51
|
Liang Y, Liu X, Allen MR. The influence of temperature on the emissions of organophosphate ester flame retardants from polyisocyanurate foam: Measurement and modeling. CHEMOSPHERE 2019; 233:347-354. [PMID: 31176897 PMCID: PMC7869924 DOI: 10.1016/j.chemosphere.2019.05.289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 05/21/2023]
Abstract
The material-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are the key parameters controlling the emissions of semivolatile organic compounds (SVOCs) from source materials. In indoor environments, air temperature is subject to change and can significantly affect the emission rates of SVOCs from building materials and consumer products. In this study, the emissions of organophosphate ester flame retardants (OPEFRs) from customized polyisocyanurate foam materials were measured in 44-mL microchambers at 23, 35, and 55 °C. The values of Dm and Kma at different temperatures were determined. The results showed that the increase of temperature can significantly enhance the emissions of OPEFRs from the foam materials, and the emissions of OPEFRs were found to transfer from SVOC-type to volatile organic compound (VOC)-type with the increase of temperature. A correlation for OPEFRs between the steady-state emission rate and temperature and correlations between Dm, Kma, and temperature were obtained. The research results shed light on the effect of temperature on the mechanisms governing emissions of SVOCs.
Collapse
Affiliation(s)
- Yirui Liang
- Oak Ridge Institute for Science and Education Participant at U.S. Environmental Protection Agency, USA
| | - Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC, 27711, USA.
| | - Matthew R Allen
- Jacobs Technology Inc., 600 William Northern Boulevard, Tullahoma, TN, 37388, USA
| |
Collapse
|
52
|
Shinohara N, Mizukoshi A, Uchiyama M, Tanaka H. Emission characteristics of diethylhexyl phthalate (DEHP) from building materials determined using a passive flux sampler and micro-chamber. PLoS One 2019; 14:e0222557. [PMID: 31539387 PMCID: PMC6754160 DOI: 10.1371/journal.pone.0222557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
Emission rates of diethylhexyl phthalate (DEHP) from building materials, such as vinyl floorings and wall paper, determined using a passive flux sampler (PFS) were constant over the week-long measurement period. Emission rates for vinyl floorings and wallpaper were linearly correlated to the inverse of diffusion distance, which corresponds to the internal depth of the PFS. Surface-air DEHP concentrations (y0) were estimated as 1.3-2.3 μg/m3 for materials having a boundary layer molecular diffusion rate-limiting step. The partition coefficient (Kmaterial-air) was estimated as 3.3-7.5 × 1010 for these materials. Additionally, emission rates of DEHP from same building materials determined using a micro-chamber were 4.5-6.1 μg/m2/h. Mass transfer coefficients in the micro-chamber (hm) were estimated by comparing the results using the PFS and micro-chamber, and these were 1.1-1.2 × 10-3 and 8.1 × 10-4 m/s for vinyl floorings (smooth surface) and wallpaper (rough surface), respectively. The thickness of boundary layer on the surface of building materials in the micro-chamber were estimated to be 2.5-2.6 and 3.7 mm for vinyl floorings and wallpaper, respectively.
Collapse
Affiliation(s)
- Naohide Shinohara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Atsushi Mizukoshi
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mayumi Uchiyama
- MC Evolve Technologies Corporation, Inashiki, Ibaraki, Japan
| | - Hirofumi Tanaka
- MC Evolve Technologies Corporation, Inashiki, Ibaraki, Japan
| |
Collapse
|
53
|
Yang T, He Z, Zhang S, Tong L, Cao J, Xiong J. Emissions of DEHP from vehicle cabin materials: parameter determination, impact factors and exposure analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1323-1333. [PMID: 31289797 DOI: 10.1039/c9em00200f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are widely used in materials employed in vehicle interiors, causing poor in-cabin air quality. The emission characteristics of SVOCs from vehicle cabin materials can be characterized by two key parameters: the gas-phase SVOC concentration adjacent to the material surface (y0) and the convective mass transfer coefficient across the material surface (hm). Accurate determination of y0 and hm is fundamental in investigating SVOC emission principles and health risks. Considering that the steady state SVOC concentration (y) in a ventilated chamber changes with the ventilation rate (Q), we developed a varied ventilation rate (VVR) method to simultaneously measure y0 and hm for typical vehicle cabin materials. Experimental results for di(2-ethylhexyl)phthalate (DEHP) emissions from test materials indicated that the VVR method has the merits of simple operation, short testing time, and high accuracy. We also examined the influence of temperature (T) on y0 and hm, and found that both y0 and hm increase with increasing temperature. A theoretical correlation between y0 and T was then derived, indicating that the logarithm of y0T is linearly related to 1/T. Analysis based on the data from this study and from the literature validates the effectiveness of the derived correlation. Moreover, preliminary exposure analysis was performed to assess the health risk of DEHP in a vehicular environment.
Collapse
Affiliation(s)
- Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
54
|
Lunderberg DM, Kristensen K, Liu Y, Misztal PK, Tian Y, Arata C, Wernis R, Kreisberg N, Nazaroff WW, Goldstein AH. Characterizing Airborne Phthalate Concentrations and Dynamics in a Normally Occupied Residence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7337-7346. [PMID: 31180211 DOI: 10.1021/acs.est.9b02123] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalate esters, commonly used as plasticizers, can be found indoors in the gas phase, in airborne particulate matter, in dust, and on surfaces. The dynamic behavior of phthalates indoors is not fully understood. In this study, time-resolved measurements of airborne phthalate concentrations and associated gas-particle partitioning data were acquired in a normally occupied residence. The vapor pressure and associated gas-particle partitioning of measured phthalates influenced their airborne dynamic behavior. Concentrations of higher vapor pressure phthalates correlated well with indoor temperature, with little discernible influence from direct occupant activity. Conversely, occupant-related behaviors substantially influenced the concentrations and dynamic behavior of a lower vapor pressure compound, diethylhexyl phthalate (DEHP), mainly through production of particulate matter during cooking events. The proportion of airborne DEHP in the particle phase was experimentally observed to increase under higher particle mass concentrations and lower indoor temperatures in correspondence with theory. Experimental observations indicate that indoor surfaces of the residence are large reservoirs of phthalates. The results also indicate that two key factors influenced by human behavior-temperature and particle mass concentration-cause short-term changes in airborne phthalate concentrations.
Collapse
Affiliation(s)
- David M Lunderberg
- Department of Chemistry , University of California , Berkeley , California , United States
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
| | - Kasper Kristensen
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
| | - Yingjun Liu
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
| | - Yilin Tian
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
- Department of Civil and Environmental Engineering , University of California , Berkeley , California , United States
| | - Caleb Arata
- Department of Chemistry , University of California , Berkeley , California , United States
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
| | - Rebecca Wernis
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
- Department of Civil and Environmental Engineering , University of California , Berkeley , California , United States
| | - Nathan Kreisberg
- Aerosol Dynamics Inc. , Berkeley , California 94710 , United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering , University of California , Berkeley , California , United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California , United States
- Department of Civil and Environmental Engineering , University of California , Berkeley , California , United States
| |
Collapse
|
55
|
Nandan A, Siddiqui NA, Kumar P. Assessment of environmental and ergonomic hazard associated to printing and photocopying: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1187-1211. [PMID: 30350125 DOI: 10.1007/s10653-018-0205-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
"Knowledge is power" and distribution of knowledge is fueled by printing and photocopying industry. Even as printing and photocopying industry have revolutionized the availability of documents and perceptible image quickly at extremely inexpensive and affordable cost, the boon of its revolution has turned into a bane by irresponsible, uncontrolled and extensive use, causing irreversible degradation to not only ecosystem by continuous release of ozone and other volatile organic compounds (VOCs) but also the health of workers occupationally exposed to it. Indoor ozone level due to emission from different photocopying equipment's increases drastically and the condition of other air quality parameters are not different. This situation is particularly sedate in extremely sensitive educational and research industry where sharing of knowledge is extremely important to meet the demands. This work is an attempt to catalogue all the environmental as well as health impacts of printing or photocopying. It has been observed that printing/photocopying operation is a significant factor contributing to indoor air quality degradation, which includes increase in concentration of ozone, VOCs, semi-volatile organic compounds (SVOCs) and heavy metals such as cadmium, selenium, arsenic, zinc, nickel, and other pollutants from photocopy machines. The outcome of this study will empower the manufactures with information regarding ozone and other significant emission, so that their impact can be reduced.
Collapse
Affiliation(s)
- Abhishek Nandan
- University of Petroleum and Energy Studies, Dehradun, India.
| | - N A Siddiqui
- University of Petroleum and Energy Studies, Dehradun, India
| | - Pankaj Kumar
- University of Petroleum and Energy Studies, Dehradun, India
| |
Collapse
|
56
|
Liang Y, Bi C, Wang X, Xu Y. A general mechanistic model for predicting the fate and transport of phthalates in indoor environments. INDOOR AIR 2019; 29:55-69. [PMID: 30339320 DOI: 10.1111/ina.12514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model-predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di-2-ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady-state DEHP concentrations were 0.14 μg/m3 in indoor air and ranged from 80 to 46 000 μg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate-bound deposition to the overall uptake of semi-volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol-air partition coefficient (Koa ) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate-alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.
Collapse
Affiliation(s)
- Yirui Liang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas
| | - Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas
| | - Xinke Wang
- Department of Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas
- Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
57
|
Bi C, Maestre JP, Li H, Zhang G, Givehchi R, Mahdavi A, Kinney KA, Siegel J, Horner SD, Xu Y. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. ENVIRONMENT INTERNATIONAL 2018; 121:916-930. [PMID: 30347374 DOI: 10.1016/j.envint.2018.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Phthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration. This study measured concentrations of phthalates and organophosphates in HVAC filter dust and settled floor dust collected from low-income homes in Texas, United States, in both the summer and winter seasons. The most frequently detected compounds were benzyl butyl phthalate (BBzP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), tris (1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris (1,3-dichloroisopropyl) phosphate (TDCIPP). The median level of TCIPP in settled dust was 3- to 180-times higher than levels reported in other studies of residential homes. Significantly higher concentrations were observed in HVAC filter dust as compared to settled dust for most of the frequently detected compounds in both seasons, except for several phthalates in the winter. SVOC concentrations in settled dust in winter were generally higher than in summer, while different seasonality patterns were found for HVAC filter dust. Settled dust samples from homes with vinyl flooring contained significantly higher levels of BBzP and DEHP as compared to homes with other types of floor material. The concentration of DEHP and TDCIPP in settled dust also significantly associated with the presence of carpet in homes. Cleaning activities to remove dust from furniture actually increased the levels of certain compounds in HVAC filter dust, while frequent vacuuming of carpet helped to decrease the concentrations of some compounds in settled dust. Additionally, the size and age of a given house also correlated with the levels of some pollutants in dust. A statistically significant association between DEHP concentration in HVAC filter dust in summer and the severity of asthma in children was observed. These results suggest that HVAC filter dust represents a useful sampling medium to monitor indoor SVOC concentrations with high sensitivity; in contrast, when using settled dust, in addition to consideration of seasonal influences, it is critical to know the sampling location because the type and level of SVOCs may be related to local materials used there.
Collapse
Affiliation(s)
- Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Juan P Maestre
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Hongwan Li
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Ge Zhang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Environment and Energy Application Engineering, University of Science and Technology Beijing, Beijing, China
| | - Raheleh Givehchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Alireza Mahdavi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Jeffrey Siegel
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sharon D Horner
- School of Nursing, The University of Texas at Austin, TX, USA
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Science, Tsinghua University, Beijing, China.
| |
Collapse
|
58
|
Shi S, Cao J, Zhang Y, Zhao B. Emissions of Phthalates from Indoor Flat Materials in Chinese Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13166-13173. [PMID: 30372054 DOI: 10.1021/acs.est.8b03580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phthalates are ubiquitous pollutants in residential environments. Indoor airborne phthalate concentrations in Chinese residences are comparable to, or even higher than, those of western countries. However, the major sources of phthalates in Chinese residences are not well-known. In this study, we measured the phthalates emission features of 23 flat materials used in Chinese residences in the laboratory environment, including the mass fraction (wt) and the concentration in the air adjacent to the material surface ( y0). The measured wt of seven phthalates ranged from below the limit of quantitation (LOQ) to 17%, and y0 ranged from LOQ to 2 μg/m3. To evaluate the potential contributions of the studied materials to phthalates in residential air, concentrations of di-2-ethylhexyl phthalate (DEHP, a typical indoor phthalate) in air due to the emissions from selected materials in typical Chinese residential scenarios were modeled and compared with measured concentrations from the literature. The modeled gas-phase, particle-phase, and airborne concentrations of DEHP in residential air due to emissions from the selected materials were 2-65 times lower than the mean values of measured concentrations. To formulate appropriate control strategies, further efforts are needed to identify the dominant sources of phthalates in Chinese residences.
Collapse
Affiliation(s)
- Shanshan Shi
- School of Architecture and Urban Planning , Nanjing University , 210093 Nanjing , China
- Nicholas School of the Environment , Duke University , 27708 Durham , North Carolina , United States
| | - Jianping Cao
- School of Environmental Science and Engineering , Sun Yat-sen University , 510006 Guangzhou , China
- Department of Civil and Environmental Engineering , Virginia Tech , 24061 Blacksburg , Virginia , United States
| | - Yinping Zhang
- Department of Building Science, School of Architecture , Tsinghua University , 100084 Beijing , China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Tsinghua University , 100084 Beijing , China
| | - Bin Zhao
- Department of Building Science, School of Architecture , Tsinghua University , 100084 Beijing , China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Tsinghua University , 100084 Beijing , China
| |
Collapse
|
59
|
Pei J, Sun Y, Yin Y. The effect of air change rate and temperature on phthalate concentration in house dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:760-768. [PMID: 29803046 DOI: 10.1016/j.scitotenv.2018.05.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are one of the main indoor pollutant categories. Six phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di(isobutyl) phthalate (DiBP), di(nbutyl) phthalate (DnBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP)) in house dust samples were measured in forty residential apartments in Tianjin and Urumqi in four seasons throughout a year. The measured DEHP dust-phase concentration is in the range: 11.9-699.9 μg/g; and showed obvious differences in different seasons, and the maximum can be 2 times higher than minimum. The DiBP and DnBP showed similar phenomenon. The corresponding gas-phase concentration is estimated considering the influencing factors of indoor temperature, air change rate, particle concentration. Then the dust-gas partition coefficient Kd under different season was obtained through the measured dust-phase concentration and estimated gas-phase concentration. From winter to summer, because the increased temperature leads to higher emission rate, the gas-phase concentration is obviously high in spite of the higher air change rate in summer. The estimated DEHP gas-phase concentration showed obvious differences in different seasons, and the maximum can be about 2 times higher than minimum. The DiBP and DnBP showed similar phenomenon. The lower dust-phase concentration in summer is observed due to the temperature-dependency of the dust-gas partition coefficient. Therefore temperature has the greatest impact on the dust concentration, not influence via emission rate, but influences the partition coefficient Kd.
Collapse
Affiliation(s)
- Jingjing Pei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yahong Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yihui Yin
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
60
|
Chen Y, Lv D, Li X, Zhu T. PM 2.5-bound phthalates in indoor and outdoor air in Beijing: Seasonal distributions and human exposure via inhalation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:369-377. [PMID: 29852440 DOI: 10.1016/j.envpol.2018.05.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 05/20/2023]
Abstract
Phthalates (phthalates esters, PAEs) are ubiquitous contaminants in various indoor and outdoor environment. Exposure to PAEs exerts adverse effects on human health. Seasonal variations of air phthalate concentrations and paired indoor and outdoor air phthalate level are rarely known. In this study, six priority phthalates in PM2.5 were investigated in three indoor sites (a students' dormitory, a residential apartment and an office) and one outdoor site in Beijing, China across four seasons. PM2.5 samples were collected at indoor and outdoor environment simultaneously. Total PAEs in four sites were 468 ng/m3 (range: 9.52-1460 ng/m3), 498 ng/m3 (range: 11.2-4790 ng/m3), 280 ng/m3 (range: 4.08-1060 ng/m3), and 125 ng/m3 (range: 4.10-4000 ng/m3), respectively. DBP and DEHP were the most abundant PAEs across the four sampling sites, accounting for 76.3%-97.7% of the total PM2.5-bound PAEs. Obvious seasonal variation of total PAEs was observed. PAEs concentrations were weakly or poorly correlated with PM2.5 levels. Indoor DBP and DEHP concentrations were much higher than those of outdoor, suggesting the importance of indoor DBP and DEHP sources. Principal component analysis revealed that cosmetics and personal care products, plasticizer and PVC products may be important sources for indoor PM2.5-bound PAEs. Daily intakes of PAEs via inhalation for infants, student, and office-workers were 5.0, 0.8 and 0.9 μg/(kg-bw⋅day), respectively according to human exposure estimation.
Collapse
Affiliation(s)
- Ying Chen
- School of Space and Environment, Beihang University, Beijing 100191, China; Beijing Capital International Airport Company Limited, Beijing 101300, China
| | - Dong Lv
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Xinghua Li
- School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
61
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tunga Salthammer
- Fachbereich Materialanalytik und Innenluftchemie; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Deutschland
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung (IPA); Institut der Ruhr-Universität Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Deutschland
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
62
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201711023] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Germany
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Institute of the Ruhr-University Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Germany
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
63
|
Jo SH, Lee MH, Kim KH, Kumar P. Characterization and flux assessment of airborne phthalates released from polyvinyl chloride consumer goods. ENVIRONMENTAL RESEARCH 2018; 165:81-90. [PMID: 29684738 DOI: 10.1016/j.envres.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 05/23/2023]
Abstract
The concentrations and fluxes of airborne phthalates were measured from five types of polyvinyl chloride (PVC) consumer products (vinyl flooring, wallcovering, child's toy, yoga mat, and edge protector) using a small chamber (impinger) system. Airborne phthalates released from each of those PVC samples were collected using sorbent (Tenax TA) tubes at three temperature control intervals (0, 3, and 6 h) under varying temperature conditions (25, 40, and 90 °C). A total of 11 phthalate compounds were quantified in the five PVC products examined in this study. To facilitate the comparison of phthalate emissions among PVC samples, their flux values were defined for total phthalates by summing the average fluxes of all 11 phthalates generated during the control period of 6 h. The highest flux values were seen in the edge protector sample at all temperatures (0.40 (25 °C), 9.65 (40 °C), and 75.7 μg m-2 h-1 (90 °C)) of which emission was dominated by dibutyl isophthalate. In contrast, the lowest fluxes were found in wallcovering (0.01 (25 °C) and 0.05 μg m-2 h-1 (40 °C)) and child's toy (0.23 μg m-2 h-1 (90 °C)) at each temperature level. The information regarding phthalate composition and emission patterns varied dynamically with type of PVC sample, controlled temperature, and duration of control.
Collapse
Affiliation(s)
- Sang-Hee Jo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea
| | - Min-Hee Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea.
| | - Pawan Kumar
- Department of Nano Sciences and Materials, Central University of Jammu, Jammu 181143, J & K, India
| |
Collapse
|
64
|
Li L, Arnot JA, Wania F. Towards a systematic understanding of the dynamic fate of polychlorinated biphenyls in indoor, urban and rural environments. ENVIRONMENT INTERNATIONAL 2018; 117:57-68. [PMID: 29727753 DOI: 10.1016/j.envint.2018.04.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 05/03/2023]
Abstract
Indoor environments and urban areas are hubs of chemical stocks and emissions, which contaminate those indoor and urban areas as well as the surrounding rural areas. Here, we introduce a newly developed nested multimedia indoor-urban-rural chemical fate model, coupled with a substance flow analysis, aiming to provide an integrated and dynamic understanding of the mass distribution, concentrations, and major pathways of contaminants within and between indoor, urban and rural environments. The model is applied to simulate the emissions, transport and fate of polychlorinated biphenyl (PCB) congeners 28 and 153 in the Western Baltic drainage basin over time. Whereas >90% of PCBs were used in the urban outdoor environment, the model indicates that ~80% of emissions occurred indoors because of higher emission factors in open-end usage. Atmospheric advection is highly effective in transporting the bulk of the PCBs emitted indoors to urban (>85%) and rural (>75%) environments. The rural environment is identified as the main locale for accommodating (>80%) and removing (>50%) the emitted PCBs. Contamination of exposure-relevant compartments in the rural environment is anticipated to decrease slower than, and thus outlast, that in the indoor environment, which implies an increasing importance of the food chain accumulation in overall human exposure to PCBs over time. Our model demonstrates that, whereas the indoor environment contains an insignificant fraction of the total emissions remaining in the regional environment, it experiences orders of magnitude higher concentrations than the rural environment. Therefore, while including indoor and urban environments in modeling influences little the modeled overall chemical fate on a regional scale, it strongly affects modeling the human exposure associated with multimedia concentrations.
Collapse
Affiliation(s)
- Li Li
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
| | - Jon A Arnot
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; ARC Arnot Research & Consulting, Toronto, Ontario, Canada.
| | - Frank Wania
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
| |
Collapse
|
65
|
A high throughput method for measuring cloth-air equilibrium distribution ratios for SVOCs present in indoor environments. Talanta 2018; 183:250-257. [DOI: 10.1016/j.talanta.2018.02.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 11/17/2022]
|
66
|
Liang Y, Liu X, Allen MR. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5821-5829. [PMID: 29671311 PMCID: PMC6190673 DOI: 10.1021/acs.est.8b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Emission of semivolatile organic compounds (SVOCs) from source materials usually occurs very slowly in indoor environments due to their low volatility. When the SVOC emission process is controlled by external mass transfer, the gas-phase concentration in equilibrium with the material ( y0) is used as a key parameter to simplify the source models that are based on solid-phase diffusion. A material-air-material (M-A-M) configured microchamber method was developed to rapidly measure y0 for a polyisocyanurate rigid foam material containing organophosphate flame retardants (OPRFs). The emission test was conducted in 44 mL microchambers for target OPFRs, including tris(2-chloroethyl) phosphate (CASRN: 115-96-8), tris(1-chloro-2-propyl) phosphate (CASRN: 13674-84-5), and tris(1,3-dichloro-2-propyl) phosphate (CASRN: 13674-87-8). In addition to the microchamber emission test, two other types of tests were conducted to determine y0 for the same foam material: OPFR diffusive tube sampling tests from the OPFR source foam using stainless-steel thermal desorption tubes and sorption tests of OPFR on an OPFR-free foam in a 53 L small chamber. Comparison of parameters obtained from the three methods suggests that the discrepancy could be caused by a combination of theoretical, experimental, and computational differences. Based on the y0 measurements, a linear relationship between the ratio of y0 to saturated vapor pressure concentration and material-phase mass fractions has been found for phthalates and OPFRs.
Collapse
Affiliation(s)
- Yirui Liang
- Oak Ridge Institute for Science and Education participant at U.S. Environmental Protection Agency, 1299 Bethel Valley Road, Oak Ridge, TN 37830, United States
| | - Xiaoyu Liu
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Corresponding Author:Phone: 1-919-541-2459; Fax: 1-919-541-0359;
| | - Matthew R. Allen
- Jacobs Technology, Inc. 600 William Northern Boulevard, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
67
|
Tian S, Ecoff S, Sebroski J, Miller J, Rickenbacker H, Bilec M. An indoor air quality evaluation in a residential retrofit project using spray polyurethane foam. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:363-375. [PMID: 29341859 DOI: 10.1080/15459624.2018.1428332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding of indoor air quality (IAQ) during and after spray polyurethane foam (SPF) application is essential to protect the health of both workers and building occupants. Previous efforts such as field monitoring, micro-chamber/spray booth emission studies, and fate/transport modeling have been conducted to understand the chemical exposure of SPF and guide risk mitigation strategies. However, each type of research has its limitation and can only reveal partial information on the relationship between SPF and IAQ. A comprehensive study is truly needed to integrate the experimental design and analytical testing methods in the field/chamber studies with the mathematical tools employed in the modeling studies. This study aims to bridge this gap and provide a more comprehensive understanding on the impact of SPF to IAQ. The field sampling plan of this research aims to evaluate the airborne concentrations of methylene diphenyl diisocyanate (MDI), formaldehyde, acetaldehyde, propionaldehyde, tris(1-chlor-2-propyl)phosphate (TCPP), trans-1-chloro-3,3,3-trifluoropropene (SolsticeTM), and airborne particles. Modifications to existing MDI sampling and analytical methods were made so that level of quantification was improved. In addition, key fate and transport modeling input parameters such as air changes per hour and airborne particle size distribution were measured. More importantly, TCPP accumulation onto materials was evaluated, which is important to study the fate and transport of semi-volatile organic compounds. The IAQ results showed that after spray application was completed in the entire building, airborne concentrations decreased for all chemicals monitored. However, it is our recommendation that during SPF application, no one should return to the application site without proper personal protection equipment as long as there are active spray activities in the building. The comparison between this field study and a recent chamber study proved surface sorption and particle deposition is an important factor in determining the fate of airborne TCPP. The study also suggests the need for further evaluation by employing mathematical models, proving the data generated in this work as informative to industry and the broader scientific community.
Collapse
Affiliation(s)
- Shen Tian
- a Covestro LLC , Pittsburgh , Pennsylvania
- b Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania
| | | | | | | | - Harold Rickenbacker
- b Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania
| | - Melissa Bilec
- b Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania
| |
Collapse
|
68
|
Wu Y, Eichler CMA, Cao J, Benning J, Olson A, Chen S, Liu C, Vejerano EP, Marr LC, Little JC. Particle/Gas Partitioning of Phthalates to Organic and Inorganic Airborne Particles in the Indoor Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3583-3590. [PMID: 29446939 DOI: 10.1021/acs.est.7b05982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The particle/gas partition coefficient Kp is an important parameter affecting the fate and transport of indoor semivolatile organic compounds (SVOCs) and resulting human exposure. Unfortunately, experimental measurements of Kp exist almost exclusively for atmospheric polycyclic aromatic hydrocarbons, with very few studies focusing on SVOCs that occur in indoor environments. A specially designed tube chamber operating in the laminar flow regime was developed to measure Kp of the plasticizer di-2-ethylhexyl phthalate (DEHP) for one inorganic (ammonium sulfate) and two organic (oleic acid and squalane) particles. The values of Kp for the organic particles (0.23 ± 0.13 m3/μg for oleic acid and 0.11 ± 0.10 m3/μg for squalane) are an order of magnitude higher than those for the inorganic particles (0.011 ± 0.004 m3/μg), suggesting that the process by which the particles accumulate SVOCs is different. A mechanistic model based on the experimental design reveals that the presence of the particles increases the gas-phase concentration gradient in the boundary layer, resulting in enhanced mass transfer from the emission source into the air. This novel approach provides new insight into experimental designs for rapid Kp measurement and a sound basis for investigating particle-mediated mass transfer of SVOCs.
Collapse
Affiliation(s)
- Yaoxing Wu
- Department of Environmental Engineering , Texas A&M University-Kingsville , Kingsville , Texas 78363 , United States
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Jianping Cao
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Jennifer Benning
- Department of Civil and Environmental Engineering , South Dakota School of Mines and Technology , Rapid City , South Dakota 57701 , United States
| | - Amy Olson
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Shengyang Chen
- School of Civil Engineering , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Cong Liu
- School of Energy and Environment , Southeast University , Nanjing 210096 , China
| | - Eric P Vejerano
- Department of Environmental Health Sciences , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - John C Little
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
69
|
Eichler CMA, Wu Y, Cao J, Shi S, Little JC. Equilibrium Relationship between SVOCs in PVC Products and the Air in Contact with the Product. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2918-2925. [PMID: 29420885 DOI: 10.1021/acs.est.7b06253] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phthalates and phthalate alternatives are semivolatile organic compounds (SVOCs) present in many PVC products as plasticizers to enhance product performance. Knowledge of the mass-transfer parameters, including the equilibrium concentration in the air in contact with the product surface ( y0), will greatly improve the ability to estimate the emission rate of SVOCs from these products and to assess human exposure. The objective of this study was to measure y0 for different PVC products and to evaluate its relationship with the material-phase concentrations ( C0). Also, C0 and y0 data from other sources were included, resulting in a substantially larger data set ( Ntotal = 34, T = 25 °C) than found in previous studies. The results show that the material/gas equilibrium relationship does not follow Raoult's law and that therefore the assumption of an ideal solution is invalid. Instead, Henry's law applies, and the Henry's law constant for all target SVOCs consists of the respective pure liquid vapor pressure and an activity coefficient γ, which accounts for the nonideal nature of the solution. For individual SVOCs, a simple partitioning relationship exists, but Henry's law is more generally applicable and will be of greater value in rapid exposure assessment procedures.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yaoxing Wu
- Department of Environmental Engineering , Texas A&M University-Kingsville , Kingsville , Texas 78363 , United States
| | - Jianping Cao
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Shanshan Shi
- School of Architecture and Urban Planning , Nanjing University , Nanjing 210093 , China
| | - John C Little
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
70
|
Wei W, Mandin C, Ramalho O. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds. CHEMOSPHERE 2018; 195:223-235. [PMID: 29268180 DOI: 10.1016/j.chemosphere.2017.12.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered.
Collapse
Affiliation(s)
- Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France.
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| |
Collapse
|
71
|
Liang Y, Liu X, Allen MR. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces. CHEMOSPHERE 2018; 193:754-762. [PMID: 29175403 PMCID: PMC5921081 DOI: 10.1016/j.chemosphere.2017.11.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 05/21/2023]
Abstract
Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters.
Collapse
Affiliation(s)
- Y Liang
- Oak Ridge Institute for Science and Education Participant at U.S. Environmental Protection Agency, USA
| | - X Liu
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC, 27711, USA.
| | - M R Allen
- Jacobs Technology Inc., 600 William Northern Boulevard, Tullahoma, TN, 37388, USA
| |
Collapse
|
72
|
Cao J, Liu N, Zhang Y. SPME-Based C a-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9137-9145. [PMID: 28714305 DOI: 10.1021/acs.est.7b02540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clothes play an important role in dermal exposure to indoor semivolatile organic compounds (SVOCs). The diffusion coefficient of SVOCs in clothing material (Dm) is essential for estimating SVOC sorption by clothing material and subsequent dermal exposure to SVOCs. However, few studies have reported the measured Dm for clothing materials. In this paper, we present the solid-phase microextraction (SPME) based Ca-history method. To the best of our knowledge, this is the first try to measure Dm with known relative standard deviation (RSD). A thin sealed chamber is formed by a circular ring and two pieces of flat SVOC source materials that are tightly covered by the targeted clothing materials. Dm is obtained by applying an SVOC mass transfer model in the chamber to the history of gas-phase SVOC concentrations (Ca) in the chamber measured by SPME. Dm's of three SVOCs, di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and tris(1-chloro-2-propyl) phosphate (TCPP), in a cotton T-shirt can be obtained within 16 days, with RSD less than 3%. This study should prove useful for measuring SVOC Dm in various sink materials. Further studies are expected to facilitate application of this method and investigate the effects of temperature, relative humidity, and clothing material on Dm.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Ningrui Liu
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| |
Collapse
|
73
|
Cao J, Zhang X, Little JC, Zhang Y. A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. INDOOR AIR 2017; 27:417-426. [PMID: 27238276 DOI: 10.1111/ina.12312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/27/2016] [Indexed: 06/05/2023]
Abstract
Semivolatile organic compounds (SVOCs) are present in many indoor materials. SVOC emissions can be characterized with a critical parameter, y0 , the gas-phase SVOC concentration in equilibrium with the source material. To reduce the required time and improve the accuracy of existing methods for measuring y0 , we developed a new method which uses solid-phase microextraction (SPME) to measure the concentration of an SVOC emitted by source material placed in a sealed chamber. Taking one typical indoor SVOC, di-(2-ethylhexyl) phthalate (DEHP), as the example, the experimental time was shortened from several days (even several months) to about 1 day, with relative errors of less than 5%. The measured y0 values agree well with the results obtained by independent methods. The saturated gas-phase concentration (ysat ) of DEHP was also measured. Based on the Clausius-Clapeyron equation, a correlation that reveals the effects of temperature, the mass fraction of DEHP in the source material, and ysat on y0 was established. The proposed method together with the correlation should be useful in estimating and controlling human exposure to indoor DEHP. The applicability of the present approach for other SVOCs and other SVOC source materials requires further study.
Collapse
Affiliation(s)
- J Cao
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - X Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - J C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Y Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
74
|
Hsu NY, Liu YC, Lee CW, Lee CC, Su HJ. Higher moisture content is associated with greater emissions of DEHP from PVC wallpaper. ENVIRONMENTAL RESEARCH 2017; 152:1-6. [PMID: 27736685 DOI: 10.1016/j.envres.2016.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Water damage and moisture in buildings may become more prevalent due to the increasing frequency of extreme precipitation and flooding events resulting from climate change. However, the effects of moisture levels on phthalate emissions from building materials are still underreported. This study aims to evaluate the effect of moisture content (MC) on the level of di-(2ethylhexyl) phthalate (DEHP) emitted from plastic wallpaper (0.22wt% DEHP) within 15 days in a closed chamber. A scenario of short-term exposure to DEHP in buildings suffering from water damage was simulated. Experiments, controlled at 100% relative humidity (RH) of air and 28°C, were conducted under the following three conditions: (I) without wallpaper (control chamber), (II) dry wallpaper (MC at 3.57%) and (III) damp wallpaper (MC at 52.31%). Air and dust samples were collected at the elapsed time of 2, 4, 6, 8, 10, 13 and 15 days, and the wipe sample was collected on the last day. Higher DEHP concentrations were found to be emitted into the air and adsorbed on the dust for wallpapers with higher MC%. DEHP levels in the air exhibited an increasing trend with the length of the experiment. Overall, it was found that approximately 35.31% more total DEHP mass was released into the air, dust and wipe samples from damp wallpapers compared to dry wallpapers. It is concluded that DEHP emissions from plastic materials are affected by the inner moisture percentage.
Collapse
Affiliation(s)
- Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Wei Lee
- Department of Safety, Health and Environment Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan.
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
75
|
Huang L, Ernstoff A, Fantke P, Csiszar SA, Jolliet O. A review of models for near-field exposure pathways of chemicals in consumer products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1182-1208. [PMID: 27644856 DOI: 10.1016/j.scitotenv.2016.06.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined "compartment of entry", are transformed or transferred to adjacent compartments, and eventually end in a "human receptor compartment". We first focus on models of physical mass transfers from the product to 'near-field' compartments. For transfers of chemicals from article interior, adequate modeling of in-article diffusion and of partitioning between article surface and air/skin/food is key. Modeling volatilization and subsequent transfer to the outdoor is crucial for transfers of chemicals used in the inner space of appliances, on object surfaces or directly emitted to indoor air. For transfers from skin surface, models need to reflect the competition between dermal permeation, volatilization and fraction washed-off. We then focus on transfers from the 'near-field' to 'human' compartments, defined as respiratory tract, gastrointestinal tract and epidermis, for which good estimates of air concentrations, non-dietary ingestion parameters and skin permeation are essential, respectively. We critically characterize for each exposure pathway the ability of models to estimate near-field transfers and to best inform LCA, CAA and HTS, summarizing the main characteristics of the potentially best-suited models. This review identifies large knowledge gaps for several near-field pathways and suggests research needs and future directions.
Collapse
Affiliation(s)
- Lei Huang
- Environmental Health Sciences & Risk Science Center, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, United States.
| | - Alexi Ernstoff
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, 2808 Kgs. Lyngby, Denmark
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, 2808 Kgs. Lyngby, Denmark
| | - Susan A Csiszar
- Oak Ridge Institute for Science and Education Research Participant, US Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45268, United States
| | - Olivier Jolliet
- Environmental Health Sciences & Risk Science Center, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, United States
| |
Collapse
|
76
|
Wu Y, Xie M, Cox SS, Marr LC, Little JC. A simple method to measure the gas-phase SVOC concentration adjacent to a material surface. INDOOR AIR 2016; 26:903-912. [PMID: 26609785 DOI: 10.1111/ina.12270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Assessing human exposure to semivolatile organic compounds (SVOCs) emitted from materials and products is difficult because methods are not available to easily measure the key emission parameters. A simple method based on a passive sampling technique was thus developed to measure the gas-phase SVOC concentration (y0 ) immediately adjacent to the material surface in a consumer product. The method employs standard stainless steel thermal desorption tubes, with values of y0 and an additional unknown parameter, K, the tube surface/air partition coefficient inside the desorption tube, obtained by fitting a diffusion model to the sampling data. Phthalates in two types of polyvinyl chloride flooring were selected to test the method. The values of y0 and K agree well with those measured in independent chamber tests. The y0 measurement method is shown to be applicable to chemicals with a wide range of vapor pressures. This novel method should be useful for assessing potential exposure to SVOCs in consumer products as well as for exposure-based prioritization of chemicals and their associated products in indoor environments.
Collapse
Affiliation(s)
- Y Wu
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - M Xie
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S S Cox
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - L C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - J C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
77
|
Cao J, Xiong J, Wang L, Xu Y, Zhang Y. Transient Method for Determining Indoor Chemical Concentrations Based on SPME: Model Development and Calibration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9452-9459. [PMID: 27476381 DOI: 10.1021/acs.est.6b01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Solid-phase microextraction (SPME) is regarded as a nonexhaustive sampling technique with a smaller extraction volume and a shorter extraction time than traditional sampling techniques and is hence widely used. The SPME sampling process is affected by the convection or diffusion effect along the coating surface, but this factor has seldom been studied. This paper derives an analytical model to characterize SPME sampling for semivolatile organic compounds (SVOCs) as well as for volatile organic compounds (VOCs) by considering the surface mass transfer process. Using this model, the chemical concentrations in a sample matrix can be conveniently calculated. In addition, the model can be used to determine the characteristic parameters (partition coefficient and diffusion coefficient) for typical SPME chemical samplings (SPME calibration). Experiments using SPME samplings of two typical SVOCs, dibutyl phthalate (DBP) in sealed chamber and di(2-ethylhexyl) phthalate (DEHP) in ventilated chamber, were performed to measure the two characteristic parameters. The experimental results demonstrated the effectiveness of the model and calibration method. Experimental data from the literature (VOCs sampled by SPME) were used to further validate the model. This study should prove useful for relatively rapid quantification of concentrations of different chemicals in various circumstances with SPME.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture , Beijing 100044, China
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712-1094, United States
| | - Yinping Zhang
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| |
Collapse
|
78
|
Lazarov B, Swinnen R, Poelmans D, Spruyt M, Goelen E, Covaci A, Stranger M. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17183-17190. [PMID: 27215988 DOI: 10.1007/s11356-016-6886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).
Collapse
Affiliation(s)
- Borislav Lazarov
- Environmental Risk and Health Unit, VITO, Boeretang 200, 2400, Mol, Belgium.
| | - Rudi Swinnen
- Environmental Risk and Health Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| | - David Poelmans
- Environmental Risk and Health Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Maarten Spruyt
- Environmental Risk and Health Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Eddy Goelen
- Environmental Risk and Health Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Marianne Stranger
- Environmental Risk and Health Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| |
Collapse
|
79
|
Wang Y, Nie X, Li X. Synthesis and characterization of novel pentaerythritol ester as PVC plasticizer. J Appl Polym Sci 2016. [DOI: 10.1002/app.44227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yigang Wang
- Institute of Chemical Industry of Forest Products; National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material; Nanjing Jiangsu Province 210042 China
- Institute of New Technology of Forestry, CAF; Beijing 100091 China
| | - Xiaoan Nie
- Institute of Chemical Industry of Forest Products; National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material; Nanjing Jiangsu Province 210042 China
- Institute of New Technology of Forestry, CAF; Beijing 100091 China
| | - Xiaoying Li
- Institute of Chemical Industry of Forest Products; National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material; Nanjing Jiangsu Province 210042 China
- Institute of New Technology of Forestry, CAF; Beijing 100091 China
| |
Collapse
|
80
|
Lyng NL, Clausen PA, Lundsgaard C, Andersen HV. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air. CHEMOSPHERE 2016; 144:2127-2133. [PMID: 26583295 DOI: 10.1016/j.chemosphere.2015.10.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius-Clapeyron equation, ln(P) = -ΔH/RT + a(0), where changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R(2)>94%) of the variation in indoor air PCB levels. The results showed that one measured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln(P) vs. 1/T, at varying temperature between 16.3 and 28.2 °C, even though the measurements were carried out under uncontrolled environmental condition.
Collapse
Affiliation(s)
- Nadja Lynge Lyng
- Danish Building Research Institute, Aalborg University Copenhagen, A.C. Meyers Vænge 15, DK-2450, Copenhagen SV, Denmark.
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Claus Lundsgaard
- Scandinavian Bio-Medical Institute (SBMI), Rungstedvej 21, DK-2970, Hørsholm, Denmark
| | - Helle Vibeke Andersen
- Danish Building Research Institute, Aalborg University Copenhagen, A.C. Meyers Vænge 15, DK-2450, Copenhagen SV, Denmark
| |
Collapse
|
81
|
Zhang Y, Xiong J, Mo J, Gong M, Cao J. Understanding and controlling airborne organic compounds in the indoor environment: mass transfer analysis and applications. INDOOR AIR 2016; 26:39-60. [PMID: 25740682 DOI: 10.1111/ina.12198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
Mass transfer is key to understanding and controlling indoor airborne organic chemical contaminants (e.g., VVOCs, VOCs, and SVOCs). In this study, we first introduce the fundamentals of mass transfer and then present a series of representative works from the past two decades, focusing on the most recent years. These works cover: (i) predicting and controlling emissions from indoor sources, (ii) determining concentrations of indoor air pollutants, (iii) estimating dermal exposure for some indoor gas-phase SVOCs, and (iv) optimizing air-purifying approaches. The mass transfer analysis spans the micro-, meso-, and macroscales and includes normal mass transfer modeling, inverse problem solving, and dimensionless analysis. These representative works have reported some novel approaches to mass transfer. Additionally, new dimensionless parameters such as the Little number and the normalized volume of clean air being completely cleaned in a given time period were proposed to better describe the general process characteristics in emissions and control of airborne organic compounds in the indoor environment. Finally, important problems that need further study are presented, reflecting the authors' perspective on the research opportunities in this area.
Collapse
Affiliation(s)
- Y Zhang
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - J Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - J Mo
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - M Gong
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - J Cao
- Institute of Built Environment, Tsinghua University, Beijing, China
| |
Collapse
|
82
|
Cao J, Weschler CJ, Luo J, Zhang Y. C(m)-History Method, a Novel Approach to Simultaneously Measure Source and Sink Parameters Important for Estimating Indoor Exposures to Phthalates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:825-834. [PMID: 26677723 DOI: 10.1021/acs.est.5b04404] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The concentration of a gas-phase semivolatile organic compound (SVOC) in equilibrium with its mass-fraction in the source material, y0, and the coefficient for partitioning of an SVOC between clothing and air, K, are key parameters for estimating emission and subsequent dermal exposure to SVOCs. Most of the available methods for their determination depend on achieving steady-state in ventilated chambers. This can be time-consuming and of variable accuracy. Additionally, no existing method simultaneously determines y0 and K in a single experiment. In this paper, we present a sealed-chamber method, using early-stage concentration measurements, to simultaneously determine y0 and K. The measurement error for the method is analyzed, and the optimization of experimental parameters is explored. Using this method, y0 for phthalates (DiBP, DnBP, and DEHP) emitted by two types of PVC flooring, coupled with K values for these phthalates partitioning between a cotton T-shirt and air, were measured at 25 and 32 °C (room and skin temperatures, respectively). The measured y0 values agree well with results obtained by alternate methods. The changes of y0 and K with temperature were used to approximate the changes in enthalpy, ΔH, associated with the relevant phase changes. We conclude with suggestions for further related research.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Building Science, Tsinghua University , 100084, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , 100084, Beijing, China
| | - Charles J Weschler
- Department of Building Science, Tsinghua University , 100084, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , 100084, Beijing, China
- Environmental and Occupational Health Sciences Institute, Rutgers University , Piscataway, New Jersey, 08854, United States
| | - Jiajun Luo
- Department of Building Science, Tsinghua University , 100084, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , 100084, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University , 100084, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , 100084, Beijing, China
| |
Collapse
|
83
|
Clausen PA, Spaan S, Brouwer DH, Marquart H, le Feber M, Engel R, Geerts L, Jensen KA, Kofoed-Sørensen V, Hansen B, De Brouwere K. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:104-112. [PMID: 25993024 DOI: 10.1038/jes.2015.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model. Kinetic extraction studies in methanol demonstrated existence of matrix diffusion and indicated the presence of a substance surface layer on some articles. Consequently, the proposed substance transfer model considers mechanical transport from a surface film and matrix diffusion in an article with a known initial total substance concentration. The estimated chemical substance transfer values to cotton wipes were comparable to the literature data (relative transfer ∼ 2%), whereas relative transfer efficiencies from spiked substrates were high (∼ 50%). For consumer articles, high correlation (r(2)=0.92) was observed between predicted and measured transfer efficiencies, but concentrations were overpredicted by a factor of 10. Adjusting the relative transfer from about 50% used in the model to about 2.5% removed overprediction. Further studies are required to confirm the model for generic use.
Collapse
Affiliation(s)
- Per Axel Clausen
- National Research Centre for the Working Environment, New Technologies, Lersø Parkalle 105, Copehagen Ø, Denmark
| | - Suzanne Spaan
- TNO, Department Risk Analysis for Products in Development (RAPID), Zeist, AJ, The Netherlands
| | - Derk H Brouwer
- TNO, Department Risk Analysis for Products in Development (RAPID), Zeist, AJ, The Netherlands
| | | | - Maaike le Feber
- TNO, Department Risk Analysis for Products in Development (RAPID), Zeist, AJ, The Netherlands
| | - Roel Engel
- TNO Triskelion, Zeist, AV, The Netherlands
| | - Lieve Geerts
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, New Technologies, Lersø Parkalle 105, Copehagen Ø, Denmark
| | - Vivi Kofoed-Sørensen
- National Research Centre for the Working Environment, New Technologies, Lersø Parkalle 105, Copehagen Ø, Denmark
| | - Brian Hansen
- National Research Centre for the Working Environment, New Technologies, Lersø Parkalle 105, Copehagen Ø, Denmark
| | - Katleen De Brouwere
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium
| |
Collapse
|
84
|
Liu C, Zhang Y, Benning JL, Little JC. The effect of ventilation on indoor exposure to semivolatile organic compounds. INDOOR AIR 2015; 25:285-296. [PMID: 24939666 DOI: 10.1111/ina.12139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
A mechanistic model was developed to examine how natural ventilation influences residential indoor exposure to semivolatile organic compounds (SVOCs) via inhalation, dermal sorption, and dust ingestion. The effect of ventilation on indoor particle mass concentration and mass transfer at source/sink surfaces, and the enhancing effect of particles on mass transfer at source/sink surfaces are included. When air exchange rate increases from 0.6/h to 1.8/h, the steady-state SVOC (gas-phase plus particle phase with log KOA varying from 9 to 13) concentration in the idealized model decreases by about 60%. In contrast, for the same change in ventilation, the simulated indoor formaldehyde (representing volatile organic compounds) gas-phase concentration decreases by about 70%. The effect of ventilation on exposure via each pathway has a relatively insignificant association with the KOA of the SVOCs: a change of KOA from 10(9) to 10(13) results in a change of only 2-30%. Sensitivity analysis identifies the deposition rate of PM2.5 as a primary factor influencing the relationship between ventilation and exposure for SVOCs with log KOA = 13. The relationship between ventilation rate and air speed near surfaces needs to be further substantiated.
Collapse
Affiliation(s)
- C Liu
- Department of Building Science, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
85
|
Guo J, Zhang R, Xu Z. PBDEs emission from waste printed wiring boards during thermal process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2716-2723. [PMID: 25629562 DOI: 10.1021/es5053599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) contained in waste printed wiring board (PWB) matrix and surface dust can be emitted into the air during thermal process, which is widely used to detach the electronic components from the base boards of waste PWB. In this study, PBDEs concentrations in air and dust samples were detected in a PWB-heating workshop, and then heating experiments of PBDEs-containing materials in a quartz tube furnace were performed to investigate the PBDEs emission mechanism. The results showed that the mean concentrations of Σ8PBDEs in PM10 and TSP were 479 and 1670 ng/m(3), respectively. Compared with surface dust collected from waste PWB (15600 ng/g), PBDEs concentrations in dust from the workshop floor (31,100 ng/g), heating machine inside (84,700 ng/g), and the cyclone extractor (317,000 ng/g), were condensed after thermal process. Heating experiments showed that the emission rates of PBDEs from PBDEs-containing dust were obviously higher than those from PWB fragments in the first 1-h time. The cumulative amounts of PBDEs emitted from dust increased rapidly at first, and then leveled off to become asymptotic to the maximum amounts. At the temperature of 300 °C, the PBDEs emission from dust mainly occurred within the first 5 min, and the average emission rates for BDE-28, -47, and -99 among the first 5 min were 1230, 4480, and 1950 ng/(g·min), respectively. During the initial 1-h period, the trends of PBDEs emission from PWB fragments had a linear increase, and the emission rates of penta-BDE (BDE-47, -99, -100) at different temperatures were at a range of 9.75-11.5 ng/(g·min). All the results showed that PBDEs emission from PWB waste happened during thermal process, and management strategies were provided to reduce the occupational exposure level of PBDEs for workers.
Collapse
Affiliation(s)
- Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | |
Collapse
|
86
|
Liang Y, Xu Y. Emission of phthalates and phthalate alternatives from vinyl flooring and crib mattress covers: the influence of temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14228-37. [PMID: 25419579 DOI: 10.1021/es504801x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Emissions of phthalates and phthalate alternatives from vinyl flooring and crib mattress covers were measured in a specially designed chamber. The gas-phase concentrations versus time were measured at four different temperatures, that is, 25, 36, 45, and 55 °C. The key parameter that controls the emissions (y0, gas-phase concentration in equilibrium with the material phase) was determined, and the emissions were found to increase significantly with increasing temperature. Both the material-phase concentration (C0) and the chemical vapor pressure (Vp) were found to have great influence on the value of y0. The measured ratios of C0 to y0 were exponentially proportional to the reciprocal of temperature, in agreement with the van't Hoff equation. A emission model was validated at different temperatures, with excellent agreement between model calculations and chamber observations. In residential homes, an increase in the temperature from 25 to 35 °C can elevate the gas-phase concentration of phthalates by more than a factor of 10, but the total airborne concentration may not increase that much for less volatile compounds. In infant sleep microenvironments, an increase in the temperature of mattress can cause a significant increase in emission of phthalates from the mattress cover and make the concentration in the infant's breathing zone about four times higher than that in the bulk room air, resulting in potentially high exposure.
Collapse
Affiliation(s)
- Yirui Liang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712-1094, United States
| | | |
Collapse
|
87
|
Schripp T, Salthammer T, Fauck C, Bekö G, Weschler CJ. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 494-495:299-305. [PMID: 25058896 DOI: 10.1016/j.scitotenv.2014.06.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The description of emission processes of volatile and semi-volatile organic compounds (VOCs and SVOCs) from building products requires a detailed understanding of the material and the air flow conditions at the surface boundary. The mass flux between the surface of the material and air depends on the mass transfer coefficient (hm) through the boundary layer, the gas phase concentration of the target compound immediately adjacent to the material (y0), and the gas-phase concentration in bulk air (y(t)). In the present study emission experiments were performed in two chambers of quite different sizes (0.25 m(3) and 55 m(3)), and, in the larger chamber, at two different temperatures (23°C and 30°C). The emitting material was latex wall paint that had been doped with two plasticizers, diethylphthalate (DEP) and di-n-butylphthalate (DnBP). The phthalate content in the paint was varied in the small chamber experiment to evaluate the impact of the initial concentration in the bulk material (C0) on the emission rate. Boundary layer theory was applied to calculate hm for the specific phthalates from the Sherwood number (Sh) and the diffusion coefficient (Dair). Then y0 was determined based on the bulk gas-phase concentration at steady state (y¯). For both, DEP and DnBP, the y0 obtained was lower than the respective saturation vapor pressure (Ps). Furthermore, for both phthalates in latex paint, the material/air partition coefficient (C0/y0) was close in value to the octanol/air partition coefficient (KOA). This study provides a basis for designing phthalate emitting reference materials that mimic the emission behavior of common building materials.
Collapse
Affiliation(s)
- Tobias Schripp
- Fraunhofer Wilhelm-Klauditz-Institut (WKI), Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig, Germany.
| | - Tunga Salthammer
- Fraunhofer Wilhelm-Klauditz-Institut (WKI), Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig, Germany
| | - Christian Fauck
- Fraunhofer Wilhelm-Klauditz-Institut (WKI), Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig, Germany
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
88
|
Liagkouridis I, Cousins IT, Cousins AP. Emissions and fate of brominated flame retardants in the indoor environment: a critical review of modelling approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 491-492:87-99. [PMID: 24568748 DOI: 10.1016/j.scitotenv.2014.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 05/22/2023]
Abstract
This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material-particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air-surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air-particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study.
Collapse
Affiliation(s)
- Ioannis Liagkouridis
- IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm, Sweden; ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm, Sweden.
| | - Ian T Cousins
- ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Anna Palm Cousins
- IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm, Sweden
| |
Collapse
|
89
|
Shin HM, McKone TE, Nishioka MG, Fallin MD, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Bennett DH. Determining source strength of semivolatile organic compounds using measured concentrations in indoor dust. INDOOR AIR 2014; 24:260-71. [PMID: 24118221 PMCID: PMC4018806 DOI: 10.1111/ina.12070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/21/2013] [Indexed: 05/02/2023]
Abstract
UNLABELLED Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 US homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity-based indoor mass balance model to estimate the whole-house emission rates of SVOCs that would account for the measured dust concentrations. Di-2-ethylhexyl phthalate (DEHP) and di-iso-nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust-assay modeling approach shows promise for estimating indoor emission rates for SVOCs. PRACTICAL IMPLICATIONS The combined dust-assay modeling approach in this study can be used to predict the source strength of indoor released compounds, integrating emissions from consumer products, building materials, and other home furnishings. Our findings show that estimated emission rates are closely related to not only the level of compounds on dust, but also the vapor pressure of the compound. Thus, a fugacity-based indoor mass balance model and measured dust concentrations can be used to estimate the whole-house emission rates from all sources in actual indoor settings, when individual sources of emissions are unknown.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Public Health Sciences, University of California, Davis, CA, USA
- Corresponding author: Hyeong-Moo Shin, PhD, University of California, Davis, One Shields Avenue, MS1-C, Davis, CA 95616, , Phone: 1.949.648.1614, Fax: 1.530.752.5300
| | - Thomas E. McKone
- School of Public Health, University of California, Berkeley, CA, USA
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - M. Daniele Fallin
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | | | - Craig J. Newschaffer
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| |
Collapse
|
90
|
Liang Y, Xu Y. Improved method for measuring and characterizing phthalate emissions from building materials and its application to exposure assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4475-4484. [PMID: 24654650 DOI: 10.1021/es405809r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phthalate emission from vinyl floorings was measured in specially designed stainless steel chambers. Phthalate concentrations increased and reached steady state after 2 to 5 days for all experiments. By having a high ratio of emission surface to sorption surface, avoiding mass loss of phthalates onto sampling pathways, and improving air mixing inside the chamber, the time to reach steady state was significantly reduced, compared to previous studies (1 to 5 months). An innovative approach was developed to determine y0, the gas-phase concentration of phthalates in equilibrium with the material phase, which is the key parameter controlling phthalate emissions. Target phthalate material-phase concentration (C0) and vapor pressure (Vp) were explicitly measured and found to have great influences on the y0 value. For low phthalate concentrations in materials, a simple partitioning mechanism may linearly relate y0 and C0, but cannot be evoked for high-weight phthalate percentages. In addition, the sorption kinetics and adsorption isotherm of phthalates on stainless steel chamber surfaces were determined experimentally. Independently measured or calculated parameters were used to validate a semivolatile organic compounds (SVOCs) emission model, with excellent agreement between model predictions and the observed chamber concentrations in gas and stainless steel phases. With the knowledge of y0 and emission mechanisms, human exposure to phthalates from tested floorings was assessed; the levels were comparable to previous studies. This work developed a rapid, novel method to measure phthalate emissions; emission measurement results can be connected to exposure assessment and help health professionals estimate screening-level exposures associated with SVOCs and conduct risk-based prioritization for SVOC chemicals of concern.
Collapse
Affiliation(s)
- Yirui Liang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712-1094, United States
| | | |
Collapse
|
91
|
Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O, Mandin C, Bot BL. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3959-69. [PMID: 24588211 DOI: 10.1021/es405269q] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Semivolatile organic compounds (SVOCs) are ubiquitous contaminants in indoor environments, emanating from different sources and partitioning among several compartments, including the gas phase, airborne particles, and settled dust. Nevertheless, simultaneous measurements in the three compartments are rarely reported. In this study, we investigated indoor concentrations of a wide range of SVOCs in 30 French dwellings. In settled dust, 40 out of 57 target compounds were detected. The highest median concentrations were measured for phthalates and to a lesser extent for bisphenol A, synthetic musks, some pesticides, and PAHs. Di(2-ethylhexyl)phthalate (DEHP) and diisononyl phthalate (DINP) were the most abundant compounds. A total of 34 target compounds were detected both in the gas phase and airborne particles. The highest concentrations were measured for diisobutyl phthalate (DiBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and synthetic musks in the gas phase and for DEHP, DiBP, DBP, and DINP in the airborne particles. This is the first study on the indoor concentrations of a wide range of SVOCs in settled dust, gas phase, and airborne particles collected simultaneously in each dwelling.
Collapse
Affiliation(s)
- Olivier Blanchard
- EHESP-School of Public Health Sorbonne Paris Cité, 35043 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Schripp T, Etienne S, Fauck C, Fuhrmann F, Märk L, Salthammer T. Application of proton-transfer-reaction-mass-spectrometry for Indoor Air Quality research. INDOOR AIR 2014; 24:178-189. [PMID: 23869867 DOI: 10.1111/ina.12061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
In the field of Indoor Air Quality research, the measurement of volatile organic compounds (VOCs) demands instruments that are rapid, mobile, robust, highly sensitive and allow for simultaneous monitoring of multiple compounds. These instruments should also compensate for possible interferences from permanent gases and air humidity. Proton-transfer-reaction-mass-spectrometry (PTR-MS) has proved to be a valuable and promising technique that fits the mentioned requirements for a suitable online measuring device. In this study, five exemplary applications of PTR-MS are described: (i) release of paint additives during drying process, (ii) emission of VOCs from active hardcopy devices, (iii) reference material evaluation, (iv) diffusion studies, and (v) emission testing of building products. The examples are selected to illustrate possibilities and limitations of the PTR technique in this field of research. The quadruple-based PTR-QMS was able to determine the emission characteristics during the experiments, especially in case of depleting emission sources (e.g., reference material). This allows for chemometrical analysis of the measured release patterns and detection of underlying processes. However, PTR-QMS reaches a functional limit in case of compound identification. If identification of VOCs is necessary, the measurements need to be accompanied by GC/MS analytics or a PTR instrument with higher mass-resolution (e.g., PTR-TOF-MS).
Collapse
Affiliation(s)
- T Schripp
- Department Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Boor BE, Järnström H, Novoselac A, Xu Y. Infant exposure to emissions of volatile organic compounds from crib mattresses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3541-3549. [PMID: 24548111 DOI: 10.1021/es405625q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Infants spend most of their time sleeping and are likely to be exposed to elevated concentrations of chemicals released from their crib mattresses. Small-scale chamber experiments were conducted to determine the area-specific emission rates (SERs) of volatile organic compounds (VOCs) in a collection of twenty new and used crib mattresses. All mattress samples were found to emit VOCs and the mean values of total VOC (TVOC) SERs were 56 μg/m(2)h at 23 °C and 139 μg/m(2)h at 36 °C. TVOC SERs were greater for new mattresses compared to used ones and were influenced by the type of foam material and the presence of mattress cover layer. A variety of VOCs were identified, with polyurethane foam releasing a greater diversity of VOCs compared to polyester foam. Large-scale chamber experiments were conducted with an infant thermal manikin. TVOC concentrations sampled in the breathing zone and interior pore air of the crib mattress foam were found to be greater than the bulk room air by factors in the range of 1.8 to 2.4 and 7.5 to 21, respectively. The results suggest that crib mattresses are an important source of VOCs and infant exposure to VOCs are possibly elevated in their sleep microenvironments.
Collapse
Affiliation(s)
- Brandon E Boor
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin , Austin 78712, Texas, United States
| | | | | | | |
Collapse
|
94
|
Liu C, Liu Z, Little JC, Zhang Y. Convenient, rapid and accurate measurement of SVOC emission characteristics in experimental chambers. PLoS One 2013; 8:e72445. [PMID: 24015246 PMCID: PMC3756072 DOI: 10.1371/journal.pone.0072445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 07/09/2013] [Indexed: 12/25/2022] Open
Abstract
Chamber tests are usually used to determine the source characteristics of semi-volatile organic compounds (SVOCs) which are critical to quantify indoor exposure to SVOCs. In contrast to volatile organic compounds (VOCs), the sorption effect of SVOCs to chamber surfaces usually needs to be considered due to the much higher surface/air partition coefficients, resulting in a long time to reach steady state, frequently on the order of months, and complicating the mathematical analysis of the resulting data. A chamber test is also complicated if the material-phase concentration is not constant. This study shows how to design a chamber to overcome these limitations. A dimensionless mass transfer analysis is used to specify conditions for (1) neglecting the SVOC sorption effect to chamber surfaces, (2) neglecting the convective mass transfer resistance at sorption surfaces if the sorption effect cannot be neglected, and (3) regarding the material-phase concentration in the source as constant. Several practical and quantifiable ways to improve chamber design are proposed. The approach is illustrated by analyzing available data from three different chambers in terms of the accuracy with which the model parameters can be determined and the time needed to conduct the chamber test. The results should greatly facilitate the design of chambers to characterize SVOC emissions and the resulting exposure.
Collapse
Affiliation(s)
- Cong Liu
- Department of Building Science, Tsinghua University, Beijing, China
| | - Zhe Liu
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - John C. Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
95
|
Xiong J, Wei W, Huang S, Zhang Y. Association between the emission rate and temperature for chemical pollutants in building materials: general correlation and understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8540-8547. [PMID: 23789927 DOI: 10.1021/es401173d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The emission rate is considered to be a good indicator of the emission characteristics of formaldehyde and volatile organic compounds (VOCs) from building materials. In contrast to the traditional approach that focused on an experimental study, this paper uses a theoretical approach to derive a new correlation to characterize the relationship between the emission rate and temperature for formaldehyde emission. This correlation shows that the logarithm of the emission rate by a power of 0.25 of the temperature is linearly related to the reciprocal of the temperature. Experimental data from the literature were used to validate the derived correlation. The good agreement between the correlation and experimental results demonstrates its reliability and effectiveness. Using the derived correlation, the emission rate at temperatures other than the test condition can be obtained, greatly facilitating engineering applications. Further analysis indicates that the temperature-related emission rate of other scenarios, i.e., the standard emission reference and semi-volatile organic compounds (SVOCs), also conforms to the same correlation as that of formaldehyde. The molecular dynamics theory is introduced to preliminarily understand this phenomenon. Our new correlation should prove useful for estimating the emission characteristics of chemicals from materials that are subject to changes in temperature.
Collapse
Affiliation(s)
- Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | | | | | | |
Collapse
|
96
|
Benning JL, Liu Z, Tiwari A, Little JC, Marr LC. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2696-703. [PMID: 23410053 DOI: 10.1021/es304725b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 μg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/μg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health.
Collapse
Affiliation(s)
- Jennifer L Benning
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA.
| | | | | | | | | |
Collapse
|
97
|
Xu Y, Liu Z, Park J, Clausen PA, Benning JL, Little JC. Measuring and predicting the emission rate of phthalate plasticizer from vinyl flooring in a specially-designed chamber. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12534-12541. [PMID: 23095118 DOI: 10.1021/es302319m] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The emission of di-2-ethylhexyl phthalate (DEHP) from vinyl flooring (VF) was measured in specially designed stainless steel chambers. In duplicate chamber studies, the gas-phase concentration in the chamber increased slowly and reached a steady state level of 0.8-0.9 μg/m(3) after about 20 days. By increasing the area of vinyl flooring and decreasing that of the stainless steel surface within the chamber, the time to reach steady state was significantly reduced, compared to a previous study (1 month versus 5 months). The adsorption isotherm of DEHP on the stainless steel chamber surfaces was explicitly measured using solvent extraction and thermal desorption. The strong partitioning of DEHP onto the stainless steel surface was found to follow a simple linear relationship. Thermal desorption resulted in higher recovery than solvent extraction. Investigation of sorption kinetics showed that it takes several weeks for the sorption of DEHP onto the stainless steel surface to reach equilibrium. The content of DEHP in VF was measured at about 15% (w/w) using pressurized liquid extraction. The independently measured or calculated parameters were used to validate an SVOC emission model, with excellent agreement between model prediction and the observed gas-phase DEHP chamber concentrations.
Collapse
Affiliation(s)
- Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | |
Collapse
|
98
|
Xiong J, Huang S, Zhang Y. A novel method for measuring the diffusion, partition and convective mass transfer coefficients of formaldehyde and VOC in building materials. PLoS One 2012; 7:e49342. [PMID: 23145156 PMCID: PMC3492279 DOI: 10.1371/journal.pone.0049342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
The diffusion coefficient (D(m)) and material/air partition coefficient (K) are two key parameters characterizing the formaldehyde and volatile organic compounds (VOC) sorption behavior in building materials. By virtue of the sorption process in airtight chamber, this paper proposes a novel method to measure the two key parameters, as well as the convective mass transfer coefficient (h(m)). Compared to traditional methods, it has the following merits: (1) the K, D(m) and h(m) can be simultaneously obtained, thus is convenient to use; (2) it is time-saving, just one sorption process in airtight chamber is required; (3) the determination of h(m) is based on the formaldehyde and VOC concentration data in the test chamber rather than the generally used empirical correlations obtained from the heat and mass transfer analogy, thus is more accurate and can be regarded as a significant improvement. The present method is applied to measure the three parameters by treating the experimental data in the literature, and good results are obtained, which validates the effectiveness of the method. Our new method also provides a potential pathway for measuring h(m) of semi-volatile organic compounds (SVOC) by using that of VOC.
Collapse
Affiliation(s)
- Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China.
| | | | | |
Collapse
|
99
|
Little JC, Weschler CJ, Nazaroff WW, Liu Z, Cohen Hubal EA. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11171-8. [PMID: 22856628 DOI: 10.1021/es301088a] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A systematic and efficient strategy is needed to assess and manage potential risks to human health that arise from the manufacture and use of thousands of chemicals. Among available tools for rapid assessment of large numbers of chemicals, significant gaps are associated with the capability to evaluate exposures that occur indoors. For semivolatile organic compounds (SVOCs), exposure is strongly influenced by the types of products in which these SVOCs occur. We propose methods for obtaining screening-level estimates for two primary SVOC source classes: additives in products used indoors and ingredients in products sprayed or applied to interior surfaces. Accounting for product use, emission characteristics, and the properties of the SVOCs, we estimate exposure via inhalation of SVOCs in the gas-phase, inhalation of SVOCs sorbed to airborne particles, ingestion of SVOCs sorbed to dust, and dermal sorption of SVOCs from the air into the blood. We also evaluate how exposure to the general public will change if chemical substitutions are made. Further development of a comprehensive set of models including the other SVOC-containing products and the other SVOC exposure pathways, together with appropriate methods for estimating or measuring the key parameters (in particular, the gas-phase concentration in equilibrium with the material-phase concentration of the SVOC in the product, or y(0)), is needed. When combined with rapid toxicity estimates, screening-level exposure estimates can contribute to health-risk-based prioritization of a wide range of chemicals of concern.
Collapse
Affiliation(s)
- John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA.
| | | | | | | | | |
Collapse
|
100
|
Holmgren T, Persson L, Andersson PL, Haglund P. A generic emission model to predict release of organic substances from materials in consumer goods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 437:306-314. [PMID: 22947618 DOI: 10.1016/j.scitotenv.2012.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/10/2012] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
Organic chemicals may be released when consumer goods are used, contributing to environmental and human levels of potentially hazardous chemicals. A generic model was developed to predict emissions of organic chemicals from various materials in consumer products. The model involved three modules, which each predict a key parameter needed to calculate the mass of individual chemicals emitted. Partition coefficients between a material and the surrounding air were predicted using Abraham solvation parameters, diffusion coefficients in materials were calculated using the Piringer equation, and convective mass transfer coefficients were evaluated by applying the Chilton-Colburn analogy. The calculated emission rates from predicted parameters were evaluated and agreed well with literature data. The release of plasticizers from vinyl flooring used in Sweden was calculated to demonstrate the utility of the generic model. The estimated emitted masses of di(2-ethylhexyl)phthalate (DEHP), di-iso-nonylphthalate (DINP), and 1,2-cyclohexanedicarboxylic acid di-iso-nonyl ester (DINCH) in 2012 were 210 kg, 40 kg, and 3.6 kg respectively. Emissions from vinyl flooring were estimated for the period 1990 to 2035 and it was shown that the recent substitution of DEHP with DINP will help to reduce plasticizer emissions. Model calculations for alternative plasticizers revealed that DINCH would yield similar emissions to DINP, whereas use of diethyl hexyl-iso-sorbide or diethyl hexyl adipate would result in higher emissions.
Collapse
|