51
|
Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME JOURNAL 2020; 14:1015-1029. [PMID: 31974462 DOI: 10.1038/s41396-020-0587-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The access of rhizobia to legume host is a prerequisite for nodulation. Rhizobia are poorly motile in soil, while filamentous fungi are known to grow extensively across soil pores. Since root exudates-driven bacterial chemotaxis cannot explain rhizobial long-distance dispersal, mycelia could constitute ideal dispersal networks to help rhizobial enrichment in the legume rhizosphere from bulk soil. Thus, we hypothesized that mycelia networks act as vectors that enable contact between rhizobia and legume and influence subsequent nodulation. By developing a soil microcosm system, we found that a facultatively biotrophic fungus, Phomopsis liquidambaris, helps rhizobial migration from bulk soil to the peanut (Arachis hypogaea) rhizosphere and, hence, triggers peanut-rhizobium nodulation but not seen in the absence of mycelia. Assays of dispersal modes suggested that cell proliferation and motility mediated rhizobial dispersal along mycelia, and fungal exudates might contribute to this process. Furthermore, transcriptomic analysis indicated that genes associated with the cell division, chemosensory system, flagellum biosynthesis, and motility were regulated by Ph. liquidambaris, thus accounting for the detected rhizobial dispersal along hyphae. Our results indicate that rhizobia use mycelia as dispersal networks that migrate to legume rhizosphere and trigger nodulation. This work highlights the importance of mycelial network-based bacterial dispersal in legume-rhizobium symbiosis.
Collapse
|
52
|
Johnston SR, Hiscox J, Savoury M, Boddy L, Weightman AJ. Highly competitive fungi manipulate bacterial communities in decomposing beech wood (Fagus sylvatica). FEMS Microbiol Ecol 2019; 95:5218414. [PMID: 30496397 PMCID: PMC6301287 DOI: 10.1093/femsec/fiy225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
The bacterial communities in decomposing wood are receiving increased attention, but their interactions with wood-decay fungi are poorly understood. This is the first field study to test the hypothesis that fungi are responsible for driving bacterial communities in beech wood (Fagus sylvatica). A meta-genetic approach was used to characterise bacterial and fungal communities in wood that had been laboratory-colonised with known wood-decay fungi, and left for a year at six woodland sites. Alpha-, Beta- and Gammaproteobacteria and Acidobacteria were the proportionally dominant bacterial taxa, as in previous studies. Pre-colonising wood with decay fungi had a clear effect on the bacterial community, apparently via direct fungal influence; the bacterial and fungal communities present at the time of collection explained nearly 60% of their mutual covariance. Site was less important than fungal influence in determining bacterial communities, but the effects of pre-colonisation were more pronounced at some sites than at others. Wood pH was also a strong bacterial predictor, but was itself under considerable fungal influence. Burkholderiaceae and Acidobacteriaceae showed directional responses against the trend of the bacterial community as a whole.
Collapse
Affiliation(s)
- Sarah R Johnston
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff. CF10 3AX. Wales, UK
| | - Jennifer Hiscox
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff. CF10 3AX. Wales, UK
| | - Melanie Savoury
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff. CF10 3AX. Wales, UK
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff. CF10 3AX. Wales, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff. CF10 3AX. Wales, UK
| |
Collapse
|
53
|
A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species. Molecules 2019; 24:molecules24244516. [PMID: 31835527 PMCID: PMC6943587 DOI: 10.3390/molecules24244516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 11/25/2022] Open
Abstract
Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay.
Collapse
|
54
|
Cosetta CM, Wolfe BE. Causes and consequences of biotic interactions within microbiomes. Curr Opin Microbiol 2019; 50:35-41. [PMID: 31627129 DOI: 10.1016/j.mib.2019.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
An integrative pattern-process-mechanism approach is revealing the roles of biotic interactions in microbiome assembly. Patterns of microbiome diversity observed in metagenomic studies can be partly explained by interaction processes (e.g. competition, facilitation) and underlying molecular or genetic mechanisms (e.g. antibiotic production, nutrient cross-feeding). Exciting opportunities remain to fully understand the significance and generalizability of biotic interactions within microbiomes. Many microbial interactions have been studied by chasing easily quantifiable phenotypes including changes in growth or pigmentation, but it is likely that diverse cryptic interactions occur without obvious growth changes or macroscopic phenotypes. A narrow phylogenetic breadth of well-studied microbes limits our understanding of whether there are conserved genetic or molecular mechanisms of microbial interactions. Biotic interactions can impose strong selective pressures that could shape rates and modes of microbial evolution, but few studies have examined the evolutionary consequences of interactions within microbiomes. Continued exploration of the chemical and genetic mechanisms underlying biotic interactions may provide novel tools to manipulate and manage microbiomes.
Collapse
Affiliation(s)
- Casey M Cosetta
- Tufts University, Department of Biology, Medford, MA 02155, United States
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, MA 02155, United States.
| |
Collapse
|
55
|
Uehling JK, Entler MR, Meredith HR, Millet LJ, Timm CM, Aufrecht JA, Bonito GM, Engle NL, Labbé JL, Doktycz MJ, Retterer ST, Spatafora JW, Stajich JE, Tschaplinski TJ, Vilgalys RJ. Microfluidics and Metabolomics Reveal Symbiotic Bacterial-Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Front Microbiol 2019; 10:2163. [PMID: 31632357 PMCID: PMC6779839 DOI: 10.3389/fmicb.2019.02163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
We identified two poplar (Populus sp.)-associated microbes, the fungus, Mortierella elongata strain AG77, and the bacterium, Burkholderia strain BT03, that mutually promote each other’s growth. Using culture assays in concert with a novel microfluidic device to generate time-lapse videos, we found growth specific media differing in pH and pre-conditioned by microbial growth led to increased fungal and bacterial growth rates. Coupling microfluidics and comparative metabolomics data results indicated that observed microbial growth stimulation involves metabolic exchange during two ordered events. The first is an emission of fungal metabolites, including organic acids used or modified by bacteria. A second signal of unknown nature is produced by bacteria which increases fungal growth rates. We find this symbiosis is initiated in part by metabolic exchange involving fungal organic acids.
Collapse
Affiliation(s)
- Jessie K Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.,Department of Biology, Duke University, Durham, NC, United States
| | - Matthew R Entler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hannah R Meredith
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Larry J Millet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Collin M Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jayde A Aufrecht
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gregory M Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jessy L Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Genome Science & Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Genome Science & Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | | | - Rytas J Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
56
|
Miquel Guennoc C, Rose C, Labbé J, Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 2019; 94:4998851. [PMID: 29788056 DOI: 10.1093/femsec/fiy093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.
Collapse
Affiliation(s)
- Cora Miquel Guennoc
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| |
Collapse
|
57
|
Jenner M, Jian X, Dashti Y, Masschelein J, Hobson C, Roberts DM, Jones C, Harris S, Parkhill J, Raja HA, Oberlies NH, Pearce CJ, Mahenthiralingam E, Challis GL. An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. Chem Sci 2019; 10:5489-5494. [PMID: 31293732 PMCID: PMC6553374 DOI: 10.1039/c8sc04897e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
Fungus-associated Burkholderia gladioli bacteria use a unique ‘dual-priming’ nonribosomal peptide synthetase to assemble icosalide A1.
Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (CI) domains. One of these is appended to the N-terminus of module 1 – a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded CI domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly.
Collapse
Affiliation(s)
- Matthew Jenner
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Xinyun Jian
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Yousef Dashti
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Joleen Masschelein
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Christian Hobson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Douglas M Roberts
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Cerith Jones
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Simon Harris
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Cedric J Pearce
- Mycosynthetix , 4905 Pine Cone Drive , Durham , North Carolina 27707 , USA
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Gregory L Challis
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK.,Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| |
Collapse
|
58
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
59
|
Gomes MC, Tasrini Y, Subramoni S, Agnoli K, Feliciano JR, Eberl L, Sokol P, O’Callaghan D, Vergunst AC. The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection. PLoS Pathog 2018; 14:e1007473. [PMID: 30513124 PMCID: PMC6301696 DOI: 10.1371/journal.ppat.1007473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia is particularly life-threatening for cystic fibrosis (CF) patients. Chronic lung infections with these bacteria can rapidly develop into fatal pulmonary necrosis and septicaemia. We have recently shown that macrophages are a critical site for replication of B. cenocepacia K56-2 and the induction of fatal pro-inflammatory responses using a zebrafish infection model. Here, we show that ShvR, a LysR-type transcriptional regulator that is important for biofilm formation, rough colony morphotype and inflammation in a rat lung infection model, is also required for the induction of fatal pro-inflammatory responses in zebrafish larvae. ShvR was not essential, however, for bacterial survival and replication in macrophages. Temporal, rhamnose-induced restoration of shvR expression in the shvR mutant during intramacrophage stages unequivocally demonstrated a key role for ShvR in transition from intracellular persistence to acute fatal pro-inflammatory disease. ShvR has been previously shown to tightly control the expression of the adjacent afc gene cluster, which specifies the synthesis of a lipopeptide with antifungal activity. Mutation of afcE, encoding an acyl-CoA dehydrogenase, has been shown to give similar phenotypes as the shvR mutant. We found that, like shvR, afcE is also critical for the switch from intracellular persistence to fatal infection in zebrafish. The closely related B. cenocepacia H111 has been shown to be less virulent than K56-2 in several infection models, including Galleria mellonella and rats. Interestingly, constitutive expression of shvR in H111 increased virulence in zebrafish larvae to almost K56-2 levels in a manner that absolutely required afc. These data confirm a critical role for afc in acute virulence caused by B. cenocepacia that depends on strain-specific regulatory control by ShvR. We propose that ShvR and AFC are important virulence factors of the more virulent Bcc species, either through pro-inflammatory effects of the lipopeptide AFC, or through AFC-dependent membrane properties.
Collapse
Affiliation(s)
| | - Yara Tasrini
- VBMI, INSERM, Université de Montpellier, Nîmes, France
| | - Sujatha Subramoni
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Pamela Sokol
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
60
|
Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten WH. Network Analyses Can Advance Above-Belowground Ecology. TRENDS IN PLANT SCIENCE 2018; 23:759-768. [PMID: 30072227 DOI: 10.1016/j.tplants.2018.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/05/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
An understanding of above-belowground (AG-BG) ecology is important for evaluating how plant interactions with enemies, symbionts, and decomposers affect species diversity and will respond to global changes. However, research questions and experiments often focus on only a limited number of interactions, creating an incomplete picture of how entire communities may be involved in AG-BG community ecology. Therefore, a pressing challenge is to formulate hypotheses of AG-BG interactions when considering communities in their full complexity. Here we discuss how network analyses can be a powerful tool to progress AG-BG research, link across scales from individual to community and ecosystem, visualize community interactions between the two (AG and BG) subsystems, and develop testable hypotheses.
Collapse
Affiliation(s)
- Kelly S Ramirez
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| | - Elly Morriën
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, Department of Ecosystem and Landscape Dynamics (IBED-ELD), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Basten L Snoek
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| |
Collapse
|
61
|
Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and Characterization of Synthetic Bacterial Community for Experimental Ecology and Evolution. Front Genet 2018; 9:312. [PMID: 30154827 PMCID: PMC6102323 DOI: 10.3389/fgene.2018.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
Experimental microbial ecology and evolution have yielded foundational insights into ecological and evolutionary processes using simple microcosm setups and phenotypic assays with one- or two-species model systems. The fields are now increasingly incorporating more complex systems and exploration of the molecular basis of observations. For this purpose, simplified, manageable and well-defined multispecies model systems are required that can be easily investigated using culturing and high-throughput sequencing approaches, bridging the gap between simpler and more complex synthetic or natural systems. Here we address this need by constructing a completely synthetic 33 bacterial strain community that can be cultured in simple laboratory conditions. We provide whole-genome data for all the strains as well as metadata about genomic features and phenotypic traits that allow resolving individual strains by amplicon sequencing and facilitate a variety of envisioned mechanistic studies. We further show that a large proportion of the strains exhibit coexistence in co-culture over serial transfer for 48 days in the absence of any experimental manipulation to maintain diversity. The constructed bacterial community can be a valuable resource in future experimental work.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Roosa Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
62
|
Velez P, Espinosa-Asuar L, Figueroa M, Gasca-Pineda J, Aguirre-von-Wobeser E, Eguiarte LE, Hernandez-Monroy A, Souza V. Nutrient Dependent Cross-Kingdom Interactions: Fungi and Bacteria From an Oligotrophic Desert Oasis. Front Microbiol 2018; 9:1755. [PMID: 30131780 PMCID: PMC6090137 DOI: 10.3389/fmicb.2018.01755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
Microbial interactions play a key role in ecosystem functioning, with nutrient availability as an important determinant. Although phylogenetically distant bacteria and fungi commonly co-occur in nature, information on their cross-kingdom interactions under unstable, extreme environments remains poor. Hence, the aims of this work were to evaluate potential in vitro interactions among fungi and bacteria isolated from a phosphorous oligotrophic aquatic system in the Cuatro Ciénegas Basin, Mexico, and to test the nutrients-based shifts. We assessed growth changes in bacteria (Aeromonas and Vibrio) and fungi (Coprinellus micaceus, Cladosporium sp., and Aspergillus niger) on co-cultures in relation to monocultures under diverse nutrient scenarios on Petri dishes. Interactions were explored using a network analysis, and a metabolome profiling for specific taxa. We identified nutrient-dependent patterns, as beneficial interactions dominated in low-nutrients media and antagonistic interactions dominated in rich media. This suggests that cross-kingdom synergistic interactions might favor microbial colonization and growth under low nutrient conditions, representing an adaptive trait to oligotrophic environments. Moreover, our findings agree with the stress-gradient hypothesis, since microbial interactions shifted from competition to cooperation as environmental stress (expressed as low nutrients) increased. At a functional level consistent differences were detected in the production of secondary metabolites, agreeing with plate bioassays. Our results based on culture experiments, provides evidence to understand the complexity of microbial dynamics and survival in phosphorous-depleted environments.
Collapse
Affiliation(s)
- Patricia Velez
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario Figueroa
- Laboratorio 125-E, Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Gasca-Pineda
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Luis E. Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abril Hernandez-Monroy
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Souza
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
63
|
Abstract
This Mycorrhiza issue groups topical papers based on presentations and discussions at the Mycorrhizal Microbiomes session at 9th International Conference on Mycorrhiza, Prague, Czech Republic, August 2017. The five articles that appear in this special issue advance the field of mycorrhizal microbiomes, not simply by importing ideas from an emerging area, but by using them to inform rich and methodologically grounded research. The aim of this special issue is to explore the interactions between mycorrhizal fungi and surrounding complex environments from a distinct but complementary point of view, highlighting the large spectrum of unknowns that still need to be explored. In this editorial, we first introduce the level of knowledge in this thematic area, then describe major results from the five manuscripts and characterise their importance to mycorrhizal research, and finally discuss the developing topics in this rapidly emerging thematic area.
Collapse
Affiliation(s)
- Mika T Tarkka
- Department of Community Ecology, UFZ- Helmholtz Centre for Environmental Research, 06120, Halle, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| | - Barbara Drigo
- FII, University of South Australia, Mawson Lakes, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Aurelie Deveau
- Interactions Arbres-Microorganismes, INRA, UMR 1136, 54280, Champenoux, France
- Interactions Arbres-Microorganismes, Universite´ de Lorraine, UMR 1136, 54506, Vandoeuvre-lés-Nancy, France
| |
Collapse
|
64
|
Shu L, Zhang B, Queller DC, Strassmann JE. Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts. THE ISME JOURNAL 2018; 12:1977-1993. [PMID: 29795447 PMCID: PMC6052080 DOI: 10.1038/s41396-018-0147-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
65
|
Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME JOURNAL 2018; 12:2307-2321. [PMID: 29899517 DOI: 10.1038/s41396-018-0186-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023]
Abstract
Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.
Collapse
|
66
|
Manirajan BA, Maisinger C, Ratering S, Rusch V, Schwiertz A, Cardinale M, Schnell S. Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiol Ecol 2018; 94:5033679. [DOI: 10.1093/femsec/fiy112] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Binoy Ambika Manirajan
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Corinna Maisinger
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Stefan Ratering
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Volker Rusch
- Institut für Integrative Biologie, Stiftung Old Herborn University, Herborn, Germany
| | - Andreas Schwiertz
- MVZ Institut für Mikroökologie GmbH, D-35745 Herborn, Auf den Lüppen 8, Germany,
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
67
|
Haq IU, Zwahlen RD, Yang P, van Elsas JD. The Response of Paraburkholderia terrae Strains to Two Soil Fungi and the Potential Role of Oxalate. Front Microbiol 2018; 9:989. [PMID: 29896162 PMCID: PMC5986945 DOI: 10.3389/fmicb.2018.00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
Fungal-associated Paraburkholderia terrae strains in soil have been extensively studied, but their sensing strategies to locate fungi in soil have remained largely elusive. In this study, we investigated the behavior of five mycosphere-isolated P. terrae strains [including the type-3 secretion system negative mutant BS001-ΔsctD and the type strain DSM 17804T] with respect to their fungal-sensing strategies. The putative role of oxalic acid as a signaling molecule in the chemotaxis toward soil fungi, as well as a potential carbon source, was assessed. First, all P. terrae strains, including the type strain, were found to sense, and show a chemotactic response toward, the different levels of oxalic acid (0.1, 0.5, and 0.8%) applied at a distance. The chemotactic responses were faster and stronger at lower concentrations (0.1%) than at higher ones. We then tested the chemotactic responses of all strains toward exudates of the soil fungi Lyophyllum sp. strain Karsten and Trichoderma asperellum 302 used in different dilutions (undiluted, 1:10, 1:100 diluted) versus the control. All P. terrae strains showed significant directed chemotactic behavior toward the exudate source, with full-strength exudates inciting the strongest responses. In a separate experiment, strain BS001 was shown to be able to grow on oxalate-amended (0.1 and 0.5%) mineral medium M9. Chemical analyses of the fungal secretomes using proton nuclear magnetic resonance (1H NMR), next to high-performance liquid chromatography (HPLC), indeed revealed the presence of oxalic acid (next to glycerol, acetic acid, formic acid, and fumaric acid) in the supernatants of both fungi. In addition, citric acid was found in the Lyophyllum sp. strain Karsten exudates. Given the fact that, next to oxalic acid, the other compounds can also serve as C and energy sources for P. terrae, the two fungi clearly offer ecological benefits to this bacterium. The oxalic acid released by the two fungi may have primarily acted as a signaling molecule, and, as a "second option," a carbon source for P. terrae strains like BS001.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Microbiology, University of Haripur, Haripur, Pakistan
| | - Reto Daniel Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
68
|
Bahram M, Vanderpool D, Pent M, Hiltunen M, Ryberg M. The genome and microbiome of a dikaryotic fungus (Inocybe terrigena, Inocybaceae) revealed by metagenomics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:155-166. [PMID: 29327481 DOI: 10.1111/1758-2229.12612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Recent advances in molecular methods have increased our understanding of various fungal symbioses. However, little is known about genomic and microbiome features of most uncultured symbiotic fungal clades. Here, we analysed the genome and microbiome of Inocybaceae (Agaricales, Basidiomycota), a largely uncultured ectomycorrhizal clade known to form symbiotic associations with a wide variety of plant species. We used metagenomic sequencing and assembly of dikaryotic fruiting-body tissues from Inocybe terrigena (Fr.) Kuyper, to classify fungal and bacterial genomic sequences, and obtained a nearly complete fungal genome containing 93% of core eukaryotic genes. Comparative genomics reveals that I. terrigena is more similar to ectomycorrhizal and brown rot fungi than to white rot fungi. The reduction in lignin degradation capacity has been independent from and significantly faster than in closely related ectomycorrhizal clades supporting that ectomycorrhizal symbiosis evolved independently in Inocybe. The microbiome of I. terrigena fruiting-bodies includes bacteria with known symbiotic functions in other fungal and non-fungal host environments, suggesting potential symbiotic functions of these bacteria in fungal tissues regardless of habitat conditions. Our study demonstrates the usefulness of direct metagenomics analysis of fruiting-body tissues for characterizing fungal genomes and microbiome.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Organismal Biology, Evolutionary Biology Centre Uppsala University, Norbyvägen 18D, Uppsala, 75236 Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, 51005 Estonia
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Mari Pent
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, 51005 Estonia
| | - Markus Hiltunen
- Department of Organismal Biology, Evolutionary Biology Centre Uppsala University, Norbyvägen 18D, Uppsala, 75236 Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Evolutionary Biology Centre Uppsala University, Norbyvägen 18D, Uppsala, 75236 Sweden
| |
Collapse
|
69
|
Using Cultivated Microbial Communities To Dissect Microbiome Assembly: Challenges, Limitations, and the Path Ahead. mSystems 2018; 3:mSystems00161-17. [PMID: 29629414 PMCID: PMC5881021 DOI: 10.1128/msystems.00161-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
As troves of microbiome sequencing data provide improved resolution of patterns of microbial diversity, new approaches are needed to understand what controls these patterns. Many microbial ecologists are using cultivated model microbial communities to address this challenge. As troves of microbiome sequencing data provide improved resolution of patterns of microbial diversity, new approaches are needed to understand what controls these patterns. Many microbial ecologists are using cultivated model microbial communities to address this challenge. These systems provide opportunities to identify drivers of microbiome assembly, but key challenges and limitations need to be carefully considered in their development, implementation, and interpretation. How well do model microbial communities mimic in vitro communities in terms of taxonomic diversity, trophic levels, intraspecific diversity, and the abiotic environment? What are the best ways to manipulate and measure inputs and outputs in model community experiments? In this perspective, I briefly address some of these challenges on the basis of our experience developing fermented food model communities. Future work integrating genetic and molecular approaches with cultivated model microbial communities will allow microbial ecology to develop a more mechanistic understanding of microbiome diversity.
Collapse
|
70
|
Delgado-Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, Singh BK, Bissett A. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 2018; 99:583-596. [PMID: 29315530 DOI: 10.1002/ecy.2137] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Abstract
The ecological drivers of soil biodiversity in the Southern Hemisphere remain underexplored. Here, in a continental survey comprising 647 sites, across 58 degrees of latitude between tropical Australia and Antarctica, we evaluated the major ecological patterns in soil biodiversity and relative abundance of ecological clusters within a co-occurrence network of soil bacteria, archaea and eukaryotes. Six major ecological clusters (modules) of co-occurring soil taxa were identified. These clusters exhibited strong shifts in their relative abundances with increasing distance from the equator. Temperature was the major environmental driver of the relative abundance of ecological clusters when Australia and Antarctica are analyzed together. Temperature, aridity, soil properties and vegetation types were the major drivers of the relative abundance of different ecological clusters within Australia. Our data supports significant reductions in the diversity of bacteria, archaea and eukaryotes in Antarctica vs. Australia linked to strong reductions in temperature. However, we only detected small latitudinal variations in soil biodiversity within Australia. Different environmental drivers regulate the diversity of soil archaea (temperature and soil carbon), bacteria (aridity, vegetation attributes and pH) and eukaryotes (vegetation type and soil carbon) across Australia. Together, our findings provide new insights into the mechanisms driving soil biodiversity in the Southern Hemisphere.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, 80309, USA.,Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/ Tulipán s/n, Móstoles, 28933, Spain
| | - Frank Reith
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.,Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia, 5064, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Kelly Hamonts
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Andrew Young
- National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, 2601, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, New South Wales, 2751, Australia
| | - Andrew Bissett
- CSIRO, Oceans and Atmosphere, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
71
|
Jung B, Park J, Kim N, Li T, Kim S, Bartley LE, Kim J, Kim I, Kang Y, Yun K, Choi Y, Lee HH, Ji S, Lee KS, Kim BY, Shon JC, Kim WC, Liu KH, Yoon D, Kim S, Seo YS, Lee J. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat Commun 2018; 9:31. [PMID: 29295978 PMCID: PMC5750236 DOI: 10.1038/s41467-017-02430-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.
Collapse
Affiliation(s)
- Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Taiying Li
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Soyeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jinnyun Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Inyoung Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Yoonhee Kang
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kihoon Yun
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Younghae Choi
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Sungyeon Ji
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kwang Sik Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Bo Yeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Won Cheol Kim
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Suhkman Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46269, Korea.
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
72
|
Ghodsalavi B, Svenningsen NB, Hao X, Olsson S, Nicolaisen MH, Al-Soud WA, Sørensen SJ, Nybroe O. A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS One 2017; 12:e0187116. [PMID: 29077733 PMCID: PMC5659649 DOI: 10.1371/journal.pone.0187116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
It is important to identify and recover bacteria associating with fungi under natural soil conditions to enable eco-physiological studies, and to facilitate the use of bacterial-fungal consortia in environmental biotechnology. We have developed a novel type of baiting microcosm, where fungal hyphae interact with bacteria under close-to-natural soil conditions; an advantage compared to model systems that determine fungal influences on bacterial communities in laboratory media. In the current approach, the hyphae are placed on a solid support, which enables the recovery of hyphae with associated bacteria in contrast to model systems that compare bulk soil and mycosphere soil. We used the baiting microcosm approach to determine, for the first time, the composition of the bacterial community associating in the soil with hyphae of the phosphate-solubilizer, Penicillium bilaii. By applying a cultivation-independent 16S rRNA gene-targeted amplicon sequencing approach, we found a hypha-associated bacterial community with low diversity compared to the bulk soil community and exhibiting massive dominance of Burkholderia OTUs. Burkholderia is known be abundant in soil environments affected by fungi, but the discovery of this massive dominance among bacteria firmly associating with hyphae in soil is novel and made possible by the current bait approach.
Collapse
Affiliation(s)
- Behnoushsadat Ghodsalavi
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Nanna Bygvraa Svenningsen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Xiuli Hao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Stefan Olsson
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
73
|
Yang P, Zhang M, van Elsas JD. Role of flagella and type four pili in the co-migration of Burkholderia terrae BS001 with fungal hyphae through soil. Sci Rep 2017; 7:2997. [PMID: 28592860 PMCID: PMC5462819 DOI: 10.1038/s41598-017-02959-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/21/2017] [Indexed: 12/25/2022] Open
Abstract
Burkholderia terrae BS001 has previously been found to be able to disperse along with growing fungal hyphae in soil, with the type-3 secretion system having a supportive role in this movement. In this study, we focus on the role of two motility- and adherence-associated appendages, i.e. type-4 pili (T4P) and flagella. Electron microcopy and motility testing revealed that strain BS001 produces polar flagella and can swim on semi-solid R2A agar. Flagellum- and T4P-negative mutants were then constructed to examine the ecological roles of the respective systems. Both in liquid media and on swimming agar, the mutant strains showed similar fitness to the wild-type strain in mixed culture. The flagellar mutant had completely lost its flagella, as well as its swimming capacity. It also lost its co-migration ability with two soil-exploring fungi, Lyophyllum sp. strain Karsten and Trichoderma asperellum 302, in soil microcosms. In contrast, the T4P mutant showed reduced surface twitching motility, whereas its co-migration ability in competition with the wild-type strain was slightly reduced. We conclude that the co-migration of strain BS001 with fungal hyphae through soil is dependent on the presence of functional flagella conferring swimming motility, with the T4P system having a minor effect.
Collapse
Affiliation(s)
- Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Miaozhi Zhang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
74
|
de Boer W. Upscaling of fungal-bacterial interactions: from the lab to the field. Curr Opin Microbiol 2017; 37:35-41. [PMID: 28437664 DOI: 10.1016/j.mib.2017.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Fungal-bacterial interactions (FBI) are an integral component of microbial community networks in terrestrial ecosystems. During the last decade, the attention for FBI has increased tremendously. For a wide variety of FBI, information has become available on the mechanisms and functional responses. Yet, most studies have focused on pairwise interactions under controlled conditions. The question to what extent such studies are relevant to assess the importance of FBI for functioning of natural microbial communities in real ecosystems remains largely unanswered. Here, the information obtained by studying a type of FBI, namely antagonistic interactions between bacteria and plant pathogenic fungi, is discussed for different levels of community complexity. Based on this, general recommendations are given to integrate pairwise and ecosystem FBI studies. This approach could lead to the development of novel strategies to steer terrestrial ecosystem functioning.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Department of Soil Quality, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
75
|
Lightly TJ, Phung RR, Sorensen JL, Cardona ST. Synthetic cystic fibrosis sputum medium diminishes Burkholderia cenocepacia antifungal activity against Aspergillus fumigatus independently of phenylacetic acid production. Can J Microbiol 2017; 63:427-438. [PMID: 28178425 DOI: 10.1139/cjm-2016-0705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenylacetic acid (PAA), an intermediate of phenylalanine degradation, is emerging as a signal molecule in microbial interactions with the host. In this work, we explore the presence of phenylalanine and PAA catabolism in 3 microbial pathogens of the cystic fibrosis (CF) lung microbiome: Pseudomonas aeruginosa, Burkholderia cenocepacia, and Aspergillus fumigatus. While in silico analysis of B. cenocepacia J2315 and A. fumigatus Af293 genome sequences showed complete pathways from phenylalanine to PAA, the P. aeruginosa PAO1 genome lacked several coding genes for phenylalanine and PAA catabolic enzymes. High-performance liquid chromatography analysis of supernatants from B. cenocepacia K56-2 detected PAA when grown in Luria-Bertani medium but not in synthetic cystic fibrosis sputum medium (SCFM). However, we were unable to identify PAA production by A. fumigatus or P. aeruginosa in any of the conditions tested. The inhibitory effect of B. cenocepacia on A. fumigatus growth was evaluated using agar plate interaction assays. Inhibition of fungal growth by B. cenocepacia was lessened in SCFM but this effect was not dependent on bacterial production of PAA. In summary, while we demonstrated PAA production by B. cenocepacia, we were not able to link this metabolite with the B. cenocepacia - A. fumigatus microbial interaction in CF nutritional conditions.
Collapse
Affiliation(s)
- Tasia Joy Lightly
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ryan R Phung
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - John L Sorensen
- b Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Silvia T Cardona
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,c Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
76
|
Haq IU, Dini-Andreote F, van Elsas JD. Transcriptional Responses of the Bacterium Burkholderia terrae BS001 to the Fungal Host Lyophyllum sp. Strain Karsten under Soil-Mimicking Conditions. MICROBIAL ECOLOGY 2017; 73:236-252. [PMID: 27844108 PMCID: PMC5209427 DOI: 10.1007/s00248-016-0885-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/24/2016] [Indexed: 05/05/2023]
Abstract
In this study, the mycosphere isolate Burkholderia terrae BS001 was confronted with the soil fungus Lyophyllum sp. strain Karsten on soil extract agar plates in order to examine its transcriptional responses over time. At the initial stages of the experiment (T1-day 3; T2-day 5), contact between both partner organisms was absent, whereas in the final stage (T3-day 8), the two populations made intimate physical contact. Overall, a strong modulation of the strain BS001 gene expression patterns was found. First, the stationary-phase sigma factor RpoS, and numerous genes under its control, were strongly expressed as a response to the soil extract agar, and this extended over the whole temporal regime. In the system, B. terrae BS001 apparently perceived the presence of the fungal hyphae already at the early experimental stages (T1, T2), by strongly upregulating a suite of chemotaxis and flagellar motility genes. With respect to specific metabolism and energy generation, a picture of differential involvement in different metabolic routes was obtained. Initial (T1, T2) up- or downregulation of ethanolamine and mandelate uptake and utilization pathways was substituted by a strong investment, in the presence of the fungus, in the expression of putative metabolic gene clusters (T3). Specifically at T3, five clustered genes that are potentially involved in energy generation coupled to an oxidative stress response, and two genes encoding short-chain dehydrogenases/oxidoreductases (SDR), were highly upregulated. In contrast, the dnaE2 gene (related to general stress response; encoding error-prone DNA polymerase) was transcriptionally downregulated at this stage. This study revealed that B. terrae BS001, from a stress-induced state, resulting from the soil extract agar milieu, responds positively to fungal hyphae that encroach upon it, in a temporally dynamic manner. The response is characterized by phases in which the modulation of (1) chemotaxis, (2) metabolic activity, and (3) oxidative stress responses are key mechanisms.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Microbial Ecology Group, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Francisco Dini-Andreote
- Microbial Ecology Group, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology Group, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
77
|
Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, Daniel R, Schäfer W, Streit WR. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum. Front Microbiol 2016; 7:1668. [PMID: 27833590 PMCID: PMC5080296 DOI: 10.3389/fmicb.2016.01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen.
Collapse
Affiliation(s)
- Frederike S Haack
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Germany
| | - Cathrin Kröger
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Christian A Voigt
- Department of Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Meike Piepenbring
- Department of Mycology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt Frankfurt am Main, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| |
Collapse
|
78
|
Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol 2016; 93:fiw217. [PMID: 27797964 DOI: 10.1093/femsec/fiw217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
Soils are complex ecosystems in which fungi and bacteria co-exist and interact. Fungal highways are a kind of interaction by which bacteria use fungal hyphae to disperse in soils. Despite the fact that fungal highways have been studied in laboratory models, the diversity of fungi and bacteria interacting in this way in soils is still unknown. Fungal highway columns containing two different culture media were used as a selective method to study the identity of fungi and bacteria able to migrate along the hyphae in three forest soils. Regardless of the soil type, fungi of the genus Mortierella (phylum Zygomycota) were selected inside the columns. In contrast, a diverse community of bacteria dominated by Firmicutes and Proteobacteria was observed. The results confirm the importance of bacteria affiliated to Burkholderia as potentially associated migrating bacteria in soils and indicate that other groups such as Bacillus and Clostridium are also highly enriched in the co-colonization of a new habitat (columns) associated to Mortierella. The diversity of potentially associated migrating bacteria brings a novel perspective on the indirect metabolic capabilities that could be favored by r-strategist fungi and supports the fact that these fungi should be considered as crucial actors in soil functioning.
Collapse
Affiliation(s)
- Anaele Simon
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Biogeosciences laboratory, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andrej Al-Dourobi
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Eric Verrecchia
- Biogeosciences laboratory, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
79
|
Abstract
Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative Staphylococcus (CNS) species, we demonstrate that fungi can mediate the ecological distributions of closely related bacterial species. One of the Staphylococcus species studied, S. saprophyticus, is a common cause of urinary tract infections. By identifying processes that control the abundance of undesirable CNS species, cheese producers will have more precise control on the safety and quality of their products. More generally, Staphylococcus species frequently co-occur with fungi in mammalian microbiomes, and similar bacterium-fungus interactions may structure bacterial diversity in these systems.
Collapse
|
80
|
Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 2016; 92:fiw179. [PMID: 27559028 DOI: 10.1093/femsec/fiw179] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research.
Collapse
Affiliation(s)
- Sarah R Johnston
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
81
|
Schulz-Bohm K, Tyc O, de Boer W, Peereboom N, Debets F, Zaagman N, Janssens TKS, Garbeva P. Fungus-associated bacteriome in charge of their host behavior. Fungal Genet Biol 2016; 102:38-48. [PMID: 27486066 DOI: 10.1016/j.fgb.2016.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
Bacterial-fungal interactions are widespread in nature and there is a growing number of studies reporting distinct fungus-associated bacteria. However, little is known so far about how shifts in the fungus-associated bacteriome will affect the fungal host's lifestyle. In the present study, we describe for the first time the bacterial community associated with the saprotrophic fungus Mucor hiemalis, commonly found in soil and rhizosphere. Two broad-spectrum antibiotics that strongly altered the bacterial community associated with the fungus were applied. Our results revealed that the antibiotic treatment did not significantly reduce the amount of bacteria associated to the fungus but rather changed the community composition by shifting from initially dominating Alpha-Proteobacteria to dominance of Gamma-Proteobacteria. A novel approach was applied for the isolation of fungal-associated bacteria which also revealed differences between bacterial isolates obtained from the original and the antibiotic-treated M. hiemalis. The shift in the composition of the fungal-associated bacterial community led to significantly reduced fungal growth, changes in fungal morphology, behavior and secondary-metabolites production. Furthermore, our results showed that the antibiotic-treated isolate was more attractive and susceptible to mycophagous bacteria as compared to the original isolate. Overall, our study highlights the importance of the fungus-associated bacteriome for the host's lifestyle and interactions and indicate that isolation with antibacterials is not sufficient to eradicate the associated bacteria.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Department of Soil Quality, Wageningen University & Research Centre (WUR), PO Box 47, 6700 AA Wageningen, Netherlands
| | - Olaf Tyc
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Department of Soil Quality, Wageningen University & Research Centre (WUR), PO Box 47, 6700 AA Wageningen, Netherlands
| | - Wietse de Boer
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Department of Soil Quality, Wageningen University & Research Centre (WUR), PO Box 47, 6700 AA Wageningen, Netherlands
| | - Nils Peereboom
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Laboratory of Genetics, Wageningen University & Research Centre (WUR), PO Box 16, 6700 AA Wageningen, Netherlands
| | - Fons Debets
- Laboratory of Genetics, Wageningen University & Research Centre (WUR), PO Box 16, 6700 AA Wageningen, Netherlands
| | - Niels Zaagman
- MicroLife Solutions b.v., Science Park 406, 1098 XH Amsterdam, Netherlands
| | | | - Paolina Garbeva
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands.
| |
Collapse
|
82
|
Halsey JA, de Cássia Pereira E Silva M, Andreote FD. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms. Antonie van Leeuwenhoek 2016; 109:1353-65. [PMID: 27411813 DOI: 10.1007/s10482-016-0734-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.
Collapse
Affiliation(s)
- Joshua Andrew Halsey
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11, Piracicaba, SP, CEP 13418-900, Brazil
| | - Michele de Cássia Pereira E Silva
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11, Piracicaba, SP, CEP 13418-900, Brazil.
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11, Piracicaba, SP, CEP 13418-900, Brazil
| |
Collapse
|
83
|
Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol 2016; 7:877. [PMID: 27375597 PMCID: PMC4896955 DOI: 10.3389/fmicb.2016.00877] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/14/2022] Open
Abstract
Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG 68415T). Furthermore, we present emended descriptions of the species Burkholderia sordidicola, Burkholderia zhejiangensis and Burkholderia grimmiae. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and LT158625-LT158641, respectively.
Collapse
Affiliation(s)
- Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH Braunschweig, Germany
| | - Bart Verheyde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Evie De Brandt
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium
| |
Collapse
|
84
|
Abstract
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
85
|
Ballhausen MB, van Veen JA, Hundscheid MPJ, de Boer W. Methods for Baiting and Enriching Fungus-Feeding (Mycophagous) Rhizosphere Bacteria. Front Microbiol 2015; 6:1416. [PMID: 26733962 PMCID: PMC4687392 DOI: 10.3389/fmicb.2015.01416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/27/2015] [Indexed: 01/01/2023] Open
Abstract
Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires targeted isolation methods. In this study, we compared two different approaches to obtain mycophagous bacteria from rhizospheric soil. A short-term method based on baiting for bacteria that can rapidly adhere to fungal hyphae and a long-term method based on the enrichment of bacteria on fungal hyphae via repeated transfer. Hyphae-adhering bacteria were isolated, identified by 16S rDNA sequencing and tested for antifungal activity and the ability to feed on fungi as the sole source of carbon. Both methods yielded a range of potentially mycophagous bacterial isolates with little phylogenetic overlap. We also found indications for feeding preferences among the potentially mycophagous bacteria. Our results indicate that mycophagy could be an important growth strategy for rhizosphere bacteria. To our surprise, we found several potential plant pathogenic bacteria among the mycophagous isolates. We discuss the possible benefits that these bacteria might gain from colonizing fungal hyphae.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Plant Health, Institute for Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Johannes A. van Veen
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Soil Quality, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|