51
|
Liu B, Liang S, Wang Z, Sun Q, He F, Gai S, Yang P, Cheng Z, Lin J. A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101223. [PMID: 34145652 DOI: 10.1002/adma.202101223] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Recently, enzyme dynamic therapy (EDT) has drawn much attention as a new type of dynamic therapy. However, the selection of suitable nanocarriers to deliver chloroperoxidase (CPO) and enhancement of the level of hydrogen peroxide (H2 O2 ) in the tumor microenvironment (TME) are critical factors for improving the efficiency of EDT. In this study, a rapidly decomposing nanocomposite is designed using tetra-sulfide-bond-incorporating dendritic mesoporous organosilica (DMOS) as a nanocarrier, followed by loading CPO and sodium-hyaluronate-modified calcium peroxide nanoparticles (CaO2 -HA NPs). The nanocomposite can effectively generate singlet oxygen (1 O2 ) for tumor therapy without any exogenous stimulus via trimodal-enhanced EDT, including DMOS-induced depletion of glutathione (GSH), H2 O2 compensation from CaO2 -HA NPs in mildly acidic TME, and oxidative stress caused by overloading of Ca2+ . As tetra-sulfide bonds are sensitive to GSH, DMOS can generate hydrogen sulfide (H2 S) gas as a new kind of H2 S gas nanoreactor. Additionally, the overloading of Ca2+ can cause tumor calcification to accelerate in vivo tumor necrosis and promote computed tomography imaging efficacy. Therefore, a novel H2 S gas, EDT, and Ca2+ -interference combined therapy strategy is developed.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
52
|
Li Y, Gong T, Gao H, Chen Y, Li H, Zhao P, Jiang Y, Wang K, Wu Y, Zheng X, Bu W. ZIF-Based Nanoparticles Combine X-Ray-Induced Nitrosative Stress with Autophagy Management for Hypoxic Prostate Cancer Therapy. Angew Chem Int Ed Engl 2021; 60:15472-15481. [PMID: 33964189 DOI: 10.1002/anie.202103015] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Although reactive oxygen species (ROS)-mediated tumor treatments are predominant in clinical applications, ROS-induced protective autophagy promotes cell survival, especially in hypoxic tumors. Herein, X-ray triggered nitrite (NO2 - ) is used for hypoxic prostate cancer therapy by inhibiting autophagy and inducing nitrosative stress based on an electrophilic zeolitic imidazole framework (ZIF-82-PVP). After internalization of pH-responsive ZIF-82-PVP nanoparticles, electrophilic ligands and Zn2+ are delivered into cancer cells. Electrophilic ligands can not only consume GSH under hypoxia but also capture low-energy electrons derived from X-rays to generate NO2 - , which inhibits autophagy and further elevates lethal nitrosative stress levels. In addition, dissociated Zn2+ specifically limits the migration and invasion of prostate cancer cells through ion interference. In vitro and in vivo results indicate that ZIF-82-PVP nanoparticles under X-ray irradiation can effectively promote the apoptosis of hypoxic prostate cancer cells. Overall, this nitrosative stress-mediated tumor therapy strategy provides a novel approach targeting hypoxic tumors.
Collapse
Affiliation(s)
- Yanli Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Teng Gong
- Key Laboratory of Molecular Target and Clinical Pharmacology & the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hongbao Gao
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Yang Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Huiyan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Peiran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yaqin Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Kun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
53
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
54
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
55
|
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Han X, Gu C, Ding Y, Yu J, Li K, Zhao D, Chen B. Stable Eu 3+/Cu 2+-Functionalized Supramolecular Zinc(II) Complexes as Fluorescent Probes for Turn-On and Ratiometric Detection of Hydrogen Sulfide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20371-20379. [PMID: 33885284 DOI: 10.1021/acsami.1c04013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabrication of dual-emitting materials for H2S sensing under environmental and biological conditions is currently of great interest. In this work, a new chemically stable metal supramolecular complex [Zn2(pda)2(H2O)3]·(H2O)0.5 (Znpda, pda = 1,10-phenanthroline-2,9-dicarboxylic acid), with accessible uncoordinated carboxylic oxygen sites, is solvothermally synthesized. It can serve as a host in luminescent hybrid composites. By incorporating Eu3+ and Cu2+ in the supramolecular coordination network, we obtained the dual-emitting hybrid material Eu3+/Cu2+@Znpda, which simultaneously shows intense ligand and weak Eu3+ emissions in HEPES buffer solution. Since H2S can easily chelate with Cu2+ and recover the blocked "antenna effect" between the ligand and Eu3+, Eu3+/Cu2+@Znpda possesses both the turn-on and ratiomectric fluorescence response to H2S. Accordingly, we designed an IMPLICATION logic gate for H2S recognition by employing the fluorescence intensity ratio between the ligand and Eu3+ as the output signal. In addition, Eu3+/Cu2+@Znpda shows a fast response (<1 min) and high sensitivity (1.45 μM) to H2S over other interfering species in the HEPES buffer solution, highlighting its potential use for H2S sensing under environmental and biological conditions.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Chao Gu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanyun Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jiulong Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Kunyi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
57
|
Abstract
Metal–organic frameworks (MOFs) are emerging porous materials with highly tunable structures developed in the 1990s, while organometallic chemistry is of fundamental importance for catalytic transformation in the academic and industrial world for many decades. Through the years, organometallic chemistry has been incorporated into functional MOF construction for diverse applications. Here, we will focus on how organometallic chemistry is applied in MOF design and modifications from linker-centric and metal-cluster-centric perspectives, respectively. Through structural design, MOFs can function as a tailorable platform for traditional organometallic transformations, including reaction of alkenes, cross-coupling reactions, and C–H activations. Besides, an overview will be made on other application categories of organometallic MOFs, such as gas adsorption, magnetism, quantum computing, and therapeutics.
Collapse
|
58
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
59
|
Quan Y, Shi W, Song Y, Jiang X, Wang C, Lin W. Bifunctional Metal-Organic Layer with Organic Dyes and Iron Centers for Synergistic Photoredox Catalysis. J Am Chem Soc 2021; 143:3075-3080. [PMID: 33606532 DOI: 10.1021/jacs.1c01083] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report the design of a bifunctional metal-organic layer (MOL), Hf-EY-Fe, by bridging eosin Y (EY)-capped Hf6 secondary building units (SBUs) with Fe-TPY (TPY = 4'-(4-carboxyphenyl)[2,2':6',2''-terpyridine]-5,5''-dicarboxylate) ligands. With the organic dye EY as an efficient photosensitizer and TPY-Fe(OTf)2 as the catalytic center, Hf-EY-Fe efficiently catalyzes aminotrifluoromethylation, hydroxytrifluoromethylation, and chlorotrifluoromethylation of alkenes. Hf-EY-Fe also catalyzes the synthesis of CF3-substituted derivatives of large bioactive molecules such as rotenone, estrone, and adapalene with sizes of up to 2.2 nm. The proximity between EY and iron centers and their site isolation in Hf-EY-Fe enhance catalytic activity while inhibiting their mutual deactivation, leading to high turnover numbers of up to 1840 and good recyclability of the MOL catalyst.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenjie Shi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Yang Song
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
60
|
Ren X, Han Y, Xu Y, Liu T, Cui M, Xia L, Li H, Gu Y, Wang P. Diversified strategies based on nanoscale metal-organic frameworks for cancer therapy: The leap from monofunctional to versatile. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
61
|
Liu J, Hu F, Wu M, Tian L, Gong F, Zhong X, Chen M, Liu Z, Liu B. Bioorthogonal Coordination Polymer Nanoparticles with Aggregation-Induced Emission for Deep Tumor-Penetrating Radio- and Radiodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007888. [PMID: 33491820 DOI: 10.1002/adma.202007888] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 05/15/2023]
Abstract
Radiodynamic therapy (RDT), an emerging therapeutic approach for cancer treatment by employing ionizing irradiation to induce localized photodynamic therapy (PDT) can overcome the drawbacks of the limited penetration depth for traditional PDT and the unconcentrated energy in the tumor for traditional radiotherapy (RT). Taking advantage of aggregation-induced emission (AIE) photosensitizers with bright fluorescence and efficient singlet oxygen production in the aggregate state, Hf-AIE coordination polymer nanoparticles (CPNs), which show both strong RT and RDT effect under X-ray irradiation, are developed. Furthermore, to enhance the tumor accumulation and prolong the tumor retention of the CPNs, bioorthogonal click chemistry is applied in the system through coupling between dibenzocyclooctyne (DBCO)-modified CPNs (Hf-AIE-PEG-DBCO) (PEG: poly(ethylene glycol)) and azide groups on the cell membrane formed by metabolic glycoengineering. Thanks to the high penetration of X-ray irradiation, the bioorthogonal-assisted RT and RDT combination therapy realizes significant killing of cancer cells without showing noticeable biotoxicity after intravenous administration of CPNs.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Longlong Tian
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoyan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
62
|
Hu H, Feng W, Qian X, Yu L, Chen Y, Li Y. Emerging Nanomedicine-Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005062. [PMID: 33565157 DOI: 10.1002/adma.202005062] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Indexed: 05/18/2023]
Abstract
The rapid knowledge growth of nanomedicine and nanobiotechnology enables and promotes the emergence of distinctive disease-specific therapeutic modalities, among which nanomedicine-enabled/augmented nanodynamic therapy (NDT), as triggered by either exogenous or endogenous activators on nanosensitizers, can generate reactive radicals for accomplishing efficient disease nanotherapies with mitigated side effects and endowed disease specificity. As one of the most representative modalities of NDT, traditional light-activated photodynamics suffers from the critical and unsurmountable issues of the low tissue-penetration depth of light and the phototoxicity of the photosensitizers. To overcome these obstacles, versatile nanomedicine-enabled/augmented NDTs have been explored for satisfying varied biomedical applications, which strongly depend on the physicochemical properties of the involved nanomedicines and nanosensitizers. These distinctive NDTs refer to sonodynamic therapy (SDT), thermodynamic therapy (TDT), electrodynamic therapy (EDT), piezoelectric dynamic therapy (PZDT), pyroelectric dynamic therapy (PEDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT). Herein, the critical roles, functions, and biological effects of nanomedicine (e.g., sonosensitizing, photothermal-converting, electronic, piezoelectric, pyroelectric, radiation-sensitizing, and catalytic properties) for enabling the therapeutic procedure of NDTs, are highlighted and discussed, along with the underlying therapeutic principle and optimization strategy for augmenting disease-therapeutic efficacy and biosafety. The present challenges and critical issues on the clinical translations of NDTs are also discussed and clarified.
Collapse
Affiliation(s)
- Hui Hu
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, P. R. China
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, 2000444, P. R. China
| | - Xiaoqin Qian
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, P. R. China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, 2000444, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 2000444, P. R. China
- State Key Laboratory of High Performance Ceramic and Superfine, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
63
|
Neufeld MJ, Lutzke A, Pratx G, Sun C. High-Z Metal-Organic Frameworks for X-ray Radiation-Based Cancer Theranostics. Chemistry 2021; 27:3229-3237. [PMID: 32902003 PMCID: PMC7887037 DOI: 10.1002/chem.202003523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Indexed: 01/10/2023]
Abstract
X-ray radiation is commonly employed in clinical practice for diagnostic and therapeutic applications. Over the past decade, developments in nanotechnology have led to the use of high-Z elements as the basis for innovative new treatment platforms that enhance the clinical efficacy of X-ray radiation. Nanoscale metal-frameworks (nMOFs) are coordination networks containing organic ligands that have attracted attention as therapeutic platforms in oncology and other areas of medicine. In cancer therapy, X-ray activated, high-Z nMOFs have demonstrated potential as radiosensitizers that increase local radiation dose deposition and generation of reactive oxygen species (ROS). This minireview summarizes current research on high-Z nMOFs in cancer theranostics and discusses factors that may influence future clinical application.
Collapse
Affiliation(s)
- Megan J Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Alec Lutzke
- Beckman Coulter Life Sciences, Loveland, CO, 80538, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California, 94305, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
| |
Collapse
|
64
|
Nash GT, Luo T, Lan G, Ni K, Kaufmann M, Lin W. Nanoscale Metal-Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy. J Am Chem Soc 2021; 143:2194-2199. [PMID: 33528255 DOI: 10.1021/jacs.0c12330] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Zinc-phthalocyanine (ZnPc) photosensitizers (PSs) have shown great potential in photodynamic therapy (PDT) owing to their strong absorption at long wavelengths (650-750 nm), high triplet quantum yields, and biocompatibility. However, the clinical utility of ZnPc PSs is limited by their poor solubility and tendency to aggregate in aqueous environments. Here we report the design of a new nanoscale metal-organic layer (nMOL) assembly, ZnOPPc@nMOL, with ZnOPPc [ZnOPPc = zinc(II)-2,3,9,10,16,17,23,24-octa(4-carboxyphenyl)phthalocyanine] PSs supported on the secondary building units (SBUs) of a Hf12 nMOL for PDT. Upon irradiation, SBU-bound ZnOPPc PSs absorb 700 nm light and efficiently sensitize the formation of singlet oxygen by preventing aggregation-induced self-quenching of ZnOPPc excited states. With intrinsic mitochondria-targeting capability, ZnOPPc@nMOL showed exceptional PDT efficacy with >99% tumor growth inhibition and 40-60% cure rates on two mouse models of colon cancer.
Collapse
|
65
|
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2020; 6:1973-1987. [PMID: 33426371 PMCID: PMC7773537 DOI: 10.1016/j.bioactmat.2020.12.010] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.
Collapse
Key Words
- AC-NPs, antigen-capturing nanoparticles
- ANG2, angiopoietin-2
- APCs, antigen-presenting cells
- Ab, antibodies
- Ag, antigen
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- BBB, blood-brain barrier
- BTK, Bruton's tyrosine kinase
- Bcl-2, B-cell lymphoma 2
- CAFs, cancer associated fibroblasts
- CAP, cleavable amphiphilic peptide
- CAR-T, Chimeric antigen receptor-modified T-cell therapy
- CCL, chemoattractant chemokines ligand
- CTL, cytotoxic T lymphocytes
- CTLA4, cytotoxic lymphocyte antigen 4
- CaCO3, calcium carbonate
- Cancer immunotherapy
- DCs, dendritic cells
- DMMA, 2,3-dimethylmaleic anhydrid
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSF/Cu, disulfiram/copper
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- EPG, egg phosphatidylglycerol
- EPR, enhanced permeability and retention
- FAP, fibroblast activation protein
- FDA, the Food and Drug Administration
- HA, hyaluronic acid
- HB-GFs, heparin-binding growth factors
- HIF, hypoxia-inducible factor
- HPMA, N-(2-hydroxypropyl) methacrylamide
- HSA, human serum albumin
- Hypoxia
- IBR, Ibrutinib
- IFN-γ, interferon-γ
- IFP, interstitial fluid pressure
- IL, interleukin
- LMWH, low molecular weight heparin
- LPS, lipopolysaccharide
- M2NP, M2-like TAM dual-targeting nanoparticle
- MCMC, mannosylated carboxymethyl chitosan
- MDSCs, myeloid-derived suppressor cells
- MPs, microparticles
- MnO2, manganese dioxide
- NF-κB, nuclear factor κB
- NK, nature killer
- NO, nitric oxide
- NPs, nanoparticles
- Nanoparticles
- ODN, oligodeoxynucleotides
- PD-1, programmed cell death protein 1
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PHDs, prolyl hydroxylases
- PLGA, poly(lactic-co-glycolic acid)
- PS, photosensitizer
- PSCs, pancreatic stellate cells
- PTX, paclitaxel
- RBC, red-blood-cell
- RLX, relaxin-2
- ROS, reactive oxygen species
- SA, sialic acid
- SPARC, secreted protein acidic and rich in cysteine
- TAAs, tumor-associated antigens
- TAMs, tumor-associated macrophages
- TDPA, tumor-derived protein antigens
- TGF-β, transforming growth factor β
- TIE2, tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2
- TIM-3, T cell immunoglobulin domain and mucin domain-3
- TLR, Toll-like receptor
- TME, tumor microenvironment
- TNF-α, tumor necrosis factor alpha
- TfR, transferrin receptor
- Tregs, regulatory T cells
- Tumor microenvironment
- UPS-NP, ultra-pH-sensitive nanoparticle
- VDA, vasculature disrupting agent
- VEGF, vascular endothelial growth factor
- cDCs, conventional dendritic cells
- melittin-NP, melittin-lipid nanoparticle
- nMOFs, nanoscale metal-organic frameworks
- scFv, single-chain variable fragment
- siRNA, small interfering RNA
- tdLNs, tumor-draining lymph nodes
- α-SMA, alpha-smooth muscle actin
Collapse
|
66
|
Cao L, Wang C. Metal-Organic Layers for Electrocatalysis and Photocatalysis. ACS CENTRAL SCIENCE 2020; 6:2149-2158. [PMID: 33376778 PMCID: PMC7760065 DOI: 10.1021/acscentsci.0c01150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic layers (MOLs) are two-dimensional analogues of metal-organic frameworks (MOFs) with a high aspect ratio and thickness down to a monolayer. Active sites on MOLs are more accessible than those on MOFs thanks to the two-dimensional feature of MOLs, which allows easier chemical modification around the catalytic center. MOLs can also be assembled with other functional materials through surface anchoring sites that can facilitate charge/energy transport through the hybrid material. MOLs are thus quite suitable for interfacial catalysis like electrocatalysis and photocatalysis. In this outlook, we focus on representative progress of constructing unique interfacial sites on MOLs with designer paths for charge separation and energy transfer, as well as cooperative cavities for superior substrate adsorption and activation. We also discuss challenges and potentials in the future development of MOL catalysts and catalysts beyond MOLs.
Collapse
Affiliation(s)
- Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
67
|
Guo Y, Wang Y, Shen Y, Cai Z, Li Z, Liu J, Chen J, Xiao C, Liu H, Lin W, Wang C. Tunable Cobalt-Polypyridyl Catalysts Supported on Metal–Organic Layers for Electrochemical CO2 Reduction at Low Overpotentials. J Am Chem Soc 2020; 142:21493-21501. [DOI: 10.1021/jacs.0c10719] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ying Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhuanyun Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhe Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Chi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Huichong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
68
|
Liu J, Huang J, Zhang L, Lei J. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev 2020; 50:1188-1218. [PMID: 33283806 DOI: 10.1039/d0cs00178c] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of molecular crystalline materials built from metal ions or clusters bridged by organic linkers. By taking advantage of their synthetic tunability and structural regularity, MOFs can hierarchically integrate nanoparticles and/or biomolecules into a single framework to enable multifunctions. The MOF-protected heterostructures not only enhance the catalytic capacity of nanoparticle components but also retain the biological activity of biomolecules in an intracellular microenvironment. Therefore, the multifunctional MOF heterostructures have great advantages over single components in cancer therapy. In this review, we comprehensively summarize the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy within the last five years. The functions of MOF heterostructures with a controlled size can be regulated by designing various functional ligands and in situ growth/postmodification of nanoparticles and/or biomolecules. The advances in the application of multifunctional MOF heterostructures are also explored for enhanced cancer therapies involving photodynamic therapy, photothermal therapy, chemotherapy, radiotherapy, immunotherapy, and theranostics. The remaining challenges and future opportunities in this field, in terms of precisely localized assembly, maximizing composite properties, and processing new techniques, are also presented. The introduction of multiple components into one crystalline MOF provides a promising approach to design all-in-one theranostics in clinical treatments.
Collapse
Affiliation(s)
- Jintong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
69
|
DuRoss AN, Landry MR, Thomas CR, Neufeld MJ, Sun C. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer. Cancer Lett 2020; 500:208-219. [PMID: 33232787 DOI: 10.1016/j.canlet.2020.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death for both men and women, highlighting the need for new treatment strategies. Advanced disease is often treated with a combination of radiation and cytotoxic agents, such as DNA damage repair inhibitors and DNA damaging agents. To optimize the therapeutic window of these multimodal therapies, advanced nanomaterials have been investigated to deliver sensitizing agents or enhance local radiation dose deposition. In this study, we demonstrate the feasibility of employing an inflammation targeting nanoscale metal-organic framework (nMOF) platform to enhance CRC treatment. This novel formulation incorporates a fucoidan surface coating to preferentially target P-selectin, which is over-expressed or translocated in irradiated tumors. Using this radiation stimulated delivery strategy, a combination PARP inhibitor (talazoparib) and chemotherapeutic (temozolomide) drug-loaded hafnium and 1,4-dicarboxybenzene (Hf-BDC) nMOF was evaluated both in vitro and in vivo. Significantly, these drug-loaded P-selectin targeted nMOFs (TT@Hf-BDC-Fuco) show improved tumoral accumulation over multiple controls and subsequently enhanced therapeutic effects. The integrated radiation and nanoformulation treatment demonstrated improved tumor control (reduced volume, density, and growth rate) and increased survival in a syngeneic CRC mouse model. Overall, the data from this study support the continued investigation of radiation-priming for targeted drug delivery and further consideration of nanomedicine strategies in the clinical management of advanced CRC.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, Oregon State University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Madeleine R Landry
- Department of Pharmaceutical Sciences, Oregon State University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Megan J Neufeld
- Department of Pharmaceutical Sciences, Oregon State University, 2730 S Moody Ave, Portland, OR, 97201, USA.
| | - Conroy Sun
- Department of Pharmaceutical Sciences, Oregon State University, 2730 S Moody Ave, Portland, OR, 97201, USA; Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
70
|
A new anionic metal–organic framework with suitable pore and PtS-type topology for selective adsorption and separation of cationic dyes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01209-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
71
|
Kim Y, Choi H, Shin JE, Bae G, Thangam R, Kang H. Remote active control of nanoengineered materials for dynamic nanobiomedical engineering. VIEW 2020. [DOI: 10.1002/viw.20200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Yuri Kim
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Jeong Eun Shin
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
- Department of Biomicrosystem Technology Korea University Seoul Republic of Korea
| |
Collapse
|
72
|
Bao J, Zu X, Wang X, Li J, Fan D, Shi Y, Xia Q, Cheng J. Multifunctional Hf/Mn-TCPP Metal-Organic Framework Nanoparticles for Triple-Modality Imaging-Guided PTT/RT Synergistic Cancer Therapy. Int J Nanomedicine 2020; 15:7687-7702. [PMID: 33116495 PMCID: PMC7550217 DOI: 10.2147/ijn.s267321] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies have validated and confirmed the great potential of nanoscale metal-organic framework (NMOF) in the biomedical field, especially in improving the efficiency of cancer diagnosis and therapy. However, most previous studies only utilized either the metal cluster or the organic ligand of the NMOF for cancer treatments and merely reported limited theranostic functions, which may not be optimized. As a highly designable and easily functionalized material, prospective rational design offers a powerful way to extract the maximum benefit from NMOF for cancer theranostic applications. Materials and Methods A NMOF based on hafnium (Hf) cluster and Mn(III)-porphyrin ligand was rational designed and synthesized as a high-performance multifunctional theranostic agent. The folic acid (FA) was modified on the NMOF surface to enhance the cancer targeting efficacy. The proposed “all-in-one” FA-Hf-Mn-NMOF (fHMNM) was characterized and identified using various analytical techniques. Then, in vitro and in vivo studies were performed to further explore the effects of fHMNM both as the magnetic resonance imaging (MRI)/computed tomography (CT)/photoacoustic imaging (PAI) contrast agent and as the photothermal therapy (PTT)/radiotherapy (RT) agent. Results A tumour targeting multifunctional fHMNM was successfully synthesized with high performance for MRI/CT/PAI enhancements and image-guided PTT/RT synergistic therapy properties. Compared with the current clinical CT and MR contrast agents, the X-ray attenuation and T1 relaxation rate of this integrated nanosystem increased 1.7-fold and 3–5-fold, respectively. More importantly, the catalase-like Mn(III)-porphyrin ligand can decompose H2O2 into O2 in tumour microenvironments to improve the synergistic treatment efficiency of PTT and RT. Significant tumour growth inhibition was achieved in mouse cancer models without obvious damage to the other organs. Conclusion This work highlights the potential of fHMNM as an easily designable material for biomedical applications, could be an effective tool for in vivo detection and subsequent treatment of tumour.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Xiao Wang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yupeng Shi
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qingchun Xia
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
73
|
Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213393] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
Yu W, Zhen W, Zhang Q, Li Y, Luo H, He J, Liu Y. Porphyrin-Based Metal-Organic Framework Compounds as Promising Nanomedicines in Photodynamic Therapy. ChemMedChem 2020; 15:1766-1775. [PMID: 32715651 DOI: 10.1002/cmdc.202000353] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 12/24/2022]
Abstract
Porphyrin photosensitizers are widely used in photodynamic therapy (PDT) because of their unique diagnostic and therapeutic functions. However, many factors such as poor water solubility and instability of porphyrin compounds have limited their clinical application. Metal-organic frameworks (MOFs) have the beneficial characteristics of versatility, high porosity, and excellent biocompatibility. Porphyrin-MOF nanomaterials have attracted the attention of researchers because MOFs can effectively suppress the quenching caused by the self-aggregation of porphyrin compounds and promote drug delivery. This article reviews the latest applications of porphyrin-MOF nanomedicine in type II photodynamic therapy by increasing tumour cell oxygen concentration, depleting tumour cell functional molecules and releasing signal molecules. Current potential limitations and future applications are also emphasized and discussed herein.
Collapse
Affiliation(s)
- Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Wenqiang Zhen
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yanchun Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Hongyu Luo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| |
Collapse
|
75
|
Neufeld MJ, Winter H, Landry MR, Goforth AM, Khan S, Pratx G, Sun C. Lanthanide Metal-Organic Frameworks for Multispectral Radioluminescent Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26943-26954. [PMID: 32442367 DOI: 10.1021/acsami.0c06010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this report, we describe the X-ray luminescent properties of two lanthanide-based nanoscale metal-frameworks (nMOFs) and their potential as novel platforms for optical molecular imaging techniques such as X-ray excited radioluminescence (RL) imaging. Upon X-ray irradiation, the nMOFs display sharp tunable emission peaks that span the visible to near-infrared spectral region (∼400-700 nm) based on the identity of the metal (Eu, Tb, or Eu/Tb). Surface modification of the nMOFs with polyethylene glycol (PEG) resulted in nanoparticles with enhanced aqueous stability that demonstrated both cyto- and hemo-compatibility important prerequisites for biological applications. Importantly, this is the first report to document and investigate the radioluminescent properties of lanthanide nMOFs. Taken together, the observed radioluminescent properties and low in vitro toxicity demonstrated by the nMOFs render them promising candidates for in vivo translation.
Collapse
Affiliation(s)
- Megan J Neufeld
- Department of Pharmaceutical Sciences, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Hayden Winter
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
| | - Madeleine R Landry
- Department of Pharmaceutical Sciences, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Andrea M Goforth
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, California94305, United States
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, California94305, United States
| | - Conroy Sun
- Department of Pharmaceutical Sciences, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
76
|
Russell LM, Liu CH, Grodzinski P. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 2020; 242:119926. [PMID: 32169771 DOI: 10.1016/j.biomaterials.2020.119926] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Nanomedicines have been developing very rapidly and have started to play a significant role in several cancer therapeutic modalities. Early on, the nanomedicine field focused on optimizing pharmacokinetics, toxicity, and/or biodistribution of an agent through nanoparticle formulation. In other cases, where materials science is employed more decisively, nanomedicine can include the creation of new agents that take advantage of nanoscale materials properties to enhance treatment efficacy through unique mode of action, molecular targeting, or controlled drug release. Both current and future nanomedicines will seek to contribute to the therapeutic and diagnostic landscape through creative leveraging of mechanical, electrical, optical, magnetic, and biological nanomaterial properties. In this work, we discuss how by modulating these material properties, one can design more diverse and more effective cancer interventions. We focus on six areas in cancer management, including in vitro diagnostics, clinical imaging, theranostics, combination therapy, immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Luisa M Russell
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
77
|
Sun W, Luo L, Feng Y, Qiu Y, Shi C, Meng S, Chen X, Chen H. Gadolinium-Rose Bengal Coordination Polymer Nanodots for MR-/Fluorescence-Image-Guided Radiation and Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000377. [PMID: 32363649 DOI: 10.1002/adma.202000377] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
Combination therapy based on nanomedicine has gained momentum in oncology in recent years, offering superior safety and efficacy over monotherapies. It is critical to design theranostics that are composed of imaging and therapeutic agents already approved. Herein, gadolinium (Gd)-rose bengal coordination polymer nanodots (GRDs) are reported. The GRDs exhibit a unique absorption property and 7.7-fold luminescence enhancement, as well as a 1.9-fold increase in singlet oxygen generation efficiency over free rose bengal. Meanwhile, GRDs exhibit a twofold increase in r1 relaxivity over gadopentetic acid (Gd-DTPA) and have better X-ray absorption ability than rose bengal alone. These excellent properties of the GRDs are verified both in vitro and in vivo. The combination of photodynamic therapy (PDT) and radiation therapy (RT) more significantly inhibits tumor growth than monotherapies (i.e., PDT or RT). This work offers a new route to designing and synthesizing Gd-based nanotheranostics for image-guided cancer therapy.
Collapse
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuwei Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
78
|
Lyu M, Zhu D, Kong X, Yang Y, Ding S, Zhou Y, Quan H, Duo Y, Bao Z. Glutathione-Depleting Nanoenzyme and Glucose Oxidase Combination for Hypoxia Modulation and Radiotherapy Enhancement. Adv Healthc Mater 2020; 9:e1901819. [PMID: 32351053 DOI: 10.1002/adhm.201901819] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Indexed: 11/10/2022]
Abstract
Nanoenzymes perceive the properties of enzyme-like catalytic activity, thereby offering significant cancer therapy potential. In this study, Fe3 O4 @MnO2 , a magnetic field (MF) targeting nanoenzyme with a core-shell structure, is synthesized and applied to radiation enhancement with using glucose oxidase (GOX) for combination therapy. The glucose is oxidized by the GOX to produce excess H2 O2 in an acidic extracellular microenvironment, following which the MnO2 shell reacts with H2 O2 to generate O2 and overcome hypoxia. Concurrently, intracellular glutathione (GSH)-which limits the effects of radiotherapy (RT)-can be oxidized by the MnO2 shell while the latter is reduced to Mn2+ for T1 -weighed MRI. The core Fe3 O4 , with its good magnetic targeting ability, can be utilized for T2 -weighed MRI. In summary, the work demonstrates that Fe3 O4 @MnO2 , as a dual T1 - and T2 -weighed MRI contrast agent with strong biocompatibility, exhibits striking potential for radiation enhancement under magnetic targeting.
Collapse
Affiliation(s)
- Meng Lyu
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Daoming Zhu
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institute Stockholm 17177 Sweden
| | - Xiangyue Kong
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of EducationSchool of Physics and TechnologyWuhan University Wuhan 430072 China
| | - Yang Yang
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of EducationSchool of Physics and TechnologyWuhan University Wuhan 430072 China
| | - Shuaijie Ding
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of EducationSchool of Physics and TechnologyWuhan University Wuhan 430072 China
| | - Yunfeng Zhou
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Hong Quan
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of EducationSchool of Physics and TechnologyWuhan University Wuhan 430072 China
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institute Stockholm 17177 Sweden
| | - Zhirong Bao
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan University Wuhan 430071 China
| |
Collapse
|
79
|
Wang C, Zhai T, Liu J, Yang H, Sun Y, Zhou Z, Zhao Q, Yang S. Ir-Ho bimetallic complex-mediated low-dose radiotherapy/radiodynamic therapy in vivo. Chem Commun (Camb) 2020; 56:6193-6196. [PMID: 32432578 DOI: 10.1039/d0cc02641g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a bimetallic complex [Ir4Ho2(pq)8(H2dcbpy)4(OAc)2] (denoted as Ir4Ho2, pq = 2-phenylquinoline, H2dcppy = 2,2'-bipyridine-3,3'-dicarboxylic acid) and its application for radiotherapy/radiodynamic therapy (RT/RDT). In a tumor xenograft mouse model, Ir4Ho2 exerted a tumor-suppressive effect through efficient low-dose RT/RDT.
Collapse
Affiliation(s)
- Chenchen Wang
- College of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Gong T, Li Y, Lv B, Wang H, Liu Y, Yang W, Wu Y, Jiang X, Gao H, Zheng X, Bu W. Full-Process Radiosensitization Based on Nanoscale Metal-Organic Frameworks. ACS NANO 2020; 14:3032-3040. [PMID: 32150395 DOI: 10.1021/acsnano.9b07898] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Full-process radiosensitization, that is, pre-increasing radiation sensitivity of cancer cells, magnifying •OH formation during ionizing irradiation, and intervention on the resultant DNA repair for final cells death, could enhance the overall radiotherapeutic effects, but has not yet been achieved. Herein, Hf-nMOFs with Fe3+ ions uniformly dispersed (Hf-BPY-Fe) were constructed to integratedly improve radiotherapeutic effects via a multifaceted mechanism. The in vitro experiments demonstrated that persistent reactive oxygen species stress from Hf-BPY-Fe-activated in situ Fenton reaction reassorted cell cycle distribution, consequently contributing to increased tumoral radiosensitivity to photon radiation. Upon irradiation during the course of radiation therapy, Hf4+ in Hf-BPY-Fe gave substantial amounts of high-energy electrons, which partially converted H2O to •OH and, meanwhile, relaxed to a low-energy state in nMOF pores, leading to an electron-rich environment. These aggregated electrons facilitated the reduction from Fe3+ to Fe2+ and further promoted the production of •OH in the Fenton process to attack DNA. The Hf-BPY-Fe postponed the DNA damage response process by interfering with certain proteins involved in the DNA repair signaling pathway. The in vivo experiments showed improved radiotherapeutic effects from integrated contributions from Fe3+-based Fenton reaction and Hf4+-induced X-ray energy conversion in tumors. This work provides a nMOFs-based full-process radiosensitizing approach for better radiotherapeutic efficacy.
Collapse
Affiliation(s)
- Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanli Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bin Lv
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Han Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wei Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xingwu Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongbo Gao
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| |
Collapse
|
82
|
Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M, Hamblin MR. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 2020; 232:119707. [PMID: 31874428 PMCID: PMC7008091 DOI: 10.1016/j.biomaterials.2019.119707] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022]
Abstract
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | | | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aseman Lajevardi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Mohammadreza Tahriri
- Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
83
|
Song Y, Yang J, Wang L, Xie Z. Metal‐Organic Sheets for Efficient Drug Delivery and Bioimaging. ChemMedChem 2020; 15:416-419. [DOI: 10.1002/cmdc.201900664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yucong Song
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jingjie Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
84
|
Chen Y, Gao P, Wu T, Pan W, Li N, Tang B. Organelle-localized radiosensitizers. Chem Commun (Camb) 2020; 56:10621-10630. [DOI: 10.1039/d0cc03245j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This feature article highlights the recent advances of organelle-localized radiosensitizers and discusses the current challenges and future directions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Peng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Tong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|
85
|
Wu P, Xia L, Huangfu M, Fu F, Wang M, Wen B, Yang Z, Wang J. Lanthanide-Based Metal–Organic Frameworks Containing “V-Shaped” Tetracarboxylate Ligands: Synthesis, Crystal Structures, “Naked-Eye” Luminescent Detection, and Catalytic Properties. Inorg Chem 2019; 59:264-273. [DOI: 10.1021/acs.inorgchem.9b02177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pengyan Wu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Lingling Xia
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Mengjie Huangfu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Fubin Fu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Mengqiu Wang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Bingxin Wen
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Ziyun Yang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Jian Wang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| |
Collapse
|
86
|
Zhao H, Xu J, Li Y, Guan X, Han X, Xu Y, Zhou H, Peng R, Wang J, Liu Z. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. ACS NANO 2019; 13:13127-13135. [PMID: 31710460 DOI: 10.1021/acsnano.9b05974] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor vaccines to induce robust immunity for cancer treatment have attracted tremendous interests in cancer immunotherapy. In this work, a type of cancer vaccine is prepared by using nanoscale coordination polymer (NCP) formed between Mn2+ ions and a nucleotide oligomerization binding domain 1 (Nod1) agonist, meso-2,6-diaminopimelic acid (DAP), as the organic ligand, to encapsulate a model protein antigen, ovalbumin (OVA). The obtained OVA@Mn-DAP nanoparticles could act as an effective tumor vaccine to promote the maturation of dendritic cells (DCs) as well as their antigen cross-presentation via increasing the cellular uptake of antigen and stimulating Nod1 pathway with DAP. Such OVA@Mn-DAP vaccine could migrate into lymph nodes after local injection, as revealed by in vivo magnetic resonance (MR) and fluorescence imaging. Importantly, vaccination with OVA@Mn-DAP could not only offer prophylactic to protect mice from challenged B16-OVA tumors but also result in significant therapeutic effect to inhibit growth of already-established tumors if in combination with anti-programmed cell death protein 1 antibody (α-PD-1) immune checkpoint blockade therapy. Therefore, this work presents an innovative platform to construct effective nanovaccine for tumor immunotherapy.
Collapse
Affiliation(s)
- He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yan Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xinxian Guan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yunyun Xu
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Huiting Zhou
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
87
|
Lan G, Ni K, You E, Wang M, Culbert A, Jiang X, Lin W. Multifunctional Nanoscale Metal-Organic Layers for Ratiometric pH and Oxygen Sensing. J Am Chem Soc 2019; 141:18964-18969. [PMID: 31747271 DOI: 10.1021/jacs.9b11024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a monolayered version of nanoscale metal-organic frameworks (nMOFs), nanoscale metal-organic layers (nMOLs) represent an emerging class of highly tunable two-dimensional materials for hierarchical functionalization and with facile access to analytes. Here we report the design of the first nMOL-based biosensor for ratiometric pH and oxygen sensing in mitochondria. Cationic Hf12-Ru nMOL was solvothermally synthesized by laterally connecting Hf12 secondary building units (SBUs) with oxygen-sensitive Ru(bpy)32+-derived DBB-Ru ligands (bpy = 2,2'-bipyridine). The Hf12-Ru nMOL was then covalently functionalized with pH-sensitive fluorescein isothiocyanate and pH/oxygen-independent Rhodamine-B isothiocyanate through thiourea linkages to afford Hf12-Ru-F/R as a mitochondria-targeted ratiometric sensor for pH and O2 in live cells. High-resolution confocal microscope imaging with Hf12-Ru-F/R revealed a positive correlation between pH and local O2 concentration in mitochondria. Our work shows the potential of nMOL-based ratiometric biosensors in sensing and imaging of biologically important analytes in live cells.
Collapse
Affiliation(s)
| | | | | | - Maolin Wang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | | | | | | |
Collapse
|
88
|
Ni K, Lan G, Chan C, Duan X, Guo N, Veroneau SS, Weichselbaum RR, Lin W. Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers. MATTER 2019; 1:1331-1353. [PMID: 32832885 DOI: 10.1016/j.matt.2019.06.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Checkpoint blockade immunotherapy (CBI) is effective in promoting a systemic immune response against some metastatic tumors. The reliance on the pre-existing immune environment of the tumor, however, limits the efficacy of CBI on a broad spectrum of cancers. Herein, we report the design of a novel nanoscale metal-organic layer (nMOL), Hf-MOL, for effective treatment of local tumors by enabling radiotherapy-radiodynamic therapy (RT-RDT) with low-dose X-rays and, when in combination with an immune checkpoint inhibitor, regression of metastatic tumors by re-activating anti-tumor immunity and inhibiting myeloid-derived suppressor cells. Owing to the reduced dimensionality, nMOLs allow facile diffusion of reactive oxygen species and exhibit superior RT-RDT effects. The synergy of Hf-MOL-enabled RT-RDT immune activation and anti-programmed death ligand 1 (anti-PD-L1) CBI led to robust abscopal effects on a series of bilateral models of colon, head and neck, and breast cancers and significant anti-metastatic effects on an orthotopic model of breast cancer.
Collapse
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally to this work
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally to this work
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel S Veroneau
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
89
|
Bai J, Peng C, Guo L, Zhou M. Metal-Organic Framework-Integrated Enzymes as Bioreactor for Enhanced Therapy against Solid Tumor via a Cascade Catalytic Reaction. ACS Biomater Sci Eng 2019; 5:6207-6215. [PMID: 33405528 DOI: 10.1021/acsbiomaterials.9b01200] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Emerging natural-enzyme-based nanocatalytic tumor therapy depending on the high catalytic performance of natural enzymes has inspired great research interest in clinical applications. Nevertheless, the natural-enzyme-based catalytic therapy efficiency is seriously hampered by the low operational stability, poor delivery efficiency, and the short lifetime of enzymes. Herein, a bioreactor based on zeolitic imidazolate framework-8 (ZIF-8) was fabricated through one-pot embedding horseradish peroxidase (HRP) and glucose oxidase (Gox) strategy (ZIF-8@Gox/HRP) for synergistic cancer therapy. Notably, the obtained ZIF-8@Gox/HRP can efficiently consume endogenous glucose to generate gluconic acid and H2O2 for starving tumors, and subsequently, H2O2 was decomposed by encapsulated HRP to release high-toxic •OH radicals, inducing cancer cell apoptosis for oxidation therapy. Importantly, in vivo results showed that ZIF-8@Gox/HRP had an impressive tumor-suppression rate based on cascade catalytic reaction. Therefore, this work paves a new avenue to design smart enzyme-based platforms for safe and efficient cancer therapy.
Collapse
Affiliation(s)
- Jing Bai
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, People's Republic of China
| | - Chengjia Peng
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, People's Republic of China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, People's Republic of China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, People's Republic of China
| |
Collapse
|
90
|
Hartshorn CM, Russell LM, Grodzinski P. National Cancer Institute Alliance for nanotechnology in cancer-Catalyzing research and translation toward novel cancer diagnostics and therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1570. [PMID: 31257722 PMCID: PMC6788937 DOI: 10.1002/wnan.1570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology has been a burgeoning research field, which is finding compelling applications in several practical areas of everyday life. It has provided novel, paradigm shifting solutions to medical problems and particularly to cancer. In order to accelerate integration of nanotechnology into cancer research and oncology, the National Cancer Institute (NCI) of the National Institutes of Health (NIH) established the NCI Alliance for Nanotechnology in Cancer program in 2005. This effort brought together scientists representing physical sciences, chemistry, and engineering working at the nanoscale with biologists and clinicians working on cancer to form a uniquely multidisciplinary cancer nanotechnology research community. The last 14 years of the program have produced a remarkable body of scientific discovery and demonstrated its utility to the development of practical cancer interventions. This paper takes stock of how the Alliance program influenced melding of disparate research disciplines into the field of nanomedicine and cancer nanotechnology, has been highly productive in the scientific arena, and produced a mechanism of seamless transfer of novel technologies developed in academia to the clinical and commercial space. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Christopher M. Hartshorn
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Luisa M. Russell
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
91
|
Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy. Biomaterials 2019; 226:119545. [PMID: 31648136 DOI: 10.1016/j.biomaterials.2019.119545] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Developing safe, effective and targeting radiosensitizers with clear action mechanisms to achieve synergistic localized cancer treatment is an important strategy for radiotherapy. Herein, we design and synthesize a ternary heteronanostructure radiosensitizer (SeAuFe-EpC) with core/satellite morphology by a simple method to realize multimodal imaging-guided cancer radiotherapy. The mechanistic studies reveal that Se incorporation could drastically improve the electrical conductivity and lower the energy barrier between the three components, resulting in more electrons transfer between Se-Au interface and migration over the heterogeneous junction of Au-Fe3O4 NPs interface. This synergistic interaction enhanced the energy transfer and facilitated more excited excitons generated by SeAuFe-EpC NPs, thus promoting the transformation of 3O2 to 1O2via resonance energy transfer, finally resulting in irreversible cancer cell apoptosis. Additionally, based on the X-ray attenuation ability and high NIR absorption of AuNPs and the superparamagnetism of Fe3O4, in vivo computer tomography, photoacoustic and magnetic resonance tri-modal imaging have been employed to visualize the tracking and targeting ability of the NPs. As expected, the NPs specifically accumulated in orthotopic breast tumor area and achieved synergistic anticancer efficacy, but showed no toxic side effects on main organs. Collectively, this study sheds light on the potential roles of core/satellite heteronanostructure in imaging-guided cancer radiotherapy.
Collapse
|
92
|
Xiang H, Chen Y. Energy-Converting Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805339. [PMID: 30773837 DOI: 10.1002/smll.201805339] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/22/2019] [Indexed: 05/12/2023]
Abstract
Serious side effects to surrounding normal tissues and unsatisfactory therapeutic efficacy hamper the further clinic applications of conventional cancer-therapeutic strategies, such as chemotherapy and surgery. The fast development of nanotechnology provides unprecedented superiorities for cancer therapeutics. Externally activatable therapeutic modalities mediated by nanomaterials, relying on highly effective energy transformation to release therapeutic elements/effects (cytotoxic reactive oxygen species, thermal effect, photoelectric effect, Compton effect, cavitation effect, mechanical effect or chemotherapeutic drug) for cancer therapies, categorized and termed as "energy-converting nanomedicine," have arouse considerable concern due to their noninvasiveness, desirable tissue-penetration depth, and accurate modulation of therapeutic dose. This review summarizes the recent advances in the engineering of intelligent functional nanotherapeutics for energy-converting nanomedicine, including photo-based, radiation-based, ultrasound-based, magnetic field-based, microwave-based, electric field-based, and radiofrequency-based nanomedicines, which are enabled by external stimuli (light, radiation, ultrasound, magnetic field, microwave, electric field, and radiofrequency). Furthermore, biosafety issues of energy-converting nanomedicine related to future clinical translation are also addressed. Finally, the potential challenges and prospects of energy-converting nanomedicine for future clinical translation are discussed.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
93
|
Ling P, Qian C, Yu J, Gao F. Metal–organic framework nanosheets with flower-like structure as probes for H2S detection and in situ singlet-oxygen production. Chem Commun (Camb) 2019; 55:6385-6388. [DOI: 10.1039/c9cc02285f] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A metal–organic framework nanosheet with flower-like structure was designed as a probe for H2S detection and in situ singlet-oxygen production under physiological pH.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Caihua Qian
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jinjin Yu
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
94
|
Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev 2019; 48:3073-3101. [PMID: 31106315 DOI: 10.1039/c8cs00921j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
Collapse
Affiliation(s)
- Xiaofeng Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | |
Collapse
|