51
|
Santos MD, da Silva Júnior FMR, Zurdo DV, Baisch PRM, Muccillo-Baisch AL, Madrid Y. Selenium and mercury concentration in drinking water and food samples from a coal mining area in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15510-15517. [PMID: 30937748 DOI: 10.1007/s11356-019-04942-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential element for human health and can also alleviate the toxicity of elements such as mercury (Hg), which is considered deleterious to health. The study area is an important coal mineral region in Brazil, generating 40% of all Brazilian coal. During the coal mining process, Se and Hg are released, which can induce potential human health risks via the food chain. The purpose of the present study is to determine total Se and its species and total Hg in drinking water and food locally produced from a coal mining area, to assess the impact of coal mining. The samples were collected in two cities, with and without coal mining influence. Total Se levels in drinking water and food were assessed by inductively coupled plasma mass spectrometry (ICP-MS) and its species by high-performance liquid-ICP-MS, while total Hg was determined by cold vapor atomic fluorescence spectrometry. Drinking water (1.1 ± 0.2 mg L-1 dry weight) (p = 0.02) and tomatoes (1.5 ± 0.1 mg kg-1 dry weight) (p = 0.01) from the coal mining area had higher total Se concentration than the control area. The highest Se concentrations were found in animal-based food (6.4 ± 0.8 mg kg-1 dry weight) with an important contribution of Se IV (65%). The analyzed sample did not accumulate a significant amount of Hg. Future studies on the estimates of daily intake of these elements and dietary pattern of the population are needed to make appropriate dietary recommendations and support public health action.
Collapse
Affiliation(s)
- Marina Dos Santos
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Rio Grande, 96203-900, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália, km 8,, Rio Grande, 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Rio Grande, 96203-900, Brazil.
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália, km 8,, Rio Grande, 96203-900, Brazil.
| | - David Vicente Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040, Madrid, Spain
| | - Paulo Roberto Martins Baisch
- Laboratório de Geoquímica Ambiental, IO FURG Instituto de Oceanografia, Universidade Federal do Rio Grande, Avenida Itália, km 8, Rio Grande, 96203-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Rio Grande, 96203-900, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália, km 8,, Rio Grande, 96203-900, Brazil
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
52
|
Wang X, Pan X, Gadd GM. Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:8-15. [PMID: 30572216 DOI: 10.1016/j.scitotenv.2018.12.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Molecular weight (MW) heterogeneity is a fundamental property of dissolved organic matter (DOM) in soil, which has been demonstrated to influence the binding behaviour between DOM and engineered nanoparticles. In the present study, DOM, extracted from black soil, was dialyzed into four fractions: above 10,000 Da, 3500-10,000 Da, 1000-3500 Da and 100-1000 Da. Homoaggregation and fluorescence quenching titration of selenium nanoparticles (SeNPs) was examined in the presence of the different DOM fractions, as well as the consequences for immobilization of elemental mercury. It was found that the intermediate MW fraction (3500-10,000 Da) rather than the high MW DOM fraction was likely to adsorb to SeNPs. Generally, low MW DOM was expected to adsorb initially due to faster diffusion and these compounds would be displaced by high MW DOM over longer time period. However, the electrostatic barrier imparted by adsorbed DOM limited such displacement, leading to preferential adsorption of the intermediate MW fraction over the high MW fraction. Adsorbed DOM fractions, especially that of intermediate MW, enhanced the stability of SeNPs which favoured immobilization of elemental mercury. These findings show that MW exerts an important impact on DOM binding with SeNPs which, in consequence, governs the fate of SeNPs and mercury bioremediation performance.
Collapse
Affiliation(s)
- Xiaonan Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
53
|
Wang Y, Dang F, Zheng X, Zhong H. Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:590-596. [PMID: 30471573 DOI: 10.1016/j.jhazmat.2018.11.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) accumulation in rice is an emerging food safety issue in China and other countries; however, mitigation methods are scarce. Here, the effects of selenium (Se) and multiple applications of Se and biochar on rice MeHg bioaccumulation were investigated using pot and microcosm experiments. We report that Se amendment was still effective in reducing MeHg levels in paddy soil and rice grain after three years of aging. Biochar amendment (0.5% w/w) further decreased grain (brown rice) MeHg levels by 82-87%. The grain MeHg level decrease following the combination of Se and biochar amendment could be partly attributed to inhibition of net MeHg production in soil by Se. In addition, biochar decreased not only net MeHg production but also MeHg bioavailability in the soil, which could be due to organosulfur compounds in the biochar. Our findings suggest that multiple applications of Se and biochar could be a novel remediation strategy to mitigate MeHg accumulation in rice.
Collapse
Affiliation(s)
- Yongjie Wang
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xiangmin Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
54
|
Zhou J, Du B, Hu Y, Liang J, Liu H, Fan X, Zhang L, Cui H, Liu X, Zhou J. A new criterion for the health risk assessment of Se and Pb exposure to residents near a smelter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:218-227. [PMID: 30340168 DOI: 10.1016/j.envpol.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/30/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
There is an increasing evidence linking protective effect of selenium (Se) against Pb toxicology; however, Pb exposure risk assessments usually consider only the environmental Pb contamination and dietary intake. Based on the current understanding of mechanisms of SePb interactions, the physiological function/toxicology of Se and the toxicology of Pb, a new criterion for Se and Pb exposure assessment is developed. Additionally, seven existing criteria were also used to assess the resident health risks around a smelter in China. The Pb concentrations in locally-produced foods exceeded the national tolerance limits of China and the Se in the foods were similar to those in areas with adequate Se levels. In accordance with the illustrated assessments of the new criterion and seven existing criteria, we found a large knowledge gap between the new and traditional assessments of exposure to Pb and/or Se. The new assessment criteria suggested that almost all the residents were facing the Se deficiency and 58% of the residents not only had the adverse health of Se deficiency, but also had the health risks of Pb toxicity. The Pb and Se in the hair and urine may partly support the new criterion. This study suggested that the process of Se counteracting the Pb toxicity may result in Se deficiency. Pb exposure combined Se intake should be considered in future assessments of Pb exposure (or Se intake).
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Buyun Du
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiang-wang-miao Street, Nanjing, Jiangsu, 210042, China
| | - Yuanmei Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Ligan Zhang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xiaoli Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang, 330096, China.
| |
Collapse
|
55
|
Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:147-159. [PMID: 29990726 DOI: 10.1016/j.ecoenv.2018.06.070] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 05/12/2023]
Abstract
Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations for aquatic organisms. The knowledge about the mechanism of Se toxicity in freshwater ecosystem is still poorly studied. Thus the aim of the present study was to assess the impact of environmentally relevant concentrations of Se toxicity: 5, 10, 25, 50 and 100 µg/L or water only (control) for periods of 96 hour (h) to test for Se accumulation (gill, liver and brain), its effects on enzymatic and non-enzymatic antioxidant defenses (gill and liver), oxidative stress effects on lipid, protein (gill and liver), DNA (liver) and inhibition of AchE (brain) activity were measured in Mozambique tilapia, Oreochromis mossambicus. Our result showed that Se accumulation was observed in the gill, liver and brain tissues of fish exposed to different concentrations and accumulation varied upon different tissues. Enzymatic (SOD, CAT, GPx and GST) and non-enzymatic (GSH and MT) antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were significantly increased after 96 h exposure of higher concentrations Se in the gill and liver tissue with the exception of GST activity was significantly inhibited in liver after 96 h exposure of higher concentrations of Se. In contrast, catalase (CAT) activities were inhibited for both tissues of Se exposure at 96 h. Reduced glutathione (GSH) and Metallothionein (MT) levels were increased in the gill and liver tissues after exposure to Se for 96 h. We also observed that Se affected antioxidant defense, increasing oxidative stress indicator of lipid peroxidation (LPO) and protein carbonyl (PCO) in gill and liver tissues of fish exposed to Se for 96 h at the concentration dependent manner. Increased DNA damage scores observed in liver tissue of fish exposed to Se for concentrations dependent manner, indicating potential of Se on fish. We also observed inhibition of acetylcholine esterase (AchE) activity in brain tissue of fish exposed to Se for higher concentrations. The changes in these parameters can be used as suitable biomarkers for monitoring the toxicity of Se in the aquatic environment.
Collapse
Affiliation(s)
- Narayanan Gobi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India.
| | - Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6(th) Floor, Karaikudi 630004, Tamil Nadu, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina-Viale Ferdinando Stagno d'Alcontres, 31 98166 S.Agata-Messina, Italy
| |
Collapse
|
56
|
Johnson TKB, LePrevost CE, Kwak TJ, Cope WG. Selenium, Mercury, and Their Molar Ratio in Sportfish from Drinking Water Reservoirs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091864. [PMID: 30158428 PMCID: PMC6164800 DOI: 10.3390/ijerph15091864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
Abstract
Mercury (Hg) bioaccumulates in aquatic ecosystems and may pose a risk to humans who consume fish. Selenium (Se) has the ability to reduce Hg toxicity, but the current guidance for human consumption of fish is based on Hg concentration alone. The purpose of the present study was to examine the relationship between Se and Hg in freshwater sportfish, for which there is a paucity of existing data. We collected three species of fish from different trophic positions from two drinking water reservoirs in central North Carolina, USA, to assess Hg and Se concentrations in relation to fish total length and to compare two measures of the protective ability of Se, the Se:Hg molar ratio and Se health benefit value (HBVSe), to current guidance for Hg. According to the Se:Hg molar ratio, all of the low trophic position fish sampled and the middle trophic position fish sampled from one of the reservoirs were safe for consumption. The same number of fish were considered safe using the HBVSe. More fish were deemed unsafe when using the Se:Hg molar ratio and HBVSe than were considered unsafe when using the U.S. Environmental Protection Agency (USEPA) Hg threshold. These findings suggest that the measures of Se protection may be unnecessarily conservative or that the USEPA Hg threshold may not be sufficiently protective of human health, especially the health of sensitive populations like pregnant or nursing mothers and young children. Future examination of the Se:Hg molar ratio and HBVSe from a variety of fish tissue samples would help refine the accuracy of these measures so that they may be appropriately utilized in ecological and human health risk assessment.
Collapse
Affiliation(s)
- Tara K B Johnson
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Catherine E LePrevost
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Thomas J Kwak
- U.S. Geological Survey, North Carolina Cooperative Fish and Wildlife Research Unit, Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| | - W Gregory Cope
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
57
|
Rahman MM, Uson-Lopez RA, Sikder MT, Tan G, Hosokawa T, Saito T, Kurasaki M. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis. CHEMOSPHERE 2018; 196:453-466. [PMID: 29324385 DOI: 10.1016/j.chemosphere.2017.12.149] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, Japan; Department of Environmental Sciences, Jahangirnagar University, Bangladesh
| | | | | | - Gongxun Tan
- Graduate School of Environmental Science, Hokkaido University, Japan
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Japan; Faculty of Environmental Earth Science, Hokkaido University, Japan.
| |
Collapse
|
58
|
Du B, Zhou J, Zhou J. Selenium status of children in Kashin-Beck disease endemic areas in Shaanxi, China: assessment with mercury. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:903-913. [PMID: 29018984 DOI: 10.1007/s10653-017-0033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
The causes of Kashin-Beck disease (KBD) in children are multifactorial, and particular consideration has been given to childhood selenium (Se) deficiency. In this study, dietary intake of Se and mercury (Hg) was determined at KBD areas to investigate the Se status and risks. Therefore, total Hg and Se levels were investigated in scalp hair samples and in daily intake food samples of 150 schoolchildren in Yongshou County of Shaanxi, China. The results showed that the average concentration of Se in children's hair has risen to 302 ng g-1 and significantly increased compared to the data reported decades ago. Children at KBD endemic areas likely have improved Se status due to the Se supplementation in food at recent decades. However, all the children in the study areas still showed lower Se status compared to those in other non-KBD areas of China. The probable daily intake of Se in the study areas was still lower after stopping Se supplementation in food at KBD areas, which is 17.96 μg day-1. Food produced locally cannot satisfy the lowest demand for Se nutrition for local residents. If the interactions of Se-Hg detoxification are considered, Hg intake from food exacerbates Se deficiency at the KBD areas.
Collapse
Affiliation(s)
- Buyun Du
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- National Engineering Research and Technology Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- National Engineering Research and Technology Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
- Institute of Biology Resource, Jiangxi Academy of Sciences, Nanchang, China.
| |
Collapse
|
59
|
Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF. Modulators of mercury risk to wildlife and humans in the context of rapid global change. AMBIO 2018; 47:170-197. [PMID: 29388128 PMCID: PMC5794686 DOI: 10.1007/s13280-017-1011-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.
Collapse
Affiliation(s)
| | - Ellen K. Silbergeld
- Johns Hopkin Bloomberg School of Public Health, 615 N. Wolfe Street, E6644, Baltimore, MD 21205 USA
| | - Niladri Basu
- McGill University, 204-CINE Building, Montreal, QC H9X 3V9 Canada
| | - Paco Bustamante
- University of La Rochelle, laboratory of Littoral Environment and Societies, Littoral Environnement et Sociétés (LIENSs), LIENSs UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fernando Diaz-Barriga
- Center for Applied Research in Environment and Health at, Universidad Autonoma de San Luis Potosi, Avenida Venustiano Carranza No. 2405, Col Lomas los Filtros Código Postal, 78214 San Luis Potosí, SLP Mexico
| | - William A. Hopkins
- Department of Fish and Wildlife Conservation, 310 West Campus Drive Virginia Tech, Cheatham Hall, Room 106 (MC 0321), Blacksburg, VA 24061 USA
| | - Karen A. Kidd
- Department of Biology & School of Geography and Earth Sciences, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4K1 Canada
| | - Jennifer F. Nyland
- Department of Biological Sciences, 1101 Camden Ave, Salisbury, MD 21801 USA
| |
Collapse
|
60
|
Hu XF, Sharin T, Chan HM. Dietary and blood selenium are inversely associated with the prevalence of stroke among Inuit in Canada. J Trace Elem Med Biol 2017; 44:322-330. [PMID: 28965595 DOI: 10.1016/j.jtemb.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/14/2023]
Abstract
Inuit in Canada have high selenium intake from the consumption of country food such as fish and marine mammals. The health consequence is not known. This study examines the association between blood selenium concentration and prevalence of stroke among Canadian Inuit. The International Polar Year Inuit Health Survey was conducted in 2007-2008. Among the 2077 adults participants (≥18years old) who completed a questionnaire and gave blood samples, 49 stroke cases were reported, 31 of which were from women. The crude prevalence of stroke was 2.4% in the participants. Participants with stroke had lower blood selenium (geometric mean: 260μg/L vs. 319μg/L) and dietary selenium (144μg/day vs. 190μg/day) compared to individuals without stroke. Participants with high blood/dietary selenium exposure (quartiles 3 and 4) had a lower prevalence of stroke compared to those with low selenium exposure (quartile 1). The adjusted odds ratio ranged from 0.09 to 0.25 among subgroups (e.g. age, sex, and blood mercury). An L-shaped relationship between prevalence of stroke with blood and dietary selenium was observed, based on the cubic restricted spline and segmented regression analyses. The estimated turning points of the L-shaped curve for blood selenium and dietary selenium were 450μg/L and 350μg/day, respectively. Below the turning points, it was estimated that each 50-μg/L increase in blood selenium was associated with a 38% reduction in the prevalence of stroke, and each 50-μg/day increase in dietary selenium was associated with a 30% reduction in the prevalence of stroke. In conclusion, blood and dietary selenium are reversely associated with the prevalence of stroke in Inuit, which follows an L-shaped relationship. Whether this relationship applies to other population needs further investigation.
Collapse
Affiliation(s)
- Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Tasnia Sharin
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada.
| |
Collapse
|
61
|
Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. CHEMOSPHERE 2017; 188:403-413. [PMID: 28892773 DOI: 10.1016/j.chemosphere.2017.08.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 05/10/2023]
Abstract
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic.
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA
| | - Mary Sohn
- Department of Chemistry, Florida Institute of Technology, 150 West University, Boulevard, Melbourne, FL, 32901, USA
| | - George A K Anquandah
- Department of Chemistry and Biochemistry, St Mary's University, 1 Camino Santa Maria, San Antonio, TX, 78228, USA
| | - Maurizio Pettine
- Istituto di Ricerca sulle Acque (IRSA)/Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR)/National Research Council, Via Salaria km 29,300 C.P. 10, 00015, Monterotondo, RM, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic
| |
Collapse
|
62
|
Tian LJ, Li WW, Zhu TT, Chen JJ, Wang WK, An PF, Zhang L, Dong JC, Guan Y, Liu DF, Zhou NQ, Liu G, Tian YC, Yu HQ. Directed Biofabrication of Nanoparticles through Regulating Extracellular Electron Transfer. J Am Chem Soc 2017; 139:12149-12152. [PMID: 28825808 DOI: 10.1021/jacs.7b07460] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biofabrication of nanomaterials is currently constrained by a low production efficiency and poor controllability on product quality compared to chemical synthetic routes. In this work, we show an attractive new biosynthesis system to break these limitations. A directed production of selenium-containing nanoparticles in Shewanella oneidensis MR-1 cells, with fine-tuned composition and subcellular synthetic location, was achieved by modifying the extracellular electron transfer chain. By taking advantage of its untapped intracellular detoxification and synthetic power, we obtained high-purity, uniform-sized cadmium selenide nanoparticles in the cytoplasm, with the production rates and fluorescent intensities far exceeding the state-of-the-art biosystems. These findings may fundamentally change our perception of nanomaterial biosynthesis process and lead to the development of fine-controllable nanoparticles biosynthesis technologies.
Collapse
Affiliation(s)
- Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Wei-Kang Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Peng-Fei An
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Science , Beijing 100049, China
| | - Long Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Science , Beijing 100049, China
| | - Jun-Cai Dong
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Science , Beijing 100049, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Nan-Qing Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei 230026, China
| | - Yang-Chao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| |
Collapse
|
63
|
Cusack LK, Eagles-Smith C, Harding AK, Kile M, Stone D. Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories. Biol Trace Elem Res 2017; 178:136-146. [PMID: 27928722 DOI: 10.1007/s12011-016-0907-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.
Collapse
Affiliation(s)
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | | | - Molly Kile
- Oregon State University, Corvallis, OR, USA
| | - Dave Stone
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
64
|
Hu XF, Eccles KM, Chan HM. High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. ENVIRONMENT INTERNATIONAL 2017; 102:200-206. [PMID: 28279481 DOI: 10.1016/j.envint.2017.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Selenium (Se) has been reported to protect against the neurotoxicity of mercury (Hg). However, the effect of Se against Hg on cardiovascular diseases remains unclear. Inuit living in the Arctic have high exposure to both Se and Hg through their marine mammal and fish rich traditional diet. OBJECTIVE To characterize the co-exposure of Hg and Se among Inuit in Canada and to assess the associations between Hg, Se and cardiovascular health outcomes, including stroke, hypertension, and myocardial infarction (MI). METHODS Data was collected from the International Polar Year Inuit Health Survey (IHS) conducted in 2007 and 2008. Blood Se and Hg were measured, and self-report cardiovascular health outcomes were collected through a questionnaire interview from 2169 adults aged 18 and above. RESULTS The mean age was 42.4years, and 38.7% of the participants were male. The geometric means (GM) of blood Se and total Hg were 319.5μg/L and 7.0μg/L, respectively. The crude prevalence of heart attack, stroke and hypertension were 3.55%, 2.36%, and 24.47% respectively. Participants were categorized into 4 exposure groups according to blood Hg (high: ≥7.8μg/L; low: <7.8μg/L), and Se (high: ≥280μg/L; low: <280μg/L). The odds ratio (OR) of cardiovascular outcomes were estimated using general linearized models. Results showed the low Se and high Hg group had a higher prevalence of cardiovascular disease (OR=1.76 for hypertension, 1.57 for stroke, and 1.26 for MI. However, the prevalence was decreased in both the high Se and low Hg group (OR=0.57 for hypertension, 0.44 for stroke, and 0.27 for MI) and the high Se and high Hg group (OR=1.14 for hypertension, 0.31 for stroke, and 0.80 for MI). CONCLUSIONS The high Se and low Hg group had the lowest prevalence of cardiovascular outcomes, except for stroke. These results provide evidence that Se may exhibit a protective effect against Hg on cardiovascular disease.
Collapse
Affiliation(s)
- Xue Feng Hu
- Department of Biology, University of Ottawa, Canada
| | | | - Hing Man Chan
- Department of Biology, University of Ottawa, Canada.
| |
Collapse
|
65
|
Bellante A, D'Agostino F, Traina A, Piazzese D, Milazzo MF, Sprovieri M. Hg and Se exposure in brain tissues of striped dolphin (Stenella coeruleoalba) and bottlenose dolphin (Tursiops truncatus) from the Tyrrhenian and Adriatic Seas. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:250-260. [PMID: 28108889 DOI: 10.1007/s10646-017-1759-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
In this study we analyzed Hg and Se concentrations in dolphin brain tissues of fifteen specimens of striped dolphin (Stenella coeruleoalba) and eight specimens of bottlenose dolphin (Tursiops truncatus) stranded in the Tyrrhenian and Adriatic Seas, in order to assess the toxicological risks associated with Hg exposure. High Hg concentrations were found in brain tissues of both analyzed specie (1.86-243 mg/kg dw for striped dolphin and 2.1-98.7 mg/kg dw for bottlenose dolphin), exceeding levels associated with marine mammals neurotoxicity. Althougth the results clearly suggest that the protective effects of Se against Hg toxicity occur in cetaceans' brain tissues, a molar excess of mercury with respect to selenium was found, particularly in adult specimens of Stenella coeruleoalba. On contrary, negligible neurotoxicological risks were found for Tursiops truncatus specimens, due to detoxification processes. Data obtained allowed to prove a more marked neurotoxicological risk for adult specimens of Stenella coeruleoalba in both Tyrrhenian and Adriatic Seas.
Collapse
Affiliation(s)
- Antonio Bellante
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, CoNISMa -Palermo, Via Archirafi, 26, 90123, Palermo, Italy.
| | - Fabio D'Agostino
- CNR-Istituto per l'Ambiente Marino Costiero, Via del Mare 3, Capo Granitola, Campobello di Mazara, TP, 91021, Italy
| | - Anna Traina
- CNR-Istituto per l'Ambiente Marino Costiero, Via del Mare 3, Capo Granitola, Campobello di Mazara, TP, 91021, Italy
| | - Daniela Piazzese
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, CoNISMa -Palermo, Via Archirafi, 26, 90123, Palermo, Italy
| | - Maria Francesca Milazzo
- Dipartimento di Ingegneria (Dip.Inge.), Università degli Studi di Messina, Contrada Di Dio, 98166, Messina, Italy
| | - Mario Sprovieri
- CNR-Istituto per l'Ambiente Marino Costiero, Via del Mare 3, Capo Granitola, Campobello di Mazara, TP, 91021, Italy
| |
Collapse
|
66
|
Heidari A, Mir N. 4-Acetamidobenzaldehyde-Functionalized Fe3O4@SiO2 Fluorescent Nanocomposite Probe for Detection of Hg2+ in Aqueous Solution. J Fluoresc 2017; 27:659-667. [DOI: 10.1007/s10895-016-1995-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/25/2016] [Indexed: 11/28/2022]
|
67
|
Li P, Li Y, Feng X. Mercury and selenium interactions in human blood in the Wanshan mercury mining area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:376-381. [PMID: 27572530 DOI: 10.1016/j.scitotenv.2016.08.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/14/2016] [Accepted: 08/14/2016] [Indexed: 06/06/2023]
Abstract
Human blood mercury (Hg), selenium (Se) and other trace element levels were investigated in the Wanshan mercury mining area. Residents living near the mine waste heaps had significantly elevated blood Hg, Se and arsenic (As) levels, which indicates the impact from Hg mining and smelting activities. Rice samples showed high Se levels, as 72.6% of total Se intake comes from rice consumption. The means of the Se:total Hg (THg) and Se:methyl Hg (MeHg) molar ratios were 60.7±27.1 and 110±53.6 respectively. Blood Se:Hg molar ratios were negatively correlated with blood Hg levels. 80.2% of the study population had blood THg levels that exceeded the 5.8μg/L regulation level set by the USEPA, which indicated the risk of Hg exposure. On the other hand, the blood Se levels were within a safe-level range, and dietary Se intake protected local residents who suffered from Hg exposure.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yufeng Li
- Multidiscipline Initiative Center and CAS Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
68
|
Stafford CP, Downs CC, Langner HW. Mercury Hazard Assessment for Piscivorous Wildlife in Glacier National Park. NORTHWEST SCIENCE 2016. [DOI: 10.3955/046.090.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
69
|
Shoham-Frider E, Goffman O, Harlavan Y, Kress N, Morick D, Roditi-Elasar M, Shefer E, Kerem D. Trace elements in striped dolphins (Stenella coeruleoalba) from the Eastern Mediterranean: A 10-years perspective. MARINE POLLUTION BULLETIN 2016; 109:624-632. [PMID: 27210566 DOI: 10.1016/j.marpolbul.2016.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Concentrations of Hg, Se, Cd, Cu, Zn, Fe, Mn and As, in kidney, liver, muscle and blubber from 7 specimens of Stenella coeruleoalba, stranded along the Israeli Mediterranean coast (IMC) from 2006 to 2011 (2011-series) were determined and compared to previous data on S. coeruleoalba from the IMC (2001-series). No differences were observed in essential and toxic elements concentrations, between the two series, except for hepatic Mn which was higher in the latter. Hg/Se molar ratios in blubber, kidney and liver increased linearly with log Hg concentrations, while muscle was more heterogenic in this respect. Means (±SD) of hepatic Hg concentrations (134±89 and 181±200mgkg(-1), from the 2011 and 2001 series, respectively) were similar to that found in 2007-2009 specimens from Spain, possibly reflecting the relatively high natural background levels of mercury in the Mediterranean Sea.
Collapse
Affiliation(s)
- Efrat Shoham-Frider
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| | - Oz Goffman
- Israel Marine Mammal Research and Assistance Center, The Leon Recanati Institute for Maritime Studies and Department for Maritime Civilizations, The University of Haifa, Mt. Carmel, Haifa 31905, Israel.
| | - Yehudit Harlavan
- Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel.
| | - Nurit Kress
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| | - Danny Morick
- Israel Marine Mammal Research and Assistance Center, The Leon Recanati Institute for Maritime Studies and Department for Maritime Civilizations, The University of Haifa, Mt. Carmel, Haifa 31905, Israel; Department of Pathology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| | - Mia Roditi-Elasar
- Israel Marine Mammal Research and Assistance Center, The Leon Recanati Institute for Maritime Studies and Department for Maritime Civilizations, The University of Haifa, Mt. Carmel, Haifa 31905, Israel.
| | - Edna Shefer
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| | - Dan Kerem
- Israel Marine Mammal Research and Assistance Center, The Leon Recanati Institute for Maritime Studies and Department for Maritime Civilizations, The University of Haifa, Mt. Carmel, Haifa 31905, Israel.
| |
Collapse
|
70
|
Wang Y, Jiang L, Li Y, Luo X, He J. Effect of Different Selenium Supplementation Levels on Oxidative Stress, Cytokines, and Immunotoxicity in Chicken Thymus. Biol Trace Elem Res 2016; 172:488-495. [PMID: 26740218 DOI: 10.1007/s12011-015-0598-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
This study assessed the effects of different selenium (Se) supplementation levels on oxidative stress, cytokines, and immunotoxicity in chicken thymus. A total of 180 laying hens (1 day old; Mianyang, China) were randomly divided into 4 groups (n = 45). The chickens were maintained either on a basic diet (control group) containing 0.2 mg/kg Se, a low-supplemented diet containing 5 mg/kg Se, a medium-supplemented diet containing 10 mg/kg Se, or a high-supplemented diet containing 15 mg/kg Se for 15, 30, and 45 days, respectively. Over the entire experimental period, serum and thymus samples were collected and used for the detection of the experimental index. The results indicated that the antioxidative enzyme activities and messenger RNA (mRNA) levels of antioxidative enzymes, IFN-γ and IL-2 in the thymus, and the content of IFN-γ and IL-2 in the serum of excessive-Se-treated chickens at all time points (except for the 5 mg/kg Se supplement group at 15 days) were significantly decreased (P < 0.05) compared to the corresponding control groups. Interestingly, a significantly increase (P < 0.05) in the content of IFN-γ was observed in the serum and thymus in the 5 mg/kg Se supplement group at 15 and 30 days compared to the corresponding control groups. In histopathological examination, the thymus tissue from excessive-Se-treated chickens revealed different degrees of cortex drop, incrassation of the medulla, and degeneration of the reticular cells. These results suggested that the excessive Se could result in a decrease in immunity, an increase in oxidative damage, and a series of clinical pathology changes, such as cortex drop, incrassation of the medulla, and degeneration of the reticular cells.
Collapse
Affiliation(s)
- Yachao Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Li Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| |
Collapse
|
71
|
Looi LJ, Aris AZ, Haris H, Yusoff FM, Hashim Z. The levels of mercury, methylmercury and selenium and the selenium health benefit value in grey-eel catfish (Plotosus canius) and giant mudskipper (Periophthalmodon schlosseri) from the Strait of Malacca. CHEMOSPHERE 2016; 152:265-273. [PMID: 26974481 DOI: 10.1016/j.chemosphere.2016.02.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/21/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
The present study examined the concentrations of mercury (Hg), methylmercury (MeHg), and selenium (Se) in the multiple tissues of the Plotosus canius and Periophthalmodon schlosseri collected from the Strait of Malacca. The mean value in mg kg(-1) of Hg (P. canius: 0.34 ± 0.19; P. schlosseri: 0.32 ± 0.18) and MeHg in muscle (P. canius: 0.14 ± 0.11; P. schlosseri: 0.17 ± 0.11) were below the Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193-1995), the Malaysian Food Regulation 1985 and the Japan Food Sanitation Law. For P. canius, the liver contained the highest concentrations of Hg (0.48 ± 0.07 mg kg(-1)) and MeHg (0.21 ± 0.00 mg kg(-1)), whereas for P. schlosseri, the gill contained the highest concentrations of Hg (0.36 ± 0.06 mg kg(-1)) and MeHg (0.21 ± 0.05 mg kg(-1)). The highest concentration of (80)Se (mg kg(-1)) was observed in the liver of P. canius (20.34 ± 5.68) and in the gastrointestinal tract (3.18 ± 0.42) of P. schlosseri. The selenium:mercury (Se:Hg) molar ratios were above 1 and the positive selenium health benefit value (HBVSe) suggesting the possible protective effects of Se against Hg toxicity. The estimate weekly intakes (EWIs) in μg kg(-1) body weight (bw) week(-1) of Hg (P. canius: 0.27; P. schlosseri: 0.15) and MeHg (P. canius: 0.11; P. schlosseri: 0.08) were found to be lower than the provisional tolerable weekly intake established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the calculated EWIs, P. canius, and P. schlosseri were found to be unlikely to cause mercury toxicity in human consumption.
Collapse
Affiliation(s)
- Ley Juen Looi
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Hazzeman Haris
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
72
|
Ren G, Ali T, Chen W, Han D, Zhang L, Gu X, Zhang S, Ding L, Fanning S, Han B. The role of selenium in insulin-like growth factor I receptor (IGF-IR) expression and regulation of apoptosis in mouse osteoblasts. CHEMOSPHERE 2016; 144:2158-2164. [PMID: 26595309 DOI: 10.1016/j.chemosphere.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/18/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
Selenium (Se) is an essential component for animals and human beings. The chemoprotective role of Se, via the regulation of the cell cycle, stimulation of apoptosis and activation of some cytokines among others, is well known; however, the comprehensive effects of Se on the expression of IGF-IR and its regulation of apoptosis have not been investigated. Thus the aim of this study was to report on the effects that different concentrations of Se extert on body weight, blood serum IGF-IR levels and histopathology in mice; and on IGF-IR expression, proliferation and apoptosis in mouse osteoblasts. In vivo experiments showed a significant decrease in body weight, serum levels of IGF-IR and prominent toxicant effects on the liver, kidney, heart and spleen following the administration of defined concentrations of Se for 30 d. However, moderate levels (0.1 mg/kg) of Se gradually improved weight and serum IGF-IR. In vitro osteoblast experiments revealed that at concentrations of 5 × 10(-6) and 10(-5) mol/L Se, MTT activity decreased in comparison with control cells. Cell cycle, TEM and caspase-3 activity supported these observations including an increase in the sub-G1 phase and notable apoptosis in osteoblasts, along with a decrease in the expression of mRNA and protein levels of IGF-IR. Moreover, the MTT activity, mRNA and protein levels of IGF-IR in osteoblasts were decreased and caspase-3 activity was increased in siRNA groups as compared with non-siRNA groups. These data suggest that Se significantly affects IGF-IR expression, and that it contributes to the proliferation and regulation of apoptosis in osteoblasts.
Collapse
Affiliation(s)
- Gaixian Ren
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tariq Ali
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Limei Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Gu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shiyao Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Laidi Ding
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
73
|
Krasińska G, Falandysz J. Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bioconcentration by mushroom and probable dietary intake by consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:860-9. [PMID: 26347421 PMCID: PMC4712221 DOI: 10.1007/s11356-015-5331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/27/2015] [Indexed: 05/23/2023]
Abstract
The aim of this study was to examine the contamination, accumulation, and distribution of mercury in fruiting bodies by Leccinum versipelle fungus collected from distant sites across Poland. Mercury was determined using validated method by cold-vapor atomic absorption spectroscopy after direct sample matrix combustion. A large set of data gained using 371 fruiting bodies and 204 soil samples revealed the susceptibility of L. versipelle to Hg contamination and permitted the estimation of probable intake of Hg contaminant by consumers foraging for this species. The range of median values of Hg determined in caps of L. versipelle was from 0.20 to 2.0 mg kg(-1) dry biomass, and the median for 19 localities was 0.65 mg kg(-1) dry biomass. The values of the Hg bioconcentration factor (BCF) determined for L. versipelle correlated negatively with Hg contents. Mercury in topsoil beneath L. versipelle ranged from 0.019 to 0.041 mg kg(-1) dry matter for less-contaminated locations (BCF of 17 to 65 for caps) and from 0.076 to 0.39 mg kg(-1) dry matter for more contaminated locations (BCF of 1.9 to 22). Fruiting bodies of L. versipelle collected in some regions of Poland if consumed in amount of 300 g in one meal in a week could provide Hg doses above the provisionally tolerable weekly intake (PTWI) value of 0.004 mg Hg kg(-1) body mass, while regular consumptions for most of the locations were below the limit even with more frequent consumption. Also summarized are available data on Hg for three species of fungi of genus Leccinum foraged in Europe.
Collapse
Affiliation(s)
- Grażyna Krasińska
- Laboratory of Environmental Chemistry & Ecotoxicology, Gdańsk University, 63 Wita Stwosza Street, 80-308, Gdańsk, Poland
| | - Jerzy Falandysz
- Laboratory of Environmental Chemistry & Ecotoxicology, Gdańsk University, 63 Wita Stwosza Street, 80-308, Gdańsk, Poland.
| |
Collapse
|
74
|
Falandysz J, Zhang J, Wang Y, Krasińska G, Kojta A, Saba M, Shen T, Li T, Liu H. Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: Accumulation, distribution and probable dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:470-8. [PMID: 26322595 DOI: 10.1016/j.scitotenv.2015.07.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 05/07/2023]
Abstract
This study focused on investigation of the accumulation and distribution of mercury (Hg) in mushrooms of the genus Leccinum that emerged on soils of totally different geochemical bedrock composition. Hg in 6 species from geographically diverse regions of the mercuriferous belt areas in Yunnan of SW China, and 8 species from the non-mercuriferous regions of Poland in Europe was measured. Also assessed was the probable dietary intake of Hg from consumption of Leccinum spp., which are traditional organic food items in SW China and Poland. The results showed that L. chromapes, L. extremiorientale, L. griseum and L. rugosicepes are good accumulators of Hg and the sequestered Hg in caps were up to 4.8, 3.5, 3.6 and 4.7 mg Hg kg(-1) dry matter respectively. Leccinum mushrooms from Poland also efficiently accumulated Hg with their average Hg content being an order of magnitude lower due to low concentrations of Hg in forest topsoil of Poland compared to the elevated contents in Yunnan. Consumption of Leccinum mushrooms with elevated Hg contents in Yunnan at rates of up to 300 g fresh product per week during the foraging season would not result in Hg intake that exceeds the provisional weekly tolerance limit of 0.004 mg kg(-1) body mass, assuming no Hg ingestion from other foods.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Gdańsk University, Laboratory of Environmental Chemistry & Ecotoxicology, 63 Wita Stwosza Str., 80-952 Gdańsk, Poland.
| | - Ji Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, 650200 Kunming, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, 650200 Kunming, China
| | - Grażyna Krasińska
- Gdańsk University, Laboratory of Environmental Chemistry & Ecotoxicology, 63 Wita Stwosza Str., 80-952 Gdańsk, Poland
| | - Anna Kojta
- Gdańsk University, Laboratory of Environmental Chemistry & Ecotoxicology, 63 Wita Stwosza Str., 80-952 Gdańsk, Poland
| | - Martyna Saba
- Gdańsk University, Laboratory of Environmental Chemistry & Ecotoxicology, 63 Wita Stwosza Str., 80-952 Gdańsk, Poland
| | - Tao Shen
- College of Resources and Environment, Yuxi Normal University, 653100 Yuxi, Yunnan, China
| | - Tao Li
- College of Resources and Environment, Yuxi Normal University, 653100 Yuxi, Yunnan, China
| | - Honggao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201 Kunming, China
| |
Collapse
|
75
|
García-Alvarez N, Fernández A, Boada LD, Zumbado M, Zaccaroni A, Arbelo M, Sierra E, Almunia J, Luzardo OP. Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): A study in stranded animals on the Canary Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:489-498. [PMID: 26232758 DOI: 10.1016/j.scitotenv.2015.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
The mercury (Hg) level in the marine environment has tripled in recent decades, becoming a great concern because of its high toxic potential. This study reports Hg and selenium (Se) status, and the first Se/Hg molar ratio assessment in bottlenose dolphins (Tursiops truncatus) inhabiting the waters of the Canary Islands. Total Hg and Se concentrations were determined in the blubber and liver collected from 30 specimens stranded along the coasts of the archipelago from 1997 to 2013. The median values for total Hg in the blubber and liver were 80.83 and 223.77 μg g(-1) dry weight (dw), and the median levels for Se in both tissues were 7.29 and 68.63 μg g(-1) dw, respectively. Hg concentrations in the liver were lower than 100 μg g(-1) wet weight (ww), comparable to those obtained in bottlenose dolphins from the North Sea, the Western Atlantic Ocean and several locations in the Pacific Ocean. The Mediterranean Sea and South of Australia are the most contaminated areas for both elements in this cetacean species. In addition, it must be stressed that the levels of Hg and Se in the liver showed an increasing trend with the age of the animals. As expected, a strong positive correlation between Hg and Se was observed (rs=0.960). Surprisingly, both younger and older specimens had a Se/Hg molar ratio different from 1, suggesting that these individuals may be at greater toxicological risk for high concentrations of both elements or a deficiency of Se without a protective action against Hg toxicity.
Collapse
Affiliation(s)
- Natalia García-Alvarez
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain.
| | - Antonio Fernández
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Annalisa Zaccaroni
- Department of Veterinary Medical Sciences, University of Bologna, Research Group on Large Pelagic Vertebrates, Viale Vespucci 2, 47042 Cesenatico, FC, Italy
| | - Manuel Arbelo
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain
| | - Eva Sierra
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain
| | - Javier Almunia
- Loro Parque Foundation, Camino Burgado, 38400 Puerto de la Cruz (Tenerife), Santa Cruz de Tenerife, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
76
|
Alaraby M, Demir E, Hernández A, Marcos R. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:66-75. [PMID: 26026410 DOI: 10.1016/j.scitotenv.2015.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl2. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag, Egypt
| | - Esref Demir
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain.
| |
Collapse
|
77
|
Li P, Feng X, Chan HM, Zhang X, Du B. Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9682-9689. [PMID: 26189659 DOI: 10.1021/acs.est.5b00195] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 μg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 μg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.
Collapse
Affiliation(s)
- Ping Li
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinbin Feng
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hing-Man Chan
- ‡Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Xiaofeng Zhang
- §Department of Toxicology, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Buyun Du
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- !!University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
78
|
Santos S, Ungureanu G, Boaventura R, Botelho C. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:246-60. [PMID: 25847169 DOI: 10.1016/j.scitotenv.2015.03.107] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 05/17/2023]
Abstract
Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested.
Collapse
Affiliation(s)
- Sílvia Santos
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Gabriela Ungureanu
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui Boaventura
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália Botelho
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
79
|
Reash RJ, Brown L, Merritt K. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:474-480. [PMID: 25586716 DOI: 10.1002/ieam.1618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/26/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
Many coal-fired electric generating facilities in the United States are discharging higher loads of Hg, Se, and other chemicals to receiving streams due to the installation of flue gas desulfurization (FGD) air pollution control units. There are regulatory concerns about the potential increased uptake of these bioaccumulative trace elements into food webs. We evaluated the concentrations of As, total Hg (THg), methylmercury (MeHg), and Se in Ohio River fish collected proximal to coal-fired power plants, of which 75% operate FGD systems. Fillet samples (n = 50) from 6 fish species representing 3 trophic levels were analyzed. Geometric mean fillet concentrations of THg (wet wt), MeHg (wet wt), and Se (dry wt) in 3 species were 0.136, 0.1181, and 3.19 mg/kg (sauger); 0.123, 0.1013, and 1.56 mg/kg (channel catfish); and 0.127, 0.0914, and 3.30 mg/kg (hybrid striped bass). For all species analyzed, only 3 fillet samples (6% of total) had MeHg concentrations that exceeded the US Environmental Protection Agency (USEPA) human health criterion (0.3 mg/kg wet wt); all of these were freshwater drum aged ≥ 19 y. None of the samples analyzed exceeded the USEPA proposed muscle and whole body Se thresholds for protection against reproductive effects in freshwater fish. All but 8 fillet samples had a total As concentration less than 1.0 mg/kg dry wt. Mean Se health benefit values (HBVSe ) for all species were ≥ 4, indicating that potential Hg-related health risks associated with consumption of Ohio River fish are likely to be offset by adequate Se concentrations. Overall, we observed no measurable evidence of enhanced trace element bioaccumulation associated with proximity to power plant FGD facilities, however, some enhanced bioaccumulation could have occurred in the wastewater mixing zones. Furthermore, available evidence indicates that, due to hydraulic and physical factors, the main stem Ohio River appears to have low net Hg methylation potential.
Collapse
Affiliation(s)
- Robin J Reash
- American Electric Power, Environmental Services Department, Columbus, Ohio, USA
| | - Lauren Brown
- ENVIRON International Corporation, Portland, Maine, USA
| | | |
Collapse
|
80
|
Zhang C, Qiu G, Anderson CWN, Zhang H, Meng B, Liang L, Feng X. Effect of atmospheric mercury deposition on selenium accumulation in rice (Oryza sativa L.) at a mercury mining region in southwestern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3540-3547. [PMID: 25688871 DOI: 10.1021/es505827d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Selenium (Se) is an important trace element for human nutrition and has an interactive effect on mercury (Hg) uptake by plants and Hg toxicity in animals. Rice (Oryza sativa L.) is the dominant source of dietary Se in China, however the effect of soil Hg contamination on the Se concentration in rice is unknown. We collected 29 whole rice plant samples and corresponding soils from an active artisanal mercury mining area and an abandoned commercial mercury mining area. The soil Se concentration was similar across the two mining areas and greater than the background concentration for China. However, the Se concentration in rice grain was dramatically different (artisanal area 51±3 ng g(-1); abandoned area 235±99 ng g(-1)). The total gaseous mercury (TGM) concentration in ambient air at the artisanal mining site was significantly greater than at the abandoned area (231 and 34 ng m(-3), respectively) and we found a negative correlation between TGM and the Se concentration in grain for the artisanal area. Principal component analysis indicated that the source of Se in rice was the atmosphere for the artisanal area (no contribution from soil), and both the atmosphere and soil for the abandoned area. We propose that TGM falls to soil and reacts with Se, inhibiting the translocation of Se to rice grain. Our data suggest that Se intake by the artisanal mining community is insufficient to meet Se dietary requirements, predisposing this community to greater risk from Hg poisoning.
Collapse
Affiliation(s)
- Chao Zhang
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R. China
- ‡Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guangle Qiu
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R. China
| | - Christopher W N Anderson
- §Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North 4474, New Zealand
| | - Hua Zhang
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R. China
- ∥Contaminants in Aquatic Environments, Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, Oslo 0349, Norway
| | - Bo Meng
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R. China
| | - Liang Liang
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R. China
- ‡Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinbin Feng
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R. China
| |
Collapse
|
81
|
Cardoso C, Afonso C, Lourenço HM, Nunes ML. Assessing risks and benefits of consuming fish muscle and liver: Novel statistical tools. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
82
|
Jablonska E, Vinceti M. Selenium and Human Health: Witnessing a Copernican Revolution? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:328-68. [PMID: 26074278 DOI: 10.1080/10590501.2015.1055163] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.
Collapse
Affiliation(s)
- Ewa Jablonska
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | | |
Collapse
|
83
|
Huang SSY, Hung SSO, Chan HM. Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:88-95. [PMID: 25170596 DOI: 10.1016/j.aquatox.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
Selenium (Se) has been shown to antagonize mercury (Hg) toxicity. We have previously demonstrated that orally intubated selenomethionine (SeMet) and methylmercury (MeHg) reduced tissue Se accumulation, as well as blood and kidney Hg concentrations in juvenile white sturgeon (Acipenser transmontanus). However, the form of Se accumulated is not known. In this study, three organoseleniums: selenocysteine (Sec), Se-methyl-selenocysteine (MSeCys), and SeMet and two inorganic Se species: selenate and selenite were determined and quantified in the blood at different post-intubation periods (12, 24, 48h) and in the muscle, liver, and kidneys at 48h in white sturgeon orally intubated with a single dose of control (carrier), SeMet (500μg Se/kg body weight; BW), MeHg (850μg Hg/kg BW), and both (Se+Hg; at 500μg Se/kg and 850μg Hg/kg BW). When only SeMet was intubated, the accumulative/unmodified pathway took precedent in the blood, white muscle, liver, and kidneys. In the presence of MeHg, however, active metabolic transformation and de novo synthesis of biologically active Se forms are seen in the liver and kidneys, as indicated by a gradual increase in blood Sec:SeMet ratios and Se metabolites. In the white muscle, mobilization of endogenous Se storage by MeHg is supported by the absence of tissue SeMet and detectable levels of blood SeMet. In contrast, co-intubation with SeMet increased muscle SeMet. The high levels of unknown Se metabolites and detectable levels of selenite in the kidney reflect its role as the major excretory organ for Se. Selenium metabolism is highly regulated in the kidneys, as Se speciation was not affected by MeHg or by its co-intubation with SeMet. In the Se+Hg group, the proportion of SeMet in the liver has decreased to nearly 1/8th of that of the SeMet only group, resulting in a more similar selenocompound distribution profile to that of the MeHg only group. This is likely due to the increased need for Se metabolites necessary for MeHg demethylation in the liver. Our study demonstrated that in the presence of MeHg, regulating tissue Se speciation, hence, Se bioavailability, is more an important strategy than maintaining total Se levels in major organs of juvenile white sturgeon.
Collapse
Affiliation(s)
- Susie Shih-Yin Huang
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Silas S O Hung
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Hing Man Chan
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
84
|
Krey A, Kwan M, Chan HM. In vivo and in vitro changes in neurochemical parameters related to mercury concentrations from specific brain regions of polar bears (Ursus maritimus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2463-2471. [PMID: 25264143 DOI: 10.1002/etc.2685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/27/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) has been detected in polar bear brain tissue, but its biological effects are not well known. Relationships between Hg concentrations and neurochemical enzyme activities and receptor binding were assessed in the cerebellum, frontal lobes, and occipital lobes of 24 polar bears collected from Nunavik (Northern Quebec), Canada. The concentration-response relationship was further studied with in vitro experiments using pooled brain homogenate of 12 randomly chosen bears. In environmentally exposed brain samples, there was no correlative relationship between Hg concentration and cholinesterase (ChE) activity or muscarinic acetylcholine receptor (mAChR) binding in any of the 3 brain regions. Monoamine oxidase (MAO) activity in the occipital lobe showed a negative correlative relationship with total Hg concentration. In vitro experiments, however, demonstrated that Hg (mercuric chloride and methylmercury chloride) can inhibit ChE and MAO activities and muscarinic mAChR binding. These results show that Hg can alter neurobiochemical parameters but the current environmental Hg exposure level does have an effect on the neurochemistry of polar bears from northern Canada.
Collapse
Affiliation(s)
- Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| | | | | |
Collapse
|
85
|
Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food Chem Toxicol 2014; 72:169-77. [DOI: 10.1016/j.fct.2014.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/20/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
86
|
Cd, Pb and Hg Biomonitoring in Fish of the Mediterranean Region and Risk Estimations on Fish Consumption. TOXICS 2014. [DOI: 10.3390/toxics2030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
87
|
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. ENVIRONMENT INTERNATIONAL 2014; 69:148-58. [PMID: 24853282 DOI: 10.1016/j.envint.2014.04.019] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 05/15/2023]
Abstract
Arsenic (As) and selenium (Se) are unusual metalloids as they both induce and cure cancer. They both cause carcinogenesis, pathology, cytotoxicity, and genotoxicity in humans, with reactive oxygen species playing an important role. While As induces adverse effects by decreasing DNA methylation and affecting protein 53 expression, Se induces adverse effects by modifying thioredoxin reductase. However, they can react with glutathione and S-adenosylmethionine by forming an As-Se complex, which can be secreted extracellularly. We hypothesize that there are two types of interactions between As and Se. At low concentration, Se can decrease As toxicity via excretion of As-Se compound [(GS3)2AsSe](-), but at high concentration, excessive Se can enhance As toxicity by reacting with S-adenosylmethionine and glutathione, and modifying the structure and activity of arsenite methyltransferase. This review is to summarize their toxicity mechanisms and the interaction between As and Se toxicity, and to provide suggestions for future investigations.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Li-Ping Pu
- Suzhou Health College, Suzhou, Jiangsu 215000, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
88
|
Zhang H, Feng X, Jiang C, Li Q, Liu Y, Gu C, Shang L, Li P, Lin Y, Larssen T. Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:27-36. [PMID: 24531269 DOI: 10.1016/j.envpol.2014.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Rice is an important source of Se for billions of people throughout the world. The Wanshan area can be categorized as a seleniferous region due to its high soil Se content, but the Se content in the rice in Wanshan is much lower than that from typical seleniferous regions with an equivalent soil Se level. To investigate why the Se bioaccumulation in Wanshan is low, we measured the soil Se speciation using a sequential partial dissolution technique. The results demonstrated that the bioavailable species only accounted for a small proportion of the total Se in the soils from Wanshan, a much lower quantity than that found in the seleniferous regions. The potential mechanisms may be associated with the existence of Hg contamination, which is likely related to the formation of an inert Hg-Se insoluble precipitate in soils in Wanshan.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China.
| | - Chengxin Jiang
- Academy of Engineering Institute, China University of Geosciences, Wuhan 430074, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yi Liu
- Guizhou Academy of Geological Survey, Guiyang 55005, China
| | - Chunhao Gu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang 550002, China
| | - Yan Lin
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| | - Thorjørn Larssen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| |
Collapse
|
89
|
Zhang H. Advances in Research on the Mechanisms of Selenium–Mercury Interactions and Health Risk Assessment. SPRINGER THESES 2014. [DOI: 10.1007/978-3-642-54919-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|