51
|
Fairfax BP, Vannberg FO, Radhakrishnan J, Hakonarson H, Keating BJ, Hill AVS, Knight JC. An integrated expression phenotype mapping approach defines common variants in LEP, ALOX15 and CAPNS1 associated with induction of IL-6. Hum Mol Genet 2009; 19:720-30. [PMID: 19942621 PMCID: PMC2807371 DOI: 10.1093/hmg/ddp530] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-6 (IL-6) is an important modulator of inflammation and immunity whose dysregulation is associated with a number of disease states. There is evidence of significant heritability in inter-individual variation in IL6 gene expression but the genetic variants responsible for this remain to be defined. We adopted a combined approach of mapping protein and expression quantitative trait loci in peripheral blood mononuclear cells using high-density single-nucleotide polymorphism (SNP) typing for ∼2000 loci implicated in cardiovascular, metabolic and inflammatory syndromes to show that common SNP markers and haplotypes of LEP (encoding leptin) associate with a 1.7- to 2-fold higher level of lipopolysaccharide (LPS)-induced IL-6 expression. We subsequently demonstrate that basal leptin expression significantly correlates with LPS-induced IL-6 expression and that the same variants at LEP which associate with IL-6 expression are also major determinants of leptin expression in these cells. We find that variation involving two other genomic regions, CAPNS1 (encoding calpain small subunit 1) and ALOX15 (encoding arachidonate 15-lipoxygenase), show significant association with IL-6 expression. Although this may be a subset of all such trans-acting effects, we find that the same ALOX15 variants are associated with induced expression of tumour necrosis factor and IL-1beta consistent with a broader role in acute inflammation for ALOX15. This study provides evidence of novel genetic determinants of IL-6 production with implications for understanding susceptibility to inflammatory disease processes and insight into cross talk between metabolic and inflammatory pathways. It also provides proof of concept for use of an integrated expression phenotype mapping approach.
Collapse
Affiliation(s)
- Benjamin P Fairfax
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
52
|
Mourtada-Maarabouni M, Williams GT. Protein phosphatase 4 regulates apoptosis in leukemic and primary human T-cells. Leuk Res 2009; 33:1539-51. [PMID: 19539371 PMCID: PMC2734887 DOI: 10.1016/j.leukres.2009.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 12/26/2022]
Abstract
The control of T-cell survival is of overwhelming importance for preventing leukemia and lymphoma. The present report demonstrates that the serine/threonine protein phosphatase PP4 regulates the survival of both leukemic T-cells and untransformed human peripheral blood T-cells, particularly after treatment with anti-leukemic drugs and other cytotoxic stimuli. PP4-induced apoptosis is mediated, at least in part, through de-phosphorylation of apoptosis regulator PEA-15, previously implicated in the control of leukemic cell survival. PP4 activity significantly affects the mutation rate in leukemic T-cells, indicating that PP4 dysfunction may be important in the development and progression of leukemia.
Collapse
Affiliation(s)
- Mirna Mourtada-Maarabouni
- Institute for Science and Technology in Medicine and School of Life Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Gwyn T. Williams
- Institute for Science and Technology in Medicine and School of Life Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
53
|
Wendt W, Schulten R, Stichel CC, Lübbert H. Intra- versus extracellular effects of microglia-derived cysteine proteases in a conditioned medium transfer model. J Neurochem 2009; 110:1931-41. [DOI: 10.1111/j.1471-4159.2009.06283.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
54
|
Guyton MK, Brahmachari S, Das A, Samantaray S, Inoue J, Azuma M, Ray SK, Banik NL. Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J Neurochem 2009; 110:1895-907. [PMID: 19627443 DOI: 10.1111/j.1471-4159.2009.06287.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.
Collapse
Affiliation(s)
- Mary K Guyton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Kim SJ, Kim NH, Moon PD, Myung NY, Kim MC, Lee KT, Jo HM, Kim NH, Rim HK, Seo MJ, Kim JM, Lee SE, An NH, Lee KM, Lee SH, Park YJ, Jeong HJ, Um JY, Kim HM, Hong SH. Samsoeum inhibits systemic anaphylaxis and release of histamine, cytokine in vivo and in vitro. ACTA ACUST UNITED AC 2009. [DOI: 10.3742/opem.2009.9.2.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
56
|
Wei X, Zhang X, Flick LM, Drissi H, Schwarz EM, O'Keefe RJ. Titanium particles stimulate COX-2 expression in synovial fibroblasts through an oxidative stress-induced, calpain-dependent, NF-kappaB pathway. Am J Physiol Cell Physiol 2009; 297:C310-20. [PMID: 19494233 DOI: 10.1152/ajpcell.00597.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In prosthetic loosening, bone resorption is induced by wear debris particles generated from the artificial joint articulation. Our prior work showed that synovial-like fibroblasts respond to titanium particles by producing receptor activator of NF-kappaB ligand (RANKL), a critical activator of osteoclastogenesis. While this effect occurs through a cyclooxygenase-2 (COX-2)-dependent pathway, the mechanism of COX-2 stimulation by titanium particles is not clear. Here we show that titanium particles induce COX-2 gene expression by activating NF-kappaB signaling. Inhibitor of NF-kappaB (IkappaBalpha) is degraded following particle treatment, permitting active NF-kappaB to translocate to the nucleus where it interacts with the COX-2 promoter and drives transcription. NF-kappaB activation is dependent on reactive oxygen species since antioxidants block the NF-kappaB signaling induced by particles. Surprisingly, IkappaBalpha degradation is independent of IKK (IkappaB kinase) and the 26S proteasome. Instead, calpain inhibitor can block the IkappaBalpha degradation induced by particles. Furthermore, the calpain-targeted COOH-terminal PEST sequence of IkappaBalpha is necessary for phosphorylation and degradation, consistent with a proteasome-independent mechanism of catabolism. Altogether, the data demonstrate a signaling pathway by which titanium particles induce oxidative stress, stimulate calpain-mediated NF-kappaB activation, and activate target gene expression, including COX-2. These findings define important targets for osteolysis but may also have importance in other diseases where fibroblasts respond to environmental particles, including pulmonary diseases.
Collapse
Affiliation(s)
- Xiaochao Wei
- Center for Musculoskeletal Research, Univ. of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
57
|
Chae JJ, Aksentijevich I, Kastner DL. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol 2009; 146:467-78. [PMID: 19466978 DOI: 10.1111/j.1365-2141.2009.07733.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder characterized by seemingly unprovoked recurrent episodes of fever and serosal, synovial, or cutaneous inflammation. FMF is caused by recessively inherited mutations in MEFV, which encodes pyrin, and most of the mutations are present in the C-terminal end of the protein encoding B30.2 domain. The FMF carrier frequencies are extremely high in several eastern Mediterranean populations. Pyrin is expressed in granulocytes, monocytes, dendritic cells, and synovial fibroblasts. Pyrin regulates caspase-1 activation and consequently interleukin-1beta production through the interactions of its N-terminal PYRIN domain and C-terminal B30.2 domain with an adaptor protein, apoptosis-associated speck-like protein with a caspase-recruitment domain (ASC) and caspase-1 respectively. Pyrin is cleaved by caspase-1 and the cleaved N-terminal fragment translocates to nucleus and enhances ASC-independent nuclear factor (NF)-kappaB activation through interactions with p65 NF-kappaB and IkappaB-alpha. In addition to the regulatory role of pyrin for caspase-1, the cleavage of pyrin provides an important clue not only in understanding the molecular pathogenesis of FMF but also in developing new therapeutic targets for FMF.
Collapse
Affiliation(s)
- Jae J Chae
- Laboratory of Clinical Investigation, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Genetics and Genomics Branch, Bethesda, MD 20892-1849, USA.
| | | | | |
Collapse
|
58
|
Butler JT, Samantaray S, Beeson CC, Ray SK, Banik NL. Involvement of calpain in the process of Jurkat T cell chemotaxis. J Neurosci Res 2009; 87:626-35. [PMID: 18831007 DOI: 10.1002/jnr.21882] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Massive T cell infiltration into the central nervous system is a hallmark of multiple sclerosis (MS) and its rodent model experimental autoimmune encephalomyelitis (EAE), resulting in the induction of many of the pathophysiological events that lead to neuroinflammation and neurodegeneration. Thus, blocking T cell migration into the central nervous system may reduce disease severity in MS and EAE. One potential target for reducing T cell migration is inhibition of the Ca(2+)-activated neutral protease calpain. Previous studies in other cell types have demonstrated that migration is reduced by incubation of cells with calpain inhibitors. Thus, we hypothesize that calpain inhibition will reduce migration of T cells in response to and toward the chemokine CCL2. To test this hypothesis, the intracellular free Ca(2+) levels in Jurkat E6-1 T cells was first measured by the fura-2 assay to assess whether the intracellular ion environment would support calpain activation. The intracellular free Ca(2+) levels were found to increase in response to CCL2. The cells were next treated with the calpain inhibitor calpeptin in a multiwelled Boyden chamber with CCL2 used as the chemoattractant. These studies demonstrate that inhibition of calpain with its inhibitor calpeptin produces a dose-dependent inhibition of chemotaxis. Calpain activity, as measured by live cell imaging, was also increased in response to CCL2, providing further evidence of its involvement in the process of chemotaxis and migration. These studies provide evidence for the involvement of calpain in the mechanisms of chemotaxis and warrants further exploration in MS patient and EAE animal samples.
Collapse
Affiliation(s)
- Jonathan T Butler
- Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
59
|
Li X, Li Y, Shan L, Shen E, Chen R, Peng T. Over-expression of calpastatin inhibits calpain activation and attenuates myocardial dysfunction during endotoxaemia. Cardiovasc Res 2009; 83:72-9. [PMID: 19318376 DOI: 10.1093/cvr/cvp100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS Lipopolysaccharide (LPS) induces cardiomyocyte caspase-3 activation and proinflammatory factors, in particular tumour necrosis factor-alpha (TNF-alpha) production, both of which contribute to myocardial dysfunction during sepsis. The present study was to investigate the roles of calpain/calpastatin system in cardiomyocyte caspase-3 activation, TNF-alpha expression, and myocardial dysfunction during LPS stimulation. METHODS AND RESULTS In cultured adult rat cardiomyocytes, LPS (1 microg/mL) induced calpain and caspase-3 activity, and up-regulated TNF-alpha expression. These effects of LPS were abrogated by over-expression of calpastatin, an endogenous calpain inhibitor, transfection of calpain-1 siRNA, or various pharmacological calpain inhibitors. Furthermore, blocking gp91(phox)-NADPH oxidase prevented calpain and caspase-3 activation and decreased TNF-alpha expression in LPS-stimulated cardiomyocytes. To investigate the role of calpastatin in endotoxaemia, transgenic mice with calpastatin over-expression (CAST-Tg) and wild-type mice were treated with LPS (4 mg/kg, i.p.) or saline in the presence of calpain inhibitor-III (10 mg/kg, i.p.) for 4 h, and their heart function was measured with a Langendorff system. Over-expression of calpastatin significantly attenuated myocardial dysfunction (P < 0.05). Consistently, calpain activity, caspase-3 activity, and TNF-alpha expression were also reduced in CAST-Tg and calpain inhibitor-III compared with wild-type and vehicle-treated hearts, respectively. CONCLUSION gp91(phox)-NADPH oxidase-mediated calpain-1 activation induces caspase-3 activation and TNF-alpha expression in cardiomyocytes during LPS stimulation. Over-expression of calpastatin inhibits calpain activation and improves myocardial function in endotoxaemia. The present study suggests that targeting calpain/calpastatin system may be a potential therapeutic intervention for septic hearts.
Collapse
Affiliation(s)
- Xiaoping Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
60
|
Tiesset H, Pierre M, Desseyn JL, Guéry B, Beermann C, Galabert C, Gottrand F, Husson MO. Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and antiinflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr 2009; 139:82-9. [PMID: 19056659 DOI: 10.3945/jn.108.096115] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The underlying mechanisms by which eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affect host resistance to Pseudomonas aeruginosa are unclear. The aim of this study was to determine their role on the kinetic of pro- and antiinflammatory response in lung infection. Mice fed either a control diet or a diet enriched with EPA and DHA were infected intratracheally and we studied lung expression of proinflammatory markers [CXCL1, interleukin (IL)-6, tumor necrosis factor-alpha], antiinflammatory markers (IL-10, A20, and IkappaB alpha), and PPARalpha and PPARgamma. The inflammatory response was assessed using recruitment of neutrophils and macrophages into bronchoalveolar lavage fluid, bacterial clearance from the lung, pulmonary injury, and 7-d survival rate. Compared with the control group, EPA and DHA delayed the expression of proinflammatory markers during the first 2 h (P < 0.05), upregulated proinflammatory marker expression (P < 0.05), and induced overexpression of antiinflammatory markers at 8 h (P < 0.05), enhanced recruitment of neutrophils at 16 h (P < 0.05), and induced PPARalpha and PPARgamma overexpression at 4 and 8 h (P < 0.01), respectively. Pulmonary bacterial load decreased and pulmonary injury and mortality were reduced during the first 24 h (P < 0.05). In conclusion, EPA and DHA modulate the balance between pro- and antiinflammatory cytokines, alter the early response of the host to P. aeruginosa infection, and affect the early outcome of infection.
Collapse
|
61
|
Markovina S, Callander NS, O'Connor SL, Kim J, Werndli JE, Raschko M, Leith CP, Kahl BS, Kim K, Miyamoto S. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 2008; 6:1356-64. [PMID: 18708367 DOI: 10.1158/1541-7786.mcr-08-0108] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bortezomib (Velcade/PS341), a proteasome inhibitor used in the treatment of multiple myeloma (MM), can inhibit activation of nuclear factor-kappaB (NF-kappaB), a family of transcription factors often deregulated and constitutively activated in primary MM cells. NF-kappaB can be activated via several distinct mechanisms, including the proteasome inhibitor-resistant (PIR) pathway. It remains unknown what fraction of primary MM cells harbor constitutive NF-kappaB activity maintained by proteasome-dependent mechanisms. Here, we report an unexpected finding that constitutive NF-kappaB activity in 10 of 14 primary MM samples analyzed is refractory to inhibition by bortezomib. Moreover, when MM cells were cocultured with MM patient-derived bone marrow stromal cells (BMSC), microenvironment components critical for MM growth and survival, further increases in NF-kappaB activity were observed that were also refractory to bortezomib. Similarly, MM-BMSCs caused PIR NF-kappaB activation in the RPMI8226 MM cell line, leading to increased NF-kappaB-dependent transcription and resistance to bortezomib-induced apoptosis. Our findings show that primary MM cells frequently harbor PIR NF-kappaB activity that is further enhanced by the presence of patient-derived BMSCs. They also suggest that this activity is likely relevant to the drug resistance development in some patients. Further elucidation of the mechanism of PIR NF-kappaB regulation could lead to the identification of novel diagnostic biomarkers and/or therapeutic targets for MM treatment.
Collapse
|
62
|
Petrs-Silva H, Chiarini LB, Linden R. Nuclear proteasomal degradation and cytoplasmic retention underlie early nuclear exclusion of transcription factor Max upon axon damage. Exp Neurol 2008; 213:202-9. [PMID: 18601921 DOI: 10.1016/j.expneurol.2008.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 05/19/2008] [Accepted: 06/06/2008] [Indexed: 11/26/2022]
Abstract
The behavior of the transcription factor Max in axon-damaged retinal ganglion cells (RGC) was investigated in explants from the rat retina, used as a tissue culture model of the central nervous system (CNS). Axon damage leads to an apparent rapid shift in the localization of Max from the nucleus to the cytoplasm, in advance of markers of apoptosis. This nuclear exclusion resisted treatments with calpeptin or the CRM1 exportin inhibitor leptomycin B, but was prevented by low temperature. Inhibition of either transcription or translation prevented RGC death, but only the latter robustly prevented nuclear exclusion. The proteasome inhibitor lactacystin prevented nuclear exclusion, whereas newly synthesized Max still accumulated in the cytoplasm of the axon-damaged RGC. The results show that proteosomal degradation of nuclear Max coupled with continued expression and cytoplasmic accumulation of Max, with blockade of nucleocytoplasmic transport of the newly synthesized protein, is an early event after CNS axonal damage.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Instituto de Biofisica da UFRJ, CCS, bloco G, Cidade Universitaria, 21941-900, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
63
|
The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood 2008; 112:1794-803. [PMID: 18577712 DOI: 10.1182/blood-2008-01-134932] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by mutations in MEFV, which encodes a 781-amino acid protein denoted pyrin. We have previously shown that pyrin regulates caspase-1 activation and IL-1beta production through interaction of its N-terminal PYD motif with the ASC adapter protein, and also modulates IL-1beta production by interaction of its C-terminal B30.2 domain with the catalytic domains of caspase-1. We now asked whether pyrin might itself be a caspase-1 substrate, and found that pyrin is cleaved by caspase-1 at Asp330, a site remote from the B30.2 domain. Pyrin variants harboring FMF-associated B30.2 mutations were cleaved more efficiently than wild-type pyrin. The N-terminal cleaved fragment interacted with the p65 subunit of NF-kappaB and with IkappaB-alpha through its 15-aa bZIP basic domain and adjacent sequences, respectively, and translocated to the nucleus. The interaction of the N-terminal fragment with p65 enhanced entrance of p65 into the nucleus. The interaction of N-terminal pyrin with IkappaB-alpha induced calpain-mediated degradation of IkappaB-alpha, thus potentiating NF-kappaB activation. Absolute and relative quantities of cleaved pyrin and IkappaB-alpha degradation products were substantially increased in leukocytes from FMF patients compared with healthy controls. Our data support a new pyrin/caspase-1 pathway for NF-kappaB activation.
Collapse
|
64
|
Imam SA, Guyton MK, Haque A, Vandenbark A, Tyor WR, Ray SK, Banik NL. Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients. J Neuroimmunol 2007; 190:139-45. [PMID: 17765980 PMCID: PMC2096747 DOI: 10.1016/j.jneuroim.2007.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a devastating autoimmune demyelinating disease of the central nervous system (CNS). This study investigated whether expression and activity of the calcium-activated protease calpain correlated with Th1/Th2 dysregulation in MS patients during states of relapse and remission. Calpain expression and activity were significantly increased in peripheral blood mononuclear cells (PBMCs) from MS patients, compared to controls, with the highest expression and activity noted during relapse. Th1 cytokines were highest and Th2 cytokines were lowest in MS patients during relapse. Treatment with calpain inhibitor, calpeptin, decreased Th1 cytokines in PBMCs from MS patients. Calpain inhibitor also reduced degradation of myelin basic protein (MBP) by inhibiting the calpain secreted from MBP-specific T cells. Taken together, these results suggested calpain involvement in Th1/Th2 dysregulation in MS patients.
Collapse
Affiliation(s)
- Sarah A. Imam
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Mary K. Guyton
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Arthur Vandenbark
- Oregon Health & Science University and Veterans Affairs Medical Center, Portland, Oregon
| | - William R. Tyor
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- * Corresponding author: 96 Jonathan Lucas Street, Suite 307 CSB, PO Box 250606, Charleston, SC 29425, Phone: (843) 792-7594, Fax: (843) 792-8626,
| |
Collapse
|
65
|
Mandrekar P, Jeliazkova V, Catalano D, Szabo G. Acute alcohol exposure exerts anti-inflammatory effects by inhibiting IkappaB kinase activity and p65 phosphorylation in human monocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:7686-93. [PMID: 17548605 DOI: 10.4049/jimmunol.178.12.7686] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute alcohol use is associated with impaired immune responses and decreased proinflammatory cytokine production. Our earlier studies have shown that acute alcohol intake inhibits NF-kappaB DNA binding in an IkappaBalpha-independent manner. We report using human peripheral blood monocytes and Chinese hamster ovary cells transfected with CD14 cells that acute alcohol treatment in vitro exerts NF-kappaB inhibition by disrupting phosphorylation of p65. Immunoprecipitation of p65 and IkappaBalpha revealed that acute alcohol exposure for 1 h decreased NF-kappaB-IkappaBalpha complexes in the cytoplasm. Phosphorylation of p65 at Ser(536) is mediated by IkappaB kinase (IKK)beta and is required for NF-kappaB-dependent cellular responses. We show that acute alcohol treatment decreased LPS-induced IKKalpha and IKKbeta activity resulting in decreased phosphorylation of p65 at Ser(536). Furthermore, nuclear expression of IKKalpha increased after alcohol treatment, which may contribute to inhibition of NF-kappaB. Decreased phosphorylation of nuclear p65 at Ser(276) was likely not due to alcohol-induced inhibition of protein kinase A and mitogen- and stress-activated protein kinase-1 activity. Although decreased IkappaBalpha phosphorylation after acute alcohol treatment was attributable to reduced IKKbeta activity, degradation of IkappaBalpha during alcohol exposure was IKKbeta-independent. Alcohol-induced degradation of IkappaBalpha in the presence of a 26S proteasome inhibitor suggested proteasome-independent IkappaBalpha degradation. Collectively, our studies suggest that acute alcohol exposure modulates IkappaBalpha-independent NF-kappaB activity primarily by affecting phosphorylation of p65. These findings further implicate an important role for IKKbeta in the acute effects of alcohol in immune cells.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
66
|
Kim SJ, Jeong HJ, Lee KM, Moon PD, Yun JM, Cho KH, Moon BS, Lee HJ, Hong SH, Kim HM, Um JY. The effect of SHJKS on cytokines production and NF-kappaB activation in the peripheral blood mononuclear cells of patients with cerebral infarction. Immunopharmacol Immunotoxicol 2007; 28:557-70. [PMID: 17190734 DOI: 10.1080/08923970601066930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Korean genuine medicine "Seonghyangjeongkisan" (SHJKS) has long been used for various cerebrovascular diseases. However, very little scientific investigation has been carried out. Cytokines involved in the regulation of inflammatory reactions and immune responses may play a role in the pathogenesis of cerebral infarction (CI). The aim of the present study is to elucidate how SHJKS modulates the inflammatory reaction in lipopolysaccaride (LPS) plus phytohaemagglutinin (PHA)-stimulated peripheral mononuclear cells (PBMCs) from CI patients. The amount of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and IL-8 in PBMC culture supernatant was significantly increased in the LPS plus PHA treated cells compared to unstimulated cells. SHJKS inhibited the TNF-alpha, IL-1beta, IL-6, and IL-8 production in dose dependent manner. Maximal inhibition rate of the TNF-alpha, IL-1beta, IL-6, and IL-8 by SHJGS (1.0 mg/ml) was 68.01 +/- 0.28% (P < 0.01), 52.11 +/- 0.56 % (P < 0.01), 53.42 +/- 0.46 % (P < 0.01), and 46.70 +/- 0.37% (P < 0.05), respectively. In addition, we show that SHJKS suppressed nuclear factor (NF)-kappaB activation induced by LPS plus PHA, leading to suppression of IkappaB-alpha phosphorylation and degradation. These results suggest that SHJKS might have regulatory effects on LPS plus PHA-induced cytokine production and NF-kappaB activation, which might explain its beneficial effect in the treatment of CI.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Pharmacology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
BACKGROUND Calpains are intracellular, calcium-sensitive, neutral cysteine proteases that play crucial roles in many physiological and pathological processes. Calpain regulation is complex and activity is poorly correlated with calpain protein levels. Therefore a full understanding of calpain function requires robust methods for measuring activity. METHODS We describe and characterize a flow cytometric method for measuring calpain activity in live cells. This method uses the BOC-LM-CMAC reagent that readily diffuses into cells where it reacts with free thiols to enhance retention. RESULTS We show that the reagent is cleaved specifically by calpains and follows saturation kinetics. We use the assay to measure calpain activation following PDGF stimulation of rat fibroblasts. We also show that the calpain inhibitor PD150606 inhibits calpain with a K(i) of 12.5 muM and show that Mek inhibitors PD89059 and U0126 also suppress calpain activity. We also show that the assay can measure calpain activity in subpopulations of cells present in unfractionated cord blood or in HL60 human myelomonocytic leukemia cells. CONCLUSION Taken together, these experiments demonstrate that this assay is a reliable and useful method for measuring calpain activity in multiple cell types.
Collapse
Affiliation(s)
- Maryam Niapour
- Arthritis and Immune Disorder Research Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | | |
Collapse
|
68
|
Del Bello B, Moretti D, Gamberucci A, Maellaro E. Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene 2006; 26:2717-26. [PMID: 17130844 DOI: 10.1038/sj.onc.1210079] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The contribution of different proteolytic systems, in particular calpains and effector caspases, in apoptotic cell death is still controversial. In this paper, we show that during cisplatin-induced apoptosis of human metastatic melanoma cells, calpain activation, as measured in intact cells by two different fluorescent substrates, is an early event, taking place well before caspase-3/-7 activation, and progressively increasing during 48 h of treatment. Such activation appears to be independent from any intracellular calcium imbalance; in fact, an increase of cytosolic calcium along with emptying of the reticular stores occur only at very late stages, uniquely in frankly apoptotic, detached cells. Calpain activation proves to be an early and crucial event in the apoptotic machinery, as demonstrated by the significant protection of cell death in samples co-treated with the calpain inhibitors, MDL 28170, calpeptin and PD 150606, where a variable but significant reduction of both caspase-3/-7 activity and cell detachment is observed. Consistently, such a protective effect can be at least partially due to the impairment of cisplatin-induced p53 activation, occurring early in committed, preapoptotic cells. Furthermore, in late apoptotic cells, calpain activity is also responsible for the formation of a novel p53 proteolytic fragment (approximately 26 kDa), whose function is so far to be elucidated.
Collapse
Affiliation(s)
- B Del Bello
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
69
|
Kim SJ, Jeong HJ, Moon PD, Lee KM, Lee MG, Moon BS, An NH, Hong SH, Na HJ, Jeon H, Kim HM, Um JY. The Anti-inflammatory Effect of Gigukjiwhangwhangami through the Inhibition of Nuclear Factor-.KAPPA.B Activation in the Peripheral Blood Mononuclear Cells of Patients with Cerebral Infarction. Biol Pharm Bull 2006; 29:2251-5. [PMID: 17077523 DOI: 10.1248/bpb.29.2251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Korean genuine medicine "Gigukjiwhangwhangami (GJWGM)" has long been used for various cerebrovascular diseases. However, the exact mechanism that accounts for the anti-inflammatory effect of GJWGM is not completely understood. The aim of the present study is to elucidate how GJWGM modulates the inflammatory reaction in lipopolysaccaride (LPS)-stimulated peripheral mononuclear cells from patients with cerebral infarction. Production of cytokine was measured by the ELISA and RT-PCR method. The level of nuclear factor-kappaB (NF-kappaB)/Rel A protein and NF-kappaB DNA binding activity were determined by the Western blot analysis and TF-EIA method. We showed that GJWGM inhibited the production of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1alpha, IL-6, and IL-8 induced by LPS in dose dependent manner (p<0.05). Maximal inhibition rate of TNF-alpha, IL-1beta, IL-6 and IL-8 production by GJWGM was about 54.34%, 41.37%, 44.04%, and 54.46%, respectively. GJWGM inhibited the TNF-alpha and IL-8 mRNA expression. In addition, we showed that the inhibitory mechanism of GJWGM is through the suppression of NF-kappaB pathway. Our study suggests that an important molecular mechanism by GJWGM reduce inflammation, which may explain its beneficial effect in the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Su-Jin Kim
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Marcilhac A, Raynaud F, Clerc I, Benyamin Y. Detection and localization of calpain 3-like protease in a neuronal cell line: Possible regulation of apoptotic cell death through degradation of nuclear IκBα. Int J Biochem Cell Biol 2006; 38:2128-40. [PMID: 16938483 DOI: 10.1016/j.biocel.2006.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 02/02/2023]
Abstract
Calpains are a family of calcium-dependent cysteine proteases involved in major cellular processes including cell death. Their intracellular localization is essential to the understanding of their biological functions. In a previous confocal microscopy study, we observed the presence of a calpain 3-like protein in the mammalian brain. We thus first identified and confirmed the presence of a calpain 3-like protease in a neuronal cell model (NGF-differentiated PC12 cells). The goal of this study was to determine, for the first time in non-muscular cells, the relation between the subcellular localization, activation and function of this protease. We thus investigated its ability to regulate nuclear IkappaBalpha and therefore NF-kappaB activation after cell death stimulation. The IkappaBalpha/NF-kappaB signalling pathway indeed influences the neurodegenerative process by directly affecting gene expression in neurons. In the present study, we found that calpain 3 is present in the cytoplasm and nucleus of neuron-like PC12 cells and could be activated through autolysis in the nuclei of cells undergoing apoptosis after ionomycin treatment. Moreover, in these conditions, we demonstrated formation of the IkappaBalpha/calpain 3 complex and an increase in calpain-dependent IkappaBalpha cleavage products in cell nuclei. Stimulation of calpain-dependent cell death in neuron activated nuclear calpain 3-like protease and IkappaBalpha proteolysis resulted in the regulation of NF-kappaB activation. These data suggest a new mechanism by which calpain 3 activation is able to regulate the IkappaBalpha/NF-kappaB pathway and thus neurodegenerative processes.
Collapse
Affiliation(s)
- A Marcilhac
- EPHE-UMR 5539, University of Montpellier II, CC107, Place Eugene Bataillon, 34000 Montpellier, France.
| | | | | | | |
Collapse
|
71
|
Ponnappan S, Cullen SJ, Ponnappan U. Constitutive degradation of IkappaBalpha in human T lymphocytes is mediated by calpain. IMMUNITY & AGEING 2005; 2:15. [PMID: 16271147 PMCID: PMC1298323 DOI: 10.1186/1742-4933-2-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 11/04/2005] [Indexed: 01/13/2023]
Abstract
Background Activation-induced induction of transcription factor NFκB in T lymphocytes is regulated by its inhibitor IκBα. NFκB activation has been demonstrated to occur either by phosphorylation on serine residues 32 and 36 of the inhibitor, IκBα, followed by ubiquitination and degradation of the inhibitor by the 26S proteasome, or by a proteasome-independent mechanism involving tyrosine phosphorylation, but not degradation. However, the mechanism underlying constitutive regulation of the levels of the inhibitor, IκB, in primary human T lymphocytes, remains to be fully delineated. Results We demonstrate here, the involvement of a proteasome-independent pathway for constitutive regulation of IκBα levels in primary human T lymphocytes. Pretreatment with a cell permeable calpain inhibitor, E64D, but not with a proteasome specific inhibitor, lactacystin, blocks stimulus-independent IκBα degradation in primary human T cells. However, E64D pre-treatment fails to impact on IκBα levels following stimulation with either TNFα or pervanadate. Other isoforms of the inhibitor, IκBβ, and IκBγ, appear not to be subject to a similar ligand-independent regulation. Unlike the previously reported decline in ligand-induced degradation of IκBα in T cells from the elderly, constitutive degradation does not exhibit an age-associated decline, demonstrating proteasome-independent regulation of the activity. Conclusion Our studies support a role for an E64D sensitive protease in regulating constitutive levels of IκBα in T cells, independent of the involvement of the 26S proteasome, and suggests a biological role for constitutive degradation of IκBα in T cells.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- VA Medical Research, Central Arkansas Veterans Health care system, Little Rock, AR, USA
| | - Sarah J Cullen
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Usha Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- VA Medical Research, Central Arkansas Veterans Health care system, Little Rock, AR, USA
| |
Collapse
|
72
|
Kim SJ, Jeong HJ, Choi IY, Lee KM, Park RK, Hong SH, Kim HM. Cyclooxygenase-2 inhibitor SC-236 [4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-l] benzenesulfonamide] suppresses nuclear factor-kappaB activation and phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase in human mast cell line cells. J Pharmacol Exp Ther 2005; 314:27-34. [PMID: 15784648 DOI: 10.1124/jpet.104.082792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SC-236 [4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-l] benzenesulfonamide; C16H11ClF3N3O2S] is a highly selective cyclooxygenase (COX)-2 inhibitor. However, the exact mechanism that accounts for the anti-inflammatory effect of SC-236 is not completely understood. The aim of the present study was to elucidate whether and how SC-236 modulates the inflammatory reaction in a stimulated human mast cell (HMC) line, HMC-1. SC-236 inhibited the expression of tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, vascular endothelial growth factor, COX-2, inducible nitric-oxide synthase, and hypoxia-inducible factor-1alpha in phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated HMC-1. SC-236 suppressed nuclear factor (NF)-kappaB activation induced by PMACI, leading to suppression of IkappaB-alpha phosphorylation and degradation. SC-236 also suppressed strong induction of NF-kappaB promoter-mediated luciferase activity. In addition, SC-236 suppressed PMACI-induced phosphorylation of the mitogen-activated protein kinase p38, the extracellular-regulated kinase p44, and the c-Jun N-terminal kinase and induced expression of mitogen-activated protein kinase phosphatase-1. These results provide new insight into the pharmacological actions of SC-236 as a potential molecule for therapy of mast cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Su-Jin Kim
- College of Oriental Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Sribnick EA, Wingrave JM, Matzelle DD, Wilford GG, Ray SK, Banik NL. Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats. J Neurosci Res 2005; 82:283-93. [PMID: 16130149 DOI: 10.1002/jnr.20622] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spinal cord injury (SCI) is a devastating neurologic injury with functional deficits for which the only currently recommended pharmacotherapy is high-dose methylprednisolone, which has limited efficacy. Estrogen is a multi-active steroid that has shown antiinflammatory and antioxidant effects, and estrogen may modulate intracellular Ca(2+) and attenuate apoptosis. For this study, male rats were divided into three groups. Sham group animals received a laminectomy at T12. Injured rats received both laminectomy and 40 g x cm force SCI. Estrogen-group rats received 4 mg/kg 17beta-estradiol (estrogen) at 15 min and 24 hr post-injury, and vehicle-group rats received equal volumes of dimethyl sulfoxide (vehicle). Animals were sacrificed at 48 hr post-injury, and 1-cm-long segments of the lesion, rostral penumbra, and caudal penumbra were excised. Inflammation was assessed by examining tissue edema, infiltration of macrophages/microglia, and levels of cytosolic and nuclear NFkappaB and inhibitor of kappa B (IkappaBalpha). Myelin integrity was examined using Luxol fast blue staining. When compared to sham, vehicle-treated animals revealed increased tissue edema, increased infiltration of inflammatory cells, decreased cytosolic levels of NFkappaB and IkappaBalpha, increased levels of nuclear NFkappaB, and increased myelin loss. Treatment of SCI rats with estrogen reduced edema and decreased inflammation and myelin loss in the lesion and penumbral areas, suggesting its potential as a therapeutic agent. Further work needs to be done, however, to elucidate the neuroprotective mechanism of estrogen.
Collapse
Affiliation(s)
- Eric Anthony Sribnick
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|