51
|
Suzuki R, Saitou N, Matsuari O, Shiota S, Matsumoto T, Akada J, Kinjo N, Kinjo F, Teruya K, Shimoji M, Shiroma A, Kato M, Satou K, Hirano T, Asaka M, Kryukov K, Moodley Y, Yamaoka Y. Helicobacter pylori genomes reveal Paleolithic human migration to the east end of Asia. iScience 2022; 25:104477. [PMID: 35720267 PMCID: PMC9204748 DOI: 10.1016/j.isci.2022.104477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
A virulence bacterium, Helicobacter pylori, evolved parallel to its host human, therefore, can work as a marker for tracing the human migration. We found H. pylori strains indigenous in the southernmost islands of Japanese Archipelago, Okinawa, and defined them as hspOkinawa and hpRyukyu. Genome data of the strains revealed that hspOkinawa diverged from other East Asian strains about 20,000 years ago, and that hpRyukyu diverged about 45,000 years ago. The closest strains of hpRyukyu were found from Afghanistan, Punjab, and Nepal, which suggest this strain originated in the central Asia and traveled across the Eurasian continent during Paleolithic era. The divergence date of hpRyukyu corresponds with human fossil records in Okinawa. Although it is controversial from human DNA analyses whether descendants of the Paleolithic migrants remain in the modern Japanese population, this study reveals that the bacterium of Paleolithic origin remains in the stomachs of current Japanese.
Collapse
Affiliation(s)
- Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita Prefecture 879-5593, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | - Osamu Matsuari
- Department of Gastroenterology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Japan
| | - Seiji Shiota
- Department of General Medicine, OIta University Faculty of Medicine, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita Prefecture 879-5593, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita Prefecture 879-5593, Japan
| | | | - Fukunori Kinjo
- Center for Gastroenterology, Urasoe General Hospital, Urasoe 901-2132, Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma 904-2234, Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma 904-2234, Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma 904-2234, Japan
| | - Mototsugu Kato
- Hakodate National Hospital, 18-16 Kawahara, Hakodate 041-8512, Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma 904-2234, Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma 904-2234, Japan
| | - Masahiro Asaka
- Health Sciences University of Hokkaido, Ishikari-gun 061-0293, Japan
| | - Kirill Kryukov
- Population Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | - Yoshan Moodley
- Department of Zoology, University of Venda, 2002 University Road, Thohoyandou 0950, Republic of South Africa
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita Prefecture 879-5593, Japan
- Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. Debakey Veterans Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
52
|
Zeng X, Xiong L, Wang W, Zhao Y, Xie Y, Wang Q, Zhang Q, Li L, Jia C, Liao Y, Zhou J. Whole-genome sequencing and comparative analysis of Helicobacter pylori GZ7 strain isolated from China. Folia Microbiol (Praha) 2022; 67:923-934. [PMID: 35829852 DOI: 10.1007/s12223-022-00989-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/01/2022] [Indexed: 11/04/2022]
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative pathogen as a carcinogen of the class Ι, with unique genetic diversity and wide geographic differences. The high incidence of gastric cancer in East Asia may be related to the bacterial genotype. It is of great significance that the genome of H. pylori in East Asia is widely collected. Therefore, we combined two sequencing technologies (PacBio and Illumina HiSeq 4000) and multiple databases to sequence and annotate the whole genome of H. pylori GZ7 isolated from a gastric cancer patient in Guizhou, China. Furthermore, this sequence was further compared with the genome sequence of 23 H. pylori strains isolated from different regions through collinearity comparison, specific gene analysis, phylogenetic tree construction, etc. The results showed that the genome of H. pylori GZ7 consists of 1,579,995 bp circle chromosomes with a GC content of 39.51%. This chromosome has 1,572 coding sequences, three antibiotic resistance genes, five prophages, and 198 virulence genes. The comparative genome analyses showed that H. pylori GZ7 has 53 specific genes compared to the other 23 strains. Most of these specific genes have not been annotated and characterized until now, whose research may provide insights into the biological activities of this strain. H. pylori GZ7 has the closest genetic relationship with H. pylori F30, and the farthest genetic relationship with H. pylori ELS37, which indicates that H. pylori genomes have geographical differences. This information may provide a molecular basis and guidance for constructing diagnostic methods for H. pylori and researching subsequent experiments.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Lin Xiong
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Fenghuang Road 98, Zunyi, 563099, China
| | - Wenling Wang
- GuiZhou Cancer Hospital, Beijing Road 9, Guiyang, 550004, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Leilei Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Cencen Jia
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Yonghui Liao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China.
| |
Collapse
|
53
|
A Survey of Helicobacter pylori Antibiotic-Resistant Genotypes and Strain Lineages by Whole-Genome Sequencing in China. Antimicrob Agents Chemother 2022; 66:e0218821. [PMID: 35652644 PMCID: PMC9211431 DOI: 10.1128/aac.02188-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is the most important factor leading to failed Helicobacter pylori eradication therapy, and personalized treatment based on antibiotic susceptibility is becoming increasingly important. To strengthen the understanding of antibiotic genotypic resistance of H. pylori and identify new antibiotic resistance loci, in this study, we identified phenotypic resistance information for 60 clinical isolates and compared the concordance of phenotypic and genotypic resistance using whole-genome sequencing (WGS). Clarithromycin and levofloxacin genotypic resistance was in almost perfect concordance with phenotypic resistance, with kappa coefficients of 0.867 and 0.833, respectively. All strains with the R16H/C mutation and truncation in rdxA were metronidazole resistant, with 100% specificity. For other genes of concern, at least one phenotypically sensitive strain had a previous mutation related to antibiotic resistance. Moreover, we found that the A1378G mutation of HP0399 and the A149G mutation of FabH might contribute to tetracycline resistance and multidrug resistance, respectively. Overall, the inference of resistance to clarithromycin and levofloxacin from genotypic resistance is reliable, and WGS has been very helpful in discovering novel H. pylori resistance loci. In addition, WGS has also enhanced our study of strain lineages, providing new ways to understand resistance information and mechanisms.
Collapse
|
54
|
Sequential eradication of Helicobacter pylori as a treatment for immune thrombocytopenia in patients with moderate thrombocytopenia: a multicenter prospective randomized phase 3 study. Ann Hematol 2022; 101:1435-1445. [DOI: 10.1007/s00277-022-04782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 02/01/2022] [Indexed: 11/01/2022]
|
55
|
Smith BJ, Li X, Shi ZJ, Abate A, Pollard KS. Scalable Microbial Strain Inference in Metagenomic Data Using StrainFacts. FRONTIERS IN BIOINFORMATICS 2022; 2:867386. [PMID: 36304283 PMCID: PMC9580935 DOI: 10.3389/fbinf.2022.867386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
While genome databases are nearing a complete catalog of species commonly inhabiting the human gut, their representation of intraspecific diversity is lacking for all but the most abundant and frequently studied taxa. Statistical deconvolution of allele frequencies from shotgun metagenomic data into strain genotypes and relative abundances is a promising approach, but existing methods are limited by computational scalability. Here we introduce StrainFacts, a method for strain deconvolution that enables inference across tens of thousands of metagenomes. We harness a “fuzzy” genotype approximation that makes the underlying graphical model fully differentiable, unlike existing methods. This allows parameter estimates to be optimized with gradient-based methods, speeding up model fitting by two orders of magnitude. A GPU implementation provides additional scalability. Extensive simulations show that StrainFacts can perform strain inference on thousands of metagenomes and has comparable accuracy to more computationally intensive tools. We further validate our strain inferences using single-cell genomic sequencing from a human stool sample. Applying StrainFacts to a collection of more than 10,000 publicly available human stool metagenomes, we quantify patterns of strain diversity, biogeography, and linkage-disequilibrium that agree with and expand on what is known based on existing reference genomes. StrainFacts paves the way for large-scale biogeography and population genetic studies of microbiomes using metagenomic data.
Collapse
Affiliation(s)
- Byron J. Smith
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Zhou Jason Shi
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, United States
- Chan-Zuckerberg Biohub, San Francisco, CA, United States
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Chan-Zuckerberg Biohub, San Francisco, CA, United States
| | - Katherine S. Pollard
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
- Chan-Zuckerberg Biohub, San Francisco, CA, United States
- *Correspondence: Katherine S. Pollard,
| |
Collapse
|
56
|
Nath AN, Retnakumar RJ, Francis A, Chhetri P, Thapa N, Chattopadhyay S. Peptic Ulcer and Gastric Cancer: Is It All in the Complex Host-Microbiome Interplay That Is Encoded in the Genomes of "Us" and "Them"? Front Microbiol 2022; 13:835313. [PMID: 35547123 PMCID: PMC9083406 DOI: 10.3389/fmicb.2022.835313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is increasingly being recognized that severe gastroduodenal diseases such as peptic ulcer and gastric cancer are not just the outcomes of Helicobacter pylori infection in the stomach. Rather, both diseases develop and progress due to the perfect storms created by a combination of multiple factors such as the expression of different H. pylori virulence proteins, consequent human immune responses, and dysbiosis in gastrointestinal microbiomes. In this mini review, we have discussed how the genomes of H. pylori and other gastrointestinal microbes as well as the genomes of different human populations encode complex and variable virulome–immunome interplay, which influences gastroduodenal health. The heterogeneities that are encrypted in the genomes of different human populations and in the genomes of their respective resident microbes partly explain the inconsistencies in clinical outcomes among the H. pylori-infected people.
Collapse
Affiliation(s)
- Angitha N Nath
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - R J Retnakumar
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Prakash Chhetri
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | | |
Collapse
|
57
|
Jaramillo-Trujillo G, Otero-Regino WA, Estrada-Orozco KP. Efectividad y seguridad del uso de probióticos como adyuvantes en la erradicación de Helicobacter pylori. Revisión sistemática y metaanálisis. REVISTA DE LA FACULTAD DE MEDICINA 2022; 71:e98018. [DOI: 10.15446/revfacmed.v71n2.98018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Introducción. Se ha propuesto agregar probióticos a las terapias triples y cuádruples para mejorar su efectividad en la curación de Helicobacter pylori, pero existe controversia sobre su utilidad.
Objetivo. Evaluar la efectividad y seguridad del uso adyuvante de probióticos en la terapia triple o cuádruple para la curación de H. pylori en adultos.
Materiales y métodos. Revisión sistemática y metanálisis. Se realizó una búsqueda en Embase, Ovid Medline, Cochrane Library y LILACS de ensayos clínicos aleatorizados (ECA) publicados en inglés o español entre enero de 2010 y mayo de 2020 que evalúan la efectividad y seguridad de usar probióticos como terapia coadyuvante en combinación con la terapia triple o cuádruple en la curación de H. pylori en adultos. En el metanálisis se utilizó un modelo de efectos fijos para calcular la medida combinada (OR y RR) de efectividad y seguridad de los probióticos coadyuvantes en terapia triple y cuádruple.
Resultados: Se incluyeron 12 ECA (1091 pacientes en total): 9 evaluaron terapia triple; 2, terapia cuádruple, y 1, terapia triple y cuádruple. En la terapia triple el uso coadyuvante de probióticos fue más efectivo que el uso de placebo: 79.4% vs. 71.1% (OR=1.42; IC95%:1.05-2.09), pero en la terapia cuádruple, su uso no aumentó la efectividad. El probiótico más utilizado fue Lactobacillus reuteri, con una tasa de curación de 77.9% (IC95%:70.5-84.19) versus 66.8% (IC95%:58.8–74.2) del placebo. Los probióticos disminuyeron la ocurrencia de efectos adversos tanto en terapia triple (OR=0.50; IC95%:0.28-0.90) como en cuádruple (OR=0.26; IC95%:0.09-0.74).
Conclusiones. El uso coadyuvante de probióticos mejora la efectividad de la terapia triple para erradicar H. Pylori en un 8.5%, pero la efectividad final es <90%. Además, su uso no aumenta la efectividad de la terapia cuádruple. No obstante, el uso de estos microorganismos disminuye los efectos adversos de estas terapias.
Materiales y métodos: Se analizaron los ensayos clínicos aleatorizados (ECA) que evaluaron los efectos de los probióticos en la erradicación de H. Pylori. Se siguieron las recomendaciones del Manual Cochrane y la declaración Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA). Se evaluaron los riesgos de sesgo y la calidad general de la evidencia se evaluó mediante el enfoque Grades of Recommendations Assessment, Development, and Evaluation (GRADE). Resultados: Se identificaron 12 ECA que incluyeron 1091 pacientes. Nueve evaluaron terapia triple, dos terapia cuádruple y uno terapia triple y cuádruple. En las terapias triples los probióticos fueron más efectivos que placebo 79.4% vs 71.1%, (OR=1.42; IC95%=1.05-2.09; I2=0%). En cuádruple no aumentaron la efectividad. El probiótico más utilizado fue Lactobacillus reuteri, con éxito en erradicación de 77.9% (CI95%= 70.5-84.19) versus 66.8% (IC95%= 58.8–74.2). Los probióticos disminuyeron efectos adversos en terapias triples (OR= 0.50; IC95%= 0.28-0.90; I2=0%) y cuádruples (OR= 0.26; IC95%= 0.09-0.74; I2=0%). Conclusión: Los probióticos mejoran en 8.5% la efectividad de las terapias triple, pero el éxito final en alcanzar la erradicación de H. Pylori sigue siendo pobre (<90%). No aumenta la efectividad de terapias cuádruples. Significativamente disminuyen efectos adversos.
Collapse
|
58
|
Merrill BD, Carter MM, Olm MR, Dahan D, Tripathi S, Spencer SP, Yu B, Jain S, Neff N, Jha AR, Sonnenburg ED, Sonnenburg JL. Ultra-deep Sequencing of Hadza Hunter-Gatherers Recovers Vanishing Microbes.. [PMID: 36238714 PMCID: PMC9558438 DOI: 10.1101/2022.03.30.486478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gut microbiome is a key modulator of immune and metabolic health. Human microbiome data is biased towards industrialized populations, providing limited understanding of the distinct and diverse non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing and strain cultivation on 351 fecal samples from the Hadza, hunter-gatherers in Tanzania, and comparative populations in Nepal and California. We recover 94,971 total genomes of bacteria, archaea, bacteriophages, and eukaryotes, 43% of which are absent from existing unified datasets. Analysis of in situ growth rates, genetic pN/pS signatures, high-resolution strain tracking, and 124 gut-resident species vanishing in industrialized populations reveals differentiating dynamics of the Hadza gut microbiome. Industrialized gut microbes are enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource that expands our understanding of microbes capable of colonizing the human gut and clarifies the extensive perturbation brought on by the industrialized lifestyle.
Collapse
|
59
|
Abstract
Healthy development and function of essentially all physiological systems and organs, including the brain, require exposure to the microbiota of our mothers and of the natural environment, especially in early life. We also know that some infections, if we survive them, modulate the immune system in relevant ways. If we study the evolution of the immune and metabolic systems, we can understand how these requirements developed and the nature of the organisms that we need to encounter. We can then begin to identify the mechanisms of the beneficial effects of these exposures. Against this evolutionary background, we can analyze the ways in which the modern urban lifestyle, particularly for individuals experiencing low socioeconomic status (SES), results in deficient or distorted microbial exposures and microbiomes. Thus, an evolutionary approach facilitates the identification of practical solutions to the growing scandal of health disparities linked to inequality.
Collapse
|
60
|
Tegtmeyer N, Linz B, Yamaoka Y, Backert S. Unique TLR9 Activation by Helicobacter pylori Depends on the cag T4SS, But Not on VirD2 Relaxases or VirD4 Coupling Proteins. Curr Microbiol 2022; 79:121. [PMID: 35239059 PMCID: PMC8894178 DOI: 10.1007/s00284-022-02813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
The genomes of the gastric bacterial pathogen Helicobacter pylori harbor multiple type-IV secretion systems (T4SSs). Here we analyzed components of three T4SSs, the cytotoxin-associated genes (cag) T4SS, TFS3 and TFS4. The cag T4SS delivers the effector protein CagA and the LPS-metabolite ADP-heptose into gastric epithelial cells, which plays a pivotal role in chronic infection and development of gastric disease. In addition, the cag T4SS was reported to facilitate conjugative transport of chromosomal bacterial DNA into the host cell cytoplasm, where injected DNA activates intracellular toll-like receptor 9 (TLR9) and triggers anti-inflammatory signaling. Canonical DNA-delivering T4SSs in a variety of bacteria are composed of 11 VirB proteins (VirB1-11) which assemble and engage VirD2 relaxase and VirD4 coupling proteins that mediate DNA processing and guiding of the covalently bound DNA through the T4SS channel. Nevertheless, the role of the latter components in H. pylori is unclear. Here, we utilized isogenic knockout mutants of various virB (virB9 and virB10, corresponding to cagX and cagY), virD2 (rlx1 and rlx2), virD4 (cag5, traG1/2) and xerD recombinase genes in H. pylori laboratory strain P12 and studied their role in TLR9 activation by reporter assays. While inactivation of the structural cag T4SS genes cagX and cagY abolished TLR9 activation, the deletion of rlx1, rlx2, cag5, traG or xerD genes had no effect. The latter mutants activated TLR9 similar to wild-type bacteria, suggesting the presence of a unique non-canonical T4SS-dependent mechanism of TLR9 stimulation by H. pylori that is not mediated by VirD2, VirD4 and XerD proteins. These findings were confirmed by the analysis of TLR9 activation by H. pylori strains of worldwide origin that possess different sets of T4SS genes. The exact mechanism of TLR9 activation should be explored in future studies.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Chair of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Chair of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Steffen Backert
- Department of Biology, Chair of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
61
|
Yang CJ, Hu JM. Molecular phylogeny of Asian Ardisia (Myrsinoideae, Primulaceae) and their leaf-nodulated endosymbionts, Burkholderia s.l. (Burkholderiaceae). PLoS One 2022; 17:e0261188. [PMID: 35045070 PMCID: PMC8769342 DOI: 10.1371/journal.pone.0261188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Ardisia (Myrsinoideae, Primulaceae) has 16 subgenera and over 700 accepted names, mainly distributed in tropical Asia and America. The circumscription of Ardisia is not well-defined and sometimes confounded with the separation of some small genera. A taxonomic revision focusing on Ardisia and allies is necessary. In the Ardisia subgenus Crispardisia, symbiotic association with leaf-nodule bacteria is a unique character within the genus. The endosymbionts are vertically transmitted, highly specific and highly dependent on the hosts, suggesting strict cospeciation may have occurred in the evolutionary history. In the present study, we aimed to establish a phylogenetic framework for further taxonomic revision. We also aimed to test the cospeciation hypothesis of the leaf-nodulate Ardisia and their endosymbiotic bacteria. Nuclear ITS and two chloroplast intergenic spaces were used to reconstruct the phylogeny of Asian Ardisia and relatives in Myrsinoideae, Primulaceae. The 16S-23S rRNA were used to reconstruct the bacterial symbionts' phylogeny. To understand the evolutionary association of the Ardisia and symbionts, topology tests and cophylogenetic analyses were conducted. The molecular phylogeny suggested Ardisia is not monophyletic, unless Sardiria, Hymenandra, Badula and Oncostemum are included. The results suggest the generic limit within Myrsinoideae (Primulaceae) needs to be further revised. The subgenera Crispardisia, Pimelandra, and Stylardisia were supported as monophyly, while the subgenus Bladhia was separated into two distant clades. We proposed to divide the subgenus Bladhia into subgenus Bladhia s.str. and subgenus Odontophylla. Both of the cophylogenetic analyses and topology tests rejected strict cospeciation hypothesis between Ardisia hosts and symbiotic Burkholderia. Cophylogenetic analyses showed general phylogenetic concordance of Ardisia and Burkholderia, and cospeciation events, host-switching events and loss events were all inferred.
Collapse
Affiliation(s)
- Chen-Jui Yang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
62
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
63
|
Kathi PR, Babaria R, Banerjee B. Impact of helicobacter pylori on human physiology and digestive disorders. NUTRITION AND FUNCTIONAL FOODS IN BOOSTING DIGESTION, METABOLISM AND IMMUNE HEALTH 2022:193-205. [DOI: 10.1016/b978-0-12-821232-5.00021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
64
|
Sonnenberg A. Epidemiology of Helicobacter pylori. Aliment Pharmacol Ther 2022; 55 Suppl 1:S1-S13. [PMID: 34989430 DOI: 10.1111/apt.16592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
In many countries alike, the time trends of gastric cancer, gastric and duodenal ulcer, ulcerative colitis, Crohn's disease, and colorectal cancer are characterized by similar birth-cohort patterns. Mortality from these diagnoses rose in cohorts born during the 19th century and then fell in subsequent cohorts born during the 20th century.
Collapse
Affiliation(s)
- Amnon Sonnenberg
- Portland VA Medical Center, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
65
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
66
|
Avalueva EB, Serkova MY, Sitkin SI. <i>Helicobacter pylori</i>. The survival strategy of a commensal symbiont in the <i>Homo sapiens</i> population. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:102-108. [DOI: 10.31146/1682-8658-ecg-193-9-102-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Несмотря на крайне высокую степень инфицированности Helicobacter pylori в популяции Homo sapiens, подавляющее большинство инфицированных являются бессимптомными носителями. Широкое распространение инфекции H. pylori среди лиц без признаков патологии и низкая заболеваемость при хронической колонизации слизистой оболочки желудка указывают на то, что H. pylori с большей вероятностью является условно-патогенным микроорганизмом или патобионтом. Популяционная ликвидация инфекции H. pylori существенно снизила заболеваемость инфекцией H. pylori, однако появление устойчивости к противомикробным препаратам привело к их неэффективности.
Collapse
Affiliation(s)
- E. B. Avalueva
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - M. Yu. Serkova
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation; Almazov National Medical Research Centre
| |
Collapse
|
67
|
Madala S, MacDougall K, Surapaneni BK, Park R, Girotra M, Kasi A. Coinfection of Helicobacter pylori and Hepatitis C Virus in the Development of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. J Clin Med Res 2021; 13:530-540. [PMID: 35059071 PMCID: PMC8734513 DOI: 10.14740/jocmr4637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The relationship between Helicobacter pylori (H. pylori) and hepatocellular carcinoma (HCC) was firstly proposed in 1994 after Ward et al demonstrated the role of Helicobacter hepaticus in the development of HCC in mice. Studies also investigated the role of hepatitis B virus (HBV) and hepatitis C virus (HCV) coexisting with H. pylori in causing HCC. A causal relationship was never confirmed, and the relationship remains controversial. This meta-analysis aimed to summarize the research on this topic and investigate if a relationship exists between H. pylori infection and the development of HCC and if the presence of HCV and HBV along with H. pylori plays a role in liver carcinogenesis. METHODS Following PRISMA guidelines, we performed a systematic review of all relevant studies published in the literature using the keywords "Helicobacter pylori" and "hepatocellular carcinoma" on major literature databases, including PubMed, EMBASE, Web of Science, and Cochrane controlled trials register. A total of 656 research studies were identified between 1994 and 2020. Of those, 26 qualified under our selection criteria. Patients who were positive for HCC were classified as cases and those who did not have HCC were classified as controls. The H. pylori status and HCV status, if available, were identified for both groups. Statistical analysis was carried out by a biostatistician according to the Cochrane reviewer's handbook. RESULTS Out of the 26 studies included in the final analysis, 13 were retrospective case-control studies, 11 were cross-sectional studies, and two were prospective case-control and cohort studies. Overall, the prevalence of H. pylori infection was 64.78% (561 of 866) amongst HCC cases and 47.92% (1,718 of 3,585) in the non-HCC control group. The summary odds ratio (OR) for the association of H. pylori infection with the risk for HCC (using the random-effects model, which accounted for the heterogeneity across the 26 studies) was determined to be 4.75 (95% confidence interval (CI): 3.06 - 7.37, I2 = 63%). We also performed a subgroup analysis to determine the odds of developing HCC in the presence of H. pylori and HCV coinfection. The summary OR of it was 12.76 (95% CI: 4.13 - 39.41, I2 = 78%). The summary OR for the risk of developing HCC in the presence of HCV infection without H. pylori infection was 2.21 (95% CI: 0.70 - 6.94, I2 = 79%). Whereas, the odds of developing HCC in the presence of only H. pylori infection without HCV was found to be 0.54 (95% CI: 0.11 - 2.63, I2 = 80%). There was inconsistency in the data presented in some studies regarding HCV infection status. Since data were extracted from different study designs, subgroup analysis by study design was performed which showed no significant difference between the study groups (P = 0.5705). CONCLUSION This meta-analysis demonstrates a positive association between H. pylori infection and the development of HCC. There is a significantly higher risk of developing HCC in the presence of HCV infection along with H. pylori. Further prospective cohort studies are needed to prove the causal relationship, especially in cases of HBV and HCV coinfection, and cirrhotic patients.
Collapse
Affiliation(s)
- Samragnyi Madala
- Department of Geriatric Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kira MacDougall
- Division of Medical Oncology, University of Oklahoma, Norman, OK, USA
| | | | - Robin Park
- Department of Internal Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Mohit Girotra
- Division of Gastroenterology and Therapeutic Endoscopy, Swedish Medical Center, Seattle, WA, USA
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| |
Collapse
|
68
|
Tuan VP, Yahara K, Dung HDQ, Binh TT, Huu Tung P, Tri TD, Thuan NPM, Khien VV, Trang TTH, Phuc BH, Tshibangu-Kabamba E, Matsumoto T, Akada J, Suzuki R, Okimoto T, Kodama M, Murakami K, Yano H, Fukuyo M, Takahashi N, Kato M, Nishiumi S, Azuma T, Ogura Y, Hayashi T, Toyoda A, Kobayashi I, Yamaoka Y. Genome-wide association study of gastric cancer- and duodenal ulcer-derived Helicobacter pylori strains reveals discriminatory genetic variations and novel oncoprotein candidates. Microb Genom 2021; 7. [PMID: 34846284 PMCID: PMC8743543 DOI: 10.1099/mgen.0.000680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWASs) can reveal genetic variations associated with a phenotype in the absence of any hypothesis of candidate genes. The problem of false-positive sites linked with the responsible site might be bypassed in bacteria with a high homologous recombination rate, such as Helicobacter pylori, which causes gastric cancer. We conducted a small-sample GWAS (125 gastric cancer cases and 115 controls) followed by prediction of gastric cancer and control (duodenal ulcer) H. pylori strains. We identified 11 single nucleotide polymorphisms (eight amino acid changes) and three DNA motifs that, combined, allowed effective disease discrimination. They were often informative of the underlying molecular mechanisms, such as electric charge alteration at the ligand-binding pocket, alteration in subunit interaction, and mode-switching of DNA methylation. We also identified three novel virulence factors/oncoprotein candidates. These results provide both defined targets for further informatic and experimental analyses to gain insights into gastric cancer pathogenesis and a basis for identifying a set of biomarkers for distinguishing these H. pylori-related diseases.
Collapse
Affiliation(s)
- Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Koji Yahara
- Antimicrobial Resistance ResearchCenter, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Koji Yahara,
| | | | - Tran Thanh Binh
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Pham Huu Tung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Tran Dinh Tri
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | | | - Vu Van Khien
- Department of GI Endoscopy, 108 Central Hospital, Hanoi, Vietnam
| | | | - Bui Hoang Phuc
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
- Department of Microbiology, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | | | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masaki Fukuyo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Molecular Oncology, Chiba University, Chiba, Japan
| | - Noriko Takahashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Mototsugu Kato
- Division of Endoscopy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Hokkaido, Japan
| | - Shin Nishiumi
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
- Department of Omics Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Advanced GenomicsCenter, National Institute of Genetics, Shizuoka, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
- *Correspondence: Ichizo Kobayashi, ;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
- Department of Medicine, gastroenterology section, Baylor College of Medicine, Houston TX, USA
- *Correspondence: Yoshio Yamaoka,
| |
Collapse
|
69
|
Holte SJ, Ohmann PR. Childhood in social learning models with changing environments: Implications for human evolution. Biosystems 2021; 210:104555. [PMID: 34601073 DOI: 10.1016/j.biosystems.2021.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Childhood is a time of learning, both individually and through social interactions. But the vulnerability inherent in childhood represents a fitness cost: individuals do not have progeny during childhood, and childhood is a net drain of familial or group resources. In this study we model childhood in resource acquisition scenarios where social learning through observation competes with learning through innovation across multiple generations in a variety of environments. In general, observing others allows useful knowledge to be gained more efficiently than self-exploration and may result in significantly greater resource acquisition. However, social learning needing a lengthy childhood to develop advanced cognitive ability may offset the net fitness advantage that might otherwise be gained. Through simulations we demonstrate that individuals with a substantial childhood burden acquire more lifetime resources by observing others than do individuals with negligible childhood costs using self-exploration, as long as the environment is fairly stable. This advantage decreases as the environment becomes less predictable, and reverses in rapidly changing environments where knowledge is unreliable. These results suggest that hominid evolution, with vastly growing cognitive abilities and a longer, more vulnerable childhood, may have been facilitated in similarly stable environments. On the other hand, hominid populations may have been particularly vulnerable to environmental instability. We apply this insight to the Out of Africa Homo sapiens migration roughly 50,000 years ago and show consistency with the serial founder model that best fits current archeological and genetic evidence. Our findings are important for models of social learning, especially those that describe the emergence and spread of Homo sapiens.
Collapse
Affiliation(s)
- Serena J Holte
- Department of Physics, University of Saint Thomas, St. Paul MN, 55105, USA
| | - Paul R Ohmann
- Department of Physics, University of Saint Thomas, St. Paul MN, 55105, USA.
| |
Collapse
|
70
|
Nguyen TH, Ho TTM, Nguyen-Hoang TP, Qumar S, Pham TTD, Bui QN, Bulach D, Nguyen TV, Rahman M. The endemic Helicobacter pylori population in Southern Vietnam has both South East Asian and European origins. Gut Pathog 2021; 13:57. [PMID: 34593031 PMCID: PMC8482589 DOI: 10.1186/s13099-021-00452-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background The burden of Helicobacter pylori-induced gastric cancer varies based on predominant H. pylori population in various geographical regions. Vietnam is a high H. pylori burden country with the highest age-standardized incidence rate of gastric cancer (16.3 cases/100,000 for both sexes) in Southeast Asia, despite this data on the H. pylori population is scanty. We examined the global context of the endemic H. pylori population in Vietnam and present a contextual and comparative genomics analysis of 83 H. pylori isolates from patients in Vietnam. Results There are at least two major H. pylori populations are circulating in symptomatic Vietnamese patients. The majority of the isolates (~ 80%, 66/83) belong to the hspEastAsia and the remaining belong to hpEurope population (~ 20%, 17/83). In total, 66 isolates (66/83) were cagA positive, 64 were hspEastAsia isolates and two were hpEurope isolates. Examination of the second repeat region revealed that most of the cagA genes were ABD type (63/66; 61 were hspEastAsia isolates and two were hpEurope isolates). The remaining three isolates (all from hspEastAsia isolates) were ABC or ABCC types. We also detected that 4.5% (3/66) cagA gene from hspEastAsia isolates contained EPIYA-like sequences, ESIYA at EPIYA-B segments. Analysis of the vacA allelic type revealed 98.8% (82/83) and 41% (34/83) of the strains harboured the s1 and m1 allelic variant, respectively; 34/83 carried both s1m1 alleles. The most frequent genotypes among the cagA positive isolates were vacA s1m1/cagA + and vacA s1m2/cagA + , accounting for 51.5% (34/66) and 48.5% (32/66) of the isolates, respectively. Conclusions There are two predominant lineages of H. pylori circulating in Vietnam; most of the isolates belong to the hspEastAsia population. The hpEurope population is further divided into two smaller clusters. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00452-2.
Collapse
Affiliation(s)
- Trang Hoa Nguyen
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Trang Thi My Ho
- Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh University of Science, Ho Chi Minh City, Vietnam
| | - Thien-Phuc Nguyen-Hoang
- Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh University of Science, Ho Chi Minh City, Vietnam
| | | | - Thuc Tran Dang Pham
- Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh University of Science, Ho Chi Minh City, Vietnam
| | - Quy Nhuan Bui
- Department of Gastroenterology, Gia Dinh Hospital, Ho Chi Minh City, Vietnam
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne and Doherty Applied Microbial Genomics, The Doherty Institute, Melbourne, Australia
| | - Thuy-Vy Nguyen
- Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh University of Science, Ho Chi Minh City, Vietnam
| | - Motiur Rahman
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
71
|
|
72
|
Gomez-Ramirez U, Valencia-Mayoral P, Mendoza-Elizalde S, Murillo-Eliosa JR, Solórzano Santos F, Contreras-Rodríguez A, Zúñiga G, Aguilar-Rodea P, Jiménez-Rojas VL, Vigueras Galindo JC, Salazar-García M, Velázquez-Guadarrama N. Role of Helicobacter pylori and Other Environmental Factors in the Development of Gastric Dysbiosis. Pathogens 2021; 10:1203. [PMID: 34578235 PMCID: PMC8467233 DOI: 10.3390/pathogens10091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Microbiomes are defined as complex microbial communities, which are mainly composed of bacteria, fungi, and viruses residing in diverse regions of the human body. The human stomach consists of a unique and heterogeneous habitat of microbial communities owing to its anatomical and functional characteristics, that allow the optimal growth of characteristic bacteria in this environment. Gastric dysbiosis, which is defined as compositional and functional alterations of the gastric microbiota, can be induced by multiple environmental factors, such as age, diet, multiple antibiotic therapies, proton pump inhibitor abuse, H. pylori status, among others. Although H. pylori colonization has been reported across the world, chronic H. pylori infection may lead to serious consequences; therefore, the infection must be treated. Multiple antibiotic therapy improvements are not always successful because of the lack of adherence to the prescribed antibiotic treatment. However, the abuse of eradication treatments can generate gastric dysbiotic states. Dysbiosis of the gastric microenvironment induces microbial resilience, due to the loss of relevant commensal bacteria and simultaneous colonization by other pathobiont bacteria, which can generate metabolic and physiological changes or even initiate and develop other gastric disorders by non-H. pylori bacteria. This systematic review opens a discussion on the effects of multiple environmental factors on gastric microbial communities.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Rafael Murillo-Eliosa
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Fortino Solórzano Santos
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Verónica Leticia Jiménez-Rojas
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Carlos Vigueras Galindo
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| |
Collapse
|
73
|
Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol 2021; 12:713955. [PMID: 34484153 PMCID: PMC8416104 DOI: 10.3389/fmicb.2021.713955] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world’s population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80–90%) H. pylori infected individuals remain asymptomatic, while some (10–20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on “H. pylori factors” and several “other factors,” which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the “necessary and sufficient” condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.
Collapse
Affiliation(s)
| | | | - Deepak Chouhan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Gangtok, India
| | | | | | | |
Collapse
|
74
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
75
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
76
|
Akada J, Tshibangu-Kabamba E, Tuan VP, Kurogi S, Matsuo Y, Ansari S, Doohan D, Phuc BH, Subsomwong P, Waskito LA, Binh TT, Nguyen LT, Khien VV, Dung HDQ, Miftahussurur M, Syam AF, Tshering L, Vilaichone RK, Mahachai V, Ratanachu-Ek T, Shrestha PK, Yee TT, Htet K, Aftab H, Matsuhisa T, Uchida T, Okimoto T, Mizukami K, Kodama M, Murakami K, Takahashi N, Yamaoka Y. Serum Helicobacter pylori antibody reactivity in seven Asian countries using an automated latex aggregation turbidity assay. J Gastroenterol Hepatol 2021; 36:2198-2209. [PMID: 33609333 DOI: 10.1111/jgh.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM To determine the application range of diagnostic kits utilizing anti-Helicobacter pylori antibody, we tested a newly developed latex aggregation turbidity assay (latex) and a conventional enzyme-linked immunosorbent assay (E-plate), both containing Japanese H. pylori protein lysates as antigens, using sera from seven Asian countries. METHODS Serum samples (1797) were obtained, and standard H. pylori infection status and atrophy status were determined by culture and histology (immunohistochemistry) using gastric biopsy samples from the same individuals. The two tests (enzyme-linked immunosorbent assay and latex) were applied, and receiver operating characteristics analysis was performed. RESULTS Area under the curve (AUC) from the receiver operating characteristic of E-plate and latex curves were almost the same and the highest in Vietnam. The latex AUC was slightly lower than the E-plate AUC in other countries, and the difference became statistically significant in Myanmar and then Bangladesh as the lowest. To consider past infection cases, atrophy was additionally evaluated. Most of the AUCs decreased using this atrophy-evaluated status; however, the difference between the two kits was not significant in each country, but the latex AUC was better using all samples. Practical cut-off values were 3.0 U/mL in the E-test and 3.5 U/mL in the latex test, to avoid missing gastric cancer patients to the greatest extent possible. CONCLUSIONS The kits were applicable in all countries, but new kits using regional H. pylori strains are recommended for Myanmar and Bangladesh. Use of a cut-off value lower than the best cut-off value is essential for screening gastric cancer patients.
Collapse
Affiliation(s)
- Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Shusaku Kurogi
- Clinical Laboratory Center, Oita University Hospital, Yufu, Japan.,Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuichi Matsuo
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shamshul Ansari
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Dalla Doohan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Bui Hoang Phuc
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Tran Thanh Binh
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Lam Tung Nguyen
- Department of Hepatogastroenterology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Vu Van Khien
- Department of Hepatogastroenterology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Ho Dang Quy Dung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Muhammad Miftahussurur
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Airlangga University, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Intestinal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Lotay Tshering
- Department of Surgery, Jigme Dorji Wangchuck National Referral Hospital, Thimphu, Bhutan
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Digestive Diseases Research Center, Thammasat University Hospital, Khlong Luang, Thailand.,Department of Medicine, Chulabhorn International College of Medicine, Thammasat University Hospital, Khlong Luang, Thailand
| | | | | | - Pradeep Krishna Shrestha
- Department of Gastroenterology, Maharajgunj Medical Campus, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Than Than Yee
- Department of GI and HBP Surgery, No (2) Defense Service General Hospital, Nay Pyi Taw, Myanmar
| | - Kyaw Htet
- Department of GI and HBP Surgery, No (1) Defense Service General Hospital, Mingaladon, Myanmar
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical Collage and Hospital, Dhaka, Bangladesh
| | - Takeshi Matsuhisa
- Department of Gastroenterology, Tama-Nagayama University Hospital, Nippon Medical School, Tama, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan.,Faculty of Welfare and Health Science, Oita University, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Global Oita Medical Advanced Research Center for Health, Oita University, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
77
|
Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun 2021; 22:218-226. [PMID: 34244666 PMCID: PMC8390445 DOI: 10.1038/s41435-021-00146-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is necessary but not sufficient for the development of gastric cancer, the third leading cause of cancer death globally. H. pylori infection affects over half of people globally; however, it does not affect populations uniformly. H. pylori infection rates are declining in western industrialized countries but are plateauing in developing and newly industrialized countries where gastric cancer is most prevalent. Despite H. pylori infection being the primary causative agent for gastric cancer, H. pylori infection can also cause other effects, detrimental or beneficial, throughout an individual's life, with the beneficial effects often being seen in childhood and the deleterious effects in adulthood. H. pylori is an ancient bacterium and its likelihood of affecting disease or health is dependent on both human and bacterial genetics that have co-evolved over millennia. In this review, we focus on the impact of infection and its genetic bases in different populations and diseases throughout an individual's lifespan, highlighting the benefits of individualized treatment and argue that universal eradication of H. pylori in its host may cause more harm than good for those infected with H. pylori.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
78
|
Zhang S, Wang X, Wise MJ, He Y, Chen H, Liu A, Huang H, Young S, Tay CY, Marshall BJ, Li X, Chua EG. Mutations of Helicobacter pylori RdxA are mainly related to the phylogenetic origin of the strain and not to metronidazole resistance. J Antimicrob Chemother 2021; 75:3152-3155. [PMID: 32676634 DOI: 10.1093/jac/dkaa302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Drug resistance of Helicobacter pylori is a major clinical problem worldwide. The objective of the present study was to investigate the prevalence of antibiotic-resistant H. pylori in the city of Shenzhen in China, as well as to identify the genetic mutations specifically associated with drug resistance rather than unrelated phylogenetic signals. METHODS Antibiotic susceptibility testing was performed on 238 clinical strains successfully isolated from H. pylori-positive dyspeptic patients who underwent gastroscopy at the Department of Gastroenterology in Shenzhen People's Second Hospital. Following WGS of all strains using Illumina technology, mutation and phylogenetic analyses were performed. RESULTS The resistance rates were 84.9%, 35.3%, 25.2% and 2.1% for metronidazole, clarithromycin, ciprofloxacin and rifampicin, respectively. An A2143G conversion in the 23S rRNA gene was the primary mutation observed in clarithromycin-resistant strains, whilst N87K/I and D91G/N/Y in GyrA were detected in ciprofloxacin-resistant strains. In RdxA, our results demonstrated that only R16H/C and M21A are significant contributors to metronidazole resistance; there were 15 other sites, but these are phylogenetically related and thus unrelated to metronidazole resistance. CONCLUSIONS There is a high prevalence of metronidazole, clarithromycin and ciprofloxacin resistance and a low prevalence of rifampicin resistance in H. pylori from Shenzhen, China. Omission of phylogenetically related sites will help to improve identification of sites genuinely related to antibiotic resistance in H. pylori and, we believe, other species.
Collapse
Affiliation(s)
- Shuzhen Zhang
- Department of Clinical Laboratory, Kuichong People's Hospital, Shenzhen 518119, China
| | - Xiangyu Wang
- Department of Clinical Laboratory, Kuichong People's Hospital, Shenzhen 518119, China.,Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen People's Second Hospital, Shenzhen 518000, China
| | - Michael J Wise
- Department of Computer Science and Software Engineering, University of Western Australia, Perth 6009, Australia.,The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth 6009, Australia
| | - Yongsheng He
- Department of Clinical Laboratory, Kuichong People's Hospital, Shenzhen 518119, China
| | - Haiting Chen
- Department of Clinical Laboratory, Kuichong People's Hospital, Shenzhen 518119, China
| | - Aijun Liu
- Department of Gastroenterology, Kuichong People's Hospital, Shenzhen 518119, China
| | - Haiyan Huang
- Department of Clinical Laboratory, Kuichong People's Hospital, Shenzhen 518119, China
| | - Sylvia Young
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Chin Yen Tay
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth 6009, Australia
| | - Barry J Marshall
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth 6009, Australia
| | - Xuehong Li
- Department of Clinical Laboratory, Kuichong People's Hospital, Shenzhen 518119, China
| | - Eng Guan Chua
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
79
|
Abstract
The peopling of Siberia and the Americas is intriguing for archaeologists, linguists, and human geneticists, but despite significant recent developments, many details remain controversial. Here, we provide insights based on genetic diversity within Helicobacter pylori, a bacterium that infects 50% of all humans. H. pylori strains were collected from across eastern Eurasia and the Americas. Sequence analyses indicated that Siberia contains both anciently diverged and recently admixed bacteria, supporting both human persistence over the last glacial maximum and more recent human recolonization. We inferred a single migration across the Bering land bridge, accompanied by a dramatic reduction in effective population size, followed by bidirectional Holocene gene flow between Asia and the Americas. The gastric bacterium Helicobacter pylori shares a coevolutionary history with humans that predates the out-of-Africa diaspora, and the geographical specificities of H. pylori populations reflect multiple well-known human migrations. We extensively sampled H. pylori from 16 ethnically diverse human populations across Siberia to help resolve whether ancient northern Eurasian populations persisted at high latitudes through the last glacial maximum and the relationships between present-day Siberians and Native Americans. A total of 556 strains were cultivated and genotyped by multilocus sequence typing, and 54 representative draft genomes were sequenced. The genetic diversity across Eurasia and the Americas was structured into three populations: hpAsia2, hpEastAsia, and hpNorthAsia. hpNorthAsia is closely related to the subpopulation hspIndigenousAmericas from Native Americans. Siberian bacteria were structured into five other subpopulations, two of which evolved through a divergence from hpAsia2 and hpNorthAsia, while three originated though Holocene admixture. The presence of both anciently diverged and recently admixed strains across Siberia support both Pleistocene persistence and Holocene recolonization. We also show that hspIndigenousAmericas is endemic in human populations across northern Eurasia. The evolutionary history of hspIndigenousAmericas was reconstructed using approximate Bayesian computation, which showed that it colonized the New World in a single migration event associated with a severe demographic bottleneck followed by low levels of recent admixture across the Bering Strait.
Collapse
|
80
|
Syam AF, Waskito LA, Rezkitha YAA, Simamora RM, Yusuf F, Danchi KE, Bakry AF, Arnelis, Mulya E, Siregar GA, Sugihartono T, Maulahela H, Doohan D, Miftahussurur M, Yamaoka Y. Helicobacter pylori in the Indonesian Malay's descendants might be imported from other ethnicities. Gut Pathog 2021; 13:36. [PMID: 34088343 PMCID: PMC8178862 DOI: 10.1186/s13099-021-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Even though the incidence of H. pylori infection among Malays in the Malay Peninsula is low, we observed a high H. pylori prevalence in Sumatra, which is the main residence of Indonesian Malays. H. pylori prevalence among Indonesian Malay descendants was investigated. RESULTS Using a combination of five tests, 232 recruited participants were tested for H- pylori and participants were considered positive if at least one test positive. The results showed that the overall H. pylori prevalence was 17.2%. Participants were then categorized into Malay (Aceh, Malay, and Minang), Java (Javanese and Sundanese), Nias, and Bataknese groups. The prevalence of H. pylori was very low among the Malay group (2.8%) and no H. pylori was observed among the Aceh. Similarly, no H. pylori was observed among the Java group. However, the prevalence of H. pylori was high among the Bataknese (52.2%) and moderate among the Nias (6.1%). Multilocus sequence typing showed that H. pylori in Indonesian Malays classified as hpEastAsia with a subpopulation of hspMaori, suggesting that the isolated H. pylori were not a specific Malays H. pylori. CONCLUSIONS Even though the ethnic groups live together as a community, we observed an extremely low H. pylori infection rate among Indonesian Malay descendants with no specific Indonesian Malay H. pylori. The results suggest that H. pylori was not originally among these groups and H. pylori was imported from other ethnic groups.
Collapse
Affiliation(s)
- Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta, Indonesia
| | - Langgeng Agung Waskito
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Rentha Monica Simamora
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fauzi Yusuf
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Zainoel Abidin General Hospital, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kanserina Esthera Danchi
- Department of Internal Medicine, Dr. M Thomsen Nias Gunungsitoli General Hospital, Nias, Indonesia
| | - Ahmad Fuad Bakry
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
| | - Arnelis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Erwin Mulya
- Department of Internal Medicine, Cimacan General Hospital, Cianjur, Indonesia
| | - Gontar Alamsyah Siregar
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Sumatera Utara, Medan, Indonesia
| | - Titong Sugihartono
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Hasan Maulahela
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta, Indonesia
| | - Dalla Doohan
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama Machi, Yufu City, Oita, 879-5593, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
81
|
Youssefi M, Tafaghodi M, Farsiani H, Ghazvini K, Keikha M. Helicobacter pylori infection and autoimmune diseases; Is there an association with systemic lupus erythematosus, rheumatoid arthritis, autoimmune atrophy gastritis and autoimmune pancreatitis? A systematic review and meta-analysis study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:359-369. [PMID: 32891538 DOI: 10.1016/j.jmii.2020.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/07/2020] [Accepted: 08/16/2020] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases are considered as one of the most important disorders of the immune system, in which the prolonged and chronic processes eliminate self-tolerance to the auto-antigens. The prevalence of autoimmune diseases has been increasing worldwide in the recent years. According to the literature, biological processes such as the host genome, epigenetic events, environmental condition, drug consumption, and infectious agents are the most important risk factors that make the host susceptible to the development of autoimmune diseases. In the recent years, the role of Helicobacter pylori in the induction of autoimmune diseases has attracted extensive attention. Via molecular mimicry, epitope spreading, bystander activation, polyclonal activation, dysregulation in immune response, and highly immune-dominant virulence, such as cagA, H. pylori causes tissue damage, polarity, and proliferation of the host cells leading to the modulation of host immune responses. Moreover, given the large population worldwide infected with H. pylori, it seems likely that the bacterium may develop into autoimmune diseases through dysregulation of the immune response. The frequency and relationship between H. pylori infection and systemic lupus erythematosus, rheumatoid arthritis, autoimmune atrophy gastritis, and autoimmune pancreatitis were evaluated using the data from 43 studies involving 5052 patients. According to statistical analysis it is probable that infection with more virulent strains of H. pylori (such as H. pylori cagA positive) can increase the risk of autoimmune diseases. In addition, it was shown that infection with H. pylori can prevent the development of atrophic gastritis by stimulating inflammation in the gastric antrum. However, future studies should confirm the validity of this study.
Collapse
Affiliation(s)
- Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
82
|
Faass L, Stein SC, Hauke M, Gapp M, Albanese M, Josenhans C. Contribution of Heptose Metabolites and the cag Pathogenicity Island to the Activation of Monocytes/Macrophages by Helicobacter pylori. Front Immunol 2021; 12:632154. [PMID: 34093525 PMCID: PMC8174060 DOI: 10.3389/fimmu.2021.632154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
The human gastric pathogen Helicobacter pylori activates human epithelial cells by a particular combination of mechanisms, including NOD1 and ALPK1-TIFA activation. These mechanisms are characterized by a strong participation of the bacterial cag pathogenicity island, which forms a type IV secretion system (CagT4SS) that enables the bacteria to transport proteins and diverse bacterial metabolites, including DNA, glycans, and cell wall components, into human host cells. Building on previous findings, we sought to determine the contribution of lipopolysaccharide inner core heptose metabolites (ADP-heptose) in the activation of human phagocytic cells by H. pylori. Using human monocyte/macrophage-like Thp-1 cells and human primary monocytes and macrophages, we were able to determine that a substantial part of early phagocytic cell activation, including NF-κB activation and IL-8 production, by live H. pylori is triggered by bacterial heptose metabolites. This effect was very pronounced in Thp-1 cells exposed to bacterial purified lysates or pure ADP-heptose, in the absence of other bacterial MAMPs, and was significantly reduced upon TIFA knock-down. Pure ADP-heptose on its own was able to strongly activate Thp-1 cells and human primary monocytes/macrophages. Comprehensive transcriptome analysis of Thp-1 cells co-incubated with live H. pylori or pure ADP-heptose confirmed a signature of ADP-heptose-dependent transcript activation in monocyte/macrophages. Bacterial enzyme-treated lysates (ETL) and pure ADP-heptose–dependent activation differentiated monocytes into macrophages of predominantly M1 type. In Thp-1 cells, the active CagT4SS was less required for the heptose-induced proinflammatory response than in epithelial cells, while active heptose biosynthesis or pure ADP-heptose was required and sufficient for their early innate response and NF-κB activation. The present data suggest that early activation and maturation of incoming and resident phagocytic cells (monocytes, macrophages) in the H. pylori–colonized stomach strongly depend on bacterial LPS inner core heptose metabolites, also with a significant contribution of an active CagT4SS.
Collapse
Affiliation(s)
- Larissa Faass
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany
| | - Saskia C Stein
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Martina Hauke
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany
| | - Madeleine Gapp
- Max von Pettenkofer Institute, Chair for Virology, Ludwig Maximilians University, Munich, Germany.,Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Manuel Albanese
- Max von Pettenkofer Institute, Chair for Virology, Ludwig Maximilians University, Munich, Germany.,Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research (DZIF), Partner site Munich, Munich, Germany.,DZIF, Partner site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
83
|
Singh S, Bastos-Amador P, Thompson JA, Truglio M, Yilmaz B, Cardoso S, Sobral D, Soares MP. Glycan-based shaping of the microbiota during primate evolution. eLife 2021; 10:e67450. [PMID: 34009123 PMCID: PMC8133779 DOI: 10.7554/elife.67450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
Genes encoding glycosyltransferases can be under relatively high selection pressure, likely due to the involvement of the glycans synthesized in host-microbe interactions. Here, we used mice as an experimental model system to investigate whether loss of α-1,3-galactosyltransferase gene (GGTA1) function and Galα1-3Galβ1-4GlcNAcβ1-R (αGal) glycan expression affects host-microbiota interactions, as might have occurred during primate evolution. We found that Ggta1 deletion shaped the composition of the gut microbiota. This occurred via an immunoglobulin (Ig)-dependent mechanism, associated with targeting of αGal-expressing bacteria by IgA. Systemic infection with an Ig-shaped microbiota inoculum elicited a less severe form of sepsis compared to infection with non-Ig-shaped microbiota. This suggests that in the absence of host αGal, antibodies can shape the microbiota towards lower pathogenicity. Given the fitness cost imposed by bacterial sepsis, we infer that the observed reduction in microbiota pathogenicity upon Ggta1 deletion in mice may have contributed to increase the frequency of GGTA1 loss-of-function mutations in ancestral primates that gave rise to humans.
Collapse
|
84
|
Draft Genome Sequences of 29 Helicobacter pylori Strains Isolated from Colombia. Microbiol Resour Announc 2021; 10:10/19/e00218-21. [PMID: 33986079 PMCID: PMC8142565 DOI: 10.1128/mra.00218-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome sequences of 29 Colombian Helicobacter pylori strains. These strains were isolated in Bogotá, Colombia, from patients diagnosed with chronic gastritis. The genomic characterization of these strains will provide more information on the genetic composition of H. pylori strains from Colombia. Here, we present the draft genome sequences of 29 Colombian Helicobacter pylori strains. These strains were isolated in Bogotá, Colombia, from patients diagnosed with chronic gastritis. The genomic characterization of these strains will provide more information on the genetic composition of H. pylori strains from Colombia.
Collapse
|
85
|
Shah SC, Iyer PG, Moss SF. AGA Clinical Practice Update on the Management of Refractory Helicobacter pylori Infection: Expert Review. Gastroenterology 2021; 160:1831-1841. [PMID: 33524402 PMCID: PMC8281326 DOI: 10.1053/j.gastro.2020.11.059] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The purpose of this CPU Expert Review is to provide clinicians with guidance on the management of Helicobacter pylori after an initial attempt at eradication therapy fails, including best practice advice on specific regimen selection, and consideration of patient and systems factors that contribute to treatment efficacy. This Expert Review is not a formal systematic review, but is based upon a review of the literature to provide practical advice. No formal rating of the strength or quality of the evidence was carried out. Accordingly, a combination of available evidence and consensus-based expert opinion were used to develop these best practice advice statements.
Collapse
Affiliation(s)
- Shailja C. Shah
- Division of Gastroenterology, Veterans Affairs Tennessee Valley Health System, Nashville, TN,Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN
| | - Prasad G. Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Steven F. Moss
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
86
|
Domanovich-Asor T, Craddock HA, Motro Y, Khalfin B, Peretz A, Moran-Gilad J. Unraveling antimicrobial resistance in Helicobacter pylori: Global resistome meets global phylogeny. Helicobacter 2021; 26:e12782. [PMID: 33491828 DOI: 10.1111/hel.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Antimicrobial resistance (AMR) in Helicobacter pylori is increasing globally and can result in treatment failure and inappropriate antibiotic usage. This study used whole genome sequencing (WGS) to conduct an analysis of the H. pylori resistome and phylogeny. MATERIALS/METHODS A total of 1040 H. pylori isolate sequences were retrieved. Analysis was conducted via an in-house bioinformatics pipeline targeting point mutations in selected genes frequently associated with AMR (pbp1A, 23S rRNA, gyrA, rdxA, frxA, and rpoB) and phylogenomic analyses using core genome multilocus sequence typing (cgMLST). RESULTS Phylogenomic analysis revealed a notable geographical clustering of H. pylori genomes across world regions, but large distances of more than 1000 loci between isolates on individual branches were observed. Resistome analysis revealed the prevalence of common mutations which have previously been found to correlate with phenotypic antibiotic resistance; the most common point mutations for each gene were S589G (pbp1A, 48.8% of perfect aligned sequences), A2143G (23S rRNA, 27.4% of perfectly aligned sequences), N87 K\I\Y (gyrA, 14.7% of perfectly aligned sequences), R131K (rdxA, 65.7% of perfectly aligned sequences), and C193S (frxA, 62.6% of perfectly aligned sequences). CONCLUSIONS This is the largest study to date featuring the global phylogeny of H. pylori in conjunction with a global snapshot of the H. pylori resistome based on >1000 genomes. Further analyses that combine WGS and phenotypic methods will provide further understanding of the association between the mutations and resistance.
Collapse
Affiliation(s)
- Tal Domanovich-Asor
- MAGICAL Group, Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hillary A Craddock
- MAGICAL Group, Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Motro
- MAGICAL Group, Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Boris Khalfin
- MAGICAL Group, Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriyah and Azrieli Faculty of Medicine, Bar-Ilan University, Galilee, Israel
| | - Jacob Moran-Gilad
- MAGICAL Group, Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
87
|
Muñoz AB, Trespalacios-Rangel AA, Vale FF. An American lineage of Helicobacter pylori prophages found in Colombia. Helicobacter 2021; 26:e12779. [PMID: 33400833 DOI: 10.1111/hel.12779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori is a human gastric carcinogen that is highly prevalent in Latin American. The prophages of H. pylori show a structured population and contribute to the diversity of this bacterium. However, H. pylori prophages present in American strains have not been described to date. In this study, we identified, characterized, and present the phylogenetic analysis of the prophages present in Colombian H. pylori strains. METHODS To characterize Colombian H. pylori strains and their prophages, a Multilocus Sequences Typing (MLST) and a Prophage Sequences Typing (PST), using the integrase and holin genes, were performed. Furthermore, five Colombian H. pylori had their full genome sequenced, and six Colombian H.pylori retrieved from databases, allowing to determine the prophage complete genome and insertion site. RESULTS The integrase gene frequency was 12.6% (27/213), while both integrase and holin genes were present in 4.2% (9/213) of the samples analyzed. The PST analysis showed that Colombian prophages belong to different populations, including hpSWEurope, hpNEurope, hpAfrica1, and a new population, named hpColombia. The MLST analysis classified most of the Colombia strains in the hpEurope population. CONCLUSIONS The new H. pylori prophage population revealed that Colombian prophages follow a unique evolutionary trajectory, contributing to bacterial diversity. The global H. pylori prophage phylogeny highlighted five phylogenetic groups, one more than previously reported. After the arrival of Europeans, the Colombian H. pylori bacteria and their prophages formed an independent evolutionary line to adapt to the new environment and new human hosts.
Collapse
Affiliation(s)
- Angela B Muñoz
- Infectious Diseases Research Group, Microbiology Department, Sciences Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia.,Host-Pathogen Interactions Unit, Faculdade de Farmácia, Research Institute for Medicines (iMed-ULisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Alba A Trespalacios-Rangel
- Infectious Diseases Research Group, Microbiology Department, Sciences Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Faculdade de Farmácia, Research Institute for Medicines (iMed-ULisboa, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
88
|
Noureen M, Kawashima T, Arita M. Genetic Markers of Genome Rearrangements in Helicobacter pylori. Microorganisms 2021; 9:621. [PMID: 33802974 PMCID: PMC8002640 DOI: 10.3390/microorganisms9030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori exhibits a diverse genomic structure with high mutation and recombination rates. Various genetic elements function as drivers of this genomic diversity including genome rearrangements. Identifying the association of these elements with rearrangements can pave the way to understand its genome evolution. We analyzed the order of orthologous genes among 72 publicly available complete genomes to identify large genome rearrangements, and rearrangement breakpoints were compared with the positions of insertion sequences, genomic islands, and restriction modification genes. Comparison of the shared inversions revealed the conserved genomic elements across strains from different geographical locations. Some were region-specific and others were global, indicating that highly shared rearrangements and their markers were more ancestral than strain-or region-specific ones. The locations of genomic islands were an important factor for the occurrence of the rearrangements. Comparative genomics helps to evaluate the conservation of various elements contributing to the diversity across genomes.
Collapse
Affiliation(s)
- Mehwish Noureen
- Department of Genetics, SOKENDAI University, Yata 1111, Mishima 411-8540, Shizuoka, Japan;
| | - Takeshi Kawashima
- Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima 411-8540, Shizuoka, Japan;
| | - Masanori Arita
- Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima 411-8540, Shizuoka, Japan;
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan
| |
Collapse
|
89
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
90
|
Structure, metabolism and biological functions of steryl glycosides in mammals. Biochem J 2021; 477:4243-4261. [PMID: 33186452 PMCID: PMC7666875 DOI: 10.1042/bcj20200532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
Steryl glycosides (SGs) are sterols glycosylated at their 3β-hydroxy group. They are widely distributed in plants, algae, and fungi, but are relatively rare in bacteria and animals. Glycosylation of sterols, resulting in important components of the cell membrane SGs, alters their biophysical properties and confers resistance against stress by freezing or heat shock to cells. Besides, many biological functions in animals have been suggested from the observations of SG administration. Recently, cholesteryl glucosides synthesized via the transglycosidation by glucocerebrosidases (GBAs) were found in the central nervous system of animals. Identification of patients with congenital mutations in GBA genes or availability of respective animal models will enable investigation of the function of such endogenously synthesized cholesteryl glycosides by genetic approaches. In addition, mechanisms of the host immune responses against pathogenic bacterial SGs have partially been resolved. This review is focused on the biological functions of SGs in mammals taking into consideration their therapeutic applications in the future.
Collapse
|
91
|
Abstract
INTRODUCTION Various types of cancers threaten human life. The role of bacteria in causing cancer is controversial, but it has been determined that the Helicobacter pylori infection is one of the identified risk factors for gastric cancer. Helicobacter pylori infection is highly prevalent, and about half of the world,s population is infected with it. OBJECTIVE The aim of this study was the role of Helicobacter pylori in the development of gastric cancer. METHOD We obtained information from previously published articles. RESULTS AND CONCLUSION The bacterium has various virulence factors, including cytotoxin- associated gene A, vacuolating cytotoxin A, and the different outer membrane proteins that cause cancer by different mechanisms. These virulence factors activate cell signaling pathways such as PI3-kinase/Akt, JAK/STAT and Ras, Raf, and ERK signaling that control cell proliferation. Uncontrolled proliferation can lead to cancer.
Collapse
Affiliation(s)
- Majid Alipour
- Department of Cell and Molecular Biology, Islamic Azad University, Babol Branch, Babol, Iran.
| |
Collapse
|
92
|
Stadler T, Pybus OG, Stumpf MPH. Phylodynamics for cell biologists. Science 2021; 371:371/6526/eaah6266. [PMID: 33446527 DOI: 10.1126/science.aah6266] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Multicellular organisms are composed of cells connected by ancestry and descent from progenitor cells. The dynamics of cell birth, death, and inheritance within an organism give rise to the fundamental processes of development, differentiation, and cancer. Technical advances in molecular biology now allow us to study cellular composition, ancestry, and evolution at the resolution of individual cells within an organism or tissue. Here, we take a phylogenetic and phylodynamic approach to single-cell biology. We explain how "tree thinking" is important to the interpretation of the growing body of cell-level data and how ecological null models can benefit statistical hypothesis testing. Experimental progress in cell biology should be accompanied by theoretical developments if we are to exploit fully the dynamical information in single-cell data.
Collapse
Affiliation(s)
- T Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - O G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
| | - M P H Stumpf
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
93
|
Qumar S, Nguyen TH, Nahar S, Sarker N, Baker S, Bulach D, Ahmed N, Rahman M. A comparative whole genome analysis of Helicobacter pylori from a human dense South Asian setting. Helicobacter 2021; 26:e12766. [PMID: 33073485 PMCID: PMC7816255 DOI: 10.1111/hel.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/20/2020] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori, a Gram-negative bacterium, is associated with a wide range of gastric diseases such as gastritis, duodenal ulcer, and gastric cancer. The prevalence of H pylori and risk of disease vary in different parts of the world based on the prevailing bacterial lineage. Here, we present a contextual and comparative genomics analysis of 20 clinical isolates of H pylori from patients in Bangladesh. Despite a uniform host ethnicity (Bengali), isolates were classified as being part of the HpAsia2 (50%) or HpEurope (50%) population. Out of twenty isolates, eighteen isolates were cagA positive, with two HpEurope isolates being cagA negative, three EPIYA motif patterns (AB, AB-C, and ABC-C) were observed among the cagA-positive isolates. Three vacA genotypes were observed with the s1m1i1dic1 genotype observed in 75% of isolates; the s1m2i1d1c2 and s2m2i2d2c2 genotypes were found to be 15% and 10% of isolates, respectively. The non-virulent genotypes s2m2i2d2c2 was only observed in HpEurope population isolates. Genotypic analysis of oipA gene, present in all isolates, revealed five different patterns of the CT repeat; all HpAsia2 isolates were in "ON" while 20% of HpEurope isolates were genotypically "OFF." The three blood group antigen binding adhesins encoded genes (bab genes) examined and we observed that the most common genotype was (babA/babB/-) found in eight isolates, notably six were HpAsia2 isolates. The babA gene was found in all HpAsia2 isolates but present in only half of the HpEurope isolates. In silico antibiotic susceptibility analysis revealed that 40% of the strains were multi-drug resistant. Mutations associated with resistance to metronidazole, fluoroquinolone, and clarithromycin were detected 90%, 45%, and 5%, respectively, in H pylori strain. In conclusion, it is evident that two populations of H pylori with similar antibiotic profiles are predominant in Bangladesh, and it appears that genotypically the HpAisa2 isolates are potentially more virulent than the HpEurope isolates.
Collapse
Affiliation(s)
- Shamsul Qumar
- Department of Biotechnology and BioinformaticsUniversity of HyderabadHyderabadIndia
| | - Trang Hoa Nguyen
- The Hospital for Tropical DiseasesOxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Shamsun Nahar
- International Center for Diarrhoeal Disease Research BangladeshDhakaBangladesh
| | - Nishat Sarker
- International Center for Diarrhoeal Disease Research BangladeshDhakaBangladesh
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseCambridge UniversityCambridgeUK
| | - Dieter Bulach
- The University of Melbourne and The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Niyaz Ahmed
- Department of Biotechnology and BioinformaticsUniversity of HyderabadHyderabadIndia,International Center for Diarrhoeal Disease Research BangladeshDhakaBangladesh
| | - Motiur Rahman
- The Hospital for Tropical DiseasesOxford University Clinical Research UnitHo Chi Minh CityVietnam,Centre for Tropical Medicine and Global HealthNuffield Department of Clinical MedicineOxford UniversityOxfordUK
| |
Collapse
|
94
|
Muñoz-Ramirez ZY, Pascoe B, Mendez-Tenorio A, Mourkas E, Sandoval-Motta S, Perez-Perez G, Morgan DR, Dominguez RL, Ortiz-Princz D, Cavazza ME, Rocha G, Queiroz DMM, Catalano M, Palma GZD, Goldman CG, Venegas A, Alarcon T, Oleastro M, Vale FF, Goodman KJ, Torres RC, Berthenet E, Hitchings MD, Blaser MJ, Sheppard SK, Thorell K, Torres J. A 500-year tale of co-evolution, adaptation, and virulence: Helicobacter pylori in the Americas. THE ISME JOURNAL 2021; 15:78-92. [PMID: 32879462 PMCID: PMC7853065 DOI: 10.1038/s41396-020-00758-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.
Collapse
Affiliation(s)
- Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
- Laboratorio de Bioinformática y Biotecnología Genómica, Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Ben Pascoe
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Alfonso Mendez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Evangelos Mourkas
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Santiago Sandoval-Motta
- Instituto Nacional de Medicina Genomica, Ciudad de México, México
- Consejo Nacional de Ciencia y Tecnologia, Catedras CONACYT, Ciudad de México, México
| | | | - Douglas R Morgan
- UAB Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham, Birmingham, UK
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, TN, USA
| | - Ricardo Leonel Dominguez
- Western Honduras Gastric Cancer Prevention Initiative Hospital de Occidente Santa Rosa de Copan, Santa Rosa de Copan, Honduras
| | - Diana Ortiz-Princz
- Laboratorio de Microbiología Molecular, Servicio Instituto de Biomedicina MPPS-UCV, Caracas, Venezuela
| | - Maria Eugenia Cavazza
- Laboratorio de Microbiología Molecular, Servicio Instituto de Biomedicina MPPS-UCV, Caracas, Venezuela
| | - Gifone Rocha
- Faculdade de Medicina da UFMG, Belo Horizonte, Brazil
| | | | - Mariana Catalano
- Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPAM, UBA-CONICET), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Rosa de Copan, Honduras
| | - Gerardo Zerbetto De Palma
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", IQUIFIB UBA-CONICET, Santa Rosa de Copan, Honduras
| | - Cinthia G Goldman
- Facultad de Farmacia y Bioquímica, Cátedra de Física, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQB, Buenos Aires, Argentina
| | - Alejandro Venegas
- Laboratorio de Patogénesis Microbiana, Centro de Investigación Biomédica, Universidad Diego Portales, Ejército, 141, Santiago, Chile
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Monica Oleastro
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Karen J Goodman
- Division of Gastroenterology, Centre of Excellence for Gastrointestinal Inflammation & Immunity Research, University of Alberta, Edmonton, AB, Canada
| | - Roberto C Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Elvire Berthenet
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Kaisa Thorell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
95
|
Abstract
Since the description of Helicobacter pylori (HP) as the most common cause of gastritis and its neoplastic complications, numerous articles have been written about the epidemiology, clinical features, diagnostic methods, histopathology, pathogenesis, molecular biology and treatment of this infection. This review focuses on those aspects of the infection that challenge the universality of the medical implications through the lens of evolutionary science applied to medicine. The divergent epidemiological and clinical outcomes observed in different populations and the possible beneficial aspects of the infection are discussed. Also reviewed are Correa's seminal contributions to our understanding of gastric cancer in particular and postinflammatory tumours in general, and the renewed interest in intestinal metaplasia and its clinical implications.
Collapse
Affiliation(s)
- Jose Jessurun
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
96
|
Gutiérrez-Escobar AJ, Velapatiño B, Borda V, Rabkin CS, Tarazona-Santos E, Cabrera L, Cok J, Hooper CC, Jahuira-Arias H, Herrera P, Noureen M, Wang D, Romero-Gallo J, Tran B, Peek RM, Berg DE, Gilman RH, Camargo MC. Identification of New Helicobacter pylori Subpopulations in Native Americans and Mestizos From Peru. Front Microbiol 2020; 11:601839. [PMID: 33381095 PMCID: PMC7767971 DOI: 10.3389/fmicb.2020.601839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 01/01/2023] Open
Abstract
Region-specific Helicobacter pylori subpopulations have been identified. It is proposed that the hspAmerind subpopulation is being displaced from the Americans by an hpEurope population following the conquest. Our study aimed to describe the genomes and methylomes of H. pylori isolates from distinct Peruvian communities: 23 strains collected from three groups of Native Americans (Asháninkas [ASHA, n = 9], Shimaas [SHIM, n = 5] from Amazonas, and Punos from the Andean highlands [PUNO, n = 9]) and 9 modern mestizos from Lima (LIM). Closed genomes and DNA modification calls were obtained using SMRT/PacBio sequencing. We performed evolutionary analyses and evaluated genomic/epigenomic differences among strain groups. We also evaluated human genome-wide data from 74 individuals from the selected Native communities (including the 23 H. pylori strains donors) to compare host and bacterial backgrounds. There were varying degrees of hspAmerind ancestry in all strains, ranging from 7% in LIM to 99% in SHIM. We identified three H. pylori subpopulations corresponding to each of the Native groups and a novel hspEuropePeru which evolved in the modern mestizos. The divergence of the indigenous H. pylori strains recapitulated the genetic structure of Native Americans. Phylogenetic profiling showed that Orthogroups in the indigenous strains seem to have evolved differentially toward epigenomic regulation and chromosome maintenance, whereas OGs in the modern mestizo (LIM) seem to have evolved toward virulence and adherence. The prevalence of cagA+/vacA s1i1m1 genotype was similar across populations (p = 0.32): 89% in ASHA, 67% in PUNO, 56% in LIM and 40% in SHIM. Both cagA and vacA sequences showed that LIM strains were genetically differentiated (p < 0.001) as compared to indigenous strains. We identified 642 R-M systems with 39% of the associated genes located in the core genome. We found 692 methylation motifs, including 254 population-specific sequences not previously described. In Peru, hspAmerind is not extinct, with traces found even in a heavily admixed mestizo population. Notably, our study identified three new hspAmerind subpopulations, one per Native group; and a new subpopulation among mestizos that we named hspEuropePeru. This subpopulation seems to have more virulence-related elements than hspAmerind. Purifying selection driven by variable host immune response may have shaped the evolution of Peruvian subpopulations, potentially impacting disease outcomes.
Collapse
Affiliation(s)
| | - Billie Velapatiño
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Victor Borda
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC/MCTIC), Petrópolis, Brazil
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Eduardo Tarazona-Santos
- Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Jaime Cok
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Mehwish Noureen
- National Institute of Genetics, Mishima, Japan.,Department of Genetics, Graduate School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bao Tran
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Richard M Peek
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas E Berg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
97
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
98
|
Idris AB, Hassan HG, Ali MAS, Eltaher SM, Idris LB, Altayb HN, Abass AM, Ibrahim MMA, Ibrahim EAM, Hassan MA. Molecular Phylogenetic Analysis of 16S rRNA Sequences Identified Two Lineages of Helicobacter pylori Strains Detected from Different Regions in Sudan Suggestive of Differential Evolution. Int J Microbiol 2020; 2020:8825718. [PMID: 33178282 PMCID: PMC7609147 DOI: 10.1155/2020/8825718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/30/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is ubiquitous among humans and one of the best-studied examples of an intimate association between bacteria and humans. Phylogeny and Phylogeography of H. pylori strains are known to mirror human migration patterns and reflect significant demographic events in human prehistory. In this study, we analyzed the molecular evolution of H. pylori strains detected from different tribes and regions of Sudan using 16S rRNA gene and the phylogenetic approach. Materials and methods. A total of 75 gastric biopsies were taken from patients who had been referred for endoscopy from different regions of Sudan. The DNA extraction was performed by using the guanidine chloride method. Two sets of primers (universal and specific for H. pylori) were used to amplify the 16S ribosomal gene. Sanger sequencing was applied, and the resulted sequences were matched with the sequences of the National Center for Biotechnology Information (NCBI) nucleotide database. The evolutionary aspects were analyzed using MEGA7 software. RESULTS Molecular detection of H. pylori has shown that 28 (37.33%) of the patients were positive for H. pylori and no significant differences were found in sociodemographic characteristics, endoscopy series, and H. pylori infection. Nucleotide variations were observed at five nucleotide positions (positions 219, 305, 578, 741, and 763-764), and one insertion mutation (750_InsC_751) was present in sixty-seven percent (7/12) of our strains. These six mutations were detected in regions of the 16S rRNA not closely associated with either tetracycline or tRNA binding sites; 66.67% of them were located in the central domain of 16S rRNA. The phylogenetic analysis of 16S rRNA sequences identified two lineages of H. pylori strains detected from different regions in Sudan. The presence of Sudanese H. pylori strains resembling Hungarian H. pylori strains could reflect the migration of Hungarian people to Sudan or vice versa. CONCLUSION This finding emphasizes the significance of studying the phylogeny of H. pylori strains as a discriminatory tool to mirror human migration patterns. In addition, the 16S rRNA gene amplification method was found useful for bacterial identification and phylogeny.
Collapse
Affiliation(s)
- Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Hadeel Gassim Hassan
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Maryam Atif Salaheldin Ali
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Sulafa Mohamed Eltaher
- The Academy of Health Sciences, The Republic of Sudan Federal Ministry of Health, Khartoum, Sudan
| | - Leena Babiker Idris
- Faculty of Medicine, The International University of Africa, Khartoum, Sudan
| | - Hisham N. Altayb
- Department of Biochemistry, College of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - El-Amin Mohamed Ibrahim
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Hassan
- Department of Bioinformatics, Africa City of Technology, Khartoum, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
99
|
McDonald SK, Matisoo-Smith EA, Buckley HR, Walter RK, Aung HL, Collins CJ, Cook GM, Kardailsky O, Krause J, Knapp M. 'TB or not TB': the conundrum of pre-European contact tuberculosis in the Pacific. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190583. [PMID: 33012234 DOI: 10.1098/rstb.2019.0583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a major global health threat, infecting one-third of the world's population. Despite this prominence, the age, origin and spread of the disease have been topics of contentious debate. Molecular studies suggest that Mycobacterium tuberculosis 'sensu stricto', the most common strain of TB infecting humans today, originated in Africa and from there spread into Europe and Asia. The M. tuberculosis strains most commonly found across the Pacific and the Americas today are most closely related to European strains, supporting a hypothesis that the disease only reached these regions relatively recently via European sailors or settlers. However, this hypothesis is inconsistent with palaeopathological evidence of TB-like lesions in human remains from across the Pacific that predate European contact. Similarly, genetic evidence from pre-European South American mummies challenges the notion of a European introduction of the disease into the Pacific. Here, we review the complex evidence for the age and origin of TB in the Pacific, and discuss key gaps in our knowledge and how these may be addressed. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- S K McDonald
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.,Archaeology Programme, University of Otago, Dunedin 9016, New Zealand
| | - E A Matisoo-Smith
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - H R Buckley
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - R K Walter
- Archaeology Programme, University of Otago, Dunedin 9016, New Zealand.,School of Social Science, University of Queensland, St Lucia, Queensland 4072, Australia
| | - H L Aung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - C J Collins
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - G M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - O Kardailsky
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - J Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - M Knapp
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
100
|
The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 2020; 17:618-634. [PMID: 32467580 DOI: 10.1038/s41575-020-0296-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
The global burden of hepatitis B virus (HBV) is enormous, with 257 million persons chronically infected, resulting in more than 880,000 deaths per year worldwide. HBV exists as nine different genotypes, which differ in disease progression, natural history and response to therapy. HBV is an ancient virus, with the latest reports greatly expanding the host range of the Hepadnaviridae (to include fish and reptiles) and casting new light on the origins and evolution of this viral family. Although there is an effective preventive vaccine, there is no cure for chronic hepatitis B, largely owing to the persistence of a viral minichromosome that is not targeted by current therapies. HBV persistence is also facilitated through aberrant host immune responses, possibly due to the diverse intra-host viral populations that can respond to host-mounted and therapeutic selection pressures. This Review summarizes current knowledge on the influence of HBV diversity on disease progression and treatment response and the potential effect on new HBV therapies in the pipeline. The mechanisms by which HBV diversity can occur both within the individual host and at a population level are also discussed.
Collapse
|