51
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis and human diseases. IUBMB Life 2022; 74:705-714. [PMID: 35098635 PMCID: PMC9247042 DOI: 10.1002/iub.2597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 07/30/2023]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
52
|
The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. INORGANICS 2022. [DOI: 10.3390/inorganics10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron-sulfur (Fe/S) clusters are protein cofactors that play a crucial role in essential cellular functions. Their ability to rapidly exchange electrons with several redox active acceptors makes them an efficient system for fulfilling diverse cellular needs. They include the formation of a relay for long-range electron transfer in enzymes, the biosynthesis of small molecules required for several metabolic pathways and the sensing of cellular levels of reactive oxygen or nitrogen species to activate appropriate cellular responses. An emerging family of iron-sulfur cluster binding proteins is CIAPIN1, which is characterized by a C-terminal domain of about 100 residues. This domain contains two highly conserved cysteine-rich motifs, which are both involved in Fe/S cluster binding. The CIAPIN1 proteins have been described so far to be involved in electron transfer pathways, providing electrons required for the biosynthesis of important protein cofactors, such as Fe/S clusters and the diferric-tyrosyl radical, as well as in the regulation of cell death. Here, we have first investigated the occurrence of CIAPIN1 proteins in different organisms spanning the entire tree of life. Then, we discussed the function of this family of proteins, focusing specifically on the role that the Fe/S clusters play. Finally, we describe the nature of the Fe/S clusters bound to CIAPIN1 proteins and which are the cellular pathways inserting the Fe/S clusters in the two cysteine-rich motifs.
Collapse
|
53
|
Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nat Commun 2022; 13:1789. [PMID: 35379825 PMCID: PMC8980022 DOI: 10.1038/s41467-022-29426-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity. Follicular and marginal zone B (FoB and MZB, respectively) cells have divergent metabolic characteristics. Here the authors show that deficiency of glutamate cysteine ligase (Gclc), the enzyme for glutathione synthesis, differentially impacts FoB and MZB homeostasis, while specifically impeding FoB activation and downstream antiviral immunity.
Collapse
|
54
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022; 375:1254-1261. [PMID: 35298263 DOI: 10.1126/science.abf0529] [Citation(s) in RCA: 2342] [Impact Index Per Article: 780.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms.
Collapse
Affiliation(s)
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Department of Systems Biology, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital, Boston, MA USA
| | | | - Ana Verma
- Laboratory of Systems Pharmacology, Department of Systems Biology, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mai Abdusamad
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jordan Rossen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Ranad Humeidi
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - John K Eaton
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evgeni Frenkel
- Whitehead Institute and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mustafa Kocak
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Steven M Corsello
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital, Boston, MA USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Department of Systems Biology, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
55
|
Ling Y, Yang X, Zhang X, Guan F, Qi X, Dong W, Liu M, Ma J, Jiang X, Gao K, Li J, Chen W, Gao S, Gao X, Pan S, Wang J, Ma Y, Lu D, Zhang L. Myocardium-specific Isca1 knockout causes iron metabolism disorder and myocardial oncosis in rat. Life Sci 2022; 297:120485. [PMID: 35304126 DOI: 10.1016/j.lfs.2022.120485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
AIMS Multiple mitochondrial dysfunction (MMD) can lead to complex damage of mitochondrial structure and function, which then lead to the serious damage of various metabolic pathways including cerebral abnormalities. However, the effects of MMD on heart, a highly mitochondria-dependent tissue, are still unclear. In this study, we use iron-sulfur cluster assembly 1 (Isca1), which has been shown to cause MMD syndromes type 5 (MMDS5), to verify the above scientific question. MAIN METHODS We generated myocardium-specific Isca1 knockout rat (Isca1flox/flox/α-MHC-Cre) using CRISPR-Cas9 technology. Echocardiography, magnetic resonance imaging (MRI), histopathological examinations and molecular markers detection demonstrated phenotypic characteristics of our model. Immunoprecipitation, immunofluorescence co-location, mitochondrial activity, ATP generation and iron ions detection were used to verify the molecular mechanism. KEY FINDINGS This study was the first to verify the effects of Isca1 deficiency on cardiac development in vivo, that is cardiomyocytes suffer from mitochondria damage and iron metabolism disorder, which leads to myocardial oncosis and eventually heart failure and body death in rat. Furthermore, forward and reverse validation experiments demonstrated that six-transmembrane epithelial antigen of prostate 3 (STEAP3), a new interacting molecule for ISCA1, plays an important role in iron metabolism and energy generation impairment induced by ISCA1 deficiency. SIGNIFICANCE This result provides theoretical basis for understanding of MMDS pathogenesis, especially on heart development and the pathological process of heart diseases, and finally provides new clues for searching clinical therapeutic targets of MMDS.
Collapse
Affiliation(s)
- Yahao Ling
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xinlan Yang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Mengdi Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jiaxin Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xiaoyu Jiang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jing Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.
| |
Collapse
|
56
|
Puglisi R. Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin. Biomedicines 2022; 10:biomedicines10020425. [PMID: 35203634 PMCID: PMC8962269 DOI: 10.3390/biomedicines10020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.
Collapse
Affiliation(s)
- Rita Puglisi
- UK Dementia Research Institute at the Wohl Institute of King's College London, London SE59RT, UK
| |
Collapse
|
57
|
Hadley RC, Zhitnitsky D, Livnat-Levanon N, Masrati G, Vigonsky E, Rose J, Ben-Tal N, Rosenzweig AC, Lewinson O. The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery. J Biol Chem 2022; 298:101445. [PMID: 34822841 PMCID: PMC8689200 DOI: 10.1016/j.jbc.2021.101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli yobA-yebZ-yebY (AZY) operon encodes the proteins YobA, YebZ, and YebY. YobA and YebZ are homologs of the CopC periplasmic copper-binding protein and the CopD putative copper importer, respectively, whereas YebY belongs to the uncharacterized Domain of Unknown Function 2511 family. Despite numerous studies of E. coli copper homeostasis and the existence of the AZY operon in a range of bacteria, the operon's proteins and their functional roles have not been explored. In this study, we present the first biochemical and functional studies of the AZY proteins. Biochemical characterization and structural modeling indicate that YobA binds a single Cu2+ ion with high affinity. Bioinformatics analysis shows that YebY is widespread and encoded either in AZY operons or in other genetic contexts unrelated to copper homeostasis. We also determined the 1.8 Å resolution crystal structure of E. coli YebY, which closely resembles that of the lantibiotic self-resistance protein MlbQ. Two strictly conserved cysteine residues form a disulfide bond, consistent with the observed periplasmic localization of YebY. Upon treatment with reductants, YebY binds Cu+ and Cu2+ with low affinity, as demonstrated by metal-binding analysis and tryptophan fluorescence. Finally, genetic manipulations show that the AZY operon is not involved in copper tolerance or antioxidant defense. Instead, YebY and YobA are required for the activity of the copper-related NADH dehydrogenase II. These results are consistent with a potential role of the AZY operon in copper delivery to membrane proteins.
Collapse
Affiliation(s)
- Rose C Hadley
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Daniel Zhitnitsky
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat-Levanon
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elena Vigonsky
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Jessica Rose
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois, USA.
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
58
|
Campos OA, Attar N, Cheng C, Vogelauer M, Mallipeddi NV, Schmollinger S, Matulionis N, Christofk HR, Merchant SS, Kurdistani SK. A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich's ataxia. SCIENCE ADVANCES 2021; 7:eabj9889. [PMID: 34919435 PMCID: PMC8682991 DOI: 10.1126/sciadv.abj9889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu1+) ions. Since histone H3 enzymatically produces Cu1+ for copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3–mediated Cu1+ toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, due to diminished assembly as occurs in Friedreich’s ataxia or defective distribution, causes severe metabolic and growth defects in Saccharomyces cerevisiae. Decreasing Cu1+ abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster–dependent metabolism and growth. Our findings reveal an interplay between chromatin and mitochondria in Fe-S cluster homeostasis and a potential pathogenic role for histone enzyme activity and Cu1+ in diseases with Fe-S cluster dysfunction.
Collapse
Affiliation(s)
- Oscar A. Campos
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan V. Mallipeddi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sabeeha S. Merchant
- QB3-Berkeley, University of California, Berkeley, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
59
|
Guo Z, Xu S, Chen X, Wang C, Yang P, Qin S, Zhao C, Fei F, Zhao X, Tan PH, Wang J, Xie C. Modulation of MagR magnetic properties via iron-sulfur cluster binding. Sci Rep 2021; 11:23941. [PMID: 34907239 PMCID: PMC8671422 DOI: 10.1038/s41598-021-03344-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors found in all kingdoms of life and play essential roles in fundamental processes, including but not limited to respiration, photosynthesis, and nitrogen fixation. The chemistry of iron-sulfur clusters makes them ideal for sensing various redox environmental signals, while the physics of iron-sulfur clusters and its host proteins have been long overlooked. One such protein, MagR, has been proposed as a putative animal magnetoreceptor. It forms a rod-like complex with cryptochromes (Cry) and possesses intrinsic magnetic moment. However, the magnetism modulation of MagR remains unknown. Here in this study, iron-sulfur cluster binding in MagR has been characterized. Three conserved cysteines of MagR play different roles in iron-sulfur cluster binding. Two forms of iron-sulfur clusters binding have been identified in pigeon MagR and showed different magnetic properties: [3Fe-4S]-MagR appears to be superparamagnetic and has saturation magnetization at 5 K but [2Fe-2S]-MagR is paramagnetic. While at 300 K, [2Fe-2S]-MagR is diamagnetic but [3Fe-4S]-MagR is paramagnetic. Together, the different types of iron-sulfur cluster binding in MagR attribute distinguished magnetic properties, which may provide a fascinating mechanism for animals to modulate the sensitivity in magnetic sensing.
Collapse
Affiliation(s)
- Zhen Guo
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuai Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Xue Chen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Changhao Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Peilin Yang
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Siying Qin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Cuiping Zhao
- Department of Microbiology and Biochemistry, Rutgers University, New Brunswick, NJ, USA
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Xianglong Zhao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Ping-Heng Tan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China.
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, China.
| |
Collapse
|
60
|
Chen CH, Chou YT, Yang YW, Lo KY. High-dose copper activates p53-independent apoptosis through the induction of nucleolar stress in human cell lines. Apoptosis 2021; 26:612-627. [PMID: 34708319 DOI: 10.1007/s10495-021-01692-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Copper is an essential micronutrient involved in many redox reactions in human cells. However, a high concentration of copper, intake from the environment or abnormal accumulation within cells because of genetic mutation, leads to cell toxicity. This is attributable to oxidative damage, altered gene expression, and functional impairment of the mitochondria. Copper stress also alters the morphology of the nucleolus, but the process has not been fully elucidated. In this study, cells were treated with copper sulfate at 3-9 ppm and examined if a high dose of copper would block ribosome biogenesis. With the incorrect distribution of nucleolar proteins nucleophosmin and fibrillarin to the nucleoplasm, ribosomal RNA (rRNA) processing was impaired; 34S rRNA from an abnormal A2 cut increased, and downstream pre-rRNAs decreased. The under-accumulation of 60S subunits was detected using sucrose gradients. From transcriptome analysis, ribosome synthesis-related genes were misregulated. Blockage in ribosome synthesis under copper-treatment induced nucleolar stress and triggered p53-independent apoptosis pathways. Thus, nucleolar stress is one cause of cell death under copper exposure.
Collapse
Affiliation(s)
- Chieh-Hsin Chen
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Ting Chou
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
61
|
Rydz L, Wróbel M, Jurkowska H. Sulfur Administration in Fe-S Cluster Homeostasis. Antioxidants (Basel) 2021; 10:antiox10111738. [PMID: 34829609 PMCID: PMC8614886 DOI: 10.3390/antiox10111738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Collapse
|
62
|
Zuo K, Marjault HB, Bren KL, Rossetti G, Nechushtai R, Carloni P. The two redox states of the human NEET proteins' [2Fe-2S] clusters. J Biol Inorg Chem 2021; 26:763-774. [PMID: 34453614 PMCID: PMC8463382 DOI: 10.1007/s00775-021-01890-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 11/04/2022]
Abstract
The NEET proteins constitute a unique class of [2Fe-2S] proteins. The metal ions bind to three cysteines and one histidine. The proteins' clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical calculations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe-NHis and Fe-SCys bonds, similar to what is seen in other Fe-S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra electron in the [2Fe-2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe-2S]+ is released only by an increase in temperature. Thus, the reduced state of human NEET proteins [2Fe-2S] cluster is kinetically inert. This previously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all [2Fe-2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 and G85 in the latter region share similar allosteric characteristics in both redox states.
Collapse
Affiliation(s)
- Ke Zuo
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
- Department of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
- Department of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel.
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52074, Aachen, Germany.
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- JARA Institute: Molecular Neuroscience and Imaging, Institute of Neuroscience and Medicine INM-11, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
63
|
Sun T, Li Y, Li Y, Li H, Gong Y, Wu J, Ning Y, Ding C, Xu Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front Cell Infect Microbiol 2021; 11:662404. [PMID: 34485169 PMCID: PMC8415117 DOI: 10.3389/fcimb.2021.662404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingxing Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Hailong Li
- National Health Commission Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiyi Gong
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jianqiang Wu
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yating Ning
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
64
|
Zeng L, Li WC, Zhang H, Cao P, Ai CX, Hu B, Song W. Hypoxic acclimation improves mitochondrial bioenergetic function in large yellow croaker Larimichthys crocea under Cu stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112688. [PMID: 34425539 DOI: 10.1016/j.ecoenv.2021.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 05/14/2023]
Abstract
The purpose of this study was to investigate how pre-hypoxia exposure affected the mitochondrial structure and bioenergetic function of large yellow croaker in responding to Cu stress. Fish were acclimated to normoxia and 3.0 mg DO L-1 for 48 h, then subjected to 0 and 120 μg Cu L-1 for another 48 h. Hypoxic acclimation did not affect mitochondrial ultrastructure and reactive oxygen species (ROS), but reduced oxidative phosphorylation (OXPHOS) efficiency. Cu exposure impaired mitochondrial ultrastructure, increased ROS generation and inhibited OXPHOS efficiency. Compared with Cu exposure alone, hypoxic acclimation plus Cu exposure reduced ROS production and improved OXPHOS efficiency by enhancing mitochondrial respiratory control ratio, mitochondrial membrane potential, and activities and gene expressions of electron transport chain enzymes. In conclusion, hypoxic acclimation improved the mitochondrial energy metabolism of large yellow croaker under Cu stress, facilitating our understanding of the molecular mechanisms regarding adaptive responses of hypoxia-acclimated fish under Cu stress.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wen-Cheng Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hui Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ping Cao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Bing Hu
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China
| | - Wei Song
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| |
Collapse
|
65
|
A Review of Multiple Mitochondrial Dysfunction Syndromes, Syndromes Associated with Defective Fe-S Protein Maturation. Biomedicines 2021; 9:biomedicines9080989. [PMID: 34440194 PMCID: PMC8393393 DOI: 10.3390/biomedicines9080989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial proteins carrying iron-sulfur (Fe-S) clusters are involved in essential cellular pathways such as oxidative phosphorylation, lipoic acid synthesis, and iron metabolism. NFU1, BOLA3, IBA57, ISCA2, and ISCA1 are involved in the last steps of the maturation of mitochondrial [4Fe-4S]-containing proteins. Since 2011, mutations in their genes leading to five multiple mitochondrial dysfunction syndromes (MMDS types 1 to 5) were reported. The aim of this systematic review is to describe all reported MMDS-patients. Their clinical, biological, and radiological data and associated genotype will be compared to each other. Despite certain specific clinical elements such as pulmonary hypertension or dilated cardiomyopathy in MMDS type 1 or 2, respectively, nearly all of the patients with MMDS presented with severe and early onset leukoencephalopathy. Diagnosis could be suggested by high lactate, pyruvate, and glycine levels in body fluids. Genetic analysis including large gene panels (Next Generation Sequencing) or whole exome sequencing is needed to confirm diagnosis.
Collapse
|
66
|
Suraci D, Saudino G, Nasta V, Ciofi-Baffoni S, Banci L. ISCA1 Orchestrates ISCA2 and NFU1 in the Maturation of Human Mitochondrial [4Fe-4S] Proteins. J Mol Biol 2021; 433:166924. [PMID: 33711344 DOI: 10.1016/j.jmb.2021.166924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.
Collapse
Affiliation(s)
- Dafne Suraci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
67
|
Zhu X, Boulet A, Buckley KM, Phillips CB, Gammon MG, Oldfather LE, Moore SA, Leary SC, Cobine PA. Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. eLife 2021; 10:64690. [PMID: 33591272 PMCID: PMC7924939 DOI: 10.7554/elife.64690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | - Casey B Phillips
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Micah G Gammon
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Laura E Oldfather
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, United States
| |
Collapse
|
68
|
Smith AD, Garcia-Santamarina S, Ralle M, Loiselle DR, Haystead TA, Thiele DJ. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase. J Biol Chem 2021; 296:100391. [PMID: 33567338 PMCID: PMC7961099 DOI: 10.1016/j.jbc.2021.100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5’-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor–mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.
Collapse
Affiliation(s)
- Aaron D Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
69
|
Wiebelhaus N, Zaengle-Barone JM, Hwang KK, Franz KJ, Fitzgerald MC. Protein Folding Stability Changes Across the Proteome Reveal Targets of Cu Toxicity in E. coli. ACS Chem Biol 2021; 16:214-224. [PMID: 33305953 DOI: 10.1021/acschembio.0c00900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability of metal ionophores to induce cellular metal hyperaccumulation endows them with potent antimicrobial activity; however, the targets and mechanisms behind these outcomes are not well understood. This work describes the first utilization of proteome-wide measurements of protein folding stability in combination with protein expression level analysis to identify protein targets of copper, thereby providing new insight into ionophore-induced copper toxicity in E. coli. The protein folding stability analysis employed a one-pot protocol for pulse proteolysis (PP) in combination with a semi-tryptic peptide enrichment strategy for proteolysis procedures (STEPP) to generate stability profiles for proteins in cell lysates derived from E. coli exposed to copper with and without two ionophores, the antimicrobial agent pyrithione and its β-lactamase-activated prodrug, PcephPT. As part of this work, the above cell lysates were also subject to protein expression level analysis using conventional quantitative bottom-up proteomic methods. The protein folding stability and expression level profiles generated here enabled the effects of ionophore vs copper to be distinguished and revealed copper-driven stability changes in proteins involved in processes spanning metabolism, translation, and cell redox homeostasis. The 159 differentially stabilized proteins identified in this analysis were significantly more numerous (∼3×) than the 53 proteins identified with differential expression levels. These results illustrate the unique information that protein stability measurements can provide to decipher metal-dependent processes in drug mode of action studies.
Collapse
Affiliation(s)
- Nancy Wiebelhaus
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | | | - Kevin K. Hwang
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
70
|
Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol 2021; 115:19-26. [PMID: 33423931 DOI: 10.1016/j.semcdb.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The transition metal Cu is an essential micronutrient that serves as a co-factor for numerous enzymes involved in redox and oxygen chemistry. However, Cu is also a potentially toxic metal, especially to unicellular microbes that are in direct contact with their environment. Since 400 BCE, Cu toxicity has been leveraged for its antimicrobial properties and even today, Cu based materials are being explored as effective antimicrobials against human pathogens spanning bacteria, fungi, and viruses, including the SARS-CoV-2 agent of the 2019-2020 pandemic. Given that Cu has the double-edged property of being both highly toxic and an essential micronutrient, it plays an active and complicated role at the host-pathogen interface. Humans have evolved methods of incorporating Cu into innate and adaptive immune processes and both sides of the penny (Cu toxicity and Cu as a nutrient) are employed. Here we review the evolution of Cu in biology and its multi-faceted roles in infectious disease, from the viewpoints of the microbial pathogens as well as the animal hosts they infect.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
71
|
Joshi A, Farber K, Scheiber IF. Neurotoxicity of copper and copper nanoparticles. ADVANCES IN NEUROTOXICOLOGY 2021:115-157. [DOI: 10.1016/bs.ant.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
72
|
Azam T, Przybyla-Toscano J, Vignols F, Couturier J, Rouhier N, Johnson MK. The Arabidopsis Mitochondrial Glutaredoxin GRXS15 Provides [2Fe-2S] Clusters for ISCA-Mediated [4Fe-4S] Cluster Maturation. Int J Mol Sci 2020; 21:ijms21239237. [PMID: 33287436 PMCID: PMC7730481 DOI: 10.3390/ijms21239237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/23/2023] Open
Abstract
Iron-sulfur (Fe-S) proteins are crucial for many cellular functions, particularly those involving electron transfer and metabolic reactions. An essential monothiol glutaredoxin GRXS15 plays a key role in the maturation of plant mitochondrial Fe-S proteins. However, its specific molecular function is not clear, and may be different from that of the better characterized yeast and human orthologs, based on known properties. Hence, we report here a detailed characterization of the interactions between Arabidopsis thaliana GRXS15 and ISCA proteins using both in vivo and in vitro approaches. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that GRXS15 interacts with each of the three plant mitochondrial ISCA1a/1b/2 proteins. UV-visible absorption/CD and resonance Raman spectroscopy demonstrated that coexpression of ISCA1a and ISCA2 resulted in samples with one [2Fe-2S]2+ cluster per ISCA1a/2 heterodimer, but cluster reconstitution using as-purified [2Fe-2S]-ISCA1a/2 resulted in a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer. Cluster transfer reactions monitored by UV-visible absorption and CD spectroscopy demonstrated that [2Fe-2S]-GRXS15 mediates [2Fe-2S]2+ cluster assembly on mitochondrial ferredoxin and [4Fe-4S]2+ cluster assembly on the ISCA1a/2 heterodimer in the presence of excess glutathione. This suggests that ISCA1a/2 is an assembler of [4Fe-4S]2+ clusters, via two-electron reductive coupling of two [2Fe-2S]2+ clusters. Overall, the results provide new insights into the roles of GRXS15 and ISCA1a/2 in effecting [2Fe-2S]2+ to [4Fe-4S]2+ cluster conversions for the maturation of client [4Fe-4S] cluster-containing proteins in plants.
Collapse
Affiliation(s)
- Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA;
| | | | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier, France;
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (J.P.-T.); (J.C.); (N.R.)
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (J.P.-T.); (J.C.); (N.R.)
| | - Michael K. Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA;
- Correspondence: ; Tel.: +1-706-542-9378; Fax: +1-706-542-9454
| |
Collapse
|
73
|
Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines. Biosci Rep 2020; 40:226508. [PMID: 32970113 PMCID: PMC7538681 DOI: 10.1042/bsr20202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe–2S] cluster into heterodimers. A role in the maturation of iron–sulfur (Fe–S) proteins is also attributed to both proteins. In the present study, we have performed a structure–function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe–S cluster binding in BolA–Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.
Collapse
|
74
|
A copper(II)-binding triazole derivative with ionophore properties is active against Candida spp. J Biol Inorg Chem 2020; 25:1117-1128. [DOI: 10.1007/s00775-020-01828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
|
75
|
Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol 2020; 115:554-573. [PMID: 33034093 DOI: 10.1111/mmi.14623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.
Collapse
Affiliation(s)
- Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
76
|
Grechnikova M, Ženíšková K, Malych R, Mach J, Sutak R. Copper detoxification machinery of the brain-eating amoeba Naegleria fowleri involves copper-translocating ATPase and the antioxidant system. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:126-135. [PMID: 33096396 PMCID: PMC7578549 DOI: 10.1016/j.ijpddr.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022]
Abstract
Copper is a trace metal that is necessary for all organisms but toxic when present in excess. Different mechanisms to avoid copper toxicity have been reported to date in pathogenic organisms such as Cryptococcus neoformans and Candida albicans. However, little if anything is known about pathogenic protozoans despite their importance in human and veterinary medicine. Naegleria fowleri is a free-living amoeba that occurs naturally in warm fresh water and can cause a rapid and deadly brain infection called primary amoebic meningoencephalitis (PAM). Here, we describe the mechanisms employed by N. fowleri to tolerate high copper concentrations, which include various strategies such as copper efflux mediated by a copper-translocating ATPase and upregulation of the expression of antioxidant enzymes and obscure hemerythrin-like and protoglobin-like proteins. The combination of different mechanisms efficiently protects the cell and ensures its high copper tolerance, which can be advantageous both in the natural environment and in the host. Nevertheless, we demonstrate that copper ionophores are potent antiamoebic agents; thus, copper metabolism may be considered a therapeutic target. N. fowleri employs the combination of copper efflux and antioxidant system to ensure a high copper tolerance. Copper efflux in N. fowleri is mediated by a copper-translocating P-type ATPase. Copper ionophores have amoebicidal effect against N. fowleri and thus may be potentially used as antiamoebic agents. Iron-binding proteins hemerythrin and protoglobin are highly upregulated in N. fowleri under copper overload.
Collapse
Affiliation(s)
- Maria Grechnikova
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
77
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
78
|
Cobine PA, Moore SA, Leary SC. Getting out what you put in: Copper in mitochondria and its impacts on human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118867. [PMID: 32979421 DOI: 10.1016/j.bbamcr.2020.118867] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
Collapse
Affiliation(s)
- Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
79
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
80
|
What Role Does COA6 Play in Cytochrome C Oxidase Biogenesis: A Metallochaperone or Thiol Oxidoreductase, or Both? Int J Mol Sci 2020; 21:ijms21196983. [PMID: 32977416 PMCID: PMC7582641 DOI: 10.3390/ijms21196983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Complex IV (cytochrome c oxidase; COX) is the terminal complex of the mitochondrial electron transport chain. Copper is essential for COX assembly, activity, and stability, and is incorporated into the dinuclear CuA and mononuclear CuB sites. Multiple assembly factors play roles in the biogenesis of these sites within COX and the failure of this intricate process, such as through mutations to these factors, disrupts COX assembly and activity. Various studies over the last ten years have revealed that the assembly factor COA6, a small intermembrane space-located protein with a twin CX9C motif, plays a role in the biogenesis of the CuA site. However, how COA6 and its copper binding properties contribute to the assembly of this site has been a controversial area of research. In this review, we summarize our current understanding of the molecular mechanisms by which COA6 participates in COX biogenesis.
Collapse
|
81
|
Invernici M, Trindade IB, Cantini F, Louro RO, Piccioli M. Measuring transverse relaxation in highly paramagnetic systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:431-442. [PMID: 32710399 PMCID: PMC7508935 DOI: 10.1007/s10858-020-00334-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/09/2020] [Indexed: 05/16/2023]
Abstract
The enhancement of nuclear relaxation rates due to the interaction with a paramagnetic center (known as Paramagnetic Relaxation Enhancement) is a powerful source of structural and dynamics information, widely used in structural biology. However, many signals affected by the hyperfine interaction relax faster than the evolution periods of common NMR experiments and therefore they are broadened beyond detection. This gives rise to a so-called blind sphere around the paramagnetic center, which is a major limitation in the use of PREs. Reducing the blind sphere is extremely important in paramagnetic metalloproteins. The identification, characterization, and proper structural restraining of the first coordination sphere of the metal ion(s) and its immediate neighboring regions is key to understand their biological function. The novel HSQC scheme we propose here, that we termed R2-weighted, HSQC-AP, achieves this aim by detecting signals that escaped detection in a conventional HSQC experiment and provides fully reliable R2 values in the range of 1H R2 rates ca. 50-400 s-1. Independently on the type of paramagnetic center and on the size of the molecule, this experiment decreases the radius of the blind sphere and increases the number of detectable PREs. Here, we report the validation of this approach for the case of PioC, a small protein containing a high potential 4Fe-4S cluster in the reduced [Fe4S4]2+ form. The blind sphere was contracted to a minimal extent, enabling the measurement of R2 rates for the cluster coordinating residues.
Collapse
Affiliation(s)
- Michele Invernici
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal.
| | - Mario Piccioli
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
82
|
Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020; 25:E3860. [PMID: 32854270 PMCID: PMC7503856 DOI: 10.3390/molecules25173860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
Collapse
Affiliation(s)
- Trnka Daniel
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Hossain Md Faruq
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Jordt Laura Magdalena
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Gellert Manuela
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Lillig Christopher Horst
- Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
83
|
Blahut M, Sanchez E, Fisher CE, Outten FW. Fe-S cluster biogenesis by the bacterial Suf pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118829. [PMID: 32822728 DOI: 10.1016/j.bbamcr.2020.118829] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
Biogenesis of iron-sulfur (FeS) clusters in an essential process in living organisms due to the critical role of FeS cluster proteins in myriad cell functions. During biogenesis of FeS clusters, multi-protein complexes are used to drive the mobilization and protection of reactive sulfur and iron intermediates, regulate assembly of various FeS clusters on an ATPase-dependent, multi-protein scaffold, and target nascent clusters to their downstream protein targets. The evolutionarily ancient sulfur formation (Suf) pathway for FeS cluster assembly is found in bacteria and archaea. In Escherichia coli, the Suf pathway functions as an emergency pathway under conditions of iron limitation or oxidative stress. In other pathogenic bacteria, such as Mycobacterium tuberculosis and Enterococcus faecalis, the Suf pathway is the sole source for FeS clusters and therefore is a potential target for the development of novel antibacterial compounds. Here we summarize the considerable progress that has been made in characterizing the first step of mobilization and protection of reactive sulfur carried out by the SufS-SufE or SufS-SufU complex, FeS cluster assembly on SufBC2D scaffold complexes, and the downstream trafficking of nascent FeS clusters to A-type carrier (ATC) proteins. Cell Biology of Metals III edited by Roland Lill and Mick Petris.
Collapse
Affiliation(s)
- Matthew Blahut
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Enis Sanchez
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
84
|
The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. INORGANICS 2020. [DOI: 10.3390/inorganics8070043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.
Collapse
|
85
|
Zhang Q, Fang G, Chen W, Zhong X, Long Y, Qin H, Ye J. The molecular effects of ultrasound on the expression of cellular proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137439. [PMID: 32143036 DOI: 10.1016/j.scitotenv.2020.137439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
High frequency and low intensity, diagnostic ultrasound methods are recognized to be safe in epidemiology and pathology but the bioeffects of these methods on molecular and proteomic levels are unknown. As a representative organism that can directly reflect the molecular response to stresses, Escherichia coli was selected for exposure to ultrasound probes C1-5, M5s and 9 L for 10 min and 20 min. ITRAQ was used to measure the expression of the cellular proteome. The results showed that both the frequency and time of exposure to ultrasound affected the proteome expression. Fifty biological processes were affected and nineteen metabolic processes, including carbohydrate metabolism, asparagine metabolism and phosphate import were differentially regulated. Lower frequency ultrasound caused copper export and iron‑sulfur cluster biosynthesis upregulation. Nine proteins (GlpD, AsnB, TdcB, CopA, IscR, IscU, IscS, IscA, RecA) were key for the adaption to ultrasound. Accordingly, the results of the potential risks based on the calculation of the orthologous genome clarified that relevant pathways and potentially sensitive individuals were worthy of further study. These findings offer insights into reveal the bioeffects of ultrasound at the metabolic network and proteomic levels.
Collapse
Affiliation(s)
- Qinglin Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guiting Fang
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xing Zhong
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
86
|
Kadirvel P, Subramanian A, Sridharan N, Subramanian S, Vimaladhasan S, Anishetty S. Molecular dynamics simulation study of Plasmodium falciparum and Escherichia coli SufA: Exploration of conformational changes possibly involved in iron-sulfur cluster transfer. J Biomol Struct Dyn 2020; 39:3300-3311. [PMID: 32364014 DOI: 10.1080/07391102.2020.1764389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron-sulfur (Fe-S) clusters are one of the earliest known metal complexes in biological molecules. Suf system is one of the Fe-S biogenesis pathways. SufA belongs to the Suf pathway. It is an A-type carrier protein that transfers Fe-S clusters from the scaffold to target proteins. Structural studies were performed for the Suf pathway protein, SufA, in order to explore the conformational changes that probably aid in the transfer of Fe-S clusters to target proteins. Three-dimensional (3D) structure of Plasmodium falciparum (Pf) SufA homodimer was obtained by homology modeling using 3D structure of Escherichia coli (Ec) SufA as template. Molecular dynamics (MD) simulation of Pf SufA and Ec SufA homodimers followed by trajectory and pocket analyses were carried out. A co-ordinated displacement of the homodimeric chains in the interfacial region, resembling a swinging trapeze-like movement was observed. Potential involvement of this swinging trapeze-like movement of the residues belonging to the interfacial region has been proposed as a probable mechanism that assists in the transfer of Fe-S cluster from SufA to apo proteins. This was substantiated by protein-protein interaction studies in Pf SufA by performing molecular docking of 3D conformations of Pf SufA obtained from MD trajectory at every 1 ns interval with Pf ferredoxin.Communicated by Ramaswamy H. Sarma.
Collapse
|
87
|
Jia M, Sen S, Wachnowsky C, Fidai I, Cowan JA, Wysocki VH. Characterization of [2Fe-2S]-Cluster-Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods. Angew Chem Int Ed Engl 2020; 59:6724-6728. [PMID: 32031732 PMCID: PMC7170024 DOI: 10.1002/anie.201915615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 01/08/2023]
Abstract
Many iron-sulfur proteins involved in cluster trafficking form [2Fe-2S]-cluster-bridged complexes that are often challenging to characterize because of the inherent instability of the cluster at the interface. Herein, we illustrate the use of fast, online buffer exchange coupled to a native mass spectrometry (OBE nMS) method to characterize [2Fe-2S]-cluster-bridged proteins and their transient cluster-transfer intermediates. The use of this mechanistic and protein-characterization tool is demonstrated with holo glutaredoxin 5 (GLRX5) homodimer and holo GLRX5:BolA-like protein 3 (BOLA3) heterodimer. Using the OBE nMS method, cluster-transfer reactions between the holo-dimers and apo-ferredoxin (FDX2) are monitored, and intermediate [2Fe-2S] species, such as (FDX2:GLRX5:[2Fe-2S]:GSH) and (FDX2:BOLA3:GLRX5:[2Fe-2S]:GSH) are detected. The OBE nMS method is a robust technique for characterizing iron-sulfur-cluster-bridged protein complexes and transient iron-sulfur-cluster transfer intermediates.
Collapse
Affiliation(s)
- Mengxuan Jia
- Department of Chemistry and Biochemistry; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210 (USA)
| | - Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - J. A. Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210 (USA)
| |
Collapse
|
88
|
Jia M, Sen S, Wachnowsky C, Fidai I, Cowan JA, Wysocki VH. Characterization of [2Fe–2S]‐Cluster‐Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengxuan Jia
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State University Columbus OH 43210 USA
| | - Sambuddha Sen
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Christine Wachnowsky
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Insiya Fidai
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - James A. Cowan
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Vicki H. Wysocki
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State University Columbus OH 43210 USA
| |
Collapse
|
89
|
Pacheu-Grau D, Wasilewski M, Oeljeklaus S, Gibhardt CS, Aich A, Chudenkova M, Dennerlein S, Deckers M, Bogeski I, Warscheid B, Chacinska A, Rehling P. COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria. J Mol Biol 2020; 432:2067-2079. [PMID: 32061935 PMCID: PMC7254062 DOI: 10.1016/j.jmb.2020.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany.
| | - Michał Wasilewski
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland; ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Poland
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, D-79104 Freiburg, Germany
| | - Christine Silvia Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Margarita Chudenkova
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, D-79104 Freiburg, Germany
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland; ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Poland
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max-Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
90
|
Outlining the Complex Pathway of Mammalian Fe-S Cluster Biogenesis. Trends Biochem Sci 2020; 45:411-426. [PMID: 32311335 DOI: 10.1016/j.tibs.2020.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Iron-sulfur (Fe-S) clusters (ISCs) are ubiquitous cofactors essential to numerous fundamental cellular processes. Assembly of ISCs and their insertion into apoproteins involves the function of complex cellular machineries that operate in parallel in the mitochondrial and cytosolic/nuclear compartments of mammalian cells. The spectrum of diseases caused by inherited defects in genes that encode the Fe-S assembly proteins has recently expanded to include multiple rare human diseases, which manifest distinctive combinations and severities of global and tissue-specific impairments. In this review, we provide an overview of our understanding of ISC biogenesis in mammalian cells, discuss recent work that has shed light on the molecular interactions that govern ISC assembly, and focus on human diseases caused by failures of the biogenesis pathway.
Collapse
|
91
|
Lebigot E, Hully M, Amazit L, Gaignard P, Michel T, Rio M, Lombès M, Thérond P, Boutron A, Golinelli-Cohen MP. Expanding the phenotype of mitochondrial disease: Novel pathogenic variant in ISCA1 leading to instability of the iron-sulfur cluster in the protein. Mitochondrion 2020; 52:75-82. [PMID: 32092383 DOI: 10.1016/j.mito.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
Abstract
We report a patient carrying a novel pathogenic variant p.(Tyr101Cys) in ISCA1 leading to MMDS type 5. He initially presented a psychomotor regression with loss of gait and language skills and a tetrapyramidal spastic syndrome. Biochemical analysis of patient fibroblasts revealed impaired lipoic acid synthesis and decreased activities of complex I and II of respiratory chain. While ISCA1 is involved in the mitochondrial machinery for iron-sulfur cluster biogenesis, these dysfunctions are secondary to impaired maturation of mitochondrial proteins containing the [4Fe-4S] clusters. Expression and purification of the human ISCA1 showed a decreased stability of the [2Fe-2S] cluster in the mutated protein.
Collapse
Affiliation(s)
- E Lebigot
- Biochemistry Department, Hôpital Bicêtre, APHP Université Paris-Saclay, Le Kremlin Bicêtre F-94275, France; Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - M Hully
- Pediatric Neurology Department, Hôpital Necker Enfants Malades, Institut Imagine, APHP Centre - Université de Paris, Paris F-75015, France
| | - L Amazit
- Institut National de la Santé et de la Recherche Médicale Unité 1185, Unité Mixte de Recherche Faculté de Médecine Paris-Sud, Université Paris-Sud, Université Paris Saclay, Le Kremlin Bicêtre F-94276, France; Unité mixte de Service 32, Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre F-94276, France
| | - P Gaignard
- Biochemistry Department, Hôpital Bicêtre, APHP Université Paris-Saclay, Le Kremlin Bicêtre F-94275, France
| | - T Michel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - M Rio
- Genetic Department, Hôpital Necker Enfants Malades, Institut Imagine, APHP Centre - Université de Paris, Paris F-75015, France
| | - M Lombès
- Institut National de la Santé et de la Recherche Médicale Unité 1185, Unité Mixte de Recherche Faculté de Médecine Paris-Sud, Université Paris-Sud, Université Paris Saclay, Le Kremlin Bicêtre F-94276, France
| | - P Thérond
- Biochemistry Department, Hôpital Bicêtre, APHP Université Paris-Saclay, Le Kremlin Bicêtre F-94275, France
| | - A Boutron
- Biochemistry Department, Hôpital Bicêtre, APHP Université Paris-Saclay, Le Kremlin Bicêtre F-94275, France
| | - M P Golinelli-Cohen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
92
|
Structural properties of [2Fe-2S] ISCA2-IBA57: a complex of the mitochondrial iron-sulfur cluster assembly machinery. Sci Rep 2019; 9:18986. [PMID: 31831856 PMCID: PMC6908724 DOI: 10.1038/s41598-019-55313-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023] Open
Abstract
In mitochondria, a complex protein machinery is devoted to the maturation of iron-sulfur cluster proteins. Structural information on the last steps of the machinery, which involve ISCA1, ISCA2 and IBA57 proteins, needs to be acquired in order to define how these proteins cooperate each other. We report here the use of an integrative approach, utilizing information from small-angle X-ray scattering (SAXS) and bioinformatics-driven docking prediction, to determine a low-resolution structural model of the human mitochondrial [2Fe-2S]2+ ISCA2-IBA57 complex. In the applied experimental conditions, all the data converge to a structural organization of dimer of dimers for the [2Fe-2S]2+ ISCA2-IBA57 complex with ISCA2 providing the homodimerization core interface. The [2Fe-2S] cluster is out of the ISCA2 core while being shared with IBA57 in the dimer. The specific interaction pattern identified from the dimeric [2Fe-2S]2+ ISCA2-IBA57 structural model allowed us to define the molecular grounds of the pathogenic Arg146Trp mutation of IBA57. This finding suggests that the dimeric [2Fe-2S] ISCA2-IBA57 hetero-complex is a physiologically relevant species playing a role in mitochondrial [4Fe-4S] protein biogenesis.
Collapse
|
93
|
Nasta V, Suraci D, Gourdoupis S, Ciofi-Baffoni S, Banci L. A pathway for assembling [4Fe-4S] 2+ clusters in mitochondrial iron-sulfur protein biogenesis. FEBS J 2019; 287:2312-2327. [PMID: 31724821 DOI: 10.1111/febs.15140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
During its late steps, the mitochondrial iron-sulfur cluster (ISC) assembly machinery leads to the formation of [4Fe-4S] clusters. In vivo studies revealed that several proteins are implicated in the biosynthesis and trafficking of [4Fe-4S] clusters in mitochondria. However, they do not provide a clear picture into how these proteins cooperate. Here, we showed that three late-acting components of the mitochondrial ISC assembly machinery (GLRX5, BOLA3, and NFU1) are part of a ISC assembly pathway leading to the synthesis of a [4Fe-4S]2+ cluster on NFU1. We showed that the [2Fe-2S]2+ GLRX5-BOLA3 complex transfers its cluster to monomeric apo NFU1 to form, in the presence of a reductant, a [4Fe-4S]2+ cluster bound to dimeric NFU1. The cluster formation on NFU1 does not occur with [2Fe-2S]2+ GLRX5, and thus, the [4Fe-4S] cluster assembly pathway is activated only in the presence of BOLA3. These results define NFU1 as an 'assembler' of [4Fe-4S] clusters, that is, a protein able of converting two [2Fe-2S]2+ clusters into a [4Fe-4S]2+ cluster. Finally, we found that the [4Fe-4S]2+ cluster bound to NFU1 has a coordination site which is easily accessible to sulfur-containing ligands, as is typically observed in metallochaperones. This finding supports a role for NFU1 in promoting rapid and controlled cluster-exchange reaction.
Collapse
Affiliation(s)
- Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Italy.,Department of Chemistry, University of Florence, Italy
| | - Dafne Suraci
- Magnetic Resonance Center CERM, University of Florence, Italy
| | | | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Italy.,Department of Chemistry, University of Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Italy.,Department of Chemistry, University of Florence, Italy
| |
Collapse
|
94
|
Herrera MG, Noguera ME, Sewell KE, Agudelo Suárez WA, Capece L, Klinke S, Santos J. Structure of the Human ACP-ISD11 Heterodimer. Biochemistry 2019; 58:4596-4609. [PMID: 31664822 DOI: 10.1021/acs.biochem.9b00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.
Collapse
Affiliation(s)
- María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina.,Instituto de Química y Fisicoquímica Biológicas , Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Karl Ellioth Sewell
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - William Armando Agudelo Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC) , Av. 50 No. 26-20 , Bogotá D.C. , Colombia.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir , IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM , Av. Patricias Argentinas 435 , C1405BWE Buenos Aires , Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| |
Collapse
|
95
|
Camponeschi F, Muzzioli R, Ciofi-Baffoni S, Piccioli M, Banci L. Paramagnetic 1H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes. J Mol Biol 2019; 431:4514-4522. [PMID: 31493409 DOI: 10.1016/j.jmb.2019.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
Iron-sulfur clusters in radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Here we showed that 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals of metal-ligands is a powerful tool to monitor the binding of SAM and of the octanoyl-peptide substrate to the two [4Fe-4S] clusters of human lipoyl synthase. The paramagnetically shifted signals of the iron-ligands were specifically assigned to each of the two bound [4Fe-4S] clusters, and then used to examine the interaction of SAM and substrate molecules with each of the two [4Fe-4S] clusters of human lipoyl synthase. 1H NMR spectroscopy can therefore contribute to the description of the catalityc mechanism of radical SAM enzymes.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Riccardo Muzzioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
96
|
Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Int J Mol Sci 2019; 20:ijms20153830. [PMID: 31387303 PMCID: PMC6696091 DOI: 10.3390/ijms20153830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential cofactor for aerobic respiration, since it is required as a redox cofactor in Cytochrome c Oxidase (COX). This ancient and highly conserved enzymatic complex from the family of heme-copper oxidase possesses two copper sites: CuA and CuB. Biosynthesis of the oxidase is a complex, stepwise process that requires a high number of assembly factors. In this review, we summarize the state-of-the-art in the assembly of COX, with special emphasis in the assembly of copper sites. Assembly of the CuA site is better understood, being at the same time highly variable among organisms. We also discuss the current challenges that prevent the full comprehension of the mechanisms of assembly and the pending issues in the field.
Collapse
|
97
|
Sarode GV, Kim K, Kieffer DA, Shibata NM, Litwin T, Czlonkowska A, Medici V. Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019; 15:43. [PMID: 30868361 PMCID: PMC6568258 DOI: 10.1007/s11306-019-1505-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Wilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult. OBJECTIVE The aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition. METHODS Hydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis. RESULTS After adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress. CONCLUSIONS Patients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Gaurav V Sarode
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Tomas Litwin
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Czlonkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
98
|
Gourdoupis S, Nasta V, Ciofi-Baffoni S, Banci L, Calderone V. In-house high-energy-remote SAD phasing using the magic triangle: how to tackle the P1 low symmetry using multiple orientations of the same crystal of human IBA57 to increase the multiplicity. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:317-324. [DOI: 10.1107/s2059798319000214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/04/2019] [Indexed: 11/10/2022]
Abstract
This article describes the approach used to solve the structure of human IBA57 in-house by 5-amino-2,4,6-triiodoisophthalic acid (I3C) high-energy-remote single-wavelength anomalous dispersion (SAD) phasing. Multiple orientations of the same triclinic crystal were exploited to acquire sufficient real data multiplicity for phasing. How the collection of an in-house native data set and its joint use with the I3C derivative through a SIRAS approach decreases the data multiplicity needed by almost 50% is described. Furthermore, it is illustrated that there is a clear data-multiplicity threshold value for success and failure in phasing, and how adding further data does not significantly affect substructure solution and model building. To our knowledge, this is the only structure present in the PDB that has been solved in-house by remote SAD phasing in space group P1 using only one crystal. All of the raw data used, derived from the different orientations, have been uploaded to Zenodo in order to enable software developers to improve methods for data processing and structure solution, and for educational purposes.
Collapse
|
99
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
100
|
Dennison C. The Coordination Chemistry of Copper Uptake and Storage for Methane Oxidation. Chemistry 2018; 25:74-86. [PMID: 30281847 DOI: 10.1002/chem.201803444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Methanotrophs are remarkable bacteria that utilise large quantities of copper (Cu) to oxidize the potent greenhouse gas methane. To assist in providing the Cu they require for this process some methanotrophs can secrete the Cu-sequestering modified peptide methanobactin. These small molecules bind CuI with very high affinity and crystal structures have given insight into why this is the case, and also how the metal ion may be released within the cell. A much greater proportion of methanotrophs, genomes of which have been sequenced, possess a member of a newly discovered bacterial family of copper storage proteins (the Csps). These are tetramers of four-helix bundles whose cores are lined with Cys residues enabling the binding of large numbers of CuI ions. In methanotrophs, a Csp exported from the cytosol stores CuI for the active site of the ubiquitous enzyme that catalyses the oxidation of methane. The presence of cytosolic Csps, not only in methanotrophs but in a wide range of bacteria, challenges the dogma that these organisms have no requirement for Cu in this location. The properties of the Csps, with an emphasis on CuI binding and the structures of the sites formed, are the primary focus of this review.
Collapse
Affiliation(s)
- Christopher Dennison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|