51
|
mSphere of Influence: Engineering Microbes. mSphere 2019; 4:4/3/e00317-19. [PMID: 31243077 PMCID: PMC6595148 DOI: 10.1128/msphere.00317-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Patrick J. McNamara works in the field of environmental engineering. In this mSphere of Influence article, he reflects on how the papers “Bacterial community structure in the drinking water microbiome is governed by filtration processes” (A. J. Pinto, C. Xi, and L. Patrick J. McNamara works in the field of environmental engineering. In this mSphere of Influence article, he reflects on how the papers “Bacterial community structure in the drinking water microbiome is governed by filtration processes” (A. J. Pinto, C. Xi, and L. Raskin, Environ Sci Technol 46:8851–8859, 2012, https://doi.org/10.1021/es302042t) and “Differential resistance of drinking water bacterial populations to monochloramine disinfection” (T. Chiao, T. M. Clancy, A. Pinto, C. Xi, and L. Raskin, Environ Sci Technol 48:4038–4047, 2014, https://doi.org/10.1021/es4055725) by Lutgarde Raskin and colleagues made an impact on him by providing a foundation for the study of microbial ecology in engineering drinking water treatment plants and drinking water distribution systems.
Collapse
|
52
|
Dong L, Liu H, Meng L, Xing M, Lan T, Gu M, Zheng N, Wang C, Chen H, Wang J. Short communication: Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of culturable Escherichia coli in milk. J Dairy Sci 2019; 102:6914-6919. [PMID: 31202653 DOI: 10.3168/jds.2018-15393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/22/2019] [Indexed: 11/19/2022]
Abstract
Escherichia coli has been frequently reported as a major foodborne bacterium contaminating raw milk or pasteurized milk. Therefore, the aim of this study was to explore a quantitative real-time PCR (qPCR) technique combined with sodium dodecyl sulfate (SDS) and propidium monoazide (PMA) to detect culturable E. coli in milk. An internal amplification control was also added into this reaction system as an indicator of false-negative results. The inclusivity and exclusivity of the primers were tested using DNA from 7 E. coli and 14 other bacterial strains. The concentrations of SDS and PMA were determined according to plate counts and quantitative cycle values of qPCR, respectively. A standard curve was established using series diluted E. coli DNA. The reliability and specificity of this method were further determined by the detection of E. coli in spiked milk. The results showed that the optimal concentrations of SDS and PMA were 100 µg/mL and 40 μM, respectively. A standard curve with a good linear relationship (coefficient of determination = 0.997; amplification efficiency = 100.5%) was obtained. Compared with conventional PCR and PMA-qPCR, the SDS-PMA-qPCR assay was more specific and sensitive in culturable E. coli detection. Therefore, we evaluated and improved the SDS-PMA-qPCR method for detecting culturable E. coli in milk.
Collapse
Affiliation(s)
- Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China; College of Food Science and Engineer, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China; Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Mengru Xing
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China; College of Food Science and Engineer, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Tu Lan
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China; Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Mei Gu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Cheng Wang
- Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - He Chen
- Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China.
| |
Collapse
|
53
|
Waak MB, Hozalski RM, Hallé C, LaPara TM. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. MICROBIOME 2019; 7:87. [PMID: 31174608 PMCID: PMC6556008 DOI: 10.1186/s40168-019-0707-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/28/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Residual disinfection is often used to suppress biological growth in drinking water distribution systems (DWDSs), but not without undesirable side effects. In this study, water-main biofilms, drinking water, and bacteria under corrosion tubercles were analyzed from a chloraminated DWDS (USA) and a no-residual DWDS (Norway). Using quantitative real-time PCR, we quantified bacterial 16S rRNA genes and ammonia monooxygenase genes (amoA) of Nitrosomonas oligotropha and ammonia-oxidizing archaea-organisms that may contribute to chloramine loss. PCR-amplified 16S rRNA genes were sequenced to assess community taxa and diversity. RESULTS The chloraminated DWDS had lower biofilm biomass (P=1×10-6) but higher N. oligotropha-like amoA genes (P=2×10-7) than the no-residual DWDS (medians =4.7×104 and 1.1×103amoA copies cm-2, chloraminated and no residual, respectively); archaeal amoA genes were only detected in the no-residual DWDS (median =2.8×104 copies cm-2). Unlike the no-residual DWDS, biofilms in the chloraminated DWDS had lower within-sample diversity than the corresponding drinking water (P<1×10-4). Chloramine was also associated with biofilms dominated by the genera, Mycobacterium and Nitrosomonas (≤91.7% and ≤39.6% of sequences, respectively). Under-tubercle communities from both systems contained corrosion-associated taxa, especially Desulfovibrio spp. (≤98.4% of sequences). CONCLUSIONS Although residual chloramine appeared to decrease biofilm biomass and alpha diversity as intended, it selected for environmental mycobacteria and Nitrosomonas oligotropha-taxa that may pose water quality challenges. Drinking water contained common freshwater plankton and did not resemble corresponding biofilm communities in either DWDS; monitoring of tap water alone may therefore miss significant constituents of the DWDS microbiome. Corrosion-associated Desulfovibrio spp. were observed under tubercles in both systems but were particularly dominant in the chloraminated DWDS, possibly due to the addition of sulfate from the coagulant alum.
Collapse
Affiliation(s)
- Michael B. Waak
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens veg 5, Trondheim, 7491 Norway
| | - Raymond M. Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, 55108 MN USA
| | - Cynthia Hallé
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens veg 5, Trondheim, 7491 Norway
| | - Timothy M. LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, 55108 MN USA
| |
Collapse
|
54
|
Kirisits MJ, Emelko MB, Pinto AJ. Applying biotechnology for drinking water biofiltration: advancing science and practice. Curr Opin Biotechnol 2019; 57:197-204. [DOI: 10.1016/j.copbio.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/12/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
|
55
|
Kantor RS, Miller SE, Nelson KL. The Water Microbiome Through a Pilot Scale Advanced Treatment Facility for Direct Potable Reuse. Front Microbiol 2019; 10:993. [PMID: 31139160 PMCID: PMC6517601 DOI: 10.3389/fmicb.2019.00993] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Advanced treatment facilities for potable water reuse of wastewater are designed to achieve high removal levels of specific pathogens, as well as many other constituents. However, changes to the microbial community throughout treatment, storage, and distribution of this water have not been well characterized. We applied high-throughput amplicon sequencing, read-based, assembly-based, and genome-resolved metagenomics, and flow cytometry to investigate the microbial communities present in a pilot-scale advanced water treatment facility. Advanced treatment of secondary-treated wastewater consisted of ozonation, chloramination, microfiltration, reverse osmosis (RO), advanced oxidation (UV/H2O2), granular activated carbon (GAC) filtration, and chlorination. Treated water was fed into bench-scale simulated distribution systems (SDS). Cell counts and microbial diversity in bulk water decreased until GAC filtration, and the bacterial communities were significantly different following each treatment step. Bacteria grew within GAC media and contributed to a consistent microbial community in the filtrate, which included members of the Rhizobiales and Mycobacteriaceae. After chlorination, some of the GAC filtrate community was maintained within the SDS, and community shifts were associated with stagnation. Putative antibiotic resistance genes and potential opportunistic pathogens were identified before RO and after advanced oxidation, although few if any members of the wastewater microbial community passed through these treatment steps. These findings can contribute to improved design of advanced treatment trains and management of microbial communities in post-treatment steps.
Collapse
Affiliation(s)
- Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA, United States
| | - Scott E Miller
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA, United States
| |
Collapse
|
56
|
Chang F, Shen S, Shi P, Zhang H, Ye L, Zhou Q, Pan Y, Li A. Antimicrobial resins with quaternary ammonium salts as a supplement to combat the antibiotic resistome in drinking water treatment plants. CHEMOSPHERE 2019; 221:132-140. [PMID: 30639809 DOI: 10.1016/j.chemosphere.2019.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The increasing finding of pathogens and antibiotic resistance genes (ARGs) in drinking water has become one of the most challenging global health threats worldwide. However, conventional disinfection strategies in drinking water treatment plants (DWTPs) require further optimization in combating the antibiotic resistome. Here, we show that antimicrobial resins with quaternary ammonium salts (AMRs-QAS) exhibit great potentials in diminishing specific potential pathogens that relatively resist chlorine or UV disinfection in DWTPs, and comprehensive analyses using microscopy and fluorescence techniques revealed that the antimicrobial capacity of AMRs-QAS mainly proceed via the bacterial adsorption and cell membrane dissociation. Moreover, a total of 15 among 30 selected ARGs, as well as 4 selected potential pathogens including Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli and Staphylococcus aureus were all detected in the source water. Coupling the AMRs-QAS with 0.2 mg/L chlorine resulted in higher removal efficiencies than chlorination (2 mg/L) or UV disinfection (400 mJ cm-2) for all the detected pathogens and ARGs in drinking water and significantly decreased the relative abundances of Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, as well as all the detected ARGs (p < 0.05). Co-occurrences of pathogens and ARGs were revealed by a correlation network and possibly accounts for the ARGs removal. This coupled disinfection strategy overcomes the limitations of individual disinfection methods, i.e. the enrichment of specific pathogens and ARGs among bacterial populations, and provides an alternative for minimizing health risks induced by the antibiotic resistome in DWTPs.
Collapse
Affiliation(s)
- Fangyu Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shanqi Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
57
|
Gu G, Ottesen A, Bolten S, Wang L, Luo Y, Rideout S, Lyu S, Nou X. Impact of routine sanitation on the microbiomes in a fresh produce processing facility. Int J Food Microbiol 2019; 294:31-41. [DOI: 10.1016/j.ijfoodmicro.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
|
58
|
Liu L, Xing X, Hu C, Wang H, Lyu L. Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. CHEMOSPHERE 2019; 219:971-980. [PMID: 30682762 DOI: 10.1016/j.chemosphere.2018.12.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Drinking water distribution systems (DWDS) may be a "Trojan Horse" for some waterborne diseases caused by opportunistic pathogens (OPs). In this study, two simulated DWDS inoculated with groundwater were treated with chlorine (Cl2) and ultraviolet/chlorine (UV/Cl2) respectively to compare their effects on the OPs distributed in four different phases (bulk water, biofilms, corrosion products, and loose deposits) of DWDS. 16S rRNA genes sequencing and qPCR were used to profile microbial community and quantify target genes of OPs, respectively. Results showed that UV/Cl2 was more effective than single Cl2 to control the regrowth of OPs in the water with the same residual chlorine concentration. However, the OPs inhabiting the biofilms, corrosion products, and loose deposits seemed to be tolerant to UV/Cl2 and Cl2, demonstrating that OPs residing in these phases were resistant to the disinfection processes. Some significant microbial correlations between OPs and Acanthamoeba were found by Spearman correlative analysis (p < 0.05), demonstrating that the ecological interactions may exist in the DWDS. 16S rRNA genes sequencing of water samples revealed a significant different microbial community structure between UV/Cl2 and Cl2. This study may give some implications for controlling the OPs in the DWDS disinfected with UV/Cl2.
Collapse
Affiliation(s)
- Lizhong Liu
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, China; School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, China
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Chun Hu
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Haibo Wang
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
59
|
Liu J, Zhao R, Zhang J, Zhang G, Yu K, Li X, Li B. Occurrence and Fate of Ultramicrobacteria in a Full-Scale Drinking Water Treatment Plant. Front Microbiol 2018; 9:2922. [PMID: 30568635 PMCID: PMC6290093 DOI: 10.3389/fmicb.2018.02922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022] Open
Abstract
Ultramicrobacteria (UMB) are omnipresent and numerically dominate in freshwater, as microbes can present in drinking water systems, however, the UMB communities that occur and their removal behaviors remain poorly characterized in drinking water treatment plants (DWTPs). To gain insights into these issues, we profiled bacterial cell density, community structure and functions of UMB and their counterpart large bacteria (LB) using flow cytometry and filtration paired with 16S rRNA gene high-throughput sequencing in a full-scale DWTP. Contrary to the reduction of bacterial density and diversity, the proportion of UMB in the total bacteria community increased as the drinking water treatment process progressed, and biological activated carbon facilitated bacterial growth. Moreover, UMB were less diverse than LB, and their community structure and predicted functions were significantly different. In the DWTP, UMB indicator taxa were mainly affiliated with α/β/γ-Proteobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, and Dependentiae. In particular, the exclusive clustering of UMB at the phylum level, e.g., Parcubacteria, Elusimicrobia, and Saccharibacteria, confirmed the fact that the ultra-small size of UMB is a naturally and evolutionarily conserved trait. Additionally, the streamlined genome could be connected to UMB, such as candidate phyla radiation (CPR) bacteria, following a symbiotic or parasitic lifestyle, which then leads to the observed high connectedness, i.e., non-random intra-taxa co-occurrence patterns within UMB. Functional prediction analysis revealed that environmental information processing and DNA replication and repair likely contribute to the higher resistance of UMB to drinking water treatment processes in comparison to LB. Overall, the study provides valuable insights into the occurrence and fate of UMB regarding community structure, phylogenetic characteristics and potential functions in a full-scale DWTP, and it is a useful reference for beneficial manipulation of the drinking water microbiome.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
60
|
Swain LE, Knocke WR, Falkinham JO, Pruden A. Interference of manganese removal by biologically-mediated reductive release of manganese from MnO x(s) coated filtration media. WATER RESEARCH X 2018; 1:100009. [PMID: 31194072 PMCID: PMC6549940 DOI: 10.1016/j.wroa.2018.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 05/05/2023]
Abstract
Discontinuing application of pre-filter chlorine is a common water treatment plant practice to permit a bioactive filtration process for the removal of soluble Mn. However, soluble Mn desorption has sometimes been observed following cessation of chlorine addition, where filter effluent Mn concentration exceeds the influent Mn concentration. In this paper it is hypothesized that Mn-reducing bacteria present in a biofilm on the filter media may be a factor in this Mn-release phenomenon. The primary objective of this research was to assess the role of Mn-reducing microorganisms in the release of soluble Mn from MnOx(s)-coated filter media following interruption of pre-filtration chlorination. Bench-scale filter column studies were inoculated with Shewanella oneidensis MR-1 to investigate the impacts of a known Mn-reducing bacterium on release of soluble Mn from MnOx(s) coatings. In situ vial assays were developed to gain insight into the impacts of MnOx(s) age on bioavailability to Mn-reducing microorganisms and a quantitative polymerase chain reaction (qPCR) method was developed to quantify gene copies of the mtrB gene, which is involved in Mn-reduction. Results demonstrated that microbially-mediated Mn release was possible above a threshold equivalent of 2 × 102 S. oneidensis MR-1 CFU per gram of MnOx(s) coated media and that those organisms contributed to Mn desorption and release. Further, detectable mtrB gene copies were associated with observed Mn desorption. Lastly, MnOx(s) age appeared to play a role in Mn reduction and subsequent release, where MnOx(s) solids of greater age indicated lower bioavailability. These findings can help inform means of preventing soluble Mn release from drinking water treatment plant filters.
Collapse
Affiliation(s)
- Lindsay E. Swain
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - William R. Knocke
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
61
|
Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13077-13088. [PMID: 30351033 DOI: 10.1021/acs.est.8b02607] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vast majority of bacteria in drinking water distribution systems (DWDSs) reside in biofilms on the interior walls of water mains. Little is known about how water quality conditions affect water-main biofilms because of the inherent limitations in experimenting with drinking water supplies and accessing the water mains for sampling. Bench-scale reactors permit experimentation and ease of biofilm sampling, yet questions remain as to how well biofilms in laboratory reactors represent those on water mains. In this study, the effects of DWDS pipe materials and chloramine residual on biofilms were investigated by cultivating biofilms on cement, polyvinyl chloride, and high density polyethylene coupons in CDC reactors for up to 28 months in the presence of chloraminated or dechlorinated tap water. The bench-scale biofilm microbiomes were then compared with the microbiome on a water main from the full-scale system that supplied the water to the reactors. The presence of a chloramine residual (1.74 ± 0.21 mg/L) suppressed biofilm accumulation and selected for Mycobacterium-like and Sphingopyxis-like operational taxonomic units (OTUs) while the destruction of the chloramine residual resulted in a significant increase in biomass quantity and a shift toward a more diverse community dominated by Nitrospira-like OTUs, which, our results suggest, may be complete ammonia oxidizers (comammox). Coupon material, however, had a relatively minor effect on the abundance and community composition of the biofilm bacteria. Although biofilm communities from the chloraminated water reactor and the water mains shared some dominant populations (namely, Mycobacterium- and Nitrosomonas-like OTUs), the communities were significantly different. This manuscript provides novel insights into the effects of dechlorination and pipe material on biofilm community composition. Furthermore, to our knowledge, it is the first study to compare biofilm in a tap water-fed, bench-scale simulated distribution system to biofilm on water mains from the full-scale system supplying the tap water.
Collapse
Affiliation(s)
- Srijan Aggarwal
- Department of Civil and Environmental Engineering , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - C Kimloi Gomez-Smith
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Youchul Jeon
- Department of Civil and Environmental Engineering , University of Toledo , Toledo , Ohio 43606-339 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael B Waak
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
62
|
Props R, Rubbens P, Besmer M, Buysschaert B, Sigrist J, Weilenmann H, Waegeman W, Boon N, Hammes F. Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. WATER RESEARCH 2018; 145:73-82. [PMID: 30121434 DOI: 10.1016/j.watres.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Detecting disturbances in microbial communities is an important aspect of managing natural and engineered microbial communities. Here, we implemented a custom-built continuous staining device in combination with real-time flow cytometry (RT-FCM) data acquisition, which, combined with advanced FCM fingerprinting methods, presents a powerful new approach to track and quantify disturbances in aquatic microbial communities. Through this new approach we were able to resolve various natural community and single-species microbial contaminations in a flow-through drinking water reactor. Next to conventional FCM metrics, we applied metrics from a recently developed fingerprinting technique in order to gain additional insight into the microbial dynamics during these contamination events. Importantly, we found that multiple community FCM metrics based on different statistical approaches were required to fully characterize all contaminations. Furthermore we found that for accurate cell concentration measurements and accurate inference from the FCM metrics (coefficient of variation ≤ 5%), at least 1000 cells should be measured, which makes the achievable temporal resolution a function of the prevalent bacterial concentration in the system-of-interest. The integrated RT-FCM acquisition and analysis approach presented herein provides a considerable improvement in the temporal resolution by which microbial disturbances can be observed and simultaneously provides a multi-faceted toolset to characterize such disturbances.
Collapse
Affiliation(s)
- Ruben Props
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Peter Rubbens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Michael Besmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600, Duebendorf, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Benjamin Buysschaert
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Jurg Sigrist
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600, Duebendorf, Switzerland
| | - Hansueli Weilenmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600, Duebendorf, Switzerland
| | - Willem Waegeman
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Frederik Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600, Duebendorf, Switzerland.
| |
Collapse
|
63
|
Wang H, Hu C, Zhang S, Liu L, Xing X. Effects of O 3/Cl 2 disinfection on corrosion and opportunistic pathogens growth in drinking water distribution systems. J Environ Sci (China) 2018; 73:38-46. [PMID: 30290870 DOI: 10.1016/j.jes.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
The effects of O3/Cl2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors (ARs). The corrosion process and most probable number (MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O3/Cl2 induced higher Fe3O4 formation in corrosion scales. These corrosion scales became more stable than the ones that formed in the AR treated with Cl2 alone. O3/Cl2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria. Moreover, ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties. The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection. Compared with the AR treated with Cl2 alone, the opportunistic pathogens M. avium and L. pneumophila were not detectable in effluents of the AR treated with O3/Cl2, and decreased to (4.60±0.14) and (3.09±0.12) log10 (gene copies/g corrosion scales) in biofilms, respectively. The amoeba counts were also lower in the AR treated with O3/Cl2. Therefore, O3/Cl2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Institute of Environmental Studies at Greater Bay, School of Environmental Sciences and Engineering, Guangzhou University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Suona Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
64
|
Zi C, Zeng D, Ling N, Dai J, Xue F, Jiang Y, Li B. An improved assay for rapid detection of viable Staphylococcus aureus cells by incorporating surfactant and PMA treatments in qPCR. BMC Microbiol 2018; 18:132. [PMID: 30309323 PMCID: PMC6182795 DOI: 10.1186/s12866-018-1273-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/27/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important human pathogen causing a variety of life-threatening diseases. Rapid and accurate detection of Staphylococcus aureus is a necessity for prevention of outbreaks caused by this pathogen. PCR is a useful tool for rapid detection of foodborne pathogens, however, its inability to differentiate DNA from dead cells and live cells in amplification severely limits its application in pathogen detection. The aim of this study was to develop an improved assay was developed by incorporating the sample treatments with a surfactant and propidium monoazide (PMA) in qPCR for detection of viable S. aureus cells. RESULTS The cell toxic effect testing with the two surfactants showed that the viability of S. aureus was virtually not affected by the treatment with 0.5% triton x-100 or 0.025% sarkosyl. Triton x-100 was coupled with PMA for sample treatments for detection of viable S. aureus cells in artificially contaminated milk. The qPCR results indicated that the assay reached high an amplification efficiency of 98.44% and the live S. aureus cells were accurately detected from the triton-treated spiked milk samples by the PMA-qPCR assay. CONCLUSIONS The qPCR assay combined with treatments of PMA and surfactants offers a sensitive and accurate means for detection of viable S. aureus cells. Cell toxic effect testing with the two surfactants showed that the viability of S. aureus was virtually not affected by the treatment with 0.5% triton x-100 or 0.025% sarkosyl. The information on sample treatment with surfactants to improve the dead cell DNA removal efficiency in qPCR by increasing PMA's permeability to dead cells can be used for other pathogens, especially for Gram-positive bacteria.
Collapse
Affiliation(s)
- Chen Zi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dexin Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Nan Ling
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuan Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, 200135 China
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708 USA
| |
Collapse
|
65
|
Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
66
|
Xing X, Wang H, Hu C, Liu L. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems. WATER RESEARCH 2018; 139:168-176. [PMID: 29635153 DOI: 10.1016/j.watres.2018.03.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The effects of ozone-biologically activated carbon (O3-BAC) treatment with various phosphate doses (0, 0.3 or 0.6 mg/L) were investigated on the formation of disinfection by-products (DBPs) and occurrence of opportunistic pathogens (OPs) in drinking water distribution systems (DWDSs) simulated by annular reactors (ARs). It was found that the lowest DBPs and the highest inactivation of OPs such as Mycobacterium spp., Mycobacterium avium, Aeromonas spp., Pseudomonas aeruginosa and Hartmanella vermiformis, occurred in the effluent of the AR with 0.6 mg/L phosphate addition. Based on the results of different characterization techniques, for the AR with 0.6 mg/L phosphate-enhanced O3-BAC treatment, dissolved organic carbon in the influent exhibited the lowest concentration and most stable fraction due to the improved biodegradation effect. Moreover, the total amount of suspended extracellular polymeric substances (EPS) in the bulk water of the AR decreased greatly, resulting in the lowest chlorine consumption and DBPs formation in the AR. In Fourier transform infrared spectra of the suspended EPS, the amide II band (1600-1500 cm-1) disappeared and the protein/polysaccharide ratio decreased remarkably, indicating the destruction of protein and a decrease in hydrophobicity. Moreover, β-sheets and α-helices in the protein secondary structures were degraded while the random coils increased sharply as phosphate addition increased to 0.6 mg/L, inhibiting microbial aggregation and hence weakening the chlorine-resistance capability. Thus, most of the OPs in suspended biofilms were more easily inactivated by residual chlorine, resulting in the lowest OPs occurrence in the effluent of the AR. Our findings indicated that enhancing the efficiency of the BAC filter by adding phosphate is a promising method for improving water quality in DWDSs.
Collapse
Affiliation(s)
- Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun Hu
- Key Laboratory forWater Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, GuangzhouUniversity, Guangzhou 510006, China.
| | - Lizhong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One 2018; 13:e0199291. [PMID: 30020939 PMCID: PMC6051574 DOI: 10.1371/journal.pone.0199291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO2) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO2) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO2, samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO2 treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO2 treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO2 concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO2 as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - María Isabel Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Trevor Suslow
- Department of Plant Science, University of California, One Shields Avenue, Mann Laboratory, Davis, CA, United States of America
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
68
|
Farrell C, Hassard F, Jefferson B, Leziart T, Nocker A, Jarvis P. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:638-647. [PMID: 29272833 DOI: 10.1016/j.scitotenv.2017.12.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Turbidity in water can be caused by a range of different turbidity causing materials (TCM). Here the characteristics and attachment of bacteria to TCMs was assessed and the resultant impact on UV disinfection determined. TCMs represent potential vehicles for bacterial penetration of water treatment barriers, contamination of potable supplies and impact on subsequent human health. The TCMs under investigation were representative of those that may be present in surface and ground waters, both from the source and formed in the treatment process. The TCMs were chalk, Fe (III) hydroxide precipitate, kaolin clay, manganese dioxide and humic acids, at different turbidity levels representative of source waters (0, 0.1, 0.2, 0.4, 1, 2, and 5 NTU). Escherichia coli and Enterococcus faecalis attachment followed the order of Fe(III)>chalk, with little to no attachment seen for MnO2, humic acids and clay. The attachment was postulated to be due to chalk and Fe(III) particles having a more neutral surface charge resulting in elevated aggregation with bacteria compared to other TCMs. The humic acids and Fe(III) were the TCMs which influenced inactivation of E. coli and E. faecalis due to decreasing UV transmittance (UVT) with increasing TCM concentration. The presence of the Fe(III) TCM at 0.2 NTU resulted in the poorest E. coli inactivation, with 2.5 log10 reduction at UV dose of 10mJcm-2 (kd of -0.23cm2mJ-1) compared to a 3.9 log10 reduction in the absence of TCMs. E. faecalis had a greater resistance to UV irradiation than E. coli for all TCMs. Effective disinfection of drinking water is a priority for ensuring high public health standards. Uniform regulations for turbidity levels for waters pre-disinfection by UV light set by regulators may not always be appropriate and efficacy is dependent on the type, as well as the amount, of turbidity present in the water.
Collapse
Affiliation(s)
- Charlotte Farrell
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Bruce Jefferson
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Tangui Leziart
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | | | - Peter Jarvis
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
69
|
Mao G, Song Y, Bartlam M, Wang Y. Long-Term Effects of Residual Chlorine on Pseudomonas aeruginosa in Simulated Drinking Water Fed With Low AOC Medium. Front Microbiol 2018; 9:879. [PMID: 29774019 PMCID: PMC5943633 DOI: 10.3389/fmicb.2018.00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
Residual chlorine is often required to remain present in public drinking water supplies during distribution to ensure water quality. It is essential to understand how bacteria respond to long-term chlorine exposure, especially with the presence of assimilable organic carbon (AOC). This study aimed to investigate the effects of chlorination on Pseudomonas aeruginosa in low AOC medium by both conventional plating and culture-independent methods including flow cytometry (FCM) and quantitative PCR (qPCR). In a simulated chlorinated system using a bioreactor, membrane damage and DNA damage were measured by FCM fluorescence fingerprint. The results indicated membrane permeability occurred prior to DNA damage in response to chlorination. A regrowth of P. aeruginosa was observed when the free chlorine concentration was below 0.3 mg/L. The bacterial response to long-term exposure to a constant low level of free chlorine (0.3 mg/L) was subsequently studied in detail. Both FCM and qPCR data showed a substantial reduction during initial exposure (0–16 h), followed by a plateau where the cell concentration remained stable (16–76 h), until finally all bacteria were inactivated with subsequent continuous chlorine exposure (76–124 h). The results showed three-stage inactivation kinetics for P. aeruginosa at a low chlorine level with extended exposure time: an initial fast inactivation stage, a relatively stable middle stage, and a final stage with a slower rate than the initial stage. A series of antibiotic resistance tests suggested long-term exposure to low chlorine level led to the selection of antibiotic-resistant P. aeruginosa. The combined results suggest that depletion of residual chlorine in low AOC medium systems could reactivate P. aeruginosa, leading to a possible threat to drinking water safety.
Collapse
Affiliation(s)
- Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yuhao Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
70
|
Dong L, Liu H, Meng L, Xing M, Wang J, Wang C, Chen H, Zheng N. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk. J Dairy Sci 2018; 101:4936-4943. [PMID: 29605335 DOI: 10.3168/jds.2017-14087] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022]
Abstract
Conventional quantitative PCR (qPCR) are unable to differentiate DNA of viable Staphylococcus aureus cells from dead ones. The aim of this study was to use sodium dodecyl sulfate (SDS) and propidium monoazide (PMA) coupled with lysostaphin to detect viable Staph. aureus. The cell suspensions were treated with SDS and PMA before DNA extraction. The SDS is an anionic surfactant, which can increase the permeability of dead cells to PMA without compromising the viability of live cells. The lysostaphin was applied to improve the effectiveness of DNA extraction. The reliability and specificity of this method were further determined by the detection of Staph. aureus in spiked milk. The results showed that there were significant differences between the SDS-PMA-qPCR and qPCR when a final concentration of 200 μg/mL of lysostaphin was added in DNA extraction. The viable Staph. aureus could be effectively detected when SDS and PMA concentrations were 100 µg/mL and 40 μM, respectively. Compared with conventional qPCR, the SDS-PMA-qPCR assay coupled with lysostaphin was more specific and sensitive. Therefore, this method could accurately detect the number of viable Staph. aureus cells.
Collapse
Affiliation(s)
- Lei Dong
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, P. R. China; College of Food Science and Engineer, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Huimin Liu
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, P. R. China; Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Lu Meng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, P. R. China
| | - Mengru Xing
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, P. R. China; College of Food Science and Engineer, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jiaqi Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, P. R. China
| | - Cheng Wang
- Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - He Chen
- Institute of Quality Standard and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, P. R. China.
| |
Collapse
|
71
|
Kotlarz N, Rockey N, Olson TM, Haig SJ, Sanford L, LiPuma JJ, Raskin L. Biofilms in Full-Scale Drinking Water Ozone Contactors Contribute Viable Bacteria to Ozonated Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2618-2628. [PMID: 29299927 DOI: 10.1021/acs.est.7b04212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other ( p = 0.017). The biofilms downstream of the dead zone contained a significantly ( p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities.
Collapse
Affiliation(s)
- Nadine Kotlarz
- Department of Civil and Environmental Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nicole Rockey
- Department of Civil and Environmental Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Terese M Olson
- Department of Civil and Environmental Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Larry Sanford
- Drinking Water Treatment Utility, Ann Arbor , Michigan 48103 , United States
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
72
|
Sfeir M, Walsh M, Rosa R, Aragon L, Liu SY, Cleary T, Worley M, Frederick C, Abbo LM. Mycobacterium abscessus Complex Infections: A Retrospective Cohort Study. Open Forum Infect Dis 2018; 5:ofy022. [PMID: 29450214 PMCID: PMC5808791 DOI: 10.1093/ofid/ofy022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background Infections caused by Mycobacterium abscessus group strains are usually resistant to multiple antimicrobials and challenging to treat worldwide. We describe the risk factors, treatment, and clinical outcomes of patients in 2 large academic medical centers in the United States. Methods A retrospective cohort study of hospitalized adults with a positive culture for M. abscessus in Miami, Florida (January 1, 2011, to December 31, 2014). Demographics, comorbidities, the source of infection, antimicrobial susceptibilities, and clinical outcomes were analyzed. Early treatment failure was defined as death and/or infection relapse characterized either by persistent positive culture for M. abscessus within 12 weeks of treatment initiation and/or lack of radiographic improvement. Results One hundred eight patients were analyzed. The mean age was 50.81 ± 21.03 years, 57 (52.8%) were females, and 41 (38%) Hispanics. Eleven (10.2%) had end-stage renal disease, 34 (31.5%) were on immunosuppressive therapy, and 40% had chronic lung disease. Fifty-nine organisms (54.6%) were isolated in respiratory sources, 21 (19.4%) in blood, 10 (9.2%) skin and soft tissue, and 9 (8.3%) intra-abdominal. Antimicrobial susceptibility reports were available for 64 (59.3%) of the patients. Most of the isolates were susceptible to clarithromycin, amikacin, and tigecycline (93.8%, 93.8%, and 89.1%, respectively). None of the isolates were susceptible to trimethoprim/sulfamethoxazole, and only 1 (1.6%) was susceptible to ciprofloxacin. Thirty-six (33.3%) patients early failed treatment; of those, 17 (15.7%) died while hospitalized. On multivariate analysis, risk factors significantly associated with early treatment failure were disseminated infection (odds ratio [OR], 11.79; 95% confidence interval [CI], 1.53–81.69; P = .04), acute kidney injury (OR, 6.55; 95% CI, 2.4–31.25; P = .018), organ transplantation (OR, 2.37; 95% CI, 2.7–23.1; P = .005), immunosuppressive therapy (OR, 2.81; 95% CI, 1.6–21.4; P = .002), intravenous amikacin treatment (OR, 4.1; 95% CI, 0.9–21; P = .04), clarithromycin resistance (OR,79.5; 95% CI, 6.2–3717.1, P < .001), and presence of prosthetic device (OR, 5.43; 95% CI, 1.57–18.81; P = .008). Receiving macrolide treatment was found to be protective against early treatment failure (OR, 0.13; 95% CI, 0.002–1.8; P = .04). Conclusions Our cohort of 108 M. abscessus complex isolates in Miami, Florida, showed an in-hospital mortality of 15.7%. Most infections were respiratory. Clarithromycin and amikacin were the most likely agents to be susceptible in vitro. Resistance to fluoroquinolone and trimethoprim/sulfamethoxazole was highly common. Macrolide resistance, immunosuppression, and renal disease were significantly associated with early treatment failure.
Collapse
Affiliation(s)
- Maroun Sfeir
- Division of Infectious Disease, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York.,Department of Healthcare Policy and Research, Weill Cornell Medical College, New York
| | - Marissa Walsh
- Department of Pharmacy, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Laura Aragon
- Department of Pharmacy, Jackson Memorial Hospital, Miami, Florida
| | - Sze Yan Liu
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York
| | - Timothy Cleary
- Department of Pathology, Jackson Memorial Hospital, Miami, Florida
| | - Marylee Worley
- Department of Pharmacy, Nova Southeastern University, Miami, Florida
| | - Corey Frederick
- Department of Pharmacy, Memorial Regional Hospital, Miami, Florida
| | - Lilian M Abbo
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
73
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
74
|
Inkinen J, Jayaprakash B, Ahonen M, Pitkänen T, Mäkinen R, Pursiainen A, Santo Domingo J, Salonen H, Elk M, Keinänen-Toivola M. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment. J Appl Microbiol 2018; 124:611-624. [DOI: 10.1111/jam.13662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- J. Inkinen
- Department of Civil Engineering; School of Engineering; Aalto University; Espoo Finland
- Faculty of Technology; Satakunta University of Applied Sciences; Rauma Finland
| | - B. Jayaprakash
- Department of Health Security; National Institute for Health and Welfare; Kuopio Finland
| | - M. Ahonen
- Faculty of Technology; Satakunta University of Applied Sciences; Rauma Finland
| | - T. Pitkänen
- Department of Health Security; National Institute for Health and Welfare; Kuopio Finland
| | - R. Mäkinen
- Faculty of Technology; Satakunta University of Applied Sciences; Rauma Finland
| | - A. Pursiainen
- Department of Health Security; National Institute for Health and Welfare; Kuopio Finland
| | - J.W. Santo Domingo
- Office of Research and Development; U.S. Environmental Protection Agency; Cincinnati OH USA
| | - H. Salonen
- Department of Civil Engineering; School of Engineering; Aalto University; Espoo Finland
| | - M. Elk
- Office of Research and Development; U.S. Environmental Protection Agency; Cincinnati OH USA
| | | |
Collapse
|
75
|
Yang Y, Cheng D, Li Y, Yu L, Gin KYH, Chen JP, Reinhard M. Effects of monochloramine and hydrogen peroxide on the bacterial community shifts in biologically treated wastewater. CHEMOSPHERE 2017; 189:399-406. [PMID: 28950119 DOI: 10.1016/j.chemosphere.2017.09.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Amending feed water with biocide is one of the strategy conventionally used to control biofouling in membrane-based water treatment systems. In this study, the impacts of two biocides, monochloramine (MCA) and hydrogen peroxide (H2O2), on the bacterial community in wastewater samples were investigated at equivalent biocidal efficiency levels. Viable bacterial numbers were determined before and after treatment for 10 min and 60 min using both culture-dependent heterotrophic plate count (HPC) and culture-independent propidium monoazide (PMA)-droplet digital PCR (ddPCR). Shifts of the live bacterial diversity were studied using high-throughput sequencing of 16S rRNA genes and followed by bioinformatics analysis. At the genus level, MCA treatment increased the relative abundance of Mycobacterium, Pseudomonas, Sphingomonas, Clostridium, Streptococcus, Undibacterium, Chryseobacterium and Cloacibacterium, while decreasing Arcobacter, Nitrospira and Sphingobium. H2O2 treatment increased the relative abundance of Anaerolinea and Filimonas, and diminished Denitratisoma and Thauera. The findings of this study suggest a combination of different types of biocide may be the most efficient strategy for biofouling mitigation and increasing membrane treatment efficiency.
Collapse
Affiliation(s)
- Yi Yang
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Dan Cheng
- Center for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore
| | - Yingnan Li
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore, Singapore
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore, Singapore.
| | - Jiaping Paul Chen
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore, Singapore.
| | - Martin Reinhard
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore, Singapore; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 943054020, USA.
| |
Collapse
|
76
|
Cai L, Krafft T, Chen TB, Lv WZ, Gao D, Zhang HY. New insights into biodrying mechanism associated with tryptophan and tyrosine degradations during sewage sludge biodrying. BIORESOURCE TECHNOLOGY 2017; 244:132-141. [PMID: 28779664 DOI: 10.1016/j.biortech.2017.07.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Sewage sludge biodrying is a treatment that uses bio-heat generated from organic degradation to remove water from sewage sludge. Dewatering is still limited during biodrying, due to the presence of extracellular polymeric substances (EPS) in sludge. To study the biodrying mechanism associated with EPS compositions tryptophan and tyrosine degradations, this study investigated the microbial function in sludge biodrying material. This study conducted a taxonomic analysis of biodrying material; determined the most abundant genetic functions; analyzed the functional microorganisms involved in the degradations of tryptophan and tyrosine; and summarized the metabolic pathways. The results indicated efficient degradations of tryptophan and tyrosine were observed during the initial thermophilic phase; functional microorganisms were mainly from the phyla Firmicutes, Actinobacteria, and Proteobacteria, enriched with genes involved in amino acid transport and metabolism. These findings highlight the potentially important microorganisms and typical pathways that may help improve dewaterability during biodegradation.
Collapse
Affiliation(s)
- Lu Cai
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China; Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Thomas Krafft
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Tong-Bin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Zhou Lv
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Ding Gao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Han-Yan Zhang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| |
Collapse
|
77
|
Hassard F, Andrews A, Jones DL, Parsons L, Jones V, Cox BA, Daldorph P, Brett H, McDonald JE, Malham SK. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment. Front Microbiol 2017; 8:1996. [PMID: 29089931 PMCID: PMC5650961 DOI: 10.3389/fmicb.2017.01996] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA). Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs) for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII) were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC). Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA) in winter. Here, we show the link between physicochemical variables and season which govern culturability of human enteric pathogens and FIOs. Therefore, knowledge of these factors is critical for accurate microbial risk assessment. Future water quality management strategies could be improved through monitoring sediment-associated bacteria and non-culturable bacteria. This could facilitate source apportionment of human enteric pathogens and FIOs and direct remedial action to improve water quality.
Collapse
Affiliation(s)
- Francis Hassard
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom.,Cranfield Water Science Institute, Cranfield University, Bedford, United Kingdom
| | | | - Davey L Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Louise Parsons
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| | | | | | | | | | - James E McDonald
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
78
|
Besmer MD, Sigrist JA, Props R, Buysschaert B, Mao G, Boon N, Hammes F. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water. Front Microbiol 2017; 8:1900. [PMID: 29085343 PMCID: PMC5649192 DOI: 10.3389/fmicb.2017.01900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater) can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination). Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC) and intact (ICC) cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change), significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min). Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity) is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes) both in laboratory-scale research and full-scale system investigations in practice.
Collapse
Affiliation(s)
- Michael D Besmer
- Drinking Water Microbiology Group, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland
| | - Jürg A Sigrist
- Drinking Water Microbiology Group, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Ruben Props
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | | | - Guannan Mao
- Drinking Water Microbiology Group, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Frederik Hammes
- Drinking Water Microbiology Group, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
79
|
Fowler SJ, Smets BF. Microbial biotechnologies for potable water production. Microb Biotechnol 2017; 10:1094-1097. [PMID: 28905496 PMCID: PMC5609255 DOI: 10.1111/1751-7915.12837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/01/2022] Open
Abstract
Sustainable Development Goal 6 requires the provision of safe drinking water to the world. We propose that increased exploitation of biological processes is fundamental to achieving this goal due to their low economic and energetic costs. Biological processes exist for the removal of most common contaminants, and biofiltration processes can establish a biologically stable product that retains high quality in distribution networks, minimizing opportunities for pathogen invasion.
Collapse
Affiliation(s)
- S Jane Fowler
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800, Kgs Lyngby, Denmark
| | - Barth F Smets
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
80
|
Wang F, Li W, Zhang J, Qi W, Zhou Y, Xiang Y, Shi N. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12176-12184. [PMID: 28353100 DOI: 10.1007/s11356-017-8874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Junpeng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Wanqi Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanyan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yuan Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Nuo Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
81
|
Hull NM, Holinger EP, Ross KA, Robertson CE, Harris JK, Stevens MJ, Pace NR. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4220-4229. [PMID: 28296394 DOI: 10.1021/acs.est.6b06064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.
Collapse
Affiliation(s)
- Natalie M Hull
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Eric P Holinger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Kimberly A Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Charles E Robertson
- Division of Infectious Disease, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Norman R Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
82
|
Nocker A, Cheswick R, Dutheil de la Rochere PM, Denis M, Léziart T, Jarvis P. When are bacteria dead? A step towards interpreting flow cytometry profiles after chlorine disinfection and membrane integrity staining. ENVIRONMENTAL TECHNOLOGY 2017; 38:891-900. [PMID: 27852151 DOI: 10.1080/09593330.2016.1262463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Flow cytometry is increasingly employed by drinking water providers. Its use with appropriate fluorescent stains allows the distinction between intact and membrane-damaged bacteria, which makes it ideally suited for assessment of disinfection efficiency. In contrast to plate counting, the technology allows the visualization of the gradual loss of membrane integrity. Although this sensitivity per se is very positive, it creates the problem of how this detailed viability information compares with binary plate counts where a colony is either formed or not. Guidelines are therefore needed to facilitate interpretation of flow cytometry results and to determine a degree of membrane damage where bacteria can be considered 'dead'. In this study we subjected Escherichia coli and environmental microorganisms in real water to increasing chlorine concentrations. Resulting flow cytometric patterns after membrane integrity staining were compared with culturability and in part with redox activity. For laboratory-grown bacteria, culturability was lost at lower disinfectant concentrations than membrane integrity making the latter a conservative viability parameter. No recovery from chlorine was observed for four days. For real water, loss of membrane integrity had to be much more substantial to completely suppress colony formation, probably due to the heterogenic composition of the natural microbial community with different members having different susceptibilities to the disinfectant.
Collapse
Affiliation(s)
- Andreas Nocker
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
- b IWW Water Centre ; Mülheim an der Ruhr , Germany
| | - Ryan Cheswick
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
- c Scottish Water, Castle House , Dunfermline , UK
| | | | - Matthieu Denis
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
| | - Tangui Léziart
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
| | - Peter Jarvis
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
| |
Collapse
|
83
|
Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors. NPJ Biofilms Microbiomes 2017. [PMID: 28649406 PMCID: PMC5445582 DOI: 10.1038/s41522-016-0010-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.
Collapse
|
84
|
Nguyen LDN, Deschaght P, Merlin S, Loywick A, Audebert C, Van Daele S, Viscogliosi E, Vaneechoutte M, Delhaes L. Effects of Propidium Monoazide (PMA) Treatment on Mycobiome and Bacteriome Analysis of Cystic Fibrosis Airways during Exacerbation. PLoS One 2016; 11:e0168860. [PMID: 28030619 PMCID: PMC5193350 DOI: 10.1371/journal.pone.0168860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
Introduction and Purpose Propidium monoazide (PMA)-pretreatment has increasingly been applied to remove the bias from dead or damaged cell artefacts, which could impact the microbiota analysis by high-throughput sequencing. Our study aimed to determine whether a PMA-pretreatment coupled with high-throughput sequencing analysis provides a different picture of the airway mycobiome and bacteriome. Results and Discussion We compared deep-sequencing data of mycobiota and microbiota of 15 sputum samples from 5 cystic fibrosis (CF) patients with and without prior PMA-treatment of the DNA-extracts. PMA-pretreatment had no significant effect on the entire and abundant bacterial community (genera expressed as operational taxonomic units (OTUs) with a relative abundance greater than or equal to 1%), but caused a significant difference in the intermediate community (less than 1%) when analyzing the alpha biodiversity Simpson index (p = 0.03). Regarding PMA impact on the airway mycobiota evaluated for the first time here; no significant differences in alpha diversity indexes between PMA-treated and untreated samples were observed. Regarding beta diversity analysis, the intermediate communities also differed more dramatically than the total and abundant ones when studying both mycobiome and bacteriome. Our results showed that only the intermediate (or low abundance) population diversity is impacted by PMA-treatment, and therefore that abundant taxa are mostly viable during acute exacerbation in CF. Given such a cumbersome protocol (PMA-pretreatment coupled with high-throughput sequencing), we discuss its potential interest within the follow-up of CF patients. Further studies using PMA-pretreatment are warranted to improve our “omic” knowledge of the CF airways.
Collapse
Affiliation(s)
- Linh Do Ngoc Nguyen
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR 8204, University of Lille, Lille, France
| | - Pieter Deschaght
- Laboratory for Bacteriology Research, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Sophie Merlin
- GenesDiffusion, Douai, France
- PEGASE, Biosciences, Institut Pasteur de Lille, Lille, France
| | - Alexandre Loywick
- GenesDiffusion, Douai, France
- PEGASE, Biosciences, Institut Pasteur de Lille, Lille, France
| | - Christophe Audebert
- GenesDiffusion, Douai, France
- PEGASE, Biosciences, Institut Pasteur de Lille, Lille, France
| | - Sabine Van Daele
- Department of Pediatrics and Genetics, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Eric Viscogliosi
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR 8204, University of Lille, Lille, France
| | - Mario Vaneechoutte
- Laboratory for Bacteriology Research, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Laurence Delhaes
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR 8204, University of Lille, Lille, France
- Parasitology-Medical Mycology Department, Regional Hospital Center, Faculty of Medicine, Lille, France
- * E-mail:
| |
Collapse
|
85
|
Becerra-Castro C, Macedo G, Silva AMT, Manaia CM, Nunes OC. Proteobacteria become predominant during regrowth after water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:313-323. [PMID: 27570199 DOI: 10.1016/j.scitotenv.2016.08.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/06/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Disinfection processes aim at reducing the number of viable cells through the generation of damages in different cellular structures and molecules. Since disinfection involves unspecific mechanisms, some microbial populations may be selected due to resilience to treatment and/or to high post-treatment fitness. In this study, the bacterial community composition of secondarily treated urban wastewater and of surface water collected in the intake area of a drinking water treatment plant was compared before and 3-days after disinfection with ultraviolet radiation, ozonation or photocatalytic ozonation. The aim was to assess the dynamics of the bacterial communities during regrowth after disinfection. In all the freshly collected samples, Proteobacteria and Bacteroidetes were the predominant phyla (40-50% and 20-30% of the reads, respectively). Surface water differed from wastewater mainly in the relative abundance of Actinobacteria (17% and <5% of the reads, respectively). After 3-days storage at light and room temperature, disinfected samples presented a shift of Gammaproteobacteria (from 8 to 10% to 33-65% of the reads) and Betaproteobacteria (from 14 to 20% to 31-37% of the reads), irrespective of the type of water and disinfection process used. Genera such as Pseudomonas, Acinetobacter or Rheinheimera presented a selective advantage after water disinfection. These variations were not observed in the non-disinfected controls. Given the ubiquity and genome plasticity of these bacteria, the results obtained suggest that disinfection processes may have implications on the microbiological quality of the disinfected water.
Collapse
Affiliation(s)
- Cristina Becerra-Castro
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Gonçalo Macedo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Adrian M T Silva
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
86
|
Peng H, Guo H, Pogoutse O, Wan C, Hu LZ, Ni Z, Emili A. An Unbiased Chemical Proteomics Method Identifies FabI as the Primary Target of 6-OH-BDE-47. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11329-11336. [PMID: 27682841 DOI: 10.1021/acs.est.6b03541] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Determination of the physical interactions of environmental chemicals with cellular proteins is important for characterizing biological and toxic mechanism of action. Yet despite the discovery of numerous bioactive natural brominated compounds, such as hydroxylated polybrominated diphenyl ethers (OH-PBDEs), their corresponding protein targets remain largely unclear. Here, we reported a systematic and unbiased chemical proteomics assay (Target Identification by Ligand Stabilization, TILS) for target identification of bioactive molecules based on monitoring ligand-induced thermal stabilization. We first validated the broad applicability of this approach by identifying both known and unexpected proteins bound by diverse compounds (anticancer drugs, antibiotics). We then applied TILS to identify the bacterial target of 6-OH-BDE-47 as enoyl-acyl carrier protein reductase (FabI), an essential and widely conserved enzyme. Using affinity pull-down and in vitro enzymatic assays, we confirmed the potent antibacterial activity of 6-OH-BDE-47 occurs via direct binding and inhibition of FabI. Conversely, overexpression of FabI rescued the growth inhibition of Escherichia coli by 6-OH-BDE-47, validating it as the primary in vivo target. This study documents a chemical proteomics strategy for identifying the physical and functional targets of small molecules, and its potential high-throughput application to investigate the modes-of-action of environmental compounds.
Collapse
Affiliation(s)
- Hui Peng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Oxana Pogoutse
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Cuihong Wan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Lucas Z Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
87
|
Scaturro M, Fontana S, Dell’eva I, Helfer F, Marchio M, Stefanetti MV, Cavallaro M, Miglietta M, Montagna MT, De Giglio O, Cuna T, Chetti L, Sabattini MAB, Carlotti M, Viggiani M, Stenico A, Romanin E, Bonanni E, Ottaviano C, Franzin L, Avanzini C, Demarie V, Corbella M, Cambieri P, Marone P, Rota MC, Bella A, Ricci ML. A multicenter study of viable PCR using propidium monoazide to detect Legionella in water samples. Diagn Microbiol Infect Dis 2016; 85:283-288. [DOI: 10.1016/j.diagmicrobio.2016.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
|
88
|
Bédard E, Prévost M, Déziel E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen 2016; 5:937-956. [PMID: 27353357 PMCID: PMC5221438 DOI: 10.1002/mbo3.391] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is widely occurring in the environment and is recognized for its capacity to form or join biofilms. The present review consolidates current knowledge on P. aeruginosa ecology and its implication in healthcare facilities premise plumbing. The adaptability of P. aeruginosa and its capacity to integrate the biofilm from the faucet and the drain highlight the role premise plumbing devices can play in promoting growth and persistence. A meta‐analysis of P. aeruginosa prevalence in faucets (manual and electronic) and drains reveals the large variation in device positivity reported and suggest the high variability in the sampling approach and context as the main reason for this variation. The effects of the operating conditions that prevail within water distribution systems (disinfection, temperature, and hydraulic regime) on the persistence of P. aeruginosa are summarized. As a result from the review, recommendations for proactive control measures of water contamination by P. aeruginosa are presented. A better understanding of the ecology of P. aeruginosa and key influencing factors in premise plumbing are essential to identify culprit areas and implement effective control measures.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada.,INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
89
|
Khan S, Beattie TK, Knapp CW. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. CHEMOSPHERE 2016; 152:132-41. [PMID: 26966812 DOI: 10.1016/j.chemosphere.2016.02.086] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 05/28/2023]
Abstract
Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance.
Collapse
Affiliation(s)
- Sadia Khan
- Department of Civil and Environmental Engineering, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK; Department of Environmental Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan
| | - Tara K Beattie
- Department of Civil and Environmental Engineering, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK.
| |
Collapse
|
90
|
Navarro RR, Hori T, Inaba T, Matsuo K, Habe H, Ogata A. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning. WATER RESEARCH 2016; 94:166-175. [PMID: 26945453 DOI: 10.1016/j.watres.2016.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Biofouling is one of the major problems during wastewater treatment using membrane bioreactors (MBRs). In this regard, sodium hypochlorite (NaOCl) has been widely used to wash fouled membranes for maintenance and recovery purposes. Advanced chemical and biological characterization was conducted in this work to evaluate the performance of aqueous NaOCl solutions during washing of polyacrylonitrile membranes. Fouled membranes from MBR operations supplemented with artificial wastewater were washed with 0.1% and 0.5% aqueous NaOCl solutions for 5, 10 and 30 min. The changes in organics composition on the membrane surface were directly monitored by an attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer. In addition, high-throughput Illumina sequencing of 16S rRNA genes was applied to detect any residual microorganisms. Results from ATR-FT-IR analysis indicated the complete disappearance of functional groups representing different fouling compounds after at least 30 min of treatment with 0.1% NaOCl. However, the biomolecular survey revealed the presence of residual bacteria even after 30 min of treatment with 0.5% NaOCl solution. Evaluation of microbial diversity of treated samples using Chao1, Shannon and Simpson reciprocal indices showed an increase in evenness while no significant decline in richness was observed. These implied that only the population of dominant species was mainly affected. The high-resolution phylogenetic analysis revealed the presence of numerous operational taxonomic units (OTUs) whose close relatives exhibit halotolerance. Some OTUs related to thermophilic and acid-resistant strains were also identified. Finally, the taxonomic analysis of recycled membranes that were previously washed with NaOCl also showed the presence of numerous halotolerant-related OTUs in the early stage of fouling. This further suggested the possible contribution of such chemical tolerance on their survival against NaOCl washing, which in turn affected their re-fouling potential.
Collapse
Affiliation(s)
- Ronald R Navarro
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kazuyuki Matsuo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
91
|
Inkinen J, Jayaprakash B, Santo Domingo J, Keinänen-Toivola M, Ryu H, Pitkänen T. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system. J Appl Microbiol 2016; 120:1723-38. [DOI: 10.1111/jam.13144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- J. Inkinen
- Faculty of Technology; WANDER Nordic Water and Materials Institute; Satakunta University of Applied Sciences; Rauma Finland
| | - B. Jayaprakash
- Water and Health Unit; National Institute for Health and Welfare (THL); Kuopio Finland
| | - J.W. Santo Domingo
- U.S. Environmental Protection Agency, Office of Research and Development; Cincinnati OH USA
| | - M.M. Keinänen-Toivola
- Faculty of Technology; WANDER Nordic Water and Materials Institute; Satakunta University of Applied Sciences; Rauma Finland
| | - H. Ryu
- U.S. Environmental Protection Agency, Office of Research and Development; Cincinnati OH USA
| | - T. Pitkänen
- Water and Health Unit; National Institute for Health and Welfare (THL); Kuopio Finland
- U.S. Environmental Protection Agency, Office of Research and Development; Cincinnati OH USA
| |
Collapse
|
92
|
Zhang S, Lin W, Yu X. Effects of full-scale advanced water treatment on antibiotic resistance genes in the Yangtze Delta area in China. FEMS Microbiol Ecol 2016; 92:fiw065. [DOI: 10.1093/femsec/fiw065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
|
93
|
Shifts of live bacterial community in secondary effluent by chlorine disinfection revealed by Miseq high-throughput sequencing combined with propidium monoazide treatment. Appl Microbiol Biotechnol 2016; 100:6435-6446. [DOI: 10.1007/s00253-016-7452-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
|
94
|
Webster TM, Smith AL, Reddy RR, Pinto AJ, Hayes KF, Raskin L. Anaerobic microbial community response to methanogenic inhibitors 2-bromoethanesulfonate and propynoic acid. Microbiologyopen 2016; 5:537-50. [PMID: 26987552 PMCID: PMC4985588 DOI: 10.1002/mbo3.349] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/03/2022] Open
Abstract
Methanogenic inhibitors are often used to study methanogenesis in complex microbial communities or inhibit methanogens in the gastrointestinal tract of livestock. However, the resulting structural and functional changes in archaeal and bacterial communities are poorly understood. We characterized microbial community structure and activity in mesocosms seeded with cow dung and municipal wastewater treatment plant anaerobic digester sludge after exposure to two methanogenic inhibitors, 2‐bromoethanesulfonate (BES) and propynoic acid (PA). Methane production was reduced by 89% (0.5 mmol/L BES), 100% (10 mmol/LBES), 24% (0.1 mmol/LPA), and 95% (10 mmol/LPA). Using modified primers targeting the methyl‐coenzyme M reductase (mcrA) gene, changes in mcrA gene expression were found to correspond with changes in methane production and the relative activity of methanogens. Methanogenic activity was determined by the relative abundance of methanogen 16S rRNA cDNA as a percentage of the total community 16S rRNA cDNA. Overall, methanogenic activity was lower when mesocosms were exposed to higher concentrations of both inhibitors, and aceticlastic methanogens were inhibited to a greater extent than hydrogenotrophic methanogens. Syntrophic bacterial activity, measured by 16S rRNA cDNA, was also reduced following exposure to both inhibitors, but the overall structure of the active bacterial community was not significantly affected.
Collapse
Affiliation(s)
- Tara M Webster
- Civil & Environmental Engineering Department, University of Michigan, Ann Arbor, Michigan
| | - Adam L Smith
- Civil & Environmental Engineering Department, University of Michigan, Ann Arbor, Michigan
| | - Raghav R Reddy
- Civil & Environmental Engineering Department, University of Michigan, Ann Arbor, Michigan
| | - Ameet J Pinto
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Kim F Hayes
- Civil & Environmental Engineering Department, University of Michigan, Ann Arbor, Michigan
| | - Lutgarde Raskin
- Civil & Environmental Engineering Department, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
95
|
Li W, Wang F, Zhang J, Qiao Y, Xu C, Liu Y, Qian L, Li W, Dong B. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:499-506. [PMID: 26674678 DOI: 10.1016/j.scitotenv.2015.11.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community.
Collapse
Affiliation(s)
- Weiying Li
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Feng Wang
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junpeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Qiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lin Qian
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenming Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bingzhi Dong
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
96
|
Prest EI, Hammes F, van Loosdrecht MCM, Vrouwenvelder JS. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Front Microbiol 2016; 7:45. [PMID: 26870010 PMCID: PMC4740787 DOI: 10.3389/fmicb.2016.00045] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/11/2016] [Indexed: 12/27/2022] Open
Abstract
Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer's tap. A new definition and methodological approach for biological stability is proposed.
Collapse
Affiliation(s)
- Emmanuelle I Prest
- Environmental Biotechnology Group, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology Delft, Netherlands
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Dübendorf, Switzerland
| | - Mark C M van Loosdrecht
- Environmental Biotechnology Group, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology Delft, Netherlands
| | - Johannes S Vrouwenvelder
- Environmental Biotechnology Group, Department of Biotechnology, Faculty of Applied Sciences, Delft University of TechnologyDelft, Netherlands; Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Wetsus - European Centre of Excellence for Sustainable Water TechnologyLeeuwarden, Netherlands
| |
Collapse
|
97
|
Li H, Xin H, Li SFY. Multiplex PMA-qPCR Assay with Internal Amplification Control for Simultaneous Detection of Viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in Environmental Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14249-56. [PMID: 26512952 DOI: 10.1021/acs.est.5b03583] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic microorganisms are responsible for many infectious diseases, and pathogen monitoring is important and necessary for water quality control. This study for the first time explored a multiplex quantitative real-time PCR (qPCR) technique combined with propidium monoazide (PMA) to simultaneously detect viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in one reaction from water samples. Sodium lauroyl sarcosinate (sarkosyl) was applied to enhance the dead bacterial permeability of PMA. The sensitivity of the multiplex PMA-qPCR assay achieved two colony-forming units (CFU) per reaction for L. pneumophila and three CFU per reaction for S. typhimurium and S. aureus. No PCR products were amplified from all nontarget control samples. Significantly, with comparable specificity and sensitivity, this newly invented multiplex PMA-qPCR assay took a much shorter time than did conventional culture assays when testing water samples with spiked bacteria and simulated environmental water treatment. The viable multiplex PMA-qPCR assay was further successfully applied to pathogen detection from rivers, canals, and tap water samples after simple water pretreatment.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Faculty of Science, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | - Hongyi Xin
- Bioinformatics Institute, Agency for Science, Technology and Research , 30 Biopolis Street, Singapore 138671
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore , 3 Science Drive 3, Singapore 117543
- NUS Environmental Research Institute, National University of Singapore , 5A Engineering Drive 1, Singapore 117411
| |
Collapse
|
98
|
Leoni E, Sanna T, Zanetti F, Dallolio L. Controlling Legionella and Pseudomonas aeruginosa re-growth in therapeutic spas: implementation of physical disinfection treatments, including UV/ultrafiltration, in a respiratory hydrotherapy system. JOURNAL OF WATER AND HEALTH 2015; 13:996-1005. [PMID: 26608761 DOI: 10.2166/wh.2015.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The study aimed to assess the efficacy of an integrated water safety plan (WSP) in controlling Legionella re-growth in a respiratory hydrotherapy system located in a spa centre, supplied with sulphurous water, which was initially colonized by Legionella pneumophila. Heterotrophic plate counts, Pseudomonas aeruginosa, Legionella spp. were detected in water samples taken 6-monthly from the hydrotherapy equipment (main circuit, entry to benches, final outlets). On the basis of the results obtained by the continuous monitoring and the changes in conditions, the original WSP, including physical treatments of water and waterlines, environmental surveillance and microbiological monitoring, was integrated introducing a UV/ultrafiltration system. The integrated treatment applied to the sulphurous water (microfiltration/UV irradiation/ultrafiltration), waterlines (superheated stream) and distal outlets (descaling/disinfection of nebulizers and nasal irrigators), ensured the removal of Legionella spp. and P. aeruginosa and a satisfactory microbiological quality over time. The environmental surveillance was successful in evaluating the hazard and identifying the most suitable preventive strategies to avoid Legionella re-growth. Ultrafiltration is a technology to take into account in the control of microbial contamination of therapeutic spas, since it does not modify the chemical composition of the water, thus allowing it to retain its therapeutic properties.
Collapse
Affiliation(s)
- E Leoni
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene, Public Health and Medical Statistic, University of Bologna, via S. Giacomo 12, Bologna 40126, Italy E-mail:
| | - T Sanna
- Department of Biomedical and Neuromotor Sciences, School of Hygiene and Preventive Medicine, University of Bologna, via S. Giacomo 12, Bologna 40126, Italy
| | - F Zanetti
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene, Public Health and Medical Statistic, University of Bologna, via S. Giacomo 12, Bologna 40126, Italy E-mail:
| | - L Dallolio
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene, Public Health and Medical Statistic, University of Bologna, via S. Giacomo 12, Bologna 40126, Italy E-mail:
| |
Collapse
|
99
|
Rhoads WJ, Ji P, Pruden A, Edwards MA. Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap. MICROBIOME 2015; 3:67. [PMID: 26627188 PMCID: PMC4666224 DOI: 10.1186/s40168-015-0134-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/17/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lowering water heater temperature set points and using less drinking water are common approaches to conserving water and energy; yet, there are discrepancies in past literature regarding the effects of water heater temperature and water use patterns on the occurrence of opportunistic pathogens, in particular Legionella pneumophila. Our objective was to conduct a controlled, replicated pilot-scale investigation to address this knowledge gap using continuously recirculating water heaters to examine five water heater set points (39-58 °C) under three water use conditions. We hypothesized that L. pneumophila levels at the tap depend on the collective influence of water heater temperature, flow frequency, and the resident plumbing ecology. RESULTS We confirmed temperature setting to be a critical factor in suppressing L. pneumophila growth both in continuously recirculating hot water lines and at distal taps. For example, at 51 °C, planktonic L. pneumophila in recirculating lines was reduced by a factor of 28.7 compared to 39 °C and was prevented from re-colonizing biofilm. However, L. pneumophila still persisted up to 58 °C, with evidence that it was growing under the conditions of this study. Further, exposure to 51 °C water in a low-use tap appeared to optimally select for L. pneumophila (e.g., 125 times greater numbers than in high-use taps). We subsequently explored relationships among L. pneumophila and other ecologically relevant microbes, noting that elevated temperature did not have a general disinfecting effect in terms of total bacterial numbers. We documented the relationship between L. pneumophila and Legionella spp., and noted several instances of correlations with Vermamoeba vermiformis, and generally found that there is a dynamic relationship with this amoeba host over the range of temperatures and water use frequencies examined. CONCLUSIONS Our study provides a new window of understanding into the microbial ecology of potable hot water systems and helps to resolve past discrepancies in the literature regarding the influence of water temperature and stagnation on L. pneumophila, which is the cause of a growing number of outbreaks. This work is especially timely, given society's movement towards "green" buildings and the need to reconcile innovations in building design with public health.
Collapse
Affiliation(s)
- William J Rhoads
- Charles E. Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Pan Ji
- Charles E. Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Charles E. Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marc A Edwards
- Charles E. Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
100
|
Jia S, Shi P, Hu Q, Li B, Zhang T, Zhang XX. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12271-9. [PMID: 26397118 DOI: 10.1021/acs.est.5b03521] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.
Collapse
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Qing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Bing Li
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong , Hong Kong SAR, China
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong , Hong Kong SAR, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University , Nanjing 210023, China
| |
Collapse
|