51
|
Analysis of Givinostat/ITF2357 Treatment in a Rat Model of Neonatal Hypoxic-Ischemic Brain Damage. Int J Mol Sci 2022; 23:ijms23158287. [PMID: 35955430 PMCID: PMC9368553 DOI: 10.3390/ijms23158287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
The histone deacetylase inhibitor (HDACi) Givinostat/ITF2357 provides neuroprotection in adult models of brain injury; however, its action after neonatal hypoxia-ischemia (HI) is still undefined. The aim of our study was to test the hypothesis that the mechanism of Givinostat is associated with the alleviation of inflammation. For this purpose, we analyzed the microglial response and the effect on molecular mediators (chemokines/cytokines) that are crucial for inducing cerebral damage after neonatal hypoxia-ischemia. Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 60 min of hypoxia (7.6% O2). Givinostat (10 mg/kg b/w) was administered in a 5-day regimen. The effects of Givinostat on HI-induced inflammation (cytokine, chemokine and microglial activation and polarization) were assessed with a Luminex assay, immunohistochemistry and Western blot. Givinostat treatment did not modulate the microglial response specific for HI injury. After Givinostat administration, the investigated chemokines and cytokines remained at the level induced by HI. The only immunosuppressive effect of Givinostat may be associated with the decrease in MIP-1α. Neonatal hypoxia-ischemia produces an inflammatory response by activating the proinflammatory M1 phenotype of microglia, disrupting the microglia–neuron (CX3CL1/CX3CR1) axis and elevating numerous proinflammatory cytokines/chemokines. Givinostat/ITF2357 did not prevent an inflammatory reaction after HI.
Collapse
|
52
|
The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol Rep 2022; 74:909-919. [PMID: 35796871 DOI: 10.1007/s43440-022-00384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Microglia play a major role in the development of brain inflammation after central nervous system injury. On the other hand, microglia also participate in the repair process. The dualistic role of these cells results from the fact that various states of their activation are associated with specific phenotypes. The M1 phenotype is responsible for the production of proinflammatory mediators, whereas the M2 microglia release anti-inflammatory and trophic factors and take part in immunosuppressive and neuroprotective processes. The histone deacetylase inhibitor sodium butyrate (SB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury. The aim of this study was to examine the effects of sodium butyrate on the proliferation and M1/M2 polarization of primary microglial cells after oxygen and glucose deprivation (OGD) in vitro. METHODS Primary microglial cultures were prepared from 1-day-old rats, subjected to the OGD procedure and treated with SB (0.1 mM, 1 mM and 10 mM). The effect of OGD and SB on microglial proliferation was assessed by double immunofluorescence, and microglial phenotypes were evaluated by qPCR. RESULTS The OGD procedure stimulated the proliferation of microglia after 24 h of culturing, and SB treatment reduced the division of these cells. This effect was inversely proportional to the SB concentration. The OGD procedure increased proinflammatory CD86 and IL1β gene expression and reduced the expression of the anti-inflammatory M2 markers arginase and CD200 in microglia. CONCLUSIONS SB can change the polarization of microglia after OGD from an unfavourable M1 to a beneficial M2 phenotype. Our results show that SB is a potential immunosuppressive agent that can modulate microglial activation stimulated by ischaemic-like conditions.
Collapse
|
53
|
Zhou Y, Yang L, Liu X, Wang H. Lactylation may be a Novel Posttranslational Modification in Inflammation in Neonatal Hypoxic-Ischemic Encephalopathy. Front Pharmacol 2022; 13:926802. [PMID: 35721121 PMCID: PMC9202888 DOI: 10.3389/fphar.2022.926802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023] Open
Abstract
Perinatal hypoxia-ischemia remains the most common cause of acute neonatal brain injury and is associated with a high death rate and long-term neurological abnormalities such as memory and cognitive deficits and dyskinesia. Hypoxia-ischemia triggers an inflammatory cascade in the brain that is amplified by the activation of immune cells and the influx of peripheral immune cells into the brain parenchyma in response to cellular injury. Thus, acute cerebral hypoxic-ischemic inflammation is a major contributor to the pathogenesis of newborn hypoxic-ischemic brain injury. Lactate is a glycolysis end product that can regulate inflammation through histone lactylation, a unique posttranslational modification that was identified in recent studies. The purpose of this review is to outline the recent improvements in our understanding of microglia-mediated hypoxic-ischemic inflammation and to further discuss how histone lactylation regulates inflammation by affecting macrophage activation. These findings may suggest that epigenetic reprogramming-associated lactate input is linked to disease outcomes such as acute neonatal brain injury pathogenesis and the therapeutic effects of drugs and other strategies in relieving neonatal hypoxic-ischemic brain injury. Therefore, improving our knowledge of the reciprocal relationships between histone lactylation and inflammation could lead to the development of new immunomodulatory therapies for brain damage in newborns.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Li Yang
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Xiaoying Liu
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Hao Wang
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
54
|
Time Course of Changes in the Neurovascular Unit after Hypoxic-Ischemic Injury in Neonatal Rats. Int J Mol Sci 2022; 23:ijms23084180. [PMID: 35456999 PMCID: PMC9027443 DOI: 10.3390/ijms23084180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRβ), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.
Collapse
|
55
|
Ding X, Pan T, Tian Q, Huang W, Hayashi LS, Liu Q, Li F, Xu LX, Miao P, Yang X, Sun B, Feng CX, Feng X, Li M, Huang J. Profiling Temporal Changes of the Pineal Transcriptomes at Single Cell Level Upon Neonatal HIBD. Front Cell Dev Biol 2022; 10:794012. [PMID: 35350377 PMCID: PMC8958010 DOI: 10.3389/fcell.2022.794012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) often results in various neurological deficits. Among them, a common, yet often neglected, symptom is circadian rhythm disorders. Previous studies revealed that the occurrence of cysts in the pineal gland, an organ known to regulate circadian rhythm, is associated with circadian problems in children with HIBD. However, the underlying mechanisms of pineal dependent dysfunctions post HIBD remain largely elusive. Here, by performing 10x single cell RNA sequencing, we firstly molecularly identified distinct pineal cell types and explored their transcriptome changes at single cell level at 24 and 72 h post neonatal HIBD. Bioinformatic analysis of cell prioritization showed that both subtypes of pinealocytes, the predominant component of the pineal gland, were mostly affected. We then went further to investigate how distinct pineal cell types responded to neonatal HIBD. Within pinealocytes, we revealed a molecularly defined β to α subtype conversion induced by neonatal HIBD. Within astrocytes, we discovered that all three subtypes responded to neonatal HIBD, with differential expression of reactive astrocytes markers. Two subtypes of microglia cells were both activated by HIBD, marked by up-regulation of Ccl3. Notably, microglia cells showed substantial reduction at 72 h post HIBD. Further investigation revealed that pyroptosis preferentially occurred in pineal microglia through NLRP3-Caspase-1-GSDMD signaling pathway. Taken together, our results delineated temporal changes of molecular and cellular events occurring in the pineal gland following neonatal HIBD. By revealing pyroptosis in the pineal gland, our study also provided potential therapeutic targets for preventing extravasation of pineal pathology and thus improving circadian rhythm dysfunction in neonates with HIBD.
Collapse
Affiliation(s)
- Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Tao Pan
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Qiuyan Tian
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Wenxi Huang
- Undergraduate Program, University of Virginia, Charlottesville, VA, United States
| | - Lauren S Hayashi
- IRTA Fellow, National Institutes of Health, Bethesda, MD, United States
| | - Qin Liu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Fuyong Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Po Miao
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Yang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Bin Sun
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China.,Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China.,Undergraduate Program, University of Virginia, Charlottesville, VA, United States.,IRTA Fellow, National Institutes of Health, Bethesda, MD, United States.,School of Basic Medicine and Biological Sciences, Medical College of Soochow University, Suzhou, China
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Huang
- School of Basic Medicine and Biological Sciences, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
56
|
Xin DQ, Zhao YJ, Li TT, Ke HF, Gai CC, Guo XF, Chen WQ, Liu DX, Wang Z. The delivery of miR-21a-5p by extracellular vesicles induces microglial polarization via the STAT3 pathway following hypoxia-ischemia in neonatal mice. Neural Regen Res 2022; 17:2238-2246. [PMID: 35259844 PMCID: PMC9083169 DOI: 10.4103/1673-5374.336871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) have previously been shown to protect against brain injury caused by hypoxia-ischemia (HI). The neuroprotective effects have been found to relate to the anti-inflammatory effects of EVs. However, the underlying mechanisms have not previously been determined. In this study, we induced oxygen-glucose deprivation in BV-2 cells (a microglia cell line), which mimics HI in vitro, and found that treatment with MSCs-EVs increased the cell viability. The treatment was also found to reduce the expression of pro-inflammatory cytokines, induce the polarization of microglia towards the M2 phenotype, and suppress the phosphorylation of selective signal transducer and activator of transcription 3 (STAT3) in the microglia. These results were also obtained in vivo using neonatal mice with induced HI. We investigated the potential role of miR-21a-5p in mediating these effects, as it is the most highly expressed miRNA in MSCs-EVs and interacts with the STAT3 pathway. We found that treatment with MSCs-EVs increased the levels of miR-21a-5p in BV-2 cells, which had been lowered following oxygen-glucose deprivation. When the level of miR-21a-5p in the MSCs-EVs was reduced, the effects on microglial polarization and STAT3 phosphorylation were reduced, for both the in vitro and in vivo HI models. These results indicate that MSCs-EVs attenuate HI brain injury in neonatal mice by shuttling miR-21a-5p, which induces microglial M2 polarization by targeting STAT3.
Collapse
Affiliation(s)
- Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yi-Jing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ting-Ting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hong-Fei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Cheng-Cheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiao-Fan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, USA
| | - Wen-Qiang Chen
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - De-Xiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
57
|
Temporal Characterization of Microglia-Associated Pro- and Anti-Inflammatory Genes in a Neonatal Inflammation-Sensitized Hypoxic-Ischemic Brain Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2479626. [PMID: 35281473 PMCID: PMC8906938 DOI: 10.1155/2022/2479626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) mainly affects preterm and term newborns, leading to a high risk of brain damage. Coexisting infection/inflammation and birth asphyxia are key factors associated with intracerebral increase of proinflammatory cytokines linked to HIE. Microglia are key mediators of inflammation during perinatal brain injury, characterized by their phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with pro- and anti-inflammatory cytokines as well as the nucleotide-binding domain, leucine-rich repeat protein (NLRP-3) inflammasome from microglia cells. For this purpose, we used our established neonatal rat model of inflammation-sensitized hypoxic-ischemic (HI) brain injury in seven-day-old rats. We assessed gene expression profiles of 11 cytokines and for NLRP-3 using real-time PCR from sorted CD11b/c microglia of brain samples at different time points (3.5 h after LPS injection and 0, 5, 24, 48, and 72 hours post HI) following different treatments: vehicle, E. coli lipopolysaccharide (LPS), vehicle/HI, and LPS/HI. Our results showed that microglia are early key mediators of the inflammatory response and exacerbate the inflammatory response following HI, polarizing into a predominant proinflammatory M1 phenotype in the early hours post HI. The brains only exposed to HI showed a delay in the expression of proinflammatory cytokines. We also demonstrated that NLRP-3 plays a role in the inflammatory resolution with a high expression after HI insult. The combination of both, a preinfection/inflammation condition and hypoxia-ischemia, resulted in a higher proinflammatory cytokine storm, highlighting the significant contribution of acute inflammation sensitizing prior to a hypoxic insult on the severity of perinatal brain damage.
Collapse
|
58
|
Huang Z, Luo Z, Ovcjak A, Wan J, Chen NH, Hu W, Sun HS, Feng ZP. AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation. Neurosci Bull 2022; 38:857-870. [PMID: 35072896 PMCID: PMC9352839 DOI: 10.1007/s12264-021-00816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.
Collapse
Affiliation(s)
- Zhihua Huang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhengwei Luo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrea Ovcjak
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jiangfan Wan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenhui Hu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
59
|
Plinia trunciflora Extract Administration Prevents HI-Induced Oxidative Stress, Inflammatory Response, Behavioral Impairments, and Tissue Damage in Rats. Nutrients 2022; 14:nu14020395. [PMID: 35057576 PMCID: PMC8779767 DOI: 10.3390/nu14020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The disruption of redox homeostasis and neuroinflammation are key mechanisms in the pathogenesis of brain hypoxia–ischemia (HI); medicinal plants have been studied as a therapeutic strategy, generally associated with the prevention of oxidative stress and inflammatory response. This study evaluates the neuroprotective role of the Plinia trunciflora fruit extract (PTE) in neonatal rats submitted to experimental HI. The HI insult provoked a marked increase in the lipoperoxidation levels and glutathione peroxidase (GPx) activity, accompanied by a decrease in the brain concentration of glutathione (GSH). Interestingly, PTE was able to prevent most of the HI-induced pro-oxidant effects. It was also observed that HI increased the levels of interleukin-1β in the hippocampus, and that PTE-treatment prevented this effect. Furthermore, PTE was able to prevent neuronal loss and astrocyte reactivity induced by HI, as demonstrated by NeuN and GFAP staining, respectively. PTE also attenuated the anxiety-like behavior and prevented the spatial memory impairment caused by HI. Finally, PTE prevented neural tissue loss in the brain hemisphere, the hippocampus, cerebral cortex, and the striatum ipsilateral to the HI. Taken together our results provide good evidence that the PTE extract has the potential to be investigated as an adjunctive therapy in the treatment of brain insult caused by neonatal hypoxia–ischemia.
Collapse
|
60
|
Dong X, Luo S, Hu D, Cao R, Wang Q, Meng Z, Feng Z, Zhou W, Song W. Gallic acid inhibits neuroinflammation and reduces neonatal hypoxic-ischemic brain damages. Front Pediatr 2022; 10:973256. [PMID: 36619526 PMCID: PMC9813953 DOI: 10.3389/fped.2022.973256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation is a leading cause of secondary neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE). Regulation of neuroinflammation may be beneficial for treatment of HIE and its secondary complications. Gallic acid (GA) has been shown to have anti-inflammatory and antioxidant effects. In this report we found that oxygen-glucose deprivation and/reoxygenation (OGD/R)-induced cell death, and the generation of excessive reactive oxygen species (ROS) and inflammatory cytokines by microglia were inhibited by GA treatment. Furthermore, GA treatment reduced neuroinflammation and neuronal loss, and alleviated motor and cognitive impairments in rats with hypoxic-ischemic brain damage (HIBD). Together, our results reveal that GA is an effective regulator of neuroinflammation and has potential as a pharmaceutical intervention for HIE therapy.
Collapse
Affiliation(s)
- Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Cao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
61
|
Wang R, Li L, Wang B. Poncirin ameliorates oxygen glucose deprivation/reperfusion injury in cortical neurons via inhibiting NOX4-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2022; 102:107210. [PMID: 34266770 DOI: 10.1016/j.intimp.2020.107210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Poncirin, a natural flavonoid present abundantly in citrus fruits, possesses anti-oxidant and anti-inflammatory activities that contribute to neuroprotection, but its roles and mechanisms in neuronal injury is still poorly understood. In this study, an oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in primary cortical neurons to induce neuronal injury in vitro. Poncirin effectively attenuated OGD/R-induced neuronal damage by enhancing cell viability, restraining lactate dehydrogenase release, and reducing apoptosis of neurons. Poncirin restrained mitochondrial dysfunction and oxidative stress by increasing mitochondrial membrane potential, declining reactive oxygen species production, lessening malondialdehyde generation, and increasing the activities of antioxidant enzymes in OGD/R-treated neurons. Poncirin also repressed inflammatory responses by reducing the secretion of pro-inflammatory factors, and inhibiting NLRP3 inflammasome activation. Importantly, poncirin administration notably abolished OGD/R-induced upregulation of NADPH oxidase 4 (NOX4), and overexpression of NOX4 neutralized poncirin-mediated neuroprotection. In conclusion, poncirin protects cortical neurons from OGD/R injury via inhibiting NOX4/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou 466000, Henan, China.
| | - Lei Li
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| | - Baogong Wang
- Department of Cardiology, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| |
Collapse
|
62
|
Ding Y, Zhang M, Li C, Xie B, Zhao G, Sun Y. RETRACTED ARTICLE: A reusable aptasensor based on the dual signal amplification of Ce@AuNRs-PAMAM-Fc and DNA walker for ultrasensitive detection of TNF-α. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-020-04885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
Kurt A, Zenciroğlu A, Akduman H. The impact of therapeutic hypothermia on peripheral blood cell in newborns with hypoxic ischemic encephalopathy. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e181053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
64
|
Zen R, Terashima T, Tsuji S, Katagi M, Ohashi N, Nobuta Y, Higuchi A, Kanai H, Murakami T, Kojima H. Ambient Temperature Is Correlated With the Severity of Neonatal Hypoxic-Ischemic Brain Injury via Microglial Accumulation in Mice. Front Pediatr 2022; 10:883556. [PMID: 35601427 PMCID: PMC9120824 DOI: 10.3389/fped.2022.883556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The pathophysiology of neonatal hypoxic-ischemic encephalopathy (HIE) has been studied in several rodent models to develop novel treatments. Although it is well known that high ambient temperature results in severe HIE, the effect of subtle changes in ambient temperature during a hypoxic-ischemic (HI) insult has not been studied. Therefore, in order to clarify the difference of pathophysiological change among the HIE models due to the influence of small changes in chamber temperature, three-step gradual change of 0.5°C each were prepared in ambient temperature during hypoxic exposure. METHODS Blood flow in the left common carotid artery (CCA) of neonatal mice was interrupted using bipolar electronic forceps under general and local anesthesia. The mice were subsequently subjected to 10% hypoxic exposure for 50 min at 36.0, 36.5, or 37.0°C. A control group was also included in the study. The size of the striatum and hippocampus and the volume reduction rate of the hemisphere in the section containing them on the ischemic side were evaluated using microtubule associated protein 2 (MAP2) immunostaining. The accumulation of Iba1-positive cells was investigated to assess inflammation. Additionally, rotarod and open-field tests were performed 2 weeks after HI insult to assess its effect on physiological conditions. RESULTS MAP2 staining revealed that the higher the temperature during hypoxia, the more severe the volume reduction rate in the hemisphere, striatum, and hippocampus. The number of Iba1-positive cells in the ipsilateral lesion gradually increased with increasing temperature, and there was a significant difference in motor function in the 36.5 and 37.0°C groups compared with the sham group. In the open-field tests, there was a significant decrease in performance in the 37.0°C groups compared with the 36.0°C and sham groups. CONCLUSIONS Even a small gradual change of 0.5°C produced a significant difference in pathological and behavioral changes and contributed to the accumulation of Iba1-positive cells. The arrangement of ambient temperature is useful for creating a rodent model with the appropriate severity of the targeted neuropsychological symptoms to establish a novel therapy for HIE.
Collapse
Affiliation(s)
- Rika Zen
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan.,Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yuri Nobuta
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Asuka Higuchi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohiko Kanai
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
65
|
Guo L, Zhu L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front Mol Biosci 2021; 8:752465. [PMID: 34881289 PMCID: PMC8645603 DOI: 10.3389/fmolb.2021.752465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Given combined efforts of neuroscience and immunology, increasing evidence has revealed the critical roles of the immune system in regulating homeostasis and disorders of the central nervous system (CNS). Microglia have long been considered as the only immune cell type in parenchyma, while at the interface between CNS and the peripheral (meninges, choroid plexus, and perivascular space), embryonically originated border-associated macrophages (BAMs) and multiple surveilling leukocytes capable of migrating into and out of the brain have been identified to function in the healthy brain. Hypoxia-induced neuroinflammation is the key pathological procedure that can be detected in healthy people at high altitude or in various neurodegenerative diseases, during which a very thin line between a beneficial response of the peripheral immune system in maintaining brain homeostasis and a pathological role in exacerbating neuroinflammation has been revealed. Here, we are going to focus on the role of the peripheral immune system and its crosstalk with CNS in the healthy brain and especially in hypobaric or ischemic hypoxia-associated neuroinflammation.
Collapse
Affiliation(s)
- Liang Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,University of Nanhua, Hengyang, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
66
|
Melo AM, Taher NAB, Doherty DG, Molloy EJ. The role of lymphocytes in neonatal encephalopathy. Brain Behav Immun Health 2021; 18:100380. [PMID: 34755125 PMCID: PMC8560973 DOI: 10.1016/j.bbih.2021.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Neonatal encephalopathy is a syndrome characterised by abnormal neurological function often caused by a hypoxic insult during childbirth. Triggers such as hypoxia-ischaemia result in the release of cytokines and chemokines inducing the infiltration of neutrophils, natural killer cells, B cells, T cells and innate T cells into the brain. However, the role of these cells in the development of the brain injury is poorly understood. We review the mechanisms by which lymphocytes contribute to brain damage in NE. NK, T and innate T cells release proinflammatory cytokines contributing to the neurodegeneration in the secondary and tertiary phase of injury, whereas B cells and regulatory T cells produce IL-10 protecting the brain in NE. Targeting lymphocytes may have therapeutic potential in the treatment of NE in terms of management of inflammation and brain damage, particularly in the tertiary or persistent phases.
Collapse
Key Words
- Blood-brain barrier, BBB
- Hypoxia-ischaemia encephalopathy, HIE
- Hypoxia-ischaemia, HI
- Hypoxic-ischaemia
- Immune response
- Lymphocytes
- Neonatal encephalopathy
- Neonatal encephalopathy, NE
- Regulatory T cells, Tregs
- T cell receptors, TCRs
- T helper, Th
- Therapeutic hypothermia, TH
- White Matter Injury, WMI
- activating transcription factor-6, ATF6
- central nervous system, CNS
- granulocyte-macrophage colony-stimulating factor, GM-CSF
- interleukin, IL
- major histocompatibility complex, MHC
- natural killer, NK cells
- tumour necrosis factor-alpha, TNF-α
Collapse
Affiliation(s)
- Ashanty M. Melo
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Nawal AB. Taher
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Research in Childhood Centre, Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Crumlin, Dublin, Ireland
- Discipline of Coombe Women and Infants University Hospital, Crumlin, Dublin, Ireland
- Discipline of Neonatology & National Children's Research Centre, Crumlin, Dublin, Ireland
- Discipline of National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
67
|
Early Post-ischemic Brain Glucose Metabolism Is Dependent on Function of TLR2: a Study Using [ 18F]F-FDG PET-CT in a Mouse Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Mol Imaging Biol 2021; 24:466-478. [PMID: 34779968 PMCID: PMC8592082 DOI: 10.1007/s11307-021-01677-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022]
Abstract
Purpose The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral function and presumably also glucose metabolism. The majority of patients who survive CA suffer from cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflammatory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [18F]F-FDG PET-CT imaging before and early after CA-CPR in a mouse model comparing wild-type (WT) and TLR2-deficient (TLR2−/−) mice. The investigation will evaluate whether FDG-PET could be useful as an additional methodology in assessing prognosis. Procedures Two PET-CT scans using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) tracer were carried out to measure dynamic glucose metabolism before and early after CPR. To achieve this, anesthetized and ventilated adult female WT and TLR2−/− mice were scanned in PET-CT. After recovery from the baseline scan, the same animals underwent 10-min KCL-induced CA followed by CPR. Approximately 90 min after CA, measurements of [18F]F-FDG uptake for 60 min were started. The [18F]F-FDG standardized uptake values (SUVs) were calculated using PMOD-Software on fused FDG-PET-CT images with the included 3D Mirrione-Mouse-Brain-Atlas. Results The absolute SUVmean of glucose in the whole brain of WT mice was increased about 25.6% after CA-CPR. In contrast, the absolute glucose SUV in the whole brain of TLR2−/− mice was not significantly different between baseline and measurements post CA-CPR. In comparison, baseline measurements of both mouse strains show a highly significant difference with regard to the absolute glucose SUV in the whole brain. Values of TLR2−/− mice revealed a 34.6% higher glucose uptake. Conclusions The altered mouse strains presented a different pattern in glucose uptake under normal and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were associated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT as an additional diagnostic tool after resuscitation. Further studies are needed to use PET-CT in predicting neurological outcomes.
Collapse
|
68
|
Yang G, Xue Z, Zhao Y. MiR-582-5p attenuates neonatal hypoxic-ischemic encephalopathy by targeting high mobility group box 1 (HMGB1) through inhibiting neuroinflammation and oxidative stress. Curr Neurovasc Res 2021; 18:295-301. [PMID: 34751119 DOI: 10.2174/1567202618666211109102740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND MiR-582-5p has been demonstrated to protect against ischemic stroke. However, its implication in the progression of neonatal hypoxic-ischemic encephalopathy (HIE) has not been explored. METHODS In this study, we used an in vitro model of oxygen-glucose deprivation (OGD) to investigate the protective effect of miR-582-5p on PC12 cells. OGD-induced inhibition of cell viability and promotion of cell death was assessed by CCK-8 assay and flow cytometry. Real-time PCR and enzyme-linked immunosorbent assay (ELISA) were utilized to examine the levels of inflammatory cytokines. The effects of miR-582-5p on OGD-induced oxidative injury were assessed by the determination of oxidative stress indicators. Furthermore, dual-luciferase reporter assay and gain-offunction assay were used to determine the mechanism of miR-582-5p in OGD-induced cell injury. RESULTS The expression of miR-582-5p was reduced upon OGD treatment in PC12 cells. Overexpression of miR-582-5p inhibited OGD-induced PC12 cell injury by regulating cell viability, apoptosis, inflammatory responses, and oxidative stress. MiR-582-5p targeted and negatively regulated high mobility group box 1 (HMGB1). MiR-582-5p presented protective effects on OGD-induced PC12 cell injury by targeting HMGB1. CONCLUSION Our results indicated that miR-582-5p ameliorates neuronal injury by inhibiting apoptosis, inflammation, and oxidative stress through targeting HMGB1.
Collapse
Affiliation(s)
- Guang Yang
- Department of pediatrics, Shanxi Medical University, Taiyuan, Shanxi, 030001. China
| | - Zhimin Xue
- Department of neonatal medicine, Shanxi children's Hospital, Taiyuan, Shanxi, 030013. China
| | - Yuan Zhao
- Department of neonatal medicine, Shanxi children's Hospital, Taiyuan, Shanxi, 030013. China
| |
Collapse
|
69
|
Najafi M, Amini R, Maghsood AH, Fallah M, Foroughi-Parvar F. Co Expression of GMFβ, IL33, CCL2 and SDF1 Genes in the Acute Stage of Toxoplasmosis in Mice Model and Relation for Neuronal Impairment. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:426-434. [PMID: 34630588 PMCID: PMC8476739 DOI: 10.18502/ijpa.v16i3.7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that migrates through macrophages or dendritic cells to neurons and nerve cells. Glia Maturation Factor (GMF) is a pre-inflammatory protein that is expressed in the central nervous system (CNS). GMFβ expression is related to IL33 and CCL2 and SDF1 in some neurodegenerative diseases. According to the importance of GMFβ in neurodegenerative diseases and its association with IL33, CCL2 and SDF1 genes, this study was designed to determine the level of expression of these genes in the brains of mice with acute toxoplasmosis. Methods Tachyzoites of T. gondii RH strains were injected to 5 Swiss Albino mice. At the same time, healthy mice were inoculated with the Phosphate-buffered saline (PBS). Their brains were removed and kept at -70 °C in order to RNA extraction, cDNA syntheses and Real Time PCR performance. The level of gene expression was investigated with SYBR Green Quantitative Real-Time PCR. Results GMFβ gene expression increased significantly (P=0.003) 3.26 fold in Toxoplasma infected mice in comparison to the control. GMFβ gene expression was associated with increased expression level of IL33, CCL2, and SDF1 genes. Conclusion Considering the prominent role of GMFβ in CNS as well as the immune system, the elevation of GMFβ, IL33, CCL2 and SDF1 genes expression in the early stage of toxoplasmosis is associated with the occurrence of neuropathological alterations. Detection of these genes as an indication of brain damage in the early stages of Toxoplasma infection can prevent neurodegenerative disorders following acquired toxoplasmosis.
Collapse
Affiliation(s)
- Mehri Najafi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Fallah
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
70
|
Zhao M, Yao Y, Du J, Kong L, Zhao T, Wu D, Man L, Zhou W. 6-Gingerol Alleviates Neonatal Hypoxic-Ischemic Cerebral and White Matter Injury and Contributes to Functional Recovery. Front Pharmacol 2021; 12:707772. [PMID: 34630084 PMCID: PMC8492979 DOI: 10.3389/fphar.2021.707772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one main cause of neonatal death and disability, causing substantial injury to white and gray matter, which can lead to severe neurobehavioral dysfunction, including intellectual disability and dyskinesia. Inflammation, nerve cell death, and white matter injury are important factors in the pathological process of HIE. 6-Gingerol is a ginger extract, which reduces inflammatory response and cell death. However, the role of 6-Gingerol in neonatal hypoxic-ischemic brain injury (HIBI) remains unknown. In this study, we constructed a mouse HIBI model and analyzed the protective effect of 6-Gingerol on HIBI by using behavioral tests, histological staining, qPCR and western blot. Here, we found that 6-Gingerol treatment could alleviate HIBI and improve short-term reflex performance, which is closely related to cell death and neuroinflammation. Additionally, 6-Gingerol reduced neuronal apoptosis, pro-inflammatory factor release, as well as microglial activation. Furthermore, 6-Gingerol significantly improved motor disability, which is associated with white matter damage. Thus, our results showed that 6-Gingerol could reduce the loss of myelin sheaths, alleviate cell death of oligodendrocytes, and stimulate the maturation of oligodendrocytes. In terms of mechanism, we found that 6-Gingerol decreased histone H3K27me3 levels, activated AKT pathway and inhibited the activation of ERK and NF-κB pathway at 3 days post-HIBI. Taken together, our data clearly indicate that 6-Gingerol plays a neuroprotective role against HIBI by epigenetic modification and regulation of AKT, ERK, and NF-κB pathways, inhibiting inflammatory responses and reducing cell death.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Yao
- Centre for Sports and Exercise Science, School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lajie Man
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
71
|
Comprehensive Analysis of RNA Expression Profile Identifies Hub miRNA-circRNA Interaction Networks in the Hypoxic Ischemic Encephalopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6015473. [PMID: 34603484 PMCID: PMC8481051 DOI: 10.1155/2021/6015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) is classified as a sort of serious nervous system syndrome that occurs in the early life period. Noncoding RNAs had been confirmed to have crucial roles in human diseases. So far, there were few systematical and comprehensive studies towards the expression profile of RNAs in the brain after hypoxia ischemia. In this study, 31 differentially expressed microRNAs (miRNAs) with upregulation were identified. In addition, 5512 differentially expressed mRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) were identified in HIE groups. Bioinformatics analysis showed these circRNAs and mRNAs were significantly enriched in regulation of leukocyte activation, response to virus, and neutrophil degranulation. Pathway and its related gene network analysis indicated that HLA - DPA1, HLA - DQA2, HLA - DQB1, and HLA - DRB4 have a more crucial role in HIE. Finally, miRNA-circRNA-mRNA interaction network analysis was also performed to identify hub miRNAs and circRNAs. We found that miR-592 potentially targeting 5 circRNAs, thus affecting 15 mRNA expressions in HIR. hsa_circ_0068397 and hsa_circ_0045698 were identified as hub circRNAs in HIE. Collectively, using RNA-seq, bioinformatics analysis, and circRNA/miRNA interaction prediction, we systematically investigated the differentially expressed RNAs in HIE, which could give a new hint of understanding the pathogenesis of HIE.
Collapse
|
72
|
Role of macrophages in fetal development and perinatal disorders. Pediatr Res 2021; 90:513-523. [PMID: 33070164 DOI: 10.1038/s41390-020-01209-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
In the fetus and the neonate, altered macrophage function has been implicated not only in inflammatory disorders but also in developmental abnormalities marked by altered onset, interruption, or imbalance of key structural changes. The developmental role of macrophages were first noted nearly a century ago, at about the same time when these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since that time, we have made considerable progress in understanding the diverse roles that these cells play in both physiology and disease. Here, we review the role of fetal and neonatal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the possibility of therapeutic manipulation of the relative abundance and activation status of macrophage subsets in various diseases. This article combines peer-reviewed evidence from our own studies with results of an extensive literature search in the databases PubMed, EMBASE, and Scopus. IMPACT: We have reviewed the structure, differentiation, and classification of macrophages in the neonatal period. Neonatal macrophages are derived from embryonic, hepatic, and bone marrow precursors. Macrophages play major roles in tissue homeostasis, innate immunity, inflammation, tissue repair, angiogenesis, and apoptosis of various cellular lineages in various infectious and inflammatory disorders. Macrophages and related inflammatory mediators could be important therapeutic targets in several neonatal diseases.
Collapse
|
73
|
Yokoi K, Iwata O, Kobayashi S, Kobayashi M, Saitoh S, Goto H. Evidence of both foetal inflammation and hypoxia-ischaemia is associated with meconium aspiration syndrome. Sci Rep 2021; 11:16799. [PMID: 34408219 PMCID: PMC8373916 DOI: 10.1038/s41598-021-96275-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Foetal hypoxia–ischaemia is a key trigger of meconium aspiration syndrome (MAS). However, many neonates develop MAS without evidence of hypoxia–ischaemia, suggesting the presence of covert but important risk variables. We evaluated the association of MAS with clinical variables, placental histopathologic findings, and inflammatory biomarkers at birth. Of 1336 symptomatic and asymptomatic term singleton neonates with meconium-stained amniotic fluid, 88 neonates (6.6%) developed MAS. Univariate analysis showed that MAS development was associated with low 1- and 5-min Apgar scores, low cord blood pH, funisitis, higher α1-acid glycoprotein levels, and higher haptoglobin levels (all p < 0.001 except for p = 0.001 for haptoglobin). Associations of MAS with caesarean delivery (p = 0.004), premature rupture of the membranes (p = 0.006), chorioamnionitis (p = 0.007), and higher C-reactive protein levels (p = 0.008) were lost when adjusted for multiple comparisons. The final multivariate model to explain MAS development comprised lower cord blood pH (odds ratio [OR] 0.58; 95% confidence interval [CI] 0.47–0.73; p < 0.001), funisitis (OR 2.45; 95% Cl 1.41–4.26; p = 0.002), and higher α1-acid glycoprotein levels (OR 1.02; 95% Cl 1.01–1.03; p = 0.001). Our data from a large cohort of neonates suggested that intrauterine inflammation is one of the key independent variables of MAS development, together with foetal hypoxia–ischaemia.
Collapse
Affiliation(s)
- Kyoko Yokoi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Osuke Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoru Kobayashi
- Department of Pediatrics, Nagoya City University West Medical Centre, Nagoya, Japan
| | - Mizuho Kobayashi
- Departments of Diagnostic Pathology, Nagoya City University West Medical Centre, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Haruo Goto
- Department of Pediatrics, Nagoya City University West Medical Centre, Nagoya, Japan
| |
Collapse
|
74
|
Umbilical cord blood therapy modulates neonatal hypoxic ischemic brain injury in both females and males. Sci Rep 2021; 11:15788. [PMID: 34349144 PMCID: PMC8338979 DOI: 10.1038/s41598-021-95035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical and clinical studies have shown that sex is a significant risk factor for perinatal morbidity and mortality, with males being more susceptible to neonatal hypoxic ischemic (HI) brain injury. No study has investigated sexual dimorphism in the efficacy of umbilical cord blood (UCB) cell therapy. HI injury was induced in postnatal day 10 (PND10) rat pups using the Rice-Vannucci method of carotid artery ligation. Pups received 3 doses of UCB cells (PND11, 13, 20) and underwent behavioural testing. On PND50, brains were collected for immunohistochemical analysis. Behavioural and neuropathological outcomes were assessed for sex differences. HI brain injury resulted in a significant decrease in brain weight and increase in tissue loss in females and males. Females and males also exhibited significant cell death, region-specific neuron loss and long-term behavioural deficits. Females had significantly smaller brains overall compared to males and males had significantly reduced neuron numbers in the cortex compared to females. UCB administration improved multiple aspects of neuropathology and functional outcomes in males and females. Females and males both exhibited injury following HI. This is the first preclinical evidence that UCB is an appropriate treatment for neonatal brain injury in both female and male neonates.
Collapse
|
75
|
Wood TR, Vu PT, Comstock BA, Law JB, Mayock DE, Heagerty PJ, Burbacher T, Bammler TK, Juul SE. Cytokine and chemokine responses to injury and treatment in a nonhuman primate model of hypoxic-ischemic encephalopathy treated with hypothermia and erythropoietin. J Cereb Blood Flow Metab 2021; 41:2054-2066. [PMID: 33554708 PMCID: PMC8327104 DOI: 10.1177/0271678x21991439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Predicting long-term outcome in infants with hypoxic-ischemic encephalopathy (HIE) remains an ongoing clinical challenge. We investigated plasma biomarkers and their association with 6-month outcomes in a nonhuman primate model of HIE with or without therapeutic hypothermia (TH) and erythropoietin (Epo). Twenty-nine Macaca nemestrina were randomized to control cesarean section (n = 7) or 20 min of umbilical cord occlusion (UCO, n = 22) with either no treatment (n = 11) or TH/Epo (n = 11). Initial injury severity was scored using 30-min arterial pH, base deficit, and 10-min Apgar score. Twenty-four plasma cytokines, chemokines, and growth factors were measured 3, 6, 24, 72, and 96 h after UCO. Interleukin 17 (IL-17) and macrophage-derived chemokine (MDC) differentiated the normal/mild from moderate/severe injury groups. Treatment with TH/Epo was associated with increased monocyte chemotactic protein-4 (MCP-4) at 3 h-6h, and significantly lower MCP-4 and MDC at 24 h-72h, respectively. IL-12p40 was lower at 24 h-72h in animals with death/cerebral palsy (CP) compared to survivors without CP. Baseline injury severity was the single best predictor of death/CP, and predictions did not improve with the addition of biomarker data. Circulating chemokines associated with the peripheral monocyte cell lineage are associated with severity of injury and response to therapy, but do not improve ability to predict outcomes.
Collapse
Affiliation(s)
- Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Phuong T Vu
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Bryan A Comstock
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Janessa B Law
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dennis E Mayock
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Thomas Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sandra E Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
76
|
Hoiland RL, Ainslie PN, Wellington CL, Cooper J, Stukas S, Thiara S, Foster D, Fergusson N, Conway EM, Menon DK, Gooderham PA, Hirsch-Reinshagen V, Griesdale D, Sekhon M. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post-Cardiac Arrest. Circ Res 2021; 129:583-597. [PMID: 34287000 PMCID: PMC8376277 DOI: 10.1161/circresaha.121.319157] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Secondary brain hypoxia portends significant mortality in ischemic brain diseases; yet, our understanding of hypoxic ischemic brain injury (HIBI) pathophysiology in humans remains rudimentary.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Health and Exercise Sciences, University of British Columbia Okanagan, CANADA
| | | | | | | | - Sophie Stukas
- Pathology and Laboratory Medicine, University of British Columbia, CANADA
| | - Sonny Thiara
- Critical Care Medicine, University of British Columbia
| | - Denise Foster
- Critical Care Medicine, University of British Columbia, CANADA
| | | | - Edward M Conway
- Centre for Blood Research, University of British Columbia, CANADA
| | | | | | | | | | | |
Collapse
|
77
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
78
|
Kelly LA, O'Dea MI, Zareen Z, Melo AM, McKenna E, Strickland T, McEneaney V, Donoghue V, Boylan G, Sweetman D, Butler J, Vavasseur C, Miletin J, El-Khuffash AF, O'Neill LAJ, O'Leary JJ, Molloy EJ. Altered inflammasome activation in neonatal encephalopathy persists in childhood. Clin Exp Immunol 2021; 205:89-97. [PMID: 33768526 PMCID: PMC8209598 DOI: 10.1111/cei.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022] Open
Abstract
Neonatal encephalopathy (NE) is characterized by altered neurological function in term infants and inflammation plays an important pathophysiological role. Inflammatory cytokines interleukin (IL)‐1β, IL‐1ra and IL‐18 are activated by the nucleotide‐binding and oligomerization domain (NOD)‐, leucine‐rich repeat domain (LRR)‐ and NOD‐like receptor protein 3 (NLRP3) inflammasome; furthermore, we aimed to examine the role of the inflammasome multiprotein complex involved in proinflammatory responses from the newborn period to childhood in NE. Cytokine concentrations were measured by multiplex enzyme‐linked immunosorbent assay (ELISA) in neonates and children with NE in the absence or presence of lipopolysaccharide (LPS) endotoxin. We then investigated expression of the NLRP3 inflammasome genes, NLRP3, IL‐1β and ASC by polymerase chain reaction (PCR). Serum samples from 40 NE patients at days 1 and 3 of the first week of life and in 37 patients at age 4–7 years were analysed. An increase in serum IL‐1ra and IL‐18 in neonates with NE on days 1 and 3 was observed compared to neonatal controls. IL‐1ra in NE was decreased to normal levels at school age, whereas serum IL‐18 in NE was even higher at school age compared to school age controls and NE in the first week of life. Percentage of LPS response was higher in newborns compared to school‐age NE. NLRP3 and IL‐1β gene expression were up‐regulated in the presence of LPS in NE neonates and NLRP3 gene expression remained up‐regulated at school age in NE patients compared to controls. Increased inflammasome activation in the first day of life in NE persists in childhood, and may increase the window for therapeutic intervention.
Collapse
Affiliation(s)
- L A Kelly
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - M I O'Dea
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - Z Zareen
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland.,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland
| | - A M Melo
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - E McKenna
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - T Strickland
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - V McEneaney
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - V Donoghue
- Radiology, National Maternity Hospital, Dublin, Ireland
| | - G Boylan
- Department of Pediatrics and Child Health, University College Cork, Cork, Ireland.,Infant Research Centre, Cork University Hospital, Cork, Ireland
| | - D Sweetman
- National Maternity Hospital, Dublin, Ireland
| | - J Butler
- Meso-Scale Diagnostics, Manchester, UK
| | - C Vavasseur
- National Maternity Hospital, Dublin, Ireland
| | - J Miletin
- Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland
| | | | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - J J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - E J Molloy
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland.,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.,Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland.,CHI at Crumlin, Dublin, Ireland
| |
Collapse
|
79
|
Huang A, Jia L. Crocin enhances hypothermia therapy in hypoxic ischemia-induced brain injury in mice. Acta Neurol Belg 2021; 121:429-436. [PMID: 31367946 DOI: 10.1007/s13760-019-01198-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious medical situation at labor which leads to severe brain damage. Hypothermia therapy is the standard treatment for infants with HIE, but the efficacy is limited. Combination treatments are considered to enhance the efficacy of hypothermia. Crocin is an extract from saffron which has anti-inflammatory, anti-oxidant, and neuroprotective properties. The present study sought to investigate whether crocin could act as a combined treatment with hypothermia in a mouse model of HIE. C57BL/6J mice at post-natal day 7 were subjected to left common carotid artery ligation, followed by treatment of crocin (10 mg/kg) and hypothermia, either alone or in combination. Brain edema and tissue infarct were measured to evaluate brain damage. Mediators involved in inflammatory response and oxidative stress were measured. Neurological severity score test was performed to evaluate the functional outcome. Results show that crocin treatment alone could reduce inflammation and brain damage after hypoxia-ischemia. Combined treatment of crocin and hypothermia exerted enhanced therapeutic effect compared with single treatment, resulting in significantly less brain damage, reduced inflammatory and oxidative responses, and improved functional outcome. Together, these data suggest that crocin plays a beneficial effect in the mouse model of HIE. It could also enhance the neuroprotective effect of hypothermia and might be considered as a combination therapeutic treatment with hypothermia in HIE.
Collapse
|
80
|
Park YJ, Borlongan CV, Dezawa M. Cell-based treatment for perinatal hypoxic-ischemic encephalopathy. Brain Circ 2021; 7:13-17. [PMID: 34084971 PMCID: PMC8057102 DOI: 10.4103/bc.bc_7_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of acute neonatal brain injury and can lead to disabling long-term neurological complications. Treatment for HIE is limited to supportive care and hypothermia within 6 h injury which is reserved for full-term infants. Preclinical studies suggest the potential for cell-based therapies as effective treatments for HIE. Some clinical trials using umbilical cord blood cells, placenta-derived stem cells, mesenchymal stem cells (MSCs), and others have yielded promising results though more studies are needed to optimize protocols and multi-center trials are needed to prove safety and efficacy. To date, the therapeutic effects of most cell-based therapies are hypothesized to stem from the bystander effect of donor cells. Transplantation of stem cells attenuate the aberrant inflammation cascade following HIE and provide a more ideal environment for endogenous neurogenesis and repair. Recently, a subset of MSCs, the multilineage-differentiating stress-enduring (Muse) cells have shown to treat HIE and other models of neurologic diseases by replacing dead or ischemic cells and have reached clinical trials. In this review, we examine the different cell sources used in clinical trials and evaluate the underlying mechanism behind their therapeutic effects. Three databases–PubMed, Web of Science, and ClinicalTrials.gov–were used to review preclinical and clinical experimental treatments for HIE.
Collapse
Affiliation(s)
- You Jeong Park
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
81
|
Tapia-Bustos A, Lespay-Rebolledo C, Vío V, Pérez-Lobos R, Casanova-Ortiz E, Ezquer F, Herrera-Marschitz M, Morales P. Neonatal Mesenchymal Stem Cell Treatment Improves Myelination Impaired by Global Perinatal Asphyxia in Rats. Int J Mol Sci 2021; 22:ijms22063275. [PMID: 33806988 PMCID: PMC8004671 DOI: 10.3390/ijms22063275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
The effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period characterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)-treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk occurring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 μL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 transcriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter.
Collapse
Affiliation(s)
- Andrea Tapia-Bustos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Faculty of Medicine, School of Pharmacy, Universidad Andres Bello, Santiago 8370149, Chile
| | - Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Valentina Vío
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Ronald Pérez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago 7710162, Chile;
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Correspondence: (M.H.-M.); (P.M.); Tel.: +56-229786788 (M.H.-M. & P.M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.H.-M.); (P.M.); Tel.: +56-229786788 (M.H.-M. & P.M.)
| |
Collapse
|
82
|
Boskabadi H, Zakerihamidi M, Moradi A. Predictive value of biochemical and hematological markers in prognosis of asphyxic infants. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 11:377-383. [PMID: 33680378 PMCID: PMC7911764 DOI: 10.22088/cjim.11.4.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Asphyxia is one of the main causes of infant mortality and long-term neurologic complications. This cohort study was aimed to compare the diagnostic value of the hematologic and biochemical factors in the prediction of prognosis of asphyxia according to the high prevalence of asphyxia and its complications. Methods: In this cohort with a two-year follow-up study with availability sampling, 196 term asphyxic infants were involved from 2009 to 2018. A researcher-designed questionnaire was used as the data collection tool containing infantile and maternal particulars as well as the clinical and laboratory assessments. Serum levels of interleukin-1β(IL-1β), IL-6, pro-oxidant/antioxidant balance (PAB), heat shock protein (HSP) and nucleated red blood cells (NRBC) were checked in infants with perinatal asphyxia. Denver II developmental screening test (DDST-II) was performed at 6, 12, 18, and 24 month post-discharge follow-up visits. Data analysis for comparison of infants with normal and abnormal outcomes was performed using student t- test, chi-square, ROC curve, and regression models. Results: IL-6, IL-1β, PAB, and NRBC count are among the most important predictors of abnormal complications in asphyxic newborns. PAB>22 (HK) showed sensitivity and specificity of 88.6% and 71.6%, respectively in the prediction of complications of asphyxia. The sensitivity and specificity of an IL-6 higher than 28 (pg/mL) in the prediction of complications of asphyxia were found to be 96.1% and 78.6%, respectively. Elevated levels of IL-6 and IL-1β were associated with increased unfavorable outcomes. Conclusion: Combinations of: IL-1β+ IL-6 + NRBC; IL-6 + HIE grade + PAB; and IL-6+ HIE grade + NRBC had the highest predictive value (100%) for prognosis of asphyxic infants.
Collapse
Affiliation(s)
- Hassan Boskabadi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Zakerihamidi
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moradi
- Department of Midwifery, School of Medicine, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
83
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
84
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
85
|
Zhang B, Ran Y, Wu S, Zhang F, Huang H, Zhu C, Zhang S, Zhang X. Inhibition of Colony Stimulating Factor 1 Receptor Suppresses Neuroinflammation and Neonatal Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 12:607370. [PMID: 33679579 PMCID: PMC7930561 DOI: 10.3389/fneur.2021.607370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major cause of neonatal death or lifetime disability without widely accepted effective pharmacological treatments. It has been shown that the survival of microglia requires colony-stimulating factor 1 receptor (CSF1R) signaling and microglia participate in neonatal HI brain injury. We therefore hypothesize that microglia depletion during a HI insult period could reduce immature brain injury. In this study, CD1 mouse pups were treated with a CSF1R inhibitor (PLX3397, 25 mg/kg/daily) or a vehicle from postnatal day 4 to day 11 (P4-11), and over 90% of total brain microglia were deleted at P9. Unilateral hemisphere HI injury was induced at P9 by permanently ligating the left common carotid arteries and exposing the pups to 10% oxygen for 30 min to produce moderate left hemisphere injury. We found that the PLX3397 treatment reduced HI brain injury by 46.4%, as evaluated by the percentage of brain infarction at 48 h after HI. Furthermore, CSF1R inhibition suppressed the infiltration of neutrophils (69.7% reduction, p = 0.038), macrophages (77.4% reduction, p = 0.009), and T cells (72.9% reduction, p = 0.008) to the brain, the production of cytokines and chemokines (such as CCL12, CCL6, CCL21, CCL22, CCL19, IL7, CD14, and WISP-1), and reduced neuronal apoptosis as indicated by active caspase-3 labeled cells at 48 h after HI (615.20 ± 156.84/mm2 vs. 1,205.00 ± 99.15/mm2, p = 0.013). Our results suggest that CSF1R inhibition suppresses neuroinflammation and neonatal brain injury after acute cerebral hypoxia-ischemia in neonatal mice.
Collapse
Affiliation(s)
- Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Shusheng Zhang
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
86
|
Shah TA, Pallera HK, Kaszowski CL, Bass WT, Lattanzio FA. Therapeutic Hypothermia Inhibits the Classical Complement Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurosci 2021; 15:616734. [PMID: 33642979 PMCID: PMC7907466 DOI: 10.3389/fnins.2021.616734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Complement activation is instrumental in the pathogenesis of Hypoxic-ischemic encephalopathy (HIE), a significant cause of neonatal mortality and disability worldwide. Therapeutic hypothermia (HT), the only available treatment for HIE, only modestly improves outcomes. Complement modulation as a therapeutic adjunct to HT has been considered, but is challenging due to the wide-ranging role of the complement system in neuroinflammation, homeostasis and neurogenesis in the developing brain. We sought to identify potential therapeutic targets by measuring the impact of treatment with HT on complement effector expression in neurons and glia in neonatal HIE, with particular emphasis on the interactions between microglia and C1q. METHODS The Vannucci model was used to induce HIE in term-equivalent rat pups. At P10-12, pups were randomly assigned to three different treatment groups: Sham (control), normothermia (NT), and hypothermia (HT) treatment. Local and systemic complement expression and neuronal apoptosis were measured by ELISA, TUNEL and immunofluorescence labeling, and differences compared between groups. RESULTS Treatment with HT is associated with decreased systemic and microglial expression of C1q, decreased systemic C5a levels, and decreased microglial and neuronal deposition of C3 and C9. The effect of HT on cytokines was variable with decreased expression of pro and anti-inflammatory effectors. HT treatment was associated with decreased C1q binding on cells undergoing apoptosis. CONCLUSION Our data demonstrate the extreme complexity of the immune response in neonatal HIE. We propose modulation of downstream effectors C3a and C5a as a therapeutic adjunct to HT to enhance neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Tushar A. Shah
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Haree K. Pallera
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - William Thomas Bass
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
87
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
88
|
Xin D, Li T, Chu X, Ke H, Liu D, Wang Z. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol Res 2021; 164:105322. [PMID: 33279596 DOI: 10.1016/j.phrs.2020.105322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) significantly suppressed hypoxia-ischemia (HI)-induced neuroinflammation in neonatal mice. However, its underlying mechanism is still unknown. Osteopontin (OPN) is one of the key molecules involved in neuroinflammation. We demonstrate here for the first time a key role of OPN in EVs-mediated neuroinflammation following HI. Firstly, HI exposure upregulated OPN expression in Iba-1+/ TMEM119+ microglia and Iba-1+/TMEM119- monocytes/macrophages. Blocking OPN mRNA expression with LV-shOPN attenuated edema, infarct volumes, and the levels of inflammatory cytokines following HI exposure. MSCs-EVs treatment remarkably restored synaptic reorganization and up-regulated synaptic protein expression post-HI, concomitant with reducing OPN levels. Moreover, MSCs-EVs treatment rescued microglial phagocytosis of viable neurons following HI, concomitant with decreasing OPN expression. In addition, blocking NF-κB activation with pyrrolidine dithiocarbamate (PDTC, NF-κB inhibitor) or MSCs-EVs attenuated HI-induced OPN expression in the ipsilateral cortex. This study demonstrates that upregulation of OPN expression in cerebral immune cells aggravated brain damage and inflammation following HI insult. MSCs-EVs suppressed neuroinflammation, synaptic damage and microglial phagocytosis after HI injury by preventing NF-κB-mediated OPN expression in neonate mice.
Collapse
Affiliation(s)
- Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
89
|
Munteanu AI, Manea AM, Jinca CM, Boia M. Basic biochemical and hematological parameters in perinatal asphyxia and their correlation with hypoxic ischemic encephalopathy. Exp Ther Med 2021; 21:259. [PMID: 33603866 DOI: 10.3892/etm.2021.9690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) represents a major cause of neonatal death or long-term disability. Inflammation plays an important role in mediating brain damage induced by neonatal hypoxic-ischemic encephalopathy. The mechanisms underlying the inflammatory response in hypoxia and ischemia are complex and are still being extensively researched. The objective of this study was to determine the predictive value of peak lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin (PCT) and of the evolution of leukocytes, neutrophils and lymphocytes in the first 96 h after birth for the grade of encephalopathy and neurodevelopmental outcome in newborns with HIE. In order to reveal this relationship we used comparisons between the above mention parameters. The observed hematological changes were nonspecific. The vast majority of the 78 newborns included in the study had PCT values above normal in the first 24 h, contrasting with CRP values that were positive in only 15.8% of the patients. A total of 76.9% of the patients had LDH values higher than the upper limit of normal values. The mean LDH values in patients with an unfavorable prognosis were 1,235 U/l. We can conclude that LDH is a good predictor of HIE in the first 12/24 h after birth.
Collapse
Affiliation(s)
- Andrei Ioan Munteanu
- Department of Puericulture and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| | - Aniko-Maria Manea
- Department of Puericulture and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| | - Cristian Marius Jinca
- Department of Pediatrics, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| | - Marioara Boia
- Department of Puericulture and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| |
Collapse
|
90
|
Manual Kollareth DJ, Zirpoli H, Ten VS, Deckelbaum RJ. Acute Injection of Omega-3 Triglyceride Emulsion Provides Very Similar Protection as Hypothermia in a Neonatal Mouse Model of Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 11:618419. [PMID: 33519700 PMCID: PMC7843448 DOI: 10.3389/fneur.2020.618419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (HT) is a currently accepted treatment for neonatal asphyxia and is a promising strategy in adult stroke therapy. We previously reported that acute administration of docosahexaenoic acid (DHA) triglyceride emulsion (tri-DHA) protects against hypoxic-ischemic (HI) injury in neonatal mice. We questioned if co-treatment with HT and tri-DHA would achieve synergic effects in protecting the brain from HI injury. Neonatal mice (10-day old) subjected to HI injury were placed in temperature-controlled chambers for 4 h of either HT (rectal temperature 31–32°C) or normothermia (NT, rectal temperature 37°C). Mice were treated with tri-DHA (0.375 g tri-DHA/kg bw, two injections) before and 1 h after initiation of HT. We observed that HT, beginning immediately after HI injury, reduced brain infarct volume similarly to tri-DHA treatment (~50%). Further, HT delayed 2 h post-HI injury provided neuroprotection (% infarct volume: 31.4 ± 4.1 vs. 18.8 ± 4.6 HT), while 4 h delayed HT did not protect against HI insult (% infarct volume: 30.7 ± 5.0 vs. 31.3 ± 5.6 HT). HT plus tri-DHA combination treatment beginning at 0 or 2 h after HI injury did not further reduce infarct volumes compared to HT alone. Our results indicate that HT offers similar degrees of neuroprotection against HI injury compared to tri-DHA treatment. HT can only be provided in tertiary care centers, requires intense monitoring and can have adverse effects. In contrast, tri-DHA treatment may be advantageous in providing a feasible and effective strategy in patients after HI injury.
Collapse
Affiliation(s)
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
91
|
CARD8 and IL1B Polymorphisms Influence MRI Brain Patterns in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia. Antioxidants (Basel) 2021; 10:antiox10010096. [PMID: 33445495 PMCID: PMC7826682 DOI: 10.3390/antiox10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are recognized as important contributors of brain injury in newborns due to a perinatal hypoxic-ischemic (HI) insult. Genetic variability in these pathways could influence the response to HI and the outcome of brain injury. The aim of our study was to evaluate the impact of common single-nucleotide polymorphisms in the genes involved in inflammation and response to oxidative stress on brain injury in newborns after perinatal HI insult based on the severity and pattern of magnetic resonance imaging (MRI) findings. The DNA of 44 subjects was isolated from buccal swabs. Genotyping was performed for NLRP3 rs35829419, CARD8 rs2043211, IL1B rs16944, IL1B rs1143623, IL1B rs1071676, TNF rs1800629, CAT rs1001179, SOD2 rs4880, and GPX1 rs1050450. Polymorphism in CARD8 was found to be protective against HI brain injury detected by MRI overall findings. Polymorphisms in IL1B were associated with posterior limb of internal capsule, basal ganglia, and white matter brain patterns determined by MRI. Our results suggest a possible association between genetic variability in inflammation- and antioxidant-related pathways and the severity of brain injury after HI insult in newborns.
Collapse
|
92
|
Odorcyk FK, Ribeiro RT, Roginski AC, Duran-Carabali LE, Couto-Pereira NS, Dalmaz C, Wajner M, Netto CA. Differential Age-Dependent Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Induced by Neonatal Hypoxia-Ischemia in the Immature Rat Brain. Mol Neurobiol 2021; 58:2297-2308. [PMID: 33417220 DOI: 10.1007/s12035-020-02261-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is among the main causes of mortality and morbidity in newborns. Experimental studies show that the immature rat brain is less susceptible to HI injury, suggesting that changes that occur during the first days of life drastically alter its susceptibility. Among the main developmental changes observed is the mitochondrial function, namely, the tricarboxylic acid (TCA) cycle and respiratory complex (RC) activities. Therefore, in the present study, we investigated the influence of neonatal HI on mitochondrial functions, redox homeostasis, and cell damage at different postnatal ages in the hippocampus of neonate rats. For this purpose, animals were divided into four groups: sham postnatal day 3 (ShP3), HIP3, ShP11, and HIP11. We initially observed increased apoptosis in the HIP11 group only, indicating a higher susceptibility of these animals to brain injury. Mitochondrial damage, as determined by flow cytometry showing mitochondrial swelling and loss of mitochondrial membrane potential, was also demonstrated only in the HIP11 group. This was consistent with the decreased mitochondrial oxygen consumption, reduced TCA cycle enzymes, and RC activities and induction of oxidative stress in this group of animals. Considering that HIP3 and the sham animals showed no alteration of mitochondrial functions, redox homeostasis, and showed no apoptosis, our data suggest an age-dependent vulnerability of the hippocampus to hypoxia-ischemia. The present results highlight age-dependent metabolic differences in the brain of neonate rats submitted to HI indicating that different treatments might be needed for HI newborns with different gestational ages.
Collapse
Affiliation(s)
- Felipe Kawa Odorcyk
- Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - R T Ribeiro
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A C Roginski
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L E Duran-Carabali
- Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - N S Couto-Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C Dalmaz
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M Wajner
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C A Netto
- Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
93
|
Ma Q, Dasgupta C, Shen G, Li Y, Zhang L. MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2021; 18:6. [PMID: 33402183 PMCID: PMC7786974 DOI: 10.1186/s12974-020-02068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Background Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of acute mortality and chronic disability in newborns. Our previous studies demonstrated that HI insult significantly increased microRNA-210 (miR-210) in the brain of rat pups and inhibition of brain endogenous miR-210 by its inhibitor (LNA) provided neuroprotective effect in HI-induced brain injury. However, the molecular mechanisms underpinning this neuroprotection remain unclear. Methods We made a neonatal HI brain injury model in mouse pups of postnatal day 7 to uncover the mechanism of miR-210 in targeting the ten eleven translocation (TET) methylcytosine dioxygenase 2 that is a transcriptional suppressor of pro-inflammatory cytokine genes in the neonatal brain. TET2 silencing RNA was used to evaluate the role of TET2 in the neonatal HI-induced pro-inflammatory response and brain injury. MiR-210 mimic and inhibitor (LNA) were delivered into the brain of mouse pups to study the regulation of miR-210 on the expression of TET2. Luciferase reporter gene assay was performed to validate the direct binding of miR-210 to the 3′ untranslated region of the TET2 transcript. Furthermore, BV2 mouse microglia cell line was employed to confirm the role of miR-210-TET2 axis in regulating pro-inflammatory response in microglia. Post-assays included chromatin immunoprecipitation (ChIP) assay, co-immunoprecipitation, RT-PCR, brain infarct assay, and neurobehavioral test. Student’s t test or one-way ANOVA was used for statistical analysis. Results HI insult significantly upregulated miR-210, downregulated TET2 protein abundance, and increased NF-κB subunit p65 acetylation level and its DNA binding capacity to the interleukin 1 beta (IL-1β) promoter in the brain of mouse pups. Inhibition of miR-210 rescued TET2 protein level from HI insult and miR-210 mimic decreased TET2 protein level in the brain of mouse pups, suggesting that TET2 is a functional target of miR-210. The co-immunoprecipitation was performed to reveal the role of TET2 in HI-induced inflammatory response in the neonatal brain. The result showed that TET2 interacted with NF-κB subunit p65 and histone deacetylase 3 (HDAC3), a co-repressor of gene transcription. Furthermore, TET2 knockdown increased transcriptional activity of acetyl-p65 on IL-1β gene in the neonatal brain and enhanced HI-induced upregulation of acetyl-p65 level and pro-inflammatory cytokine expression. Of importance, TET2 knockdown exacerbated brain infarct size and neurological deficits and counteracted the neuroprotective effect of miR-210 inhibition. Finally, the in vitro results demonstrated that the miR-210-TET2 axis regulated pro-inflammatory response in BV2 mouse microglia cell line. Conclusions The miR-210-TET2 axis regulates pro-inflammatory cytokine expression in microglia, contributing to neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Chiranjib Dasgupta
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Guofang Shen
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yong Li
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Lubo Zhang
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
94
|
Liu F, Shao M, Xu F, Rong F. Inhibition of NOD1 Attenuates Neonatal Hypoxia-Ischemia Induced Long-Term Cognitive Impairments in Mice Through Modulation of Autophagy-Related Proteins. Neuropsychiatr Dis Treat 2021; 17:2659-2669. [PMID: 34421301 PMCID: PMC8373312 DOI: 10.2147/ndt.s314884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Autophagy is implicated in neonatal hypoxia-ischemia (HI) induced cognitive impairment. The nucleotide-oligomerizing domain-1 (NOD1), a protein involved in inflammatory responses, has been shown to activate autophagy to promote progression of other diseases. We aimed to investigate whether and how NOD1 is involved in HI-induced brain injury using an HI mouse model. METHODS We induced HI in neonatal mice and examined levels of NOD1 and genes associated with autophagy. We then inhibited NOD1 by intracerebroventricular injection of si-NOD1 following HI induction and tested the effects on autophagy, inflammatory responses and long-term behavioral outcomes through Morris water maze and open field tests. RESULTS We found that HI induction significantly elevated mRNA levels of NOD1 (3.54 folds change) and autophagy-related genes including Atg5 (3.89 folds change) and Beclin-1 (3.34 folds change). NOD1 inhibition following HI induction suppressed autophagy signaling as well as HI induced proinflammatory cytokine production. Importantly, NOD1 inhibition after HI improved long-term cognitive function, without impacting exploratory and locomotor activities. CONCLUSION We show here that NOD1 is involved in the pathogenesis of HI-induced brain injury through modulation of autophagy-related proteins and inflammatory responses. Our findings suggest that NOD1 may be a potent target for developing therapeutic strategies for treating HI-induced brain injury.
Collapse
Affiliation(s)
- Fang Liu
- Department of Child Health Care, Zibo Central Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Mingyu Shao
- Department of Child Health Care, Zibo Central Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Feng Xu
- Department of Pediatrics, Zibo Central Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Fang Rong
- The Community Clinic of Overseas Chinese Town, Zibo Central Hospital, North Gate of Zhongrun Overseas Chinese Town, Zibo, 255000, Shandong, People's Republic of China
| |
Collapse
|
95
|
O'Dea MI, Kelly LA, McKenna E, Strickland T, Hurley TP, Butler J, Vavasseur C, El-Khuffash AF, Miletin J, Fallah L, White A, Wyse J, Molloy EJ. Altered Cytokine Endotoxin Responses in Neonatal Encephalopathy Predict MRI Outcomes. Front Pediatr 2021; 9:734540. [PMID: 34712631 PMCID: PMC8547258 DOI: 10.3389/fped.2021.734540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neonatal encephalopathy (NE) is associated with adverse neurodevelopmental outcome and is linked with systemic inflammation. Pro-inflammatory and anti-inflammatory cytokines are known to play a role in the pathology of NE by activating innate immune cells. Methods: Eighty-seven infants were enrolled including 53 infants with NE of whom 52 received therapeutic hypothermia (TH) and 34 term infant healthy controls (TC). Whole blood sampling was performed in the first 4 days of life, and a 14-spot ELISA Multiplex Cytokine Array was carried out on baseline samples or after stimulation with lipopolysaccharide (LPS) as an additional inflammatory stimulus. The cytokine medians were examined for differences between infants with NE and healthy TC; and then short-term outcomes of Sarnat stage, seizures, and MRI brain were examined within the NE group. The potential of LPS stimulation to predict abnormal MRI was explored using receiver operating characteristic (ROC) curves. Results: At baseline, infants with NE had significantly higher levels of erythropoietin (Epo), interleukin (IL)-6, and IL-1ra and significantly lower vascular endothelial growth factor (VEGF) than had controls. All cytokines were increased after LPS stimulation in infants with NE with an excessive Epo and IL-1ra response than in controls. Infants with NE had lower IL-8, IL-2, IL-6, tumor necrosis factor (TNF)-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), VEGF, and interferon (IFN)-γ than controls had following LPS. GM-CSF and IFN-γ, IL-1β, IL-1ra, and VEGF were higher on days 1-2 in NE infants with abnormal neuroimaging. GM-CSF, IFN-γ, and TNF-α levels with LPS stimulation were different upon stimulation between normal and abnormal neuroimaging. TNF-α is the only strong cytokine predictor both pre- and post-LPS stimulation of abnormal brain imaging. Conclusions: Altered cytokine responses are found in infants with NE vs. controls, and more significant differences are unmasked by the additional stimulus of LPS, which potentially improves the predictive power of these cytokines for the detection of abnormal MRIs. Infants with NE undergoing TH demonstrate both trained immunity and tolerance, and understanding these responses will facilitate adjunctive immunomodulatory treatments.
Collapse
Affiliation(s)
- Mary Isabel O'Dea
- National Maternity Hospital, Dublin, Ireland.,Department of Pediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Department of Paediatrics, Tallaght University Hospital, Dublin, Ireland.,Rotunda Hospital, Dublin, Ireland.,Our Lady's Children's Hospital (CHI), Crumlin, Ireland.,National Children's Research Centre (NCRC), Crumlin, Ireland.,Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Department of Pediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Ellen McKenna
- Department of Pediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Tammy Strickland
- Department of Pediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Tim P Hurley
- National Maternity Hospital, Dublin, Ireland.,Department of Pediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Department of Paediatrics, Tallaght University Hospital, Dublin, Ireland.,Rotunda Hospital, Dublin, Ireland.,Coombe Women and Infants University Hospital, Dublin, Ireland
| | - John Butler
- Meso Scale Discovery, Rockville, MD, United States
| | | | - Afif F El-Khuffash
- Rotunda Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jan Miletin
- Coombe Women and Infants University Hospital, Dublin, Ireland.,Department of Paediatrics, University College Dublin, Dublin, Ireland
| | - Lida Fallah
- School of Computer Science and Statistics, Faculty of Engineering, Mathematics and Science, Trinity College Dublin, Dublin, Ireland
| | - Arthur White
- School of Computer Science and Statistics, Faculty of Engineering, Mathematics and Science, Trinity College Dublin, Dublin, Ireland
| | - Jason Wyse
- School of Computer Science and Statistics, Faculty of Engineering, Mathematics and Science, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Department of Pediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Department of Paediatrics, Tallaght University Hospital, Dublin, Ireland.,Our Lady's Children's Hospital (CHI), Crumlin, Ireland.,National Children's Research Centre (NCRC), Crumlin, Ireland.,Coombe Women and Infants University Hospital, Dublin, Ireland
| |
Collapse
|
96
|
Deng RM, Li HY, Li X, Shen HT, Wu DG, Wang Z, Chen G. Neuroprotective effect of helium after neonatal hypoxic ischemia: a narrative review. Med Gas Res 2021; 11:121-123. [PMID: 33942783 PMCID: PMC8174408 DOI: 10.4103/2045-9912.314332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic ischemia is one of the leading causes of permanent morbidity and mortality in newborns, which is caused by difficulty in supplying blood and oxygen to brain tissue and is often associated with epilepsy, cerebral palsy, death, short-term or long-term neurological and cognitive impairment. In recent years, the clinical therapeutic effects of noble gases have been gradually discovered and recognized. Numerous studies have shown that noble gases have unique neuroprotective effects to restore damaged nerve and relieve symptoms in patients. Although research on the neuroprotective mechanisms of xenon and argon has yielded a lot of results, studies on helium have stalled. Helium is a colorless, odorless, monoatomic inert gas. The helium has no hemodynamic or neurocognitive side effects and can be used as an ideal pre-adaptor for future clinical applications. In recent years, studies have shown that heliox (a mixture of helium and oxygen) pretreatment can protect the heart, brain, liver and intestine from damage in several animal models, where a variety of signaling pathways have been proved to be involved. There are numerous studies on it even though the mechanism of helium for protecting newborns has not been fully elucidated. It is urgent to find an effective treatment due to the high death rate and disability rate of neonatal hypoxic ischemia. It is believed that helium will be approved safely and effectively for clinical use in the near future.
Collapse
Affiliation(s)
- Ru-Ming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - De-Gang Wu
- Department of Neurosurgery, Yijishan Hospital of Wan-nan Medical College, Wuhu, Anhui Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
97
|
Zhang P, Zhang Q, Zhu B, Xia S, Tai X, Tai X, Li B. Chinese Tuina Protects against Neonatal Hypoxia-Ischemia through Inhibiting the Neuroinflammatory Reaction. Neural Plast 2020; 2020:8828826. [PMID: 33488693 PMCID: PMC7790570 DOI: 10.1155/2020/8828826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Aim. Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of perinatal morbidity and mortality. Chinese Tuina is an effective treatment for HIE, but the molecular mechanisms are yet unknown. This study investigated the effect and mechanisms of Chinese Tuina on the inflammatory response in neonatal HIE rats. Main Methods. 30 male neonatal rats were divided randomly into 3 groups: sham, HIE, and HIE with Chinese Tuina (CHT) groups. The HIE and CHT groups were subjected to left common carotid occlusion and hypoxia at 3 days postnatal (P3). The pups in the CHT group received Chinese Tuina treatment on the next day for 28 days. The weight was measured at P4, P9, P13, P21, and P31. The behavioral functions were determined at P21. The protein expression and the methylation level in promoter regions of TNF-α and IL-10 were determined by Western blotting, immunohistochemistry, and pyrosequencing, respectively, at P33. Key Findings. The weight gain in the HIE group was slow compared with that of the CHT group. The rats in the CHT group performed better both in the balance beam and hang plate experiment. Chinese Tuina inhibited the expression of TNF-α and upregulated the expression of IL-10. Neonatal hypoxic-ischemic injury downregulated the methylation level in promoter regions of TNF-α at all CpG points but not IL-10. However, Chinese Tuina did not change the methylation level in promoter regions of TNF-α and IL-10. Significance. Chinese Tuina protected against HIE through inhibiting the neuroinflammatory reaction. While HIE markedly downregulated the methylation level of TNF-α, the protective effects of Chinese Tuina were independent of the regulation of the methylation level of TNF-α and IL-10.
Collapse
Affiliation(s)
- Pengyue Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Qian Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Bowen Zhu
- Zhejiang Provincial Hospital of TCM, Zhejiang Hangzhou 310006, China
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xianyan Tai
- Department of Prevention and Health Care, The First Hospital Affiliated to Kunming Medical University, Kunming 650032, China
| | - Xiantao Tai
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Bing Li
- Jinshan Hospital of Fudan University, Shanghai 200054, China
| |
Collapse
|
98
|
Ogawa Y, Tanaka E, Sato Y, Tsuji M. Brain damage caused by neonatal hypoxia-ischemia and the effects of hypothermia in severe combined immunodeficient (SCID) mice. Exp Neurol 2020; 337:113577. [PMID: 33359474 DOI: 10.1016/j.expneurol.2020.113577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of brain damage in newborns. Although therapeutic hypothermia has been shown to be neuroprotective against neonatal HIE in clinical trials, its effect is not satisfactory. Cell-based therapies have attracted much attention as novel treatments for HIE. Preclinical studies on a variety of human cell transplantation methods have been performed in immunodeficient/immunosuppressed animals, such as severe combined immunodeficient (SCID) mice, which lack functional T and B lymphocytes. The detailed characteristics of neonatal HIE in SCID mice, however, have not been delineated. In preclinical studies, novel therapies for neonatal HIE should be evaluated in combination with hypothermia, which has become a standard treatment for neonatal HIE. However, the effects of hypothermia in SCID mice have not been delineated. In the present study, we compared neonatal hypoxic-ischemic (HI) brain damage in SCID mice and wild-type mice treated with or without hypothermia. Male and female mouse pups were subjected to HI insult induced by unilateral common carotid artery ligation combined with systemic hypoxia on postnatal day 12. In the first 4 h after HI insult, body temperature was maintained at 36 °C for the normothermia groups or 32 °C for the hypothermia groups. The severity of brain damage in SCID mice did not differ from that in wild-type mice based on most evaluations, i.e., cerebral blood flow, hemiparesis, muscle strength, spontaneous activity, cerebral hemispheric volume, neuropathological injury, and serum cytokine levels, although spleen weight, brain weight, leukocyte counts and the levels of some cytokines in the peripheral blood were different between genotypes. The effects of hypothermia in SCID mice were comparable to those in wild-type mice based on most evaluations. Taken together, these findings indicate that SCID mice can be used as an appropriate preclinical model for cell therapies for neonatal HIE.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan.
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal - Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan.
| |
Collapse
|
99
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
100
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|