51
|
Maeda M, Katada T, Saito K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 2017; 216:1731-1743. [PMID: 28442536 PMCID: PMC5461033 DOI: 10.1083/jcb.201703084] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mammalian endoplasmic reticulum (ER) exit sites export a variety of cargo molecules including oversized cargoes such as collagens. However, the mechanisms of their assembly and organization are not fully understood. TANGO1L is characterized as a collagen receptor, but the function of TANGO1S remains to be investigated. Here, we show that direct interaction between both isoforms of TANGO1 and Sec16 is not only important for their correct localization but also critical for the organization of ER exit sites. The depletion of TANGO1 disassembles COPII components as well as membrane-bound ER-resident complexes, resulting in fewer functional ER exit sites and delayed secretion. The ectopically expressed TANGO1 C-terminal domain responsible for Sec16 binding in mitochondria is capable of recruiting Sec16 and other COPII components. Moreover, TANGO1 recruits membrane-bound macromolecular complexes consisting of cTAGE5 and Sec12 to the ER exit sites. These data suggest that mammalian ER exit sites are organized by TANGO1 acting as a scaffold, in cooperation with Sec16 for efficient secretion.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
52
|
Piao H, Kim J, Noh SH, Kweon HS, Kim JY, Lee MG. Sec16A is critical for both conventional and unconventional secretion of CFTR. Sci Rep 2017; 7:39887. [PMID: 28067262 PMCID: PMC5220342 DOI: 10.1038/srep39887] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022] Open
Abstract
CFTR is a transmembrane protein that reaches the cell surface via the conventional Golgi mediated secretion pathway. Interestingly, ER-to-Golgi blockade or ER stress induces alternative GRASP-mediated, Golgi-bypassing unconventional trafficking of wild-type CFTR and the disease-causing ΔF508-CFTR, which has folding and trafficking defects. Here, we show that Sec16A, the key regulator of conventional ER-to-Golgi transport, plays a critical role in the ER exit of protein cargos during unconventional secretion. In an initial gene silencing screen, Sec16A knockdown abolished the unconventional secretion of wild-type and ΔF508-CFTR induced by ER-to-Golgi blockade, whereas the knockdown of other COPII-related components did not. Notably, during unconventional secretion, Sec16A was redistributed to cell periphery and associated with GRASP55 in mammalian cells. Molecular and morphological analyses revealed that IRE1α-mediated signaling is an upstream regulator of Sec16A during ER-to-Golgi blockade or ER stress associated unconventional secretion. These findings highlight a novel function of Sec16A as an essential mediator of ER stress-associated unconventional secretion.
Collapse
|
53
|
Farhan H. Regulation of EGFR surface levels by COPII-dependent trafficking. J Cell Biol 2016; 215:441-443. [PMID: 27872251 PMCID: PMC5119945 DOI: 10.1083/jcb.201611014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/16/2023] Open
Abstract
Farhan discusses Scharaw et al.’s study about how the COPII machinery is used to replenish EGFR at the cell surface. Cell surface levels of epidermal growth factor receptors (EGFRs) are thought to be controlled mainly by endocytic trafficking, with biosynthetic EGFR trafficking presumed to be a constitutive and unregulated process. However, Scharaw et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601090) demonstrate a role for inducible COPII trafficking in controlling EGFR surface levels.
Collapse
Affiliation(s)
- Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
54
|
Yonemura Y, Li X, Müller K, Krämer A, Atigbire P, Mentrup T, Feuerhake T, Kroll T, Shomron O, Nohl R, Arndt HD, Hoischen C, Hemmerich P, Hirschberg K, Kaether C. Inhibition of cargo export at ER exit sites and the trans-Golgi network by the secretion inhibitor FLI-06. J Cell Sci 2016; 129:3868-3877. [PMID: 27587840 DOI: 10.1242/jcs.186163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Export out of the endoplasmic reticulum (ER) involves the Sar1 and COPII machinery acting at ER exit sites (ERES). Whether and how cargo proteins are recruited upstream of Sar1 and COPII is unclear. Two models are conceivable, a recruitment model where cargo is actively transported through a transport factor and handed over to the Sar1 and COPII machinery in ERES, and a capture model, where cargo freely diffuses into ERES where it is captured by the Sar1 and COPII machinery. Using the novel secretion inhibitor FLI-06, we show that recruitment of the cargo VSVG to ERES is an active process upstream of Sar1 and COPII. Applying FLI-06 before concentration of VSVG in ERES completely abolishes its recruitment. In contrast, applying FLI-06 after VSVG concentration in ERES does not lead to dispersal of the concentrated VSVG, arguing that it inhibits recruitment to ERES as opposed to capture in ERES. FLI-06 also inhibits export out of the trans-Golgi network (TGN), suggesting that similar mechanisms might orchestrate cargo selection and concentration at the ER and TGN. FLI-06 does not inhibit autophagosome biogenesis and the ER-peroxisomal transport route, suggesting that these rely on different mechanisms.
Collapse
Affiliation(s)
- Yoji Yonemura
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Xiaolin Li
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Katja Müller
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Paul Atigbire
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Torben Mentrup
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Talitha Feuerhake
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Torsten Kroll
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Olga Shomron
- Pathology Department, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Richard Nohl
- Lehrstuhl für organische Chemie I, Friedrich-Schiller Universität, Jena 07743, Germany
| | - Hans-Dieter Arndt
- Lehrstuhl für organische Chemie I, Friedrich-Schiller Universität, Jena 07743, Germany
| | - Christian Hoischen
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Peter Hemmerich
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Koret Hirschberg
- Pathology Department, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| |
Collapse
|
55
|
Sec16 alternative splicing dynamically controls COPII transport efficiency. Nat Commun 2016; 7:12347. [PMID: 27492621 PMCID: PMC4980449 DOI: 10.1038/ncomms12347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments. The transport of secretory proteins from the endoplasmic reticulum to the Golgi depends on COPII-coated vesicles. Here, the authors show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T cell activation.
Collapse
|
56
|
Schröter S, Beckmann S, Schmitt HD. ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking. EMBO J 2016; 35:1935-55. [PMID: 27440402 DOI: 10.15252/embj.201592873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 06/21/2016] [Indexed: 11/09/2022] Open
Abstract
COPI-coated vesicles mediate retrograde membrane traffic from the cis-Golgi to the endoplasmic reticulum (ER) in all eukaryotic cells. However, it is still unknown whether COPI vesicles fuse everywhere or at specific sites with the ER membrane. Taking advantage of the circumstance that the vesicles still carry their coat when they arrive at the ER, we have visualized active ER arrival sites (ERAS) by monitoring contact between COPI coat components and the ER-resident Dsl tethering complex using bimolecular fluorescence complementation (BiFC). ERAS form punctate structures near Golgi compartments, clearly distinct from ER exit sites. Furthermore, ERAS are highly polarized in an actin and myosin V-dependent manner and are localized near hotspots of plasma membrane expansion. Genetic experiments suggest that the COPI•Dsl BiFC complexes recapitulate the physiological interaction between COPI and the Dsl complex and that COPI vesicles are mistargeted in dsl1 mutants. We conclude that the Dsl complex functions in confining COPI vesicle fusion sites.
Collapse
Affiliation(s)
- Saskia Schröter
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sabrina Beckmann
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hans Dieter Schmitt
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
57
|
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Collapse
Affiliation(s)
- Charles Barlowe
- Biochemistry Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
58
|
Tanabe T, Maeda M, Saito K, Katada T. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol Biol Cell 2016; 27:2008-13. [PMID: 27170179 PMCID: PMC4927275 DOI: 10.1091/mbc.e16-03-0180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Two functionally irreplaceable and molecularly separable modules in cTAGE5 are both required for collagen VII export from the ER. The concentration of Sec12 induced by cTAGE5 serves for efficient production of activated Sar1 around ER exit sites, and the GTPase cycle of Sar1 seems to be required for collagen VII export from the ER. Two independent functions of cTAGE5 have been reported in collagen VII export from the endoplasmic reticulum (ER). cTAGE5 not only forms a cargo receptor complex with TANGO1, but it also acts as a scaffold to recruit Sec12, a guanine-nucleotide exchange factor for Sar1 GTPase, to ER exit sites. However, the relationship between the two functions remains unclear. Here we isolated point mutants of cTAGE5 that lost Sec12-binding ability but retained binding to TANGO1. Although expression of the mutant alone could not rescue the defects in collagen VII secretion mediated by cTAGE5 knockdown, coexpression with Sar1, but not with the GTPase-deficient mutant, recovered secretion. The expression of Sar1 alone failed to rescue collagen secretion in cTAGE5-depleted cells. Taken together, these results suggest that two functionally irreplaceable and molecularly separable modules in cTAGE5 are both required for collagen VII export from the ER. The recruitment of Sec12 by cTAGE5 contributes to efficient activation of Sar1 in the vicinity of ER exit sites. In addition, the GTPase cycle of Sar1 appears to be responsible for collagen VII exit from the ER.
Collapse
Affiliation(s)
- Tomoya Tanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
59
|
Cracking the Glycome Encoder: Signaling, Trafficking, and Glycosylation. Trends Cell Biol 2016; 26:379-388. [DOI: 10.1016/j.tcb.2015.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
|
60
|
Abstract
Protein export from the endoplasmic reticulum (ER), the first step in protein transport through the secretory pathway, is mediated by coatomer protein II (COPII)-coated vesicles at ER exit sites. COPII coat assembly on the ER is well understood and the conserved large hydrophilic protein Sec16 clearly has a role to play in COPII coat dynamics. Sec16 localizes to ER exit sites, its loss of function impairs their functional organization in all species where it has been studied, and it interacts with COPII coat subunits. However, its exact function in COPII dynamics is debated, as Sec16 is proposed to act as a scaffold to recruit COPII components and as a device to regulate the Sar1 activity in uncoating, in such a way that the coat is released only when the vesicle is fully formed and loaded with cargo. Furthermore, Sec16 has been shown to respond to nutrient signalling, thus coupling environmental stimuli to secretory capacity.
Collapse
|
61
|
Farhan H. Systems biology of the secretory pathway: what have we learned so far? Biol Cell 2015; 107:205-17. [PMID: 25756903 DOI: 10.1111/boc.201400065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Abstract
Several RNAi screens were performed in search for regulators of the secretory pathway. These screens were performed in different organisms and cell lines and relied on different readouts. Therefore, they have only little overlap among their hits, leading to the question of what we have learned from this approach so far and how these screens contributed towards an integrative understanding of the endomembrane system. The aim of this review is to revisit these screens and discuss their strengths and weaknesses as well as potential reasons for their failure to overlap with each other. As with secretory trafficking, RNAi screens were also performed on other cellular processes such as cell migration and autophagy, both of which were shown to be intimately linked to secretion. Another aim of this review is to compare the outcome of the RNAi screens on secretion, autophagy and cell migration and ask whether the functional genomic approaches have uncovered potential mechanistic insights into the links between these processes.
Collapse
Affiliation(s)
- Hesso Farhan
- Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland
| |
Collapse
|
62
|
D'Arcangelo JG, Crissman J, Pagant S, Čopič A, Latham CF, Snapp EL, Miller EA. Traffic of p24 Proteins and COPII Coat Composition Mutually Influence Membrane Scaffolding. Curr Biol 2015; 25:1296-305. [PMID: 25936552 DOI: 10.1016/j.cub.2015.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 01/22/2023]
Abstract
Eukaryotic protein secretion requires efficient and accurate delivery of diverse secretory and membrane proteins. This process initiates in the ER, where vesicles are sculpted by the essential COPII coat. The Sec13p subunit of the COPII coat contributes to membrane scaffolding, which enforces curvature on the nascent vesicle. A requirement for Sec13p can be bypassed when traffic of lumenally oriented membrane proteins is abrogated. Here we sought to further explore the impact of cargo proteins on vesicle formation. We show that efficient ER export of the p24 family of proteins is a major driver of the requirement for Sec13p. The scaffolding burden presented by the p24 complex is met in part by the cargo adaptor Lst1p, which binds to a subset of cargo, including the p24 proteins. We propose that the scaffolding function of Lst1p is required to generate vesicles that can accommodate difficult cargo proteins that include large oligomeric assemblies and asymmetrically distributed membrane proteins. Vesicles that contain such cargoes are also more dependent on scaffolding by Sec13p, and may serve as a model for large carrier formation in other systems.
Collapse
Affiliation(s)
| | - Jonathan Crissman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Silvere Pagant
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alenka Čopič
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Catherine F Latham
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Erik L Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
63
|
Millarte V, Boncompain G, Tillmann K, Perez F, Sztul E, Farhan H. Phospholipase C γ1 regulates early secretory trafficking and cell migration via interaction with p115. Mol Biol Cell 2015; 26:2263-78. [PMID: 25904324 PMCID: PMC4462944 DOI: 10.1091/mbc.e15-03-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed-fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.
Collapse
Affiliation(s)
- Valentina Millarte
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | | | - Kerstin Tillmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Franck Perez
- Institut Curie, CNRS UMR 144, 75248 Paris, France
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hesso Farhan
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
64
|
Iwasaki H, Yorimitsu T, Sato K. Distribution of Sec24 isoforms to each ER exit site is dynamically regulated in Saccharomyces cerevisiae. FEBS Lett 2015; 589:1234-9. [PMID: 25896017 DOI: 10.1016/j.febslet.2015.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 02/05/2023]
Abstract
COPII vesicles are formed at specific subdomains of the ER, termed ER exit sites (ERESs). Depending on the cell type, ERESs number from a few to several hundred per cell. However, whether these ERESs are functionally and compositionally identical at the cellular level remains unclear. Our live cell-imaging analysis in Saccharomyces cerevisiae revealed that the isoforms of cargo-adaptor subunits are unequally distributed to each ERES at steady state, whereas this distribution is altered in response to UPR activation. These results suggest that in S. cerevisiae cargo loading to ERES is dynamically controlled in response to environmental changes.
Collapse
Affiliation(s)
- Hirohiko Iwasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
65
|
Bryant KL, Baird B, Holowka D. A novel fluorescence-based biosynthetic trafficking method provides pharmacologic evidence that PI4-kinase IIIα is important for protein trafficking from the endoplasmic reticulum to the plasma membrane. BMC Cell Biol 2015; 16:5. [PMID: 25886792 PMCID: PMC4355129 DOI: 10.1186/s12860-015-0049-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Background Biosynthetic trafficking of receptors and other membrane-associated proteins from the endoplasmic reticulum (ER) to the plasma membrane (PM) underlies the capacity of these proteins to participate in crucial cellular roles. Phosphoinositides have been shown to mediate distinct biological functions in cells, and phosphatidylinositol 4-phosphate (PI4P), in particular, has emerged as a key regulator of biosynthetic trafficking. Results To investigate the source of PI4P that orchestrates trafficking events, we developed a novel flow cytometry based method to monitor biosynthetic trafficking of transiently transfected proteins. We demonstrated that our method can be used to assess the trafficking of both type-1 transmembrane and GPI-linked proteins, and that it can accurately monitor the pharmacological disruption of biosynthetic trafficking with brefeldin A, a well-documented inhibitor of early biosynthetic trafficking. Furthermore, utilizing our newly developed method, we applied pharmacological inhibition of different isoforms of PI 4-kinase to reveal a role for a distinct pool of PI4P, synthesized by PI4KIIIα, in ER-to-PM trafficking. Conclusions Taken together, these findings provide evidence that a specific pool of PI4P plays a role in biosynthetic trafficking of two different classes of proteins from the ER to the Golgi complex. Furthermore, our simple, flow cytometry-based biosynthetic trafficking assay can be widely applied to the study of multiple classes of proteins and varied pharmacological and genetic perturbations.
Collapse
Affiliation(s)
- Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA. .,University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
66
|
Hoffmann J, Fickentscher R, Weiss M. Influence of organelle geometry on the apparent binding kinetics of peripheral membrane proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022721. [PMID: 25768545 DOI: 10.1103/physreve.91.022721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Information processing in living cells frequently involves an exchange of peripheral membrane proteins between the cytosol and organelle membranes. The typical time scale τ of these association-dissociation cycles is commonly quantified in vivo via fluorescence recovery after photobleaching (FRAP). Contrary to common assumptions, we show here that τ values determined by FRAP depend on the size and number of target structures. Hence, FRAP times alone are insufficient to draw conclusions about the proteins' binding kinetics. In contrast, extracting primary molecular association and dissociation rates from FRAP approaches provides a size-independent and therefore robust measure for the proteins' binding kinetics. We support our theoretical considerations with experiments on the small GTPase Arf-1 that transiently associates with Golgi membranes: While Arf-1 recovery times in untreated cells and in cells with disrupted microtubules are significantly different, the molecular kinetic rates are shown to be the same in both cases.
Collapse
Affiliation(s)
- Julia Hoffmann
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Rolf Fickentscher
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| |
Collapse
|
67
|
Tillmann KD, Reiterer V, Baschieri F, Hoffmann J, Millarte V, Hauser MA, Mazza A, Atias N, Legler DF, Sharan R, Weiss M, Farhan H. Regulation of Sec16 levels and dynamics links proliferation and secretion. J Cell Sci 2014; 128:670-82. [PMID: 25526736 DOI: 10.1242/jcs.157115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We currently lack a broader mechanistic understanding of the integration of the early secretory pathway with other homeostatic processes such as cell growth. Here, we explore the possibility that Sec16A, a major constituent of endoplasmic reticulum exit sites (ERES), acts as an integrator of growth factor signaling. Surprisingly, we find that Sec16A is a short-lived protein that is regulated by growth factors in a manner dependent on Egr family transcription factors. We hypothesize that Sec16A acts as a central node in a coherent feed-forward loop that detects persistent growth factor stimuli to increase ERES number. Consistent with this notion, Sec16A is also regulated by short-term growth factor treatment that leads to increased turnover of Sec16A at ERES. Finally, we demonstrate that Sec16A depletion reduces proliferation, whereas its overexpression increases proliferation. Together with our finding that growth factors regulate Sec16A levels and its dynamics on ERES, we propose that this protein acts as an integrator linking growth factor signaling and secretion. This provides a mechanistic basis for the previously proposed link between secretion and proliferation.
Collapse
Affiliation(s)
- Kerstin D Tillmann
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Veronika Reiterer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland
| | - Francesco Baschieri
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Julia Hoffmann
- Experimental Physics I, University of Bayreuth, Bayreuth 95440, Germany
| | - Valentina Millarte
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Mark A Hauser
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland
| | - Arnon Mazza
- Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Nir Atias
- Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Bayreuth 95440, Germany
| | - Hesso Farhan
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| |
Collapse
|
68
|
Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host Microbe 2014; 16:677-90. [PMID: 25525797 DOI: 10.1016/j.chom.2014.10.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/19/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Similar to other positive-strand RNA viruses, rhinovirus, the causative agent of the common cold, replicates on a web of cytoplasmic membranes, orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of the replication membranes and complexes are poorly understood. We show that rhinovirus replication depends on host factors driving phosphatidylinositol 4-phosphate (PI4P)-cholesterol counter-currents at viral replication membranes. Depending on the virus type, replication required phosphatidylinositol 4-kinase class 3beta (PI4K3b), cholesteryl-esterase hormone-sensitive lipase (HSL) or oxysterol-binding protein (OSBP)-like 1, 2, 5, 9, or 11 associated with lipid droplets, endosomes, or Golgi. Replication invariably required OSBP1, which shuttles cholesterol and PI4P between ER and Golgi at membrane contact sites. Infection also required ER-associated PI4P phosphatase Sac1 and phosphatidylinositol (PI) transfer protein beta (PITPb) shunting PI between ER-Golgi. These data support a PI4P-cholesterol counter-flux model for rhinovirus replication.
Collapse
|
69
|
Sealey-Cardona M, Schmidt K, Demmel L, Hirschmugl T, Gesell T, Dong G, Warren G. Sec16 Determines the Size and Functioning of the Golgi in the Protist Parasite,Trypanosoma brucei. Traffic 2014; 15:613-29. [DOI: 10.1111/tra.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Sealey-Cardona
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna; Dr. Bohr-Gasse 9/3 1030, Vienna Austria
| | - Katy Schmidt
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna; Dr. Bohr-Gasse 9/3 1030, Vienna Austria
| | - Lars Demmel
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna; Dr. Bohr-Gasse 9/3 1030, Vienna Austria
| | - Tatjana Hirschmugl
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM); 1090, Vienna Austria
| | - Tanja Gesell
- Department of Structural and Computational Biology, Max F. Perutz Laboratories; University of Vienna; Dr. Bohr-Gasse 9 1030, Vienna Austria
| | - Gang Dong
- Department of Medical Biochemistry; Medical University of Vienna; Dr. Bohr-Gasse 9/3 1030 Vienna Austria
| | - Graham Warren
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna; Dr. Bohr-Gasse 9/3 1030, Vienna Austria
| |
Collapse
|
70
|
Klinkenberg D, Long KR, Shome K, Watkins SC, Aridor M. A cascade of ER exit site assembly that is regulated by p125A and lipid signals. J Cell Sci 2014; 127:1765-78. [PMID: 24522181 DOI: 10.1242/jcs.138784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The inner and outer layers of COPII mediate cargo sorting and vesicle biogenesis. Sec16A and p125A (officially known as SEC23IP) proteins interact with both layers to control coat activity, yet the steps directing functional assembly at ER exit sites (ERES) remain undefined. By using temperature blocks, we find that Sec16A is spatially segregated from p125A-COPII-coated ERES prior to ER exit at a step that required p125A. p125A used lipid signals to control ERES assembly. Within p125A, we defined a C-terminal DDHD domain found in phospholipases and PI transfer proteins that recognized PA and phosphatidylinositol phosphates in vitro and was targeted to PI4P-rich membranes in cells. A conserved central SAM domain promoted self-assembly and selective lipid recognition by the DDHD domain. A basic cluster and a hydrophobic interface in the DDHD and SAM domains, respectively, were required for p125A-mediated functional ERES assembly. Lipid recognition by the SAM-DDHD module was used to stabilize membrane association and regulate the spatial segregation of COPII from Sec16A, nucleating the coat at ERES for ER exit.
Collapse
Affiliation(s)
- David Klinkenberg
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
71
|
Zhou X, Wu W, Li H, Cheng Y, Wei N, Zong J, Feng X, Xie Z, Chen D, Manley JL, Wang H, Feng Y. Transcriptome analysis of alternative splicing events regulated by SRSF10 reveals position-dependent splicing modulation. Nucleic Acids Res 2014; 42:4019-30. [PMID: 24442672 PMCID: PMC3973337 DOI: 10.1093/nar/gkt1387] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Splicing factor SRSF10 is known to function as a sequence-specific splicing activator. Here, we used RNA-seq coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Motif analysis revealed that SRSF10 binding to cassette exons was associated with exon inclusion, whereas the binding of SRSF10 within downstream constitutive exons was associated with exon exclusion. This positional effect was further demonstrated by the mutagenesis of potential SRSF10 binding motifs in two minigene constructs. Functionally, many of SRSF10-verified alternative exons are linked to pathways of stress and apoptosis. Consistent with this observation, cells depleted of SRSF10 expression were far more susceptible to endoplasmic reticulum stress-induced apoptosis than control cells. Importantly, reconstituted SRSF10 in knockout cells recovered wild-type splicing patterns and considerably rescued the stress-related defects. Together, our results provide mechanistic insight into SRSF10-regulated alternative splicing events in vivo and demonstrate that SRSF10 plays a crucial role in cell survival under stress conditions.
Collapse
Affiliation(s)
- Xuexia Zhou
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, Novel Bioinformatics Co., Ltd, Shanghai, China, Department of Biological Sciences, Columbia University, New York, NY 10027, USA and Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ilboudo A, Nault JC, Dubois-Pot-Schneider H, Corlu A, Zucman-Rossi J, Samson M, Le Seyec J. Overexpression of phosphatidylinositol 4-kinase type IIIα is associated with undifferentiated status and poor prognosis of human hepatocellular carcinoma. BMC Cancer 2014; 14:7. [PMID: 24393405 PMCID: PMC3898250 DOI: 10.1186/1471-2407-14-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a particularly severe disease characterized by a high rate of recurrence and death even after surgical resection. Molecular characterization of HCC helps refine prognosis and may facilitate the development of improved therapy. Phosphatidylinositol 4-kinases have recently been identified as cellular factors associated with cancer. Also, phosphatidylinositol 4-kinase type IIIα (PI4KA) is necessary for the propagation of the hepatitis C virus, a major etiological factor for HCC. METHODS Reverse transcription, quantitative real-time PCR was used to assay PI4KA mRNA. The expression levels were investigated both in a collection of molecularly and clinically characterized hepatic tissues from 344 patients with diverse liver diseases and in human hepatocyte cell lines whose proliferative and differentiation status was controlled by specific culture conditions. Analytical microarray data for 60 HCC and six normal liver tissue samples were exploited to study correlations between PI4KA mRNA levels and cell proliferation markers in vivo. Postoperative disease-specific survival and time to recurrence in a set of 214 patients with HCC were studied by univariate and multivariate analyses. RESULTS PI4KA mRNA was more abundant in HCC than normal healthy tissues. This upregulation correlated significantly with both poor differentiation and the active proliferation rate in HCC. These associations were confirmed with in vitro models. Moreover, patients with HCC who had been treated by surgical resection and had higher PI4KA mRNA concentrations in their tumor tissue exhibited a higher risk of tumor recurrence (median time: 20 months versus 49 months, P = 0.0012) and shorter disease-specific survival (first quartile time: 16 months versus 48 months, P = 0.0004). Finally, the abundance of PI4KA mRNA proved to be an independent prognostic marker of survival for cases of HCC (hazard ratio = 2.36, P = 0.0064). CONCLUSIONS PI4KA mRNA could be used as a new molecular marker to improve established prognostic models for HCC. These findings also indicate possible new lines of research for the development of innovative therapeutic approaches targeting PI4KA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacques Le Seyec
- INSERM, UMR-1085, Institut de Recherche Santé Environnement & Travail (IRSET), F-35043, Rennes, France.
| |
Collapse
|
73
|
Tan J, Brill JA. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 2013; 49:33-58. [PMID: 24219382 DOI: 10.3109/10409238.2013.853024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.
Collapse
Affiliation(s)
- Julie Tan
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario , Canada and
| | | |
Collapse
|
74
|
Venditti R, Wilson C, De Matteis MA. Exiting the ER: what we know and what we don't. Trends Cell Biol 2013; 24:9-18. [PMID: 24076263 DOI: 10.1016/j.tcb.2013.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
The vast majority of proteins that are transported to different cellular compartments and secreted from the cell require coat protein complex II (COPII) for export from the endoplasmic reticulum (ER). Many of the molecular mechanisms underlying COPII assembly are understood in great detail, but it is becoming increasingly evident that this basic machinery is insufficient to account for diverse aspects of protein export from the ER that are observed in vivo. Here we review recent data that have furthered our mechanistic understanding of COPII assembly and, in particular, how genetic diseases associated with the early secretory pathway have added fundamental insights into the regulation of ER-derived carrier formation. We also highlight some unresolved issues that future work should address to better understand the physiology of COPII-mediated transport.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | | |
Collapse
|
75
|
Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M, Jeffrey PD, Hughson FM, Glick BS. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol Biol Cell 2013; 24:3406-19. [PMID: 24006484 PMCID: PMC3814151 DOI: 10.1091/mbc.e13-04-0185] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.
Collapse
Affiliation(s)
- Nike Bharucha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Amodio G, Venditti R, De Matteis MA, Moltedo O, Pignataro P, Remondelli P. Endoplasmic reticulum stress reduces COPII vesicle formation and modifies Sec23a cycling at ERESs. FEBS Lett 2013; 587:3261-6. [PMID: 23994533 DOI: 10.1016/j.febslet.2013.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/08/2013] [Indexed: 01/03/2023]
Abstract
Exit from the Endoplasmic Reticulum (ER) of newly synthesized proteins is mediated by COPII vesicles that bud from the ER at the ER Exit Sites (ERESs). Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress. Previously, we demonstrated that ER stress rapidly impairs the formation of COPII vesicles. Here, we show that membrane association of COPII components, and in particular of Sec23a, is impaired by ER stress-inducing agents suggesting the existence of a dynamic interplay between protein folding and COPII assembly at the ER.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano, Salerno, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
78
|
Abstract
The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.
Collapse
|
79
|
Tillmann KD, Millarte V, Farhan H. Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction. Histochem Cell Biol 2013; 140:297-306. [PMID: 23821161 DOI: 10.1007/s00418-013-1118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2013] [Indexed: 01/10/2023]
Abstract
The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.
Collapse
Affiliation(s)
- Kerstin D Tillmann
- Biotechnology Institute Thurgau, Unterseestrasse 47, 8280, Kreuzlingen, Switzerland
| | | | | |
Collapse
|
80
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
81
|
Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:5/6/a013391. [PMID: 23732476 DOI: 10.1101/cshperspect.a013391] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels--SNARE proteins--to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.
Collapse
Affiliation(s)
- Anne Spang
- University of Basel, Biozentrum, Growth & Development, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
82
|
RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol 2013; 8:629. [PMID: 23212246 PMCID: PMC3542528 DOI: 10.1038/msb.2012.59] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022] Open
Abstract
RNAi screening and automated image analysis reveal 180 kinases and phosphatases regulating the organization of the Golgi apparatus. Most of these genes also control the expression of specific glycans, pointing to a web of interactions between signaling cascades and glycosylation at the Golgi. ![]()
Golgi organization was probed with three markers of different Golgi compartments and quantitative morphological analysis. Knockdowns of ∼20% of all known kinases and phosphatases affected the Golgi globally or in a compartment-specific manner, and were comparable in degree to the depletion of known membrane traffic regulators such as SNAREs. Several cell surface receptors, their cognate ligands and downstream effectors regulate Golgi organization, suggesting a large regulatory network. Most signaling genes affected both Golgi morphology and the expression of specific glycans.
The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.
Collapse
|
83
|
Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA. Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 2013; 14:691-708. [PMID: 23433038 DOI: 10.1111/tra.12060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/01/2023]
Abstract
The Sar1 GTPase coordinates the assembly of coat protein complex-II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER-to-Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII-mediated transport in mammalian cells, we used small interfering RNA (siRNA)-mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER-to-Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen-I is inhibited. These data provide proof-of-principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
84
|
Yeong FM. Multi-step down-regulation of the secretory pathway in mitosis: a fresh perspective on protein trafficking. Bioessays 2013; 35:462-71. [PMID: 23494566 PMCID: PMC3654163 DOI: 10.1002/bies.201200144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The secretory pathway delivers proteins synthesized at the rough endoplasmic reticulum (RER) to various subcellular locations via the Golgi apparatus. Currently, efforts are focused on understanding the molecular machineries driving individual processes at the RER and Golgi that package, modify and transport proteins. However, studies are routinely performed using non-dividing cells. This obscures the critical issue of how the secretory pathway is affected by cell division. Indeed, several studies have indicated that protein trafficking is down-regulated during mitosis. Moreover, the RER and Golgi apparatus exhibit gross reorganization in mitosis. Here I provide a relatively neglected perspective of how the mitotic cyclin-dependent kinase (CDK1) could regulate various stages of the secretory pathway. I highlight several aspects of the mitotic control of protein trafficking that remain unresolved and suggest that further studies on how the mitotic CDK1 influences the secretory pathway are necessary to obtain a deeper understanding of protein transport.
Collapse
Affiliation(s)
- Foong May Yeong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
85
|
D'Arcangelo JG, Stahmer KR, Miller EA. Vesicle-mediated export from the ER: COPII coat function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2464-72. [PMID: 23419775 DOI: 10.1016/j.bbamcr.2013.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/26/2022]
Abstract
Vesicle trafficking from the endoplasmic reticulum (ER) is a vital cellular process in all eukaryotes responsible for moving secretory cargoes from the ER to the Golgi apparatus. To accomplish this feat, the cell employs a set of conserved cytoplasmic coat proteins - the coat protein II (COPII) complex - that recruit cargo into nascent buds and deform the ER membrane to drive vesicle formation. While our understanding of COPII coat mechanics has developed substantially since its discovery, we have only recently begun to appreciate the factors that regulate this complex and, in turn, ER-to-Golgi trafficking. Here, we describe these factors and their influences on COPII vesicle formation. Properties intrinsic to the GTP cycle of the coat, as well as coat structure, have critical implications for COPII vesicle trafficking. Extrinsic factors in the cytosol can modulate COPII activity through direct interaction with the coat or with scaffolding components, or by changing composition of the ER membrane. Further, lumenal and membrane-bound cargoes and cargo receptors can influence COPII-mediated trafficking in equally profound ways. Together, these factors work in concert to ensure proper cargo movement in this first step of the secretory pathway. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
86
|
Faso C, Konrad C, Schraner EM, Hehl AB. Export of cyst wall material and Golgi organelle neogenesis in Giardia lamblia depend on endoplasmic reticulum exit sites. Cell Microbiol 2012; 15:537-53. [PMID: 23094658 DOI: 10.1111/cmi.12054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/01/2022]
Abstract
Giardia lamblia parasitism accounts for the majority of cases of parasitic diarrheal disease, making this flagellated eukaryote the most successful intestinal parasite worldwide. This organism has undergone secondary reduction/elimination of entire organelle systems such as mitochondria and Golgi. However, trophozoite to cyst differentiation (encystation) requires neogenesis of Golgi-like secretory organelles named encystation-specific vesicles (ESVs), which traffic, modify and partition cyst wall proteins produced exclusively during encystation. In this work we ask whether neogenesis of Golgi-related ESVs during G. lamblia differentiation, similarly to Golgi biogenesis in more complex eukaryotes, requires the maintenance of distinct COPII-associated endoplasmic reticulum (ER) subdomains in the form of ER exit sites (ERES) and whether ERES are also present in non-differentiating trophozoites. To address this question, we identified conserved COPII components in G. lamblia cells and determined their localization, quantity and dynamics at distinct ERES domains in vegetative and differentiating trophozoites. Analogous to ERES and Golgi biogenesis, these domains were closely associated to early stages of newly generated ESV. Ectopic expression of non-functional Sar1 GTPase variants caused ERES collapse and, consequently, ESV ablation, leading to impaired parasite differentiation. Thus, our data show how ERES domains remain conserved in G. lamblia despite elimination of steady-state Golgi. Furthermore, the fundamental eukaryotic principle of ERES to Golgi/Golgi-like compartment correspondence holds true in differentiating Giardia presenting streamlined machinery for secretory organelle biogenesis and protein trafficking. However, in the Golgi-less trophozoites ERES exist as stable ER subdomains, likely as the sole sorting centres for secretory traffic.
Collapse
Affiliation(s)
- Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
87
|
Abstract
Eukaryotes possess seven different phosphoinositides (PIPs) that help form the unique signatures of various intracellular membranes. PIPs serve as docking sites for the recruitment of specific proteins to mediate membrane alterations and integrate various signaling cascades. The spatio-temporal regulation of PI kinases and phosphatases generates distinct intracellular hubs of PIP signaling. Hepatitis C virus (HCV), like other plus-strand RNA viruses, promotes the rearrangement of intracellular membranes to assemble viral replication complexes. HCV stimulates enrichment of phosphatidylinositol 4-phosphate (PI4P) pools near endoplasmic reticulum (ER) sites by activating PI4KIIIα, the kinase responsible for generation of ER-specific PI4P pools. Inhibition of PI4KIIIα abrogates HCV replication. PI4P, the most abundant phosphoinositide, predominantly localizes to the Golgi and plays central roles in Golgi secretory functions by recruiting effector proteins involved in transport vesicle generation. The PI4P effector proteins also include the lipid-transfer and structural proteins such as ceramide transfer protein (CERT), oxysterol binding protein (OSBP) and Golgi phosphoprotein 3 (GOLPH3) that help maintain Golgi-membrane composition and structure. Depletion of Golgi-specific PI4P pools by silencing PI4KIIIβ, expression of dominant negative CERT and OSBP mutants, or silencing GOLPH3 perturb HCV secretion. In this review we highlight the role of PIPs and specifically PI4P in the HCV life cycle.
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Biological Sciences, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Gulam Syed
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Aleem Siddiqui
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Author to whom correspondence should be addressed; ; Tel.: +858-822-1750; Fax: +858-822-1749
| |
Collapse
|
88
|
Evaluation of phosphatidylinositol-4-kinase IIIα as a hepatitis C virus drug target. J Virol 2012; 86:11595-607. [PMID: 22896614 DOI: 10.1128/jvi.01320-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.
Collapse
|
89
|
Abstract
Poliovirus (PV) requires membranes of the host cell's secretory pathway to generate replication complexes (RCs) for viral RNA synthesis. Recent work identified the intermediate compartment and the Golgi apparatus as the precursors of the replication "organelles" of PV (N. Y. Hsu et al., Cell 141:799-811, 2010). In this study, we examined the effect of PV on COPII vesicles, the secretory cargo carriers that bud from the endoplasmic reticulum and homotypically fuse to form the intermediate compartment that matures into the Golgi apparatus. We found that infection by PV results in a biphasic change in functional COPII vesicle biogenesis in cells, with an early enhancement and subsequent inhibition. Concomitant with the early increase in COPII vesicle formation, we found an increase in the membrane fraction of Sec16A, a key regulator of COPII vesicle formation. We suggest that the early burst in COPII vesicle formation detected benefits PV by increasing the precursor pool required for the formation of its RCs.
Collapse
|
90
|
Bellucci A, Zaltieri M, Navarria L, Grigoletto J, Missale C, Spano P. From α-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson's disease. Brain Res 2012; 1476:183-202. [PMID: 22560500 DOI: 10.1016/j.brainres.2012.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Alpha-synuclein is a natively unfolded protein playing a key role in the regulation of several neuronal synaptic functions in physiological and pathological conditions. Many studies, over the past years, have shown that it is actively involved in PD pathophysiology. Alpha-synuclein is integrated in a complex network of neuronal processes through the interaction with cytosolic and synaptic proteins. Hence, it is not the sole α-synuclein pathology but its effects on diverse protein partners and specific cellular pathways in the membrane and/or cytosolic districts such as endoplasmic reticulum/Golgi, axonal and synaptic compartments of dopaminergic neurons, that may cause the onset of neuronal cell dysfunction and degeneration which are among the key pathological features of the PD brain. Here we summarize a series of experimental data supporting that α-synuclein aggregation may induce dysfunction and degeneration of synapses via these multiple mechanisms. Taken together, these data add new insights into the complex mechanisms underlying synaptic derangement in PD and other α-synucleinopathies. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
91
|
Inoue H, Baba T, Sato S, Ohtsuki R, Takemori A, Watanabe T, Tagaya M, Tani K. Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:930-9. [DOI: 10.1016/j.bbamcr.2012.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
92
|
Cui-Wang T, Hanus C, Cui T, Helton T, Bourne J, Watson D, Harris KM, Ehlers MD. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 2012; 148:309-21. [PMID: 22265418 DOI: 10.1016/j.cell.2011.11.056] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/28/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
Following synthesis, integral membrane proteins dwell in the endoplasmic reticulum (ER) for variable periods that are typically rate limiting for plasma membrane delivery. In neurons, the ER extends for hundreds of microns as an anastomosing network throughout highly branched dendrites. However, little is known about the mobility, spatial scales, or dynamic regulation of cargo in the dendritic ER. Here, we show that membrane proteins, including AMPA-type glutamate receptors, rapidly diffuse within the continuous network of dendritic ER but are confined by increased ER complexity at dendritic branch points and near dendritic spines. The spatial range of receptor mobility is rapidly restricted by type I mGluR signaling through a mechanism involving protein kinase C (PKC) and the ER protein CLIMP63. Moreover, local zones of ER complexity compartmentalize ER export and correspond to sites of new dendritic branches. Thus, local control of ER complexity spatially scales secretory trafficking within elaborate dendritic arbors.
Collapse
Affiliation(s)
- Tingting Cui-Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Klann M, Koeppl H, Reuss M. Spatial modeling of vesicle transport and the cytoskeleton: the challenge of hitting the right road. PLoS One 2012; 7:e29645. [PMID: 22253752 PMCID: PMC3257240 DOI: 10.1371/journal.pone.0029645] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 01/15/2023] Open
Abstract
The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.
Collapse
Affiliation(s)
- Michael Klann
- Automatic Control Laboratory, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
94
|
Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R. COPII and the regulation of protein sorting in mammals. Nat Cell Biol 2011; 14:20-8. [PMID: 22193160 DOI: 10.1038/ncb2390] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secretory proteins are transported to the Golgi complex in vesicles that bud from the endoplasmic reticulum. The cytoplasmic coat protein complex II (COPII) is responsible for cargo sorting and vesicle morphogenesis. COPII was first described in Saccharomyces cerevisiae, but its basic function is conserved throughout all eukaryotes. Nevertheless, the COPII coat has adapted to the higher complexity of mammalian physiology, achieving more sophisticated levels of secretory regulation. In this review we cover aspects of mammalian COPII-mediated regulation of secretion, in particular related to the function of COPII paralogues, the spatial organization of cargo export and the role of accessory proteins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
95
|
Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev Cell 2011; 21:457-68. [PMID: 21920312 DOI: 10.1016/j.devcel.2011.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/28/2022]
Abstract
A fundamental question in cell biology is how cells control organelle composition and abundance. Woronin bodies are fungal peroxisomes centered on a crystalline core of the self-assembled HEX protein. Despite using the canonical peroxisome import machinery for biogenesis, Woronin bodies are scarce compared to the overall peroxisome population. Here, we show that HEX oligomers promote the differentiation of a subpopulation of peroxisomes, which become enlarged and highly active in matrix protein import. HEX physically associates with the essential matrix import peroxin, PEX26, and promotes its enrichment in the membrane of differentiated peroxisomes. In addition, a PEX26 mutant that disrupts differentiation produces increased numbers of aberrantly small Woronin bodies. Our data suggest a mechanism where HEX oligomers recruit a key component of the import machinery, which promotes the import of additional HEX. This type of positive feedback provides a basic mechanism for the production of an organelle subpopulation of distinct composition and abundance.
Collapse
Affiliation(s)
- Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
96
|
Affiliation(s)
| | - Adam D. Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15232;
| |
Collapse
|
97
|
Zacharogianni M, Kondylis V, Tang Y, Farhan H, Xanthakis D, Fuchs F, Boutros M, Rabouille C. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO J 2011; 30:3684-700. [PMID: 21847093 DOI: 10.1038/emboj.2011.253] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion in response to serum and amino-acid starvation, in both Drosophila and human cells. Under these conditions, ERK7 turnover through the proteasome is inhibited, and the resulting higher levels of this kinase lead to a modification in a site within the C-terminus of Sec16, a key ER exit site component. This post-translational modification elicits the cytoplasmic dispersion of Sec16 and the consequent disassembly of the ER exit sites, which in turn results in protein secretion inhibition. We found that ER exit site disassembly upon starvation is TOR complex 1 (TORC1) independent, showing that under nutrient stress conditions, cell growth is not only inhibited at the transcriptional and translational levels, but also independently at the level of secretion by inhibiting the membrane flow through the early secretory pathway. These results reveal the existence of new signalling circuits participating in the complex regulation of cell growth.
Collapse
Affiliation(s)
- Margarita Zacharogianni
- Department of Cell Biology, Cell microscopy Centre, UMC Utrecht, Heidelberglaan, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described.
Collapse
Affiliation(s)
- Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
99
|
Exit from the trans-Golgi network: from molecules to mechanisms. Curr Opin Cell Biol 2011; 23:443-51. [PMID: 21550789 DOI: 10.1016/j.ceb.2011.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 11/23/2022]
Abstract
The trans-Golgi network is a major sorting platform of the secretory pathway from which proteins and lipids, both newly synthesized and retrieved from endocytic compartments, are targeted to different destinations. These sorting processes occur during the formation of pleomorphic tubular-vesicular carriers. The past years have provided insights into basic mechanisms coordinating the spatial and temporal organization of machineries necessary for the segregation of membrane components into distinct microdomains, for the bending, elongation, and fission of corresponding membranes, thus revealing a complex interplay of protein-protein and protein-lipid interactions.
Collapse
|
100
|
Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR, Schwarze K, Yates JR, Eimer S, Audhya A. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 2011; 13:550-8. [PMID: 21478858 PMCID: PMC3311221 DOI: 10.1038/ncb2225] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022]
Abstract
Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.
Collapse
Affiliation(s)
- Kristen Witte
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| | - Amber L. Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| | - Jan Hegermann
- European Neuroscience Institute and Center for Molecular Physiology of the Brain (CMPB), 37077 Goettingen, Germany
| | - Ali Sarkeshik
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jonathan R. Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| | - Katrin Schwarze
- European Neuroscience Institute and Center for Molecular Physiology of the Brain (CMPB), 37077 Goettingen, Germany
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stefan Eimer
- European Neuroscience Institute and Center for Molecular Physiology of the Brain (CMPB), 37077 Goettingen, Germany
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|