - Kevin Golovin
- Okanagan Polymer Engineering Research & Applications Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, British Columbia, Canada
| | - Mohammad H Zarifi
- Okanagan MicroElectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, British Columbia, Canada
| |
Collapse
|
65
|
Farshchi F, Saadati A, Kholafazad-Kordasht H, Seidi F, Hasanzadeh M. Trifluralin recognition using touch-based fingertip: Application of wearable glove-based sensor toward environmental pollution and human health control. J Mol Recognit 2021; 34:e2927. [PMID: 34288170 DOI: 10.1002/jmr.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Monitoring of herbicides and pesticides in water, food, and the environment is essential for human health, and this requires low-cost, portable devices for widespread deployment of this technology. For the first time, a wearable glove-based electrochemical sensor based on conductive Ag nano-ink was developed for the on-site monitoring of trifluralin residue on the surface of various substrates. Three electrode system with optimal thicknesses was designed directly on the finger surface of a rubber glove. Then, fabricated electrochemical sensor used for the direct detection of trifluralin in the range of 0.01 μM to 1 mM on the surface of tomato and mulberry leaves using square wave voltammetry (SWV) and difference pulse voltammetry technique. The obtained LLOQ was 0.01 μM, which indicates the suitable sensitivity of this sensor. On the other hand, this sensor is portable, easy to use, and has a high environmental capability that can be effective in detecting other chemical threats in the soil and water environment.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kholafazad-Kordasht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
66
|
Mahmoudpour M, Saadati A, Hasanzadeh M, Kholafazad-Kordasht H. A stretchable glove sensor toward rapid monitoring of trifluralin: A new platform for the on-site recognition of herbicides based on wearable flexible sensor technology using lab-on-glove. J Mol Recognit 2021; 34:e2923. [PMID: 34131991 DOI: 10.1002/jmr.2923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
In this study, a flexible glove-based electrochemical sensor as a wearable point-of-use screening tool has been fabricated for defense and food security applications. To design the wearable glove-based sensor, we drew conductive patterns on the fingers of a rubber glove via gold@silver-modified graphene quantum dots (Au@Ag core-shell/graphene quantum dots [GQDs]) nano-ink with optimal thickness. Then, this platform is combined with a portable electrochemical analyzer for on-site detection of trifluralin pesticide in the range of 10 nM to 1 mM with the low limit of quantification (LLOQ) of 10 nM. The high efficiency and distinction of the trifluralin at specified concentrations in real leaf and apple samples were performed by simply touching with the glove and in spikes solution by immersing of fingertips. With their high sensitivity, selectivity, rapid, and easy operation pesticide analysis, these glove-embedded sensors can also be engaged in on-site monitor of other chemical threats and can be expanded to water and environmental samples.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
67
|
Demolder C, Molina A, Hammond FL, Yeo WH. Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosens Bioelectron 2021; 190:113443. [PMID: 34171820 DOI: 10.1016/j.bios.2021.113443] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Wearable sensing gloves and sensory feedback devices that record and enhance the sensations of the hand are used in healthcare, prosthetics, robotics, and virtual reality. Recent technological advancements in soft actuators, flexible bioelectronics, and wireless data acquisition systems have enabled the development of ergonomic, lightweight, and low-cost wearable devices. This review article includes the most up-to-date materials, sensors, actuators, and system-packaging technologies to develop wearable sensing gloves and sensory feedback devices. Furthermore, this review contemplates the use of wearable sensing gloves and sensory feedback devices together to advance their capabilities as assistive devices for people with prostheses and sensory impaired limbs. This review is divided into two sections: one detailing the technologies used to develop strain, pressure, and temperature sensors integrated with a multifunctional wearable sensing glove, and the other reviewing the devices and methods used for wearable sensory displays. We discuss the limitations of the current methods and technologies along with the future direction of the field. Overall, this paper presents an all-inclusive review of the technologies used to develop wearable sensing gloves and sensory feedback devices.
Collapse
Affiliation(s)
- Carl Demolder
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alicia Molina
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frank L Hammond
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Neural Engineering Center, Institute for Materials, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
68
|
Jafari S, Guercetti J, Geballa-Koukoula A, Tsagkaris AS, Nelis JLD, Marco MP, Salvador JP, Gerssen A, Hajslova J, Elliott C, Campbell K, Migliorelli D, Burr L, Generelli S, Nielen MWF, Sturla SJ. ASSURED Point-of-Need Food Safety Screening: A Critical Assessment of Portable Food Analyzers. Foods 2021; 10:1399. [PMID: 34204284 PMCID: PMC8235511 DOI: 10.3390/foods10061399] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022] Open
Abstract
Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.
Collapse
Affiliation(s)
- Safiye Jafari
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland;
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Julian Guercetti
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ariadni Geballa-Koukoula
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
| | - Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Dejvice, 166 28 Prague 6, Czech Republic; (A.S.T.); (J.H.)
| | - Joost L. D. Nelis
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - M.-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J.-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arjen Gerssen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Dejvice, 166 28 Prague 6, Czech Republic; (A.S.T.); (J.H.)
| | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - Davide Migliorelli
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Loïc Burr
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Silvia Generelli
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Michel W. F. Nielen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland;
| |
Collapse
|
69
|
Herrmann A, Haag R, Schedler U. Hydrogels and Their Role in Biosensing Applications. Adv Healthc Mater 2021; 10:e2100062. [PMID: 33939333 PMCID: PMC11468738 DOI: 10.1002/adhm.202100062] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels play an important role in the field of biomedical research and diagnostic medicine. They are emerging as a powerful tool in the context of bioanalytical assays and biosensing. In this context, this review gives an overview of different hydrogels and the role they adopt in a range of applications. Not only are hydrogels beneficial for the immobilization and embedding of biomolecules, but they are also used as responsive material, as wearable devices, or as functional material. In particular, the scientific and technical progress during the last decade is discussed. The newest hydrogel types, their synthesis, and many applications are presented. Advantages and performance improvements are described, along with their limitations.
Collapse
Affiliation(s)
- Anna Herrmann
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Rainer Haag
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Uwe Schedler
- PolyAn GmbHRudolf‐Baschant‐Straße 2Berlin13086Germany
| |
Collapse
|
70
|
Yang K, Zhao S, Xu J, Zhu Z, Wang Z. Using Transparent Adhesive Tape as New Substrate for Integrated Flexible Enzymatic Sensor: Good Adhesion and Better Printability. ELECTROANAL 2021. [DOI: 10.1002/elan.202100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ke Yang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shunan Zhao
- School of Electronic Science and Engineering Southeast University Nanjing 210096 China
| | - Jiawei Xu
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Zhuoya Zhu
- School of Electronic Science and Engineering Southeast University Nanjing 210096 China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| |
Collapse
|
71
|
Rong G, Zheng Y, Sawan M. Energy Solutions for Wearable Sensors: A Review. SENSORS 2021; 21:s21113806. [PMID: 34072770 PMCID: PMC8197793 DOI: 10.3390/s21113806] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Wearable sensors have gained popularity over the years since they offer constant and real-time physiological information about the human body. Wearable sensors have been applied in a variety of ways in clinical settings to monitor health conditions. These technologies require energy sources to carry out their projected functionalities. In this paper, we review the main energy sources used to power wearable sensors. These energy sources include batteries, solar cells, biofuel cells, supercapacitors, thermoelectric generators, piezoelectric and triboelectric generators, and radio frequency (RF) energy harvesters. Additionally, we discuss wireless power transfer and some hybrids of the above technologies. The advantages and drawbacks of each technology are considered along with the system components and attributes that make these devices function effectively. The objective of this review is to inform researchers about the latest developments in this field and present future research opportunities.
Collapse
Affiliation(s)
- Guoguang Rong
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China; (G.R.); (Y.Z.)
- CenBRAIN Lab., Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuqiao Zheng
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China; (G.R.); (Y.Z.)
- CenBRAIN Lab., Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China; (G.R.); (Y.Z.)
- CenBRAIN Lab., Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Correspondence: ; Tel.: +86-571-8738-1206
| |
Collapse
|
72
|
Clifford A, Das J, Yousefi H, Mahmud A, Chen JB, Kelley SO. Strategies for Biomolecular Analysis and Continuous Physiological Monitoring. J Am Chem Soc 2021; 143:5281-5294. [PMID: 33793215 DOI: 10.1021/jacs.0c13138] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Portable devices capable of rapid disease detection and health monitoring are crucial to decentralizing diagnostics from clinical laboratories to the patient point-of-need. Although technologies have been developed targeting this challenge, many require the use of reporter molecules or reagents that complicate the automation and autonomy of sensors. New work in the field has targeted reagentless approaches to enable breakthroughs that will allow personalized monitoring of a wide range of biomarkers on demand. This Perspective focuses on the ability of reagentless platforms to revolutionize the field of sensing by allowing rapid and real-time analysis in resource-poor settings. First, we will highlight advantages of reagentless sensing techniques, specifically electrochemical detection strategies. Advances in this field, including the development of wearable and in situ sensors capable of real-time monitoring of biomarkers such as nucleic acids, proteins, viral particles, bacteria, therapeutic agents, and metabolites, will be discussed. Reagentless platforms which allow for wash-free, calibration free-detection with increased dynamic range are highlighted as a key technological advance for autonomous sensing applications. Furthermore, we will highlight remaining challenges which must be overcome to enable widespread use of reagentless devices. Finally, future prospects and potential breakthroughs in precision medicine that will arise as a result of further development of reagentless sensing approaches are discussed.
Collapse
Affiliation(s)
- Amanda Clifford
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jagotamoy Das
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
73
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
74
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
75
|
Kim DW, Kong M, Jeong U. Interface Design for Stretchable Electronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004170. [PMID: 33898192 PMCID: PMC8061377 DOI: 10.1002/advs.202004170] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Indexed: 05/25/2023]
Abstract
Stretchable electronics has emerged over the past decade and is now expected to bring form factor-free innovation in the next-generation electronic devices. Stretchable devices have evolved with the synthesis of new soft materials and new device architectures that require significant deformability while maintaining the high device performance of the conventional rigid devices. As the mismatch in the mechanical stiffness between materials, layers, and device units is the major challenge for stretchable electronics, interface control in varying scales determines the device characteristics and the level of stretchability. This article reviews the recent advances in interface control for stretchable electronic devices. It summarizes the design principles and covers the representative approaches for solving the technological issues related to interfaces at different scales: i) nano- and microscale interfaces between materials, ii) mesoscale interfaces between layers or microstructures, and iii) macroscale interfaces between unit devices, substrates, or electrical connections. The last section discusses the current issues and future challenges of the interfaces for stretchable devices.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Minsik Kong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
76
|
Vinoth R, Nakagawa T, Mathiyarasu J, Mohan AMV. Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sens 2021; 6:1174-1186. [PMID: 33517662 DOI: 10.1021/acssensors.0c02446] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the recent advancement in wearable biosensors provides continuous, noninvasive assessment of physiologically relevant chemical markers from human sweat, several bottlenecks still exist for its practical use. There were challenges in developing a multiplexed biosensing system with rapid microfluidic sampling and transport properties, as well as its integration with a portable potentiostat for improved interference-free data collection. Here, we introduce a clean-room free fabrication of wearable microfluidic sensors, using a screen-printed carbon master, for the electrochemical monitoring of sweat biomarkers during exercise activities. The sweat sampling is enhanced by introducing low-dimensional sensing compartments and lowering the hydrophilicity of channel layers via facile silane functionalization. The fluidic channel captures sweat at the inlet and directs the real-time sweat through the active sensing electrodes (within 40 s) for subsequent decoding and selective analyses. For proof of concept, simultaneous amperometric lactate and potentiometric ion sensing (Na+, K+, and pH) are carried out by a miniature circuit board capable of cross-talk-free signal collection and wireless signal transduction characteristics. All of the sensors demonstrated appreciable sensitivity, selectivity, stability, carryover efficiency, and repeatability. The floating potentiometric circuits eliminate the signal interference from the adjacent amperometric transducers. The fully integrated pumpless microfluidic device is mounted on the epidermis and employed for multiplexed real-time decoding of sweat during stationary biking. The regional variations in sweat composition are analyzed by human trials at the underarm and upperback locations. The presented method offers a large-scale fabrication of inexpensive high-throughput wearable sensors for personalized point-of-care and athletic applications.
Collapse
Affiliation(s)
- Rajendran Vinoth
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - Tatsuo Nakagawa
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo1858601, Japan
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - A. M. Vinu Mohan
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
77
|
Hua X, Wang Z, Wang Z, Chen L, Zhou Z, Ouyang J, Deng K, Yang X, Huang H. De Novo Development of a Universal Biosensing Platform by Rapid Direct Native Protein Modification. Anal Chem 2021; 93:5291-5300. [PMID: 33734672 DOI: 10.1021/acs.analchem.1c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An innovative biosensing assay was developed for simplified, cost-effective, and sensitive detection. By rapid, direct treatment of target proteins with iron porphyrin (TPPFe) in situ, a carboxyl group of amino acid conjugates with an Fe atom of the TPPFe molecule, forming a stable protein complex. We have shown that this complex not only maintains the integrity and functions of original proteins but also acquires peroxidase activity that can turn TMB to a comparably visible signal like that in ELISA. This study is unique since such conversion is difficult to achieve with standard chemical modification or molecular biology methods. In addition, the proposed immunoassay is superior to traditional ELISA as it eliminates an expensive and complicated cross-linking process of an enzyme-labeled antibody. From a practical point of view, we extended this assay to rapid detection of clinically relevant proteins and glucose in blood samples. The results show that this simple immunoassay provides clinical diagnosis, food safety, and environmental monitoring in an easy-to-implement manner.
Collapse
Affiliation(s)
- Xinyi Hua
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhifang Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ziqi Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Linlin Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Junlin Ouyang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
78
|
Raghavan VS, O'Driscoll B, Bloor JM, Li B, Katare P, Sethi J, Gorthi SS, Jenkins D. Emerging graphene-based sensors for the detection of food adulterants and toxicants - A review. Food Chem 2021; 355:129547. [PMID: 33773454 DOI: 10.1016/j.foodchem.2021.129547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
The detection of food adulterants and toxicants can prevent a large variety of adverse health conditions for the global population. Through the process of rapid sensing enabled by deploying novel and robust sensors, the food industry can assist in the detection of adulterants and toxicants at trace levels. Sensor platforms which exploit graphene-based nanomaterials satisfy this requirement due to outstanding electrical, optical and thermal properties. The materials' facile conjugation with linkers and biomolecules along with the option for further enhancement using nanoparticles results in highly sensitive and selective sensing characteristics. This review highlights novel applications of graphene derivatives for detection covering three important approaches; optical, electrical (field-effect) and electrochemical sensing. Suitable graphene-based sensors for portable devices as point-of-need platforms are also presented. The future scope of these sensors is discussed to showcase how these emerging techniques will disrupt the food detection sector for years to come.
Collapse
Affiliation(s)
- Vikram Srinivasa Raghavan
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Benjamin O'Driscoll
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - J M Bloor
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - Bing Li
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | - Prateek Katare
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - Sai Siva Gorthi
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| |
Collapse
|
79
|
Li Z, Zhou J, Dong T, Xu Y, Shang Y. Application of electrochemical methods for the detection of abiotic stress biomarkers in plants. Biosens Bioelectron 2021; 182:113105. [PMID: 33799023 DOI: 10.1016/j.bios.2021.113105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Abiotic stress is the main cause of low productivity in plants. Therefore, it is important to detect stress and respond to it in a timely manner to avoid irreversible damage to plant productivity and health. The application of traditional methods in agriculture is limited by expensive equipment and cumbersome sample processing. More effective detection methods are urgently needed due to the trace amounts and low stabilities of plant biomarkers. Electrochemical detection methods have the unique advantages of high accuracy, a low detection limit, fast response and easy integration with systems. In this review, the application of three types of electrochemical methods to phytohormone assessment is highlighted including direct electrochemical, immunoelectrochemical, and photoelectrochemical methods. Research on electrochemical methods for detecting abiotic stress biomarkers, including various phytohormones, is also summarized with examples. To date, the detection limit of exogenous plant hormones can reach pg/mL or even lower. Nevertheless, more efforts need to be made to develop a portable instrument for in situ online detection if electrochemical sensors are to be applied to the detection of the endogenous hormones or the physiological state of plants. Additionally, plant-wearable sensors that can be directly attached to or implanted into plants for continuous, noninvasive and real-time monitoring are emphasized. Finally, rational summaries of the considered methods and present challenges and future prospects in the field of abiotic stress detection-based electrochemical biosensors are thoroughly discussed.
Collapse
Affiliation(s)
- Zhilei Li
- College of Mechanical Engineering, Xinjiang University, Urumchi, 830047, China; Engineering Training Center of Xinjiang University, Urumchi, 830047, China
| | - Jianping Zhou
- College of Mechanical Engineering, Xinjiang University, Urumchi, 830047, China.
| | - Tao Dong
- College of Mechanical Engineering, Xinjiang University, Urumchi, 830047, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Yan Xu
- College of Mechanical Engineering, Xinjiang University, Urumchi, 830047, China
| | - Yukui Shang
- College of Mechanical Engineering, Xinjiang University, Urumchi, 830047, China
| |
Collapse
|
80
|
Li G, Wen D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies. J Mater Chem B 2021; 8:3423-3436. [PMID: 32022089 DOI: 10.1039/c9tb02474c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable biochemical sensors are of great interest nowadays due to their powerful potential in personalized medicine and continuous monitoring of human health. Thus, a great deal of effort has been put into the development of such sensors to enable real-time and non-invasive quantification of various chemical constituents in the human body such as sweat, saliva, and tears. Owing to the advances in materials science and mechanical engineering, wearable biochemical sensors have been developed to probe various biomarkers and have been subsequently considered as wearable electronic devices for practical applications. In this review, we present a broad overview on the recent advances in electrochemical wearable sensors towards various organic components and ions closely linked to human health. With an emphasis on materials and manufacturing technologies of the sensing electrodes, the research status is summarized, and the challenges and opportunities in this growing field are prospected.
Collapse
Affiliation(s)
- Guanglei Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
| | | |
Collapse
|
81
|
Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021; 26:748. [PMID: 33535493 PMCID: PMC7867046 DOI: 10.3390/molecules26030748] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.
Collapse
Affiliation(s)
- Atul Sharma
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana 122505, India
| | - Mihaela Badea
- Fundamental, Prophylactic and Clinical Specialties Department, Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt Ravishankar Shukla University, Raipur, CHATTISGARH 492010, India;
| | - Jean Louis Marty
- University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
82
|
Liu MT, Zhao J, Li SP. Application of smartphone in detection of thin-layer chromatography: Case of salvia miltiorrhiza. J Chromatogr A 2021; 1637:461826. [PMID: 33387914 DOI: 10.1016/j.chroma.2020.461826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
In this work, a smartphone-based device was constructed for thin-layer chromatography (TLC) detection and semi-quantitative analysis of the components of Salvia miltiorrhiza. The key construction and shooting parameters were investigated by the relative peak area and signal-to-noise ratio. The best conditions were as follows: shooting height, 17 cm; angle between the UV lamp and TLC plate, 58°; exposure compensation, 0~0.2 EV; and shutter speed under daylight and UV 365 nm, 1/50 s and 1/5 s, respectively. These ideal conditions could be replicated by smartphones from different brands with different versions of software. With good precision, repeatability and stability, the developed device was used for the semi-quantitative analysis of salvianolic acid B, rosmarinic acid, cryptotanshinone, tanshinone I, tanshinone IIA, and miltirone in the TLC analysis of 10 batches of S. miltiorrhiza. The results were compared with those obtained by a TLC densitometric scanner and two common types of image processing software, i.e., Gelanalyzer and ImageJ. Except for salvianolic acid B in the TLC densitometric scanner, all results were not significantly different among these methods, which suggested that smartphones might be a useful tool for the quality control of traditional Chinese medicines.
Collapse
Affiliation(s)
- Mei-Ting Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
83
|
Jiang Y, Shen L, Ma J, Ma H, Su Y, Zhu N. Wearable Porous Au Smartsensors for On-Site Detection of Multiple Metal Ions. Anal Chem 2021; 93:2603-2609. [DOI: 10.1021/acs.analchem.0c04701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
84
|
Liu Y, Cao X, Liu Z, Sun L, Fang G, Liu J, Wang S. Electrochemical detection of organophosphorus pesticides based on amino acids-conjugated P3TAA-modified electrodes. Analyst 2021; 145:8068-8076. [PMID: 33078789 DOI: 10.1039/d0an01838d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, amino acids (AAs) including serine (S), histidine (H) and glutamic acid (E)-conjugated poly(3-thiophene acetate acid) (P3TAA) were synthesized to promote the catalytic hydrolysis and in situ electrochemical detection of organophosphorus pesticides (OPs). The hydrolysis of OPs followed the mechanism of proton transfer relay composed of AAs of S, H, E, called the "catalytic triad", found in biomimetic hydrolases. P3TAA was used as a carrier to attach S, H, E, and these AA sites have the hydrolysis activity of Ops; the polymer P3TAA-AAs behaved like biomimetic enzymes. After the hydrolysis of OPs (e.g., methyl paraoxon, ethyl paraoxon and methyl parathion), p-nitrophenol (PNP) was generated, which can be detected electrochemically. Herein, an electrochemical method using P3TAA-conjugated S, H, E-modified electrodes for the determination of OPs was developed. OPs can be quantified by the electrochemical responses of PNP. This technique was selective toward OPs with the p-nitrophenol group. The detection limit of OPs (methyl paraoxon, methyl parathion and ethyl paraoxon) reached 0.5 μM. This detection technique was successfully applied to the detection of OPs in real samples with high detection accuracy.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | | | | | | | | | | | | |
Collapse
|
85
|
Min J, Sempionatto JR, Teymourian H, Wang J, Gao W. Wearable electrochemical biosensors in North America. Biosens Bioelectron 2021; 172:112750. [DOI: 10.1016/j.bios.2020.112750] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
|
86
|
Advances in the Detection of Dithiocarbamate Fungicides: Opportunities for Biosensors. BIOSENSORS-BASEL 2020; 11:bios11010012. [PMID: 33396914 PMCID: PMC7824625 DOI: 10.3390/bios11010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Dithiocarbamate fungicides (DTFs) are widely used to control various fungal diseases in crops and ornamental plants. Maximum residual limits in the order of ppb-ppm are currently imposed by legislation to prevent toxicity problems associated with excessive use of DTFs. The specific analytical determination of DTFs is complicated by their low solubility in water and organic solvents. This review summarizes the current analytical procedures used for the analysis of DTF, including chromatography, spectroscopy, and sensor-based methods and discusses the challenges related to selectivity, sensitivity, and sample preparation. Biosensors based on enzymatic inhibition demonstrated potential as analytical tools for DTFs and warrant further research, considering novel enzymes from extremophilic sources. Meanwhile, Raman spectroscopy and various sensors appear very promising, provided the selectivity issues are solved.
Collapse
|
87
|
Keum K, Kim JW, Hong SY, Son JG, Lee SS, Ha JS. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002180. [PMID: 32930437 DOI: 10.1002/adma.202002180] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Indexed: 05/24/2023]
Abstract
With the miniaturization of personal wearable electronics, considerable effort has been expended to develop high-performance flexible/stretchable energy storage devices for powering integrated active devices. Supercapacitors can fulfill this role owing to their simple structures, high power density, and cyclic stability. Moreover, a high electrochemical performance can be achieved with flexible/stretchable supercapacitors, whose applications can be expanded through the introduction of additional novel functionalities. Here, recent advances in and future prospects for flexible/stretchable supercapacitors with innate functionalities are covered, including biodegradability, self-healing, shape memory, energy harvesting, and electrochromic and temperature tolerance, which can contribute to reducing e-waste, ensuring device integrity and performance, enabling device self-charging following exposure to surrounding stimuli, displaying the charge status, and maintaining the performance under a wide range of temperatures. Finally, the challenges and perspectives of high-performance all-in-one wearable systems with integrated functional supercapacitors for future practical application are discussed.
Collapse
Affiliation(s)
- Kayeon Keum
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Yeong Hong
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeong Gon Son
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang-Soo Lee
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
88
|
Zhao F, He J, Li X, Bai Y, Ying Y, Ping J. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens Bioelectron 2020; 170:112636. [DOI: 10.1016/j.bios.2020.112636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 11/15/2022]
|
89
|
Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
91
|
Yu Z, Jung D, Park S, Hu Y, Huang K, Rasco BA, Wang S, Ronholm J, Lu X, Chen J. Smart traceability for food safety. Crit Rev Food Sci Nutr 2020; 62:905-916. [DOI: 10.1080/10408398.2020.1830262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhilong Yu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Dongyun Jung
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Soyoun Park
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Yaxi Hu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Kang Huang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Barbara A. Rasco
- College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Xiaonan Lu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
92
|
Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical sensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116024] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Torre R, Costa-Rama E, Nouws HPA, Delerue-Matos C. Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. BIOSENSORS 2020; 10:E139. [PMID: 33008005 PMCID: PMC7600659 DOI: 10.3390/bios10100139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Food spoilage is caused by the development of microorganisms, biogenic amines, and other harmful substances, which, when consumed, can lead to different health problems. Foodborne diseases can be avoided by assessing the safety and freshness of food along the production and supply chains. The routine methods for food analysis usually involve long analysis times and complex instrumentation and are performed in centralized laboratories. In this context, sensors based on screen-printed electrodes (SPEs) have gained increasing importance because of their advantageous characteristics, such as ease of use and portability, which allow fast analysis in point-of-need scenarios. This review provides a comprehensive overview of SPE-based sensors for the evaluation of food safety and freshness, focusing on the determination of bacteria and biogenic amines. After discussing the characteristics of SPEs as transducers, the main bacteria, and biogenic amines responsible for important and common foodborne diseases are described. Then, SPE-based sensors for the analysis of these bacteria and biogenic amines in food samples are discussed, comparing several parameters, such as limit of detection, analysis time, and sample type.
Collapse
Affiliation(s)
- Ricarda Torre
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| |
Collapse
|
94
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
95
|
Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Food Chem 2020; 339:128059. [PMID: 33152864 DOI: 10.1016/j.foodchem.2020.128059] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 02/03/2023]
Abstract
A colorimetric aptasensing strategy for detection of kanamycin was designed based on aptamer biorecognition and signal amplification assisted by nicking enzyme. The aptamer of kanamycin was designed to be contained in the metastable state hairpin DNA. The target DNA as recycling DNA was located in the loop of hairpin DNA. The presence of kanamycin stimulates the continuous actions, including specific recognition of the aptamer to kanamycin, the hybridization between target DNA and signal probe, the cleavage function of nicking enzyme. The actions induced accumulation of numerous free short sequences modified by platinum nanoparticles (PtNPs), which can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 to produce a colorimetric response. The aptasensor exhibited good selectivity and sensitivity for kanamycin in milk with a detection limit as low as 0.2 pg·mL-1. In addition, the proposed assay is potentially to be extended for other antibiotics detection in foods by adapting the corresponding aptamer sequence.
Collapse
|
96
|
Yang M, Xu K, Wang L. Flexible touch sensor fabricated by double-sided nanoimprint lithography metal transfer. NANOTECHNOLOGY 2020; 31:315302. [PMID: 32303011 DOI: 10.1088/1361-6528/ab8a90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A double-sided nanoimprint lithography metal transfer method has been developed to fabricate a flexible capacitive touch sensor. The electrodes of this sensor are aligned and overlapped to each other and consist of a diamond aluminum mesh, which achieved a transmittance of 94% and anisotropic surface resistivity. The maximum capacitance change of the touch sensor unit is up to 41.8% when fullly touched. A 3 × 3 sensor array was tested to prove good touch detection function and the potential for large-scale applications.
Collapse
Affiliation(s)
- Muyi Yang
- Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, Anhui, People's Republic of China
| | | | | |
Collapse
|
97
|
He S, Yuan Y, Nag A, Feng S, Afsarimanesh N, Han T, Mukhopadhyay SC, Organ DR. A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5220. [PMID: 32698330 PMCID: PMC7400391 DOI: 10.3390/ijerph17145220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023]
Abstract
This paper exhibits a thorough review of the use of impedimetric sensors for the analysis of food quality. It helps to understand the contribution of some of the major types of impedimetric sensors that are used for this application. The deployment of impedimetric sensing prototypes has been advantageous due to their wide linear range of responses, detection of the target analyte at low concentrations, good stability, high accuracy and high reproducibility in the results. The choice of these sensors was classified on the basis of structure and the conductive material used to develop them. The first category included the use of nanomaterials such as graphene and metallic nanowires used to form the sensing devices. Different forms of graphene nanoparticles, such as nano-hybrids, nanosheets, and nano-powders, have been largely used to sense biomolecules in the micro-molar range. The use of conductive materials such as gold, copper, tungsten and tin to develop nanowire-based prototypes for the inspection of food quality has also been shown. The second category was based on conventional electromechanical circuits such as electronic noses and other smart systems. Within this sector, the standardized systems, such as electronic noses, and LC circuit -based systems have been explained. Finally, some of the challenges posed by the existing sensors have been listed out, along with an estimate of the increase in the number of sensors employed to assess food quality.
Collapse
Affiliation(s)
- Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nasrin Afsarimanesh
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | | | - Dominic Rowan Organ
- Department of Social Sciences, Heriot-Watt University, Edinburgh SC000278, UK;
| |
Collapse
|
98
|
Shauloff N, Teradal NL, Jelinek R. Porous Graphene Oxide-Metal Ion Composite for Selective Sensing of Organophosphate Gases. ACS Sens 2020; 5:1573-1581. [PMID: 32449345 DOI: 10.1021/acssensors.9b02367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organophosphates are used as agricultural pesticides and also encountered as toxic nerve agents in chemical warfare. Accordingly, development of sensors for detecting and monitoring organophosphate vapors is highly sought after. We present a new capacitive gas sensor exhibiting remarkable specificity and sensitivity toward the organophosphate nerve gas simulants triethyl-phosphate (TEP) and dimethyl methyl phosphate and the pesticide dichlorvos. Specifically, the capacitive sensor comprises a composite porous graphene oxide matrix intercalating cobalt or nickel ions, prepared through a simple freeze-drying procedure. We demonstrate that the porous graphene oxide/metal ion electrode undergoes fast capacitance changes only upon exposure to organophosphate vapors. Moreover, the sensor exhibits extraordinary sensitivity upon interactions with TEP. Detailed mechanistic analyses, carried out in comparison to porous graphene oxide coupled to other transition metal ions, reveal that the remarkable sensing properties of the Co2+ or Ni2+/porous graphene oxide systems likely arise from the distinct mode of metal ion incorporation into the graphene oxide host matrix and substitution of metal-complexed water ligands with organophosphate molecules. The new metal ion/porous graphene oxide capacitive sensor may be employed for alerting and monitoring organophosphate gases in different environments.
Collapse
Affiliation(s)
- Nitzan Shauloff
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nagappa L. Teradal
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
99
|
Uric acid electrochemical sensing in biofluids based on Ni/Zn hydroxide nanocatalyst. Mikrochim Acta 2020; 187:379. [DOI: 10.1007/s00604-020-04351-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
|
100
|
Barragan JT, Kubota LT. Minipotentiostat controlled by smartphone on a micropipette: A versatile, portable, agile and accurate tool for electroanalysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|