51
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
52
|
Kristiansen CK, Chen A, Høyland LE, Ziegler M, Sullivan GJ, Bindoff LA, Liang KX. Comparing the mitochondrial signatures in ESCs and iPSCs and their neural derivations. Cell Cycle 2022; 21:2206-2221. [PMID: 35815665 DOI: 10.1080/15384101.2022.2092185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have distinct origins: ESCs are derived from pre-implanted embryos while iPSCs are reprogrammed somatic cells. Both have their own characteristics and lineage specificity, and both are valuable tools for studying human neurological development and disease. Thus far, few studies have analyzed how differences between stem cell types influence mitochondrial function and mitochondrial DNA (mtDNA) homeostasis during differentiation into neural and glial lineages. In this study, we compared mitochondrial function and mtDNA replication in human ESCs and iPSCs at three different stages - pluripotent, neural progenitor and astrocyte. We found that while ESCs and iPSCs have a similar mitochondrial signature, neural and astrocyte derivations manifested differences. At the neural stem cell (NSC) stage, iPSC-NSCs displayed decreased ATP production and a reduction in mitochondrial respiratory chain (MRC) complex IV expression compared to ESC-NSCs. IPSC-astrocytes showed increased mitochondrial activity including elevated ATP production, MRC complex IV expression, mtDNA copy number and mitochondrial biogenesis relative to those derived from ESCs. These findings show that while ESCs and iPSCs are similar at the pluripotent stage, differences in mitochondrial function may develop during differentiation and must be taken into account when extrapolating results from different cell types.Abbreviation: BSA: Bovine serum albumin; DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; DCX: Doublecortin; EAAT-1: Excitatory amino acid transporter 1; ESCs: Embryonic stem cells; GFAP: Glial fibrillary acidic protein; GS: Glutamine synthetase; iPSCs: Induced pluripotent stem cells; LC3B: Microtubule-associated protein 1 light chain 3β; LC-MS: Liquid chromatography-mass spectrometry; mito-ROS: Mitochondrial ROS; MMP: Mitochondrial membrane potential; MRC: Mitochondrial respiratory chain; mtDNA: Mitochondrial DNA; MTDR: MitoTracker Deep Red; MTG: MitoTracker Green; NSCs: Neural stem cells; PDL: Poly-D-lysine; PFA: Paraformaldehyde; PGC-1α: PPAR-γ coactivator-1 alpha; PPAR-γ: Peroxisome proliferator-activated receptor-gamma; p-SIRT1: Phosphorylated sirtuin 1; p-ULK1: Phosphorylated unc-51 like autophagy activating kinase 1; qPCR: Quantitative PCR; RT: Room temperature; RT-qPCR: Quantitative reverse transcription PCR; SEM: Standard error of the mean; TFAM: Mitochondrial transcription factor A; TMRE: Tetramethylrhodamine ethyl ester; TOMM20: Translocase of outer mitochondrial membrane 20.
Collapse
Affiliation(s)
- Cecilie Katrin Kristiansen
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,b Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Anbin Chen
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | | | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kristina Xiao Liang
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
53
|
Gaudeaux P, Moirangthem RD, Bauquet A, Simons L, Joshi A, Cavazzana M, Nègre O, Soheili S, André I. T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:956919. [PMID: 35874778 PMCID: PMC9300856 DOI: 10.3389/fimmu.2022.956919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.
Collapse
Affiliation(s)
- Pierre Gaudeaux
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Smart Immune, Paris, France
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Laura Simons
- Smart Immune, Paris, France
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Akshay Joshi
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Marina Cavazzana
- Smart Immune, Paris, France
- Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Paris Cité, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | | | | | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
54
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
55
|
Aberrant NOVA1 function disrupts alternative splicing in early stages of amyotrophic lateral sclerosis. Acta Neuropathol 2022; 144:413-435. [PMID: 35778567 PMCID: PMC9381448 DOI: 10.1007/s00401-022-02450-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by aberrant alternative splicing (AS). Nuclear loss and cytoplasmic accumulation of the splicing factor TDP-43 in motor neurons (MN) are hallmarks of ALS at late stages of the disease. However, it is unknown if altered AS is present before TDP-43 pathology occurs. Here, we investigate altered AS and its origins in early stages of ALS using human induced pluripotent stem cell-derived motor neurons (MNs) from sporadic and familial ALS patients. We find high levels of the RNA-binding proteins NOVA1, NOVA2, and RBFOX2 in the insoluble protein fractions and observe that AS events in ALS-associated MNs are enriched for binding sites of these proteins. Our study points to an early disrupted function of NOVA1 that drives AS changes in a complex fashion, including events caused by a consistent loss of NOVA1 function. NOVA1 exhibits increased cytoplasmic protein levels in early stage MNs without TDP-43 pathology in ALS postmortem tissue. As nuclear TDP-43 protein level depletes, NOVA1 is reduced. Potential indications for a reduction of NOVA1 also came from mice over-expressing TDP-43 lacking its nuclear localization signal and iPSC-MN stressed with puromycin. This study highlights that additional RBP-RNA perturbations in ALS occur in parallel to TDP-43.
Collapse
|
56
|
Morelli KH, Jin W, Shathe S, Madrigal AA, Jones KL, Schwartz JL, Bridges T, Mueller JR, Shankar A, Chaim IA, Day JW, Yeo GW. MECP2-related pathways are dysregulated in a cortical organoid model of myotonic dystrophy. Sci Transl Med 2022; 14:eabn2375. [PMID: 35767654 PMCID: PMC9645119 DOI: 10.1126/scitranslmed.abn2375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem, autosomal-dominant inherited disorder caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene. Despite its prominence as the most common adult-onset muscular dystrophy, patients with congenital to juvenile-onset forms of DM1 can present with debilitating neurocognitive symptoms along the autism spectrum, characteristic of possible in utero cortical defects. However, the molecular mechanism by which CTG MREs lead to these developmental central nervous system (CNS) manifestations is unknown. Here, we showed that CUG foci found early in the maturation of three-dimensional (3D) cortical organoids from DM1 patient-derived induced pluripotent stem cells (iPSCs) cause hyperphosphorylation of CUGBP Elav-like family member 2 (CELF2) protein. Integrative single-cell RNA sequencing and enhanced cross-linking and immunoprecipitation (eCLIP) analysis revealed that reduced CELF2 protein-RNA substrate interactions results in misregulation of genes critical for excitatory synaptic signaling in glutamatergic neurons, including key components of the methyl-CpG binding protein 2 (MECP2) pathway. Comparisons to MECP2(y/-) cortical organoids revealed convergent molecular and cellular defects such as glutamate toxicity and neuronal loss. Our findings provide evidence suggesting that early-onset DM1 might involve neurodevelopmental disorder-associated pathways and identify N-methyl-d-aspartic acid (NMDA) antagonists as potential treatment avenues for neuronal defects in DM1.
Collapse
Affiliation(s)
- Kathryn H. Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Shashank Shathe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Assael A. Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Krysten L. Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Joshua L. Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Tristan Bridges
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Isaac A. Chaim
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - John W. Day
- Stanford University School of Medicine, Palo Alto, CA 94375, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
57
|
Lezmi E, Benvenisty N. The Tumorigenic Potential of Human Pluripotent Stem Cells. Stem Cells Transl Med 2022; 11:791-796. [PMID: 35679163 PMCID: PMC9397652 DOI: 10.1093/stcltm/szac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are currently evaluated for clinical applications due to their proliferation and differentiation capacities, raising the need to both assess and enhance, the safety of hPSC-based treatments. Distinct molecular features contribute to the tumorigenicity of hPSCs, manifested in the formation of teratoma tumors upon transplantation in vivo. Prolonged in vitro culturing of hPSCs can enhance selection for specific genetic aberrations, either at the chromosome or gene level. Some of these aberrations are tightly linked to human tumor pathology and increase the tumorigenic aggressiveness of the abnormal cells. In this perspective, we describe major tumor-associated risk factors entailed in hPSC-based therapy, and present precautionary and safety measures relevant for the development and application of such therapies.
Collapse
Affiliation(s)
- Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| |
Collapse
|
58
|
Bose A, Petsko GA, Studer L. Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends Neurosci 2022; 45:608-620. [PMID: 35667922 PMCID: PMC9576003 DOI: 10.1016/j.tins.2022.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. Among its pathologies, progressive loss of dopaminergic (DA) neurons in the substantia nigra is characteristic and contributes to many of the most severe symptoms of PD. Recent advances in induced pluripotent stem cell (iPSC) technology have made it possible to generate patient-derived DA neuronal cell culture and organoid models of PD. These models have contributed to understanding disease mechanisms and the identification of novel targets and therapeutic candidates. Still needed are better ways to model the age-related aspects of PD, as well as a deeper understanding of the interactions among disease-modifying genes and between genetic and environmental contributions to the etiology and progression of PD.
Collapse
Affiliation(s)
- Anindita Bose
- Ann Romney Institute of Neurological Diseases, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA; The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
| | - Gregory A Petsko
- Ann Romney Institute of Neurological Diseases, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA; The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| |
Collapse
|
59
|
Abstract
PURPOSE OF THE REVIEW Despite the significant progress in the development of disease-modifying treatments for multiple sclerosis (MS), repair of existing damage is still poorly addressed. Current research focuses on stem cell-based therapies as a suitable alternative or complement to current drug therapies. RECENT FINDINGS Myelin damage is a hallmark of multiple sclerosis, and novel approaches leading to remyelination represent a promising tool to prevent neurodegeneration of the underlying axon. With increasing evidence of diminishing remyelination capacity of the MS brain with ageing and disease progression, exogenous cell transplantation is a promising therapeutic approach for restoration of oligodendrocyte precursor cell pool reserve and myelin regeneration. SUMMARY The present review summarizes recent developments of remyelinating therapies in multiple sclerosis, focusing on exogenous cell-based strategies and discussing related scientific, practical, and ethical concerns.
Collapse
|
60
|
Long P, Shi Y, Sun F, Wei Y, Wu B, Li Q, Jie Q, Ma Y. Establishment of a non‐integrated induced pluripotent stem cell line derived from human chorionic villi cells. J Clin Lab Anal 2022; 36:e24464. [PMID: 35527669 PMCID: PMC9169189 DOI: 10.1002/jcla.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Few studies have investigated the generation of induced pluripotent stem cells (iPSCs) derived from human primary chorionic villi (CV) cells. The present study aimed to explore an optimal electroporation (EP) condition for generating non‐integrated iPSCs from CV cells (CV‐iPSCs). Methods The EGFP plasmid was transfected into CV cells under different EP conditions to evaluate cell adherence and the rate of EGFP positive cells. Subsequently, CV cells were transfected with the pEP4‐E02S‐ET2K and pCEP4‐miR‐302–367 plasmids under optimal EP conditions. Finally, CV‐iPSC pluripotency, karyotype analysis, and differentiation ability were investigated. Results Following EP for 48 h under different conditions, different confluency, and transfection efficiency were observed in CV cells. Higher cell density was observed in CV cells exposed to 200 V for 100 s, while higher transfection efficiency was obtained in cells electroporated at a pulse of 300 V for 300 s. To generate typical primitive iPSCs, CV cells were transfected with pEP4‐E02S‐ET2K and pCEP4‐miR‐302–367 plasmids using EP and were then cultured in induction medium for 20 days under selected conditions. Subsequently, monoclonal iPSCs were isolated and were evaluated pluripotency with AP positive staining, the expression of OCT4, SOX2, and NANOG in vitro and the formation of three germ layer teratomas in vivo. Conclusion CV‐iPSCs were successfully established under the conditions of 100 μl shock cup and EP pulse of 200 V for 300 s for two times. This may provide a novel strategy for investigating the pathogenesis of several diseases and gene therapy.
Collapse
Affiliation(s)
- Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Guizhou Qiannan People's Hospital Guizhou China
| | - Yuechuan Shi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Hainan Medical University Haikou Hainan China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Department of Obstetrics and Gynecology of Nanfang Hospital Southern Medical University Guangzhou China
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Hainan Medical University Haikou Hainan China
| |
Collapse
|
61
|
Lanfer J, Kaindl J, Krumm L, Gonzalez Acera M, Neurath M, Regensburger M, Krach F, Winner B. Efficient and Easy Conversion of Human iPSCs into Functional Induced Microglia-like Cells. Int J Mol Sci 2022; 23:4526. [PMID: 35562917 PMCID: PMC9105476 DOI: 10.3390/ijms23094526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Current protocols converting human induced pluripotent stem cells (iPSCs) into induced microglia-like cells (iMGL) are either dependent on overexpression of transcription factors or require substantial experience in stem-cell technologies. Here, we developed an easy-to-use two-step protocol to convert iPSCs into functional iMGL via: (1) highly efficient differentiation of hematopoietic progenitor cells (HPCs) from iPSCs, and (2) optimized maturation of HPCs to iMGL. A sequential harvesting approach led to an increased HPC yield. The protocol implemented a freezing step, thus allowing HPC biobanking and flexible timing of differentiation into iMGL. Our iMGL responded adequately to the inflammatory stimuli LPS, and iMGL RNAseq analysis matched those of other frequently used protocols. Comparing three different coating modalities, we increased the iMGL yield by culturing on uncoated glass surfaces, thereby retaining differentiation efficiency and functional hallmarks of iMGL. In summary, we provide a high-quality, easy-to-use protocol, rendering generation and functional studies on iMGL an accessible lab resource.
Collapse
Affiliation(s)
- Jonas Lanfer
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.L.); (J.K.); (L.K.); (M.R.); (F.K.)
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.L.); (J.K.); (L.K.); (M.R.); (F.K.)
| | - Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.L.); (J.K.); (L.K.); (M.R.); (F.K.)
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.A.); (M.N.)
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.A.); (M.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.L.); (J.K.); (L.K.); (M.R.); (F.K.)
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.L.); (J.K.); (L.K.); (M.R.); (F.K.)
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.L.); (J.K.); (L.K.); (M.R.); (F.K.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
62
|
Stem Cell Theory of Cancer: Implications for Drug Resistance and Chemosensitivity in Cancer Care. Cancers (Basel) 2022; 14:cancers14061548. [PMID: 35326699 PMCID: PMC8946169 DOI: 10.3390/cancers14061548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Science and history teach us that stemness properties pave all drug resistance pathways. Evidence and experience inform us that stemness origin and nature etch all cancer hallmarks. A stem cell origin of drug resistance encompasses heterogeneity and dormancy, embraces ABC transporters and DNA repairs, and explicates chemotherapy and chronotherapy. It alludes to a unified theory of cancer and suggests that cancer is a stem cell disease—uniting chemoresistance with chemosensitivity, connecting progenitor cells with progeny cells, and linking multicellularity with the microenvironment. Importantly, it clarifies genetic content vs. cellular context, delineates drug vs. therapy development, and enlightens precision medicine vs. integrated medicine and targeted therapy vs. multimodal therapy in cancer care. Abstract When it concerns cancer care and cancer therapy, drug resistance is more than an obstacle to successful treatment; it is a major cause of frustration in our attempts to optimize drug development versus therapy development. Importantly, overcoming the challenges of drug resistance may provide invaluable clues about the origin and nature of cancer. From this perspective, we discuss how chemoresistance and chemosensitivity in cancer therapy could be directly linked to the stem cell origin of cancer. A stem cell theory of cancer stipulates that both normal stem cells and cancer stem cells are similarly endowed with robust efflux pumps, potent antiapoptotic mechanisms, redundant DNA repair systems, and abundant antioxidation reserves. Cancer stem cells, like their normal stem cell counterparts, are equipped with the same drug resistance phenotypes (e.g., ABC transporters, anti-apoptotic pathways, and DNA repair mechanisms). Drug resistance, like other cancer hallmarks (e.g., tumor heterogeneity and cancer dormancy), could be intrinsically ingrained and innately embedded within malignancy. We elaborate that cellular context and the microenvironment may attenuate the effects of cancer treatments. We examine the role of circadian rhythms and the value of chronotherapy to maximize efficacy and minimize toxicity. We propose that a stem cell theory of drug resistance and drug sensitivity will ultimately empower us to enhance drug development and enable us to improve therapy development in patient care.
Collapse
|
63
|
Poetsch MS, Strano A, Guan K. Human induced pluripotent stem cells: From cell origin, genomic stability and epigenetic memory to translational medicine. Stem Cells 2022; 40:546-555. [PMID: 35291013 PMCID: PMC9216482 DOI: 10.1093/stmcls/sxac020] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/06/2022] [Indexed: 11/14/2022]
Abstract
The potential of human induced pluripotent stem cells (iPSCs) to self-renew indefinitely and to differentiate virtually into any cell type in unlimited quantities makes them attractive for in-vitro disease modeling, drug screening, personalized medicine, and regenerative therapies. As the genome of iPSCs thoroughly reproduces that of the somatic cells from which they are derived, they may possess genetic abnormalities, which would seriously compromise their utility and safety. Genetic aberrations could be present in donor somatic cells and then transferred during iPSC generation, or they could occur as de novo mutations during reprogramming or prolonged cell culture. Therefore, to warrant safety of human iPSCs for clinical applications, analysis of genetic integrity, particularly during iPSC generation and differentiation, should be carried out on a regular basis. On the other hand, reprogramming of somatic cells to iPSCs requires profound modifications in the epigenetic landscape. Changes in chromatin structure by DNA methylations and histone tail modifications aim to reset the gene expression pattern of somatic cells to facilitate and establish self-renewal and pluripotency. However, residual epigenetic memory influences the iPSC phenotype, which may affect their application in disease therapeutics. The present review discusses the somatic cell origin, genetic stability, and epigenetic memory of iPSCs and their impact on basic and translational research.
Collapse
Affiliation(s)
- Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Anna Strano
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
- Corresponding author: Kaomei Guan, Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany. Tel: +49 351 458 6246; Fax: +49 351 458 6315;
| |
Collapse
|
64
|
Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity Risk of iPSCs in vivo: Nip it in the Bud. PRECISION CLINICAL MEDICINE 2022; 5:pbac004. [PMID: 35692443 PMCID: PMC9026204 DOI: 10.1093/pcmedi/pbac004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
In 2006, Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4, Sox2, Klf44, and c-Myc. Since then, the future clinical application of somatic cell reprogramming technology has become an attractive research topic in the field of regenerative medicine. Of note, considerable interest has been placed in circumventing ethical issues linked to embryonic stem cell research. However, tumorigenicity, immunogenicity, and heterogeneity may hamper attempts to deploy this technology therapeutically. This review highlights the progress aimed at reducing induced pluripotent stem cells tumorigenicity risk and how to assess the safety of induced pluripotent stem cells cell therapy products.
Collapse
Affiliation(s)
- Chaoliang Zhong
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Miao Liu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen 518032, Guangdong, China
| | - Haiying Zhu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
65
|
Edwards N, McCaughey-Chapman AJ, Combrinck C, Geiger JP, Connor B. Small Molecules Enhance Reprogramming of Adult Human Dermal Fibroblasts to Dorsal Forebrain Precursor Cells. Stem Cells Dev 2021; 31:78-89. [PMID: 34963331 DOI: 10.1089/scd.2021.0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of human cell-based platforms for disease modelling, drug discovery and regenerative therapy rely on robust and practical methods to derive high yields of relevant neuronal subtypes. Direct reprogramming strategies have sought to provide a means of deriving human neurons that mitigate the low conversion efficiencies and protracted timing of human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived neuron specification in vitro. However, few studies have demonstrated the direct conversion of adult human fibroblasts into multipotent neural precursors with the capacity to differentiate into cortical neurons with high efficiency. In this study, we demonstrate a direct reprogramming strategy using chemically modified mRNA (cmRNA) encoding the pro-neural genes SOX2 and PAX6 coupled with small molecule supplementation to enhance the derivation of human induced dorsal forebrain precursors directly from adult human fibroblasts (aHDFs). Through transcriptional and phenotypic analysis of lineage-specific precursor and cortical neuron markers, we have demonstrated that this combined strategy significantly enhances the direct derivation of dorsal forebrain precursors from aHDFs which, following timely exposure to defined differentiation media gives rise to high yields of functional glutamatergic neurons. We propose this combined strategy provides a highly tractable and efficient human cell-based platform for disease modelling and drug discovery.
Collapse
Affiliation(s)
- Nicole Edwards
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Pharmacology & Clinical Pharmacology, Auckland, New Zealand;
| | - Amy Jane McCaughey-Chapman
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Pharmacology & Clinical Pharmacology, Auckland, Auckland, New Zealand;
| | - Catharina Combrinck
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Pharmacology & Clinical Pharmacology, Auckland, New Zealand;
| | | | - Bronwen Connor
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Pharmacology, Private Bag 92019, Grafton, Auckland, NA, New Zealand, 1142.,University of Auckland;
| |
Collapse
|
66
|
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells. Protein Cell 2021; 12:947-964. [PMID: 34845589 PMCID: PMC8674391 DOI: 10.1007/s13238-021-00865-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
Collapse
|
67
|
Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021; 17:2107-2119. [PMID: 34365591 PMCID: PMC8349465 DOI: 10.1007/s12015-021-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over 190 million people to date, causing a global pandemic. SARS-CoV-2 relies on binding of its spike glycoprotein to angiotensin-converting enzyme 2 (ACE2) for infection. In addition to fever, cough, and shortness of breath, severe cases of SARS-CoV-2 infection may result in the rapid overproduction of pro-inflammatory cytokines. This overactive immune response is known as a cytokine storm, which leads to several serious clinical manifestations such as acute respiratory distress syndrome and myocardial injury. Cardiovascular disorders such as acute coronary syndrome (ACS) and heart failure not only enhance disease progression at the onset of infection, but also arise in hospitalized patients with COVID-19. Tissue-specific differentiated cells and organoids derived from human pluripotent stem cells (hPSCs) serve as an excellent model to address how SARS-CoV-2 damages the lungs and the heart. In this review, we summarize the molecular basis of SARS-CoV-2 infection and the current clinical perspectives of the bidirectional relationship between the cardiovascular system and viral progression. Furthermore, we also address the utility of hPSCs as a dynamic model for SARS-CoV-2 research and clinical translation.
Collapse
Affiliation(s)
- Kyle Ernzen
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark E Peeples
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccine and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
68
|
Keller A, Spits C. The Impact of Acquired Genetic Abnormalities on the Clinical Translation of Human Pluripotent Stem Cells. Cells 2021; 10:cells10113246. [PMID: 34831467 PMCID: PMC8625075 DOI: 10.3390/cells10113246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells’ clinical potential.
Collapse
|
69
|
Anand H, Nulty J, Dhawan A. Cell therapy in congenital inherited hepatic disorders. Best Pract Res Clin Gastroenterol 2021; 56-57:101772. [PMID: 35331403 DOI: 10.1016/j.bpg.2021.101772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/31/2023]
Abstract
Congenital inherited hepatic disorders (CIHDs) are a set of diverse and heterogeneous group of genetic disorders leading to a defect in an enzyme or transporter. Most of these disorders are currently treated by liver transplantation as standard of care. Improved surgical techniques and post-operative care has led to a wider availability and success of liver transplantation program worldwide. However liver transplantation has its own limitations due to invasive surgery and lifelong use of immunosuppressive agents. Our experience from auxiliary liver transplantation (where right or the left lobe of the patient liver is replaced with a healthy liver donor) demonstrated successful treatment of the underlying defect of noncirrhotic metabolic disorder suggesting that whole liver replacement may not be necessary to achieve a change in phenotype. Large number of animal studies in human models of CIHD have shown success of hepatocyte transplantation leading to its human use. This review addresses the current state of human hepatocyte transplantation in the management of CIHDs with bottlenecks to its wider application and future perspectives.
Collapse
Affiliation(s)
- Hanish Anand
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Jessica Nulty
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Anil Dhawan
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK.
| |
Collapse
|
70
|
Nam H, Lee IH, Sa JK, Kim SS, Pyeon HJ, Lee KH, Lee K, Lee SH, Joo KM. Effects of Long-Term In Vitro Expansion on Genetic Stability and Tumor Formation Capacity of Stem Cells. Stem Cell Rev Rep 2021; 18:241-257. [PMID: 34738209 DOI: 10.1007/s12015-021-10290-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/30/2022]
Abstract
Stem cell therapeutics are emerging as novel alternative treatments for various neurodegenerative diseases based on their regenerative potentials. However, stem cell transplantation might have side effects such as tumor formation that limit their clinical applications. Especially, in vitro expansion of stem cells might provoke genetic instability and tumorigenic potential. To address this issue, we analyzed genomic alterations of adult human multipotent neural cells (ahMNCs), a type of human adult neural stem cells, after a long-term in vitro culture process (passage 15) using sensitive analysis techniques including karyotyping, array comparative genomic hybridization (aCGH), and whole exome sequencing (WES). Although karyotyping did not find any major abnormalities in chromosomal number or structure, diverse copy number variations (CNVs) and genetic mutations were detected by aCGH and WES in all five independent ahMNCs. However, the number of CNVs and genetic mutations did not increase and many of them did not persist as in vitro culture progressed. Although most observed CNVs and genetic mutations were not shared by all five ahMNCs, nonsynonymous missense mutations at MUC4 were found in three out of five long-term cultured ahMNC lines. The genetic instability did not confer in vivo tumorigenic potential to ahMNCs. Collectively, these results indicate that, although genetic instability can be induced by long-term in vitro expansion of stem cells, it is not sufficient to fully exert tumor formation capacity of stem cells. Other functional effects of such genetic instability need to be further elucidated.
Collapse
Affiliation(s)
- Hyun Nam
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Sung Soo Kim
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Hee-Jang Pyeon
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Kee Hang Lee
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Kyunghoon Lee
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Sun-Ho Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea. .,Biomedical Institute for Convergence at Sungkyunkwan University (BICS), Sungkyunkwan University, Suwon, 16419, South Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Kyeung Min Joo
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, South Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
71
|
Jones BC, Shibuya S, Durkin N, De Coppi P. Regenerative medicine for childhood gastrointestinal diseases. Best Pract Res Clin Gastroenterol 2021; 56-57:101769. [PMID: 35331401 DOI: 10.1016/j.bpg.2021.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Several paediatric gastrointestinal diseases result in life-shortening organ failure. For many of these conditions, current therapeutic options are suboptimal and may not offer a cure. Regenerative medicine is an inter-disciplinary field involving biologists, engineers, and clinicians that aims to produce cell and tissue-based therapies to overcome organ failure. Exciting advances in stem cell biology, materials science, and bioengineering bring engineered gastrointestinal cell and tissue therapies to the verge of clinical trial. In this review, we summarise the requirements for bioengineered therapies, the possible sources of the various cellular and non-cellular components, and the progress towards clinical translation of oesophageal and intestinal tissue engineering to date.
Collapse
Affiliation(s)
- Brendan C Jones
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Soichi Shibuya
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie Durkin
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
72
|
Kamimura S, Suga T, Hoki Y, Sunayama M, Imadome K, Fujita M, Nakamura M, Araki R, Abe M. Insertion/deletion and microsatellite alteration profiles in induced pluripotent stem cells. Stem Cell Reports 2021; 16:2503-2519. [PMID: 34559999 PMCID: PMC8514972 DOI: 10.1016/j.stemcr.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
We here demonstrate that microsatellite (MS) alterations are elevated in both mouse and human induced pluripotent stem cells (iPSCs), but importantly we have now identified a type of human iPSC in which these alterations are considerably reduced. We aimed in our present analyses to profile the InDels in iPSC/ntESC genomes, especially in MS regions. To detect somatic de novo mutations in particular, we generated 13 independent reprogramed stem cell lines (11 iPSC and 2 ntESC lines) from an identical parent somatic cell fraction of a C57BL/6 mouse. By using this cell set with an identical genetic background, we could comprehensively detect clone-specific alterations and, importantly, experimentally validate them. The effectiveness of employing sister clones for detecting somatic de novo mutations was thereby demonstrated. We then successfully applied this approach to human iPSCs. Our results require further careful genomic analysis but make an important inroad into solving the issue of genome abnormalities in iPSCs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yuko Hoki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Misato Sunayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Miki Nakamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
73
|
Sundaravadivelu PK, Raina K, Thool M, Ray A, Joshi JM, Kaveeshwar V, Sudhagar S, Lenka N, Thummer RP. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:151-180. [PMID: 34611861 DOI: 10.1007/5584_2021_660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.
Collapse
Affiliation(s)
- Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
74
|
de Rus Jacquet A, Tancredi JL, Lemire AL, DeSantis MC, Li WP, O'Shea EK. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson's disease. eLife 2021; 10:e73062. [PMID: 34590578 PMCID: PMC8514240 DOI: 10.7554/elife.73062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are essential cells of the central nervous system, characterized by dynamic relationships with neurons that range from functional metabolic interactions and regulation of neuronal firing activities, to the release of neurotrophic and neuroprotective factors. In Parkinson's disease (PD), dopaminergic neurons are progressively lost during the course of the disease, but the effects of PD on astrocytes and astrocyte-to-neuron communication remain largely unknown. This study focuses on the effects of the PD-related mutation LRRK2 G2019S in astrocytes generated from patient-derived induced pluripotent stem cells. We report the alteration of extracellular vesicle (EV) biogenesis in astrocytes and identify the abnormal accumulation of key PD-related proteins within multivesicular bodies (MVBs). We found that dopaminergic neurons internalize astrocyte-secreted EVs and that LRRK2 G2019S EVs are abnormally enriched in neurites and fail to provide full neurotrophic support to dopaminergic neurons. Thus, dysfunctional astrocyte-to-neuron communication via altered EV biological properties may participate in the progression of PD.
Collapse
Affiliation(s)
| | - Jenna L Tancredi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael C DeSantis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Wei-Ping Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erin K O'Shea
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
75
|
Goullée H, Taylor RL, Forrest ARR, Laing NG, Ravenscroft G, Clayton JS. Improved CRISPR/Cas9 gene editing in primary human myoblasts using low confluency cultures on Matrigel. Skelet Muscle 2021; 11:23. [PMID: 34551826 PMCID: PMC8456651 DOI: 10.1186/s13395-021-00278-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background CRISPR/Cas9 is an invaluable tool for studying cell biology and the development of molecular therapies. However, delivery of CRISPR/Cas9 components into some cell types remains a major hurdle. Primary human myoblasts are a valuable cell model for muscle studies, but are notoriously difficult to transfect. There are currently no commercial lipofection protocols tailored for primary myoblasts, and most generic guidelines simply recommend transfecting healthy cells at high confluency. This study aimed to maximize CRISPR/Cas9 transfection and editing in primary human myoblasts. Methods Since increased cell proliferation is associated with increased transfection efficiency, we investigated two factors known to influence myoblast proliferation: cell confluency, and a basement membrane matrix, Matrigel. CRISPR/Cas9 editing was performed by delivering Cas9 ribonucleoprotein complexes via lipofection into primary human myoblasts, cultured in wells with or without a Matrigel coating, at low (~ 40%) or high (~ 80%) confluency. Results Cells transfected at low confluency on Matrigel-coated wells had the highest levels of transfection, and were most effectively edited across three different target loci, achieving a maximum editing efficiency of 93.8%. On average, editing under these conditions was >4-fold higher compared to commercial recommendations (high confluency, uncoated wells). Conclusion This study presents a simple, effective and economical method of maximizing CRISPR/Cas9-mediated gene editing in primary human myoblasts. This protocol could be a valuable tool for improving the genetic manipulation of cultured human skeletal muscle cells, and potentially be adapted for use in other cell types. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00278-1.
Collapse
Affiliation(s)
- Hayley Goullée
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Rhonda L Taylor
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Alistair R R Forrest
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Joshua S Clayton
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia. .,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
76
|
Oxygen as a Master Regulator of Human Pluripotent Stem Cell Function and Metabolism. J Pers Med 2021; 11:jpm11090905. [PMID: 34575682 PMCID: PMC8466012 DOI: 10.3390/jpm11090905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer numerous possibilities in science and medicine, particularly when combined with precise genome editing methods. hiPSCs are artificially generated equivalents of human embryonic stem cells (hESCs), which possess an unlimited ability to self-renew and the potential to differentiate into any cell type of the human body. Importantly, generating patient-specific hiPSCs enables personalized drug testing or autologous cell therapy upon differentiation into a desired cell line. However, to ensure the highest standard of hiPSC-based biomedical products, their safety and reliability need to be proved. One of the key factors influencing human pluripotent stem cell (hPSC) characteristics and function is oxygen concentration in their microenvironment. In recent years, emerging data have pointed toward the beneficial effect of low oxygen pressure (hypoxia) on both hiPSCs and hESCs. In this review, we examine the state-of-the-art research on the oxygen impact on hiPSC functions and activity with an emphasis on their niche, metabolic state, reprogramming efficiency, and differentiation potential. We also discuss the similarities and differences between PSCs and cancer stem cells (CSCs) with respect to the role of oxygen in both cell types.
Collapse
|
77
|
Markmiller S, Sathe S, Server KL, Nguyen TB, Fulzele A, Cody N, Javaherian A, Broski S, Finkbeiner S, Bennett EJ, Lécuyer E, Yeo GW. Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress. Cell Rep 2021; 36:109685. [PMID: 34496257 PMCID: PMC11341010 DOI: 10.1016/j.celrep.2021.109685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Persistent cytoplasmic aggregates containing RNA binding proteins (RBPs) are central to the pathogenesis of late-onset neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). These aggregates share components, molecular mechanisms, and cellular protein quality control pathways with stress-induced RNA granules (SGs). Here, we assess the impact of stress on the global mRNA localization landscape of human pluripotent stem cell-derived motor neurons (PSC-MNs) using subcellular fractionation with RNA sequencing and proteomics. Transient stress disrupts subcellular RNA and protein distributions, alters the RNA binding profile of SG- and ALS-relevant RBPs and recapitulates disease-associated molecular changes such as aberrant splicing of STMN2. Although neurotypical PSC-MNs re-establish a normal subcellular localization landscape upon recovery from stress, cells harboring ALS-linked mutations are intransigent and display a delayed-onset increase in neuronal cell death. Our results highlight subcellular molecular distributions as predictive features and underscore the utility of cellular stress as a paradigm to study ALS-relevant mechanisms.
Collapse
Affiliation(s)
- Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Kari L Server
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neal Cody
- Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Ashkan Javaherian
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sara Broski
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92039, USA.
| |
Collapse
|
78
|
Choudhury S, Surendran N, Das A. Recent advances in the induced pluripotent stem cell-based skin regeneration. Wound Repair Regen 2021; 29:697-710. [PMID: 33970525 DOI: 10.1111/wrr.12925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023]
Abstract
Skin regeneration has been a challenging clinical problem especially in cases of chronic wounds such as diabetic foot ulcers, and epidermolysis bullosa-related skin blisters. Prolonged non-healing wounds often lead to bacterial infections increasing the severity of wounds. Current treatment strategies for chronic wounds include debridement of wounds along with antibiotics, growth factors, and stem cell transplantation therapies. However, the compromised nature of autologous stem cells in patients with comorbidities such as diabetes limits the efficacy of the therapy. The discovery of induced pluripotent stem cell (iPSC) technology has immensely influenced the field of regenerative therapy. Enormous efforts have been made to develop integration-free iPSCs suitable for clinical therapies. This review focuses on recent advances in the methods and reprogramming factors for generating iPSCs along with the existing challenges such as genetic alterations, tumorigenicity, immune rejection, and regulatory hurdles for the clinical application of iPSCs. Furthermore, this review also highlights the benefits of using iPSCs for the generation of skin cells and skin disease modeling over the existing clinical therapies for skin regeneration in chronic wounds and skin diseases.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Science and Innovative Research (AcSIR), Ghaziabad, India
| | - Nidhi Surendran
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Science and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
79
|
Identification of cancer-related mutations in human pluripotent stem cells using RNA-seq analysis. Nat Protoc 2021; 16:4522-4537. [PMID: 34363070 DOI: 10.1038/s41596-021-00591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are known to acquire genetic aberrations during in vitro propagation. In addition to recurrent chromosomal aberrations, it has recently been shown that these cells also gain point mutations in cancer-related genes, predominantly in TP53. The need for routine quality control of hPSCs is critical for both basic research and clinical applications. Here we discuss the relevance of detecting mutations for various hPSCs applications, and present a detailed protocol to identify cancer-related point mutations using data from RNA sequencing, an assay commonly performed during the growth and differentiation of hPSCs. In this protocol, we describe how to process and align the sequencing data, analyze it and conservatively interpret the results in order to generate an accurate estimation of mutations in tumor-related genes. This pipeline is designed to work in high throughput and is available as a software container at https://github.com/elyadlezmi/RNA2CM . The protocol requires minimal command-line skills and can be carried out in 1-2 d.
Collapse
|
80
|
Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 2021; 23:822-833. [PMID: 34341531 PMCID: PMC8355201 DOI: 10.1038/s41556-021-00721-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Clinical management of patients with severe complications of COVID-19 has been hindered by a lack of effective drugs and a failure to capture the extensive heterogeneity of the disease with conventional methods. Here we review the emerging roles of complex organoids in the study of SARS-CoV-2 infection, modelling of COVID-19 disease pathology and in drug, antibody and vaccine development. We discuss opportunities for COVID-19 research and remaining challenges in the application of organoids.
Collapse
Affiliation(s)
- Kevin G Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
81
|
Mehmood A, Ali W, Din ZU, Song S, Sohail M, Shah W, Guo J, Guo RY, Ilahi I, Shah S, Al-Shaebi F, Zeb L, Asiamah EA, Al-Dhamin Z, Bilal H, Li B. Clustered regularly interspaced short palindromic repeats as an advanced treatment for Parkinson's disease. Brain Behav 2021; 11:e2280. [PMID: 34291612 PMCID: PMC8413717 DOI: 10.1002/brb3.2280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, genome-editing technology like clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has improved the translational gap in the treatments mediated through gene therapy. The advantages of the CRISPR system, such as, work in the living cells and tissues, candidate this technique for the employing in experiments and the therapy of central nervous system diseases. Parkinson's disease (PD) is a widespread, disabling, neurodegenerative disease induced by dopaminergic neuron loss and linked to progressive motor impairment. Pathophysiological basis knowledge of PD has modified the PD classification model and expresses in the sporadic and familial types. Analyses of the earliest genetic linkage have shown in PD the inclusion of synuclein alpha (SNCA) genomic duplication and SNCA mutations in the familial types of PD pathogenesis. This review analyzes the structure, development, and function in genome editing regulated through the CRISPR/Cas9. Also, it explains the genes associated with PD pathogenesis and the appropriate modifications to favor PD. This study follows the direction by understanding the PD linking analyses in which the CRISPR technique is applied. Finally, this study explains the limitations and future trends of CRISPR service in relation to the genome-editing process in PD patients' induced pluripotent stem cells.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Muhammad Sohail
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jiangyuan Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei, 050017, China
| | - Fadhl Al-Shaebi
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Ernest Amponsah Asiamah
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, 050017, China
| | - Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Hazrat Bilal
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| |
Collapse
|
82
|
Palombo F, Peron C, Caporali L, Iannielli A, Maresca A, Di Meo I, Fiorini C, Segnali A, Sciacca FL, Rizzo A, Levi S, Suomalainen A, Prigione A, Broccoli V, Carelli V, Tiranti V. The relevance of mitochondrial DNA variants fluctuation during reprogramming and neuronal differentiation of human iPSCs. Stem Cell Reports 2021; 16:1953-1967. [PMID: 34329598 PMCID: PMC8365099 DOI: 10.1016/j.stemcr.2021.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
The generation of inducible pluripotent stem cells (iPSCs) is a revolutionary technique allowing production of pluripotent patient-specific cell lines used for disease modeling, drug screening, and cell therapy. Integrity of nuclear DNA (nDNA) is mandatory to allow iPSCs utilization, while quality control of mitochondrial DNA (mtDNA) is rarely included in the iPSCs validation process. In this study, we performed mtDNA deep sequencing during the transition from parental fibroblasts to reprogrammed iPSC and to differentiated neuronal precursor cells (NPCs) obtained from controls and patients affected by mitochondrial disorders. At each step, mtDNA variants, including those potentially pathogenic, fluctuate between emerging and disappearing, and some having functional implications. We strongly recommend including mtDNA analysis as an unavoidable assay to obtain fully certified usable iPSCs and NPCs. mtDNA deep sequencing is mandatory in quality control of iPSCs mtDNA variants fluctuate at each step from fibroblasts/PBMC, to iPSCs and NPCs mtDNA variants greatly affect iPSC phenotype, reflecting their healthiness Results could be misinterpreted if mtDNA variants presence has not been assessed
Collapse
Affiliation(s)
- Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40139, Italy
| | - Camille Peron
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40139, Italy
| | - Angelo Iannielli
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40139, Italy
| | - Ivano Di Meo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40139, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40123, Italy
| | - Alice Segnali
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | | | - Ambra Rizzo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Sonia Levi
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Neuroscience Institute, HiLife, University of Helsinki, Helsinki 00014, Finland; HUSLab, Helsinki University Hospital, Helsinki 00014, Finland
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf 40225, Germany
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; National Research Council (CNR), Institute of Neuroscience, Milan 20132, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40139, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40123, Italy
| | - Valeria Tiranti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| |
Collapse
|
83
|
ATF5, a putative therapeutic target for the mitochondrial DNA 3243A > G mutation-related disease. Cell Death Dis 2021; 12:701. [PMID: 34262025 PMCID: PMC8280182 DOI: 10.1038/s41419-021-03993-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.
Collapse
|
84
|
Suzuki H, Sakai T. Current Concepts of Stem Cell Therapy for Chronic Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22147435. [PMID: 34299053 PMCID: PMC8308009 DOI: 10.3390/ijms22147435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in clinical trials. In addition, several more are coming down the translational pipeline. Among ongoing and completed trials are those reporting the use of mesenchymal stem cells, neural stem/progenitor cells, induced pluripotent stem cells, olfactory ensheathing cells, and Schwann cells. The advancements in stem cell technology, combined with the powerful neuroimaging modalities, can now accelerate the pathway of promising novel therapeutic strategies from bench to bedside. Various combinations of different molecular therapies have been combined with supportive scaffolds to facilitate favorable cell–material interactions. In this review, we summarized some of the most recent insights into the preclinical and clinical studies using stem cells and other supportive drugs to unlock the microenvironment in chronic SCI to treat patients with this condition. Successful future therapies will require these stem cells and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, loss of structural framework, and immunorejection.
Collapse
|
85
|
Alvarez-Palomo AB, Requena-Osete J, Delgado-Morales R, Moreno-Manzano V, Grau-Bove C, Tejera AM, Otero MJ, Barrot C, Santos-Barriopedro I, Vaquero A, Mezquita-Pla J, Moran S, Naya CH, Garcia-Martínez I, Pérez FV, Blasco MA, Esteller M, Edel MJ. A synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair, generating improved genetically stable human induced pluripotent stem cells. Stem Cells 2021; 39:866-881. [PMID: 33621399 DOI: 10.1002/stem.3358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
A key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.
Collapse
Affiliation(s)
- Ana Belén Alvarez-Palomo
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Cell Therapy Service, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Jordi Requena-Osete
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Oslo, Norway
| | - Raul Delgado-Morales
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Carme Grau-Bove
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Agueda M Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Manel Juan Otero
- Hospital Clinic, Department of Clinical Immunology, Biomedical Diagnostic Center (CDB), Villarroel, Catalonia, Spain
| | - Carme Barrot
- Forensic Genetics Laboratory, Legal Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irene Santos-Barriopedro
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Jovita Mezquita-Pla
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Sebastian Moran
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Carlos Hobeich Naya
- Congenital Coagulopathies Department, Banc de Sang i Teixits (BST), Barcelona, Spain
- Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Iris Garcia-Martínez
- Congenital Coagulopathies Department, Banc de Sang i Teixits (BST), Barcelona, Spain
- Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Francisco Vidal Pérez
- Congenital Coagulopathies Department, Banc de Sang i Teixits (BST), Barcelona, Spain
- Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Michael J Edel
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- University of Western Australia, School of Medicine and Pharmacology, Harry Perkins Research Institute, Centre for Cell Therapy and Regenerative Medicine (CCTRM), Perth, Western Australia, Australia
- Centro de Oftalmología Barraquer, Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
86
|
Zhang L, Pu K, Liu X, Bae SDW, Nguyen R, Bai S, Li Y, Qiao L. The Application of Induced Pluripotent Stem Cells Against Liver Diseases: An Update and a Review. Front Med (Lausanne) 2021; 8:644594. [PMID: 34277651 PMCID: PMC8280311 DOI: 10.3389/fmed.2021.644594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Liver diseases are a major health concern globally, and are associated with poor survival and prognosis of patients. This creates the need for patients to accept the main alternative treatment of liver transplantation to prevent progression to end-stage liver disease. Investigation of the molecular mechanisms underpinning complex liver diseases and their pathology is an emerging goal of stem cell scope. Human induced pluripotent stem cells (hiPSCs) derived from somatic cells are a promising alternative approach to the treatment of liver disease, and a prospective model for studying complex liver diseases. Here, we review hiPSC technology of cell reprogramming and differentiation, and discuss the potential application of hiPSC-derived liver cells, such as hepatocytes and cholangiocytes, in refractory liver-disease modeling and treatment, and drug screening and toxicity testing. We also consider hiPSC safety in clinical applications, based on genomic and epigenetic alterations, tumorigenicity, and immunogenicity.
Collapse
Affiliation(s)
- Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xiaojun Liu
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| | - Suyang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yi Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| |
Collapse
|
87
|
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 2021; 12:12/540/eaax9106. [PMID: 32321868 DOI: 10.1126/scitranslmed.aax9106] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Differentiation of insulin-producing pancreatic β cells from induced pluripotent stem cells (iPSCs) derived from patients with diabetes promises to provide autologous cells for diabetes cell replacement therapy. However, current approaches produce patient iPSC-derived β (SC-β) cells with poor function in vitro and in vivo. Here, we used CRISPR-Cas9 to correct a diabetes-causing pathogenic variant in Wolfram syndrome 1 (WFS1) in iPSCs derived from a patient with Wolfram syndrome (WS). After differentiation to β cells with our recent six-stage differentiation strategy, corrected WS SC-β cells performed robust dynamic insulin secretion in vitro in response to glucose and reversed preexisting streptozocin-induced diabetes after transplantation into mice. Single-cell transcriptomics showed that corrected SC-β cells displayed increased insulin and decreased expression of genes associated with endoplasmic reticulum stress. CRISPR-Cas9 correction of a diabetes-inducing gene variant thus allows for robust differentiation of autologous SC-β cells that can reverse severe diabetes in an animal model.
Collapse
Affiliation(s)
- Kristina G Maxwell
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Punn Augsornworawat
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Leonardo Velazco-Cruz
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michelle H Kim
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Rie Asada
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Shuntaro Morikawa
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
88
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
89
|
Wszoła M, Nitarska D, Cywoniuk P, Gomółka M, Klak M. Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells 2021; 10:1544. [PMID: 34207441 PMCID: PMC8234129 DOI: 10.3390/cells10061544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (β and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.
Collapse
Affiliation(s)
- Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | | | - Piotr Cywoniuk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Magdalena Gomółka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
| |
Collapse
|
90
|
Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:1954-1974. [PMID: 34100193 DOI: 10.1007/s12015-021-10200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the promising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethical and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.
Collapse
Affiliation(s)
- Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Ganeshkhind, Maharashtra, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
91
|
Asahi MG, Avaylon J, Wallsh J, Gallemore RP. Emerging biological therapies for the treatment of age-related macular degeneration. Expert Opin Emerg Drugs 2021; 26:193-207. [PMID: 34030572 DOI: 10.1080/14728214.2021.1931120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading cause of blindness in individuals over age 50 in developed countries. Current therapy for nonexudative AMD (neAMD) is aimed at modifying risk factors and vitamin supplementation to slow progression, while intravitreal anti-vascular endothelial factor (VEGF) injections are the mainstay for treatment of choroidal neovascularization in exudative AMD (eAMD). AREAS COVERED Over the past decade, promising therapies have emerged that aim to improve the current standard of care for both diseases. Clinical trials for neAMD are investigating targets in the complement cascade, vitamin A metabolism, metformin, and tetracycline, whereas clinical trials for eAMD are aiming to decrease treatment burden through novel port delivery systems, increasing drug half-life, and targeting new sites of the VEGF cascade. Stem cell and gene therapy are also being evaluated for treatment of neAMD and eAMD. EXPERT OPINION With an aging population, the need for effective, long term, low burden treatment options for AMD will be in increasingly high demand. Current investigations aim to address the shortcomings of current treatment options with breakthrough treatment approaches. Therapeutics in the pipeline hold promise for improving the treatment of AMD, and are on track for widespread use within the next decade.
Collapse
Affiliation(s)
- Masumi G Asahi
- Department of Ophthalmology, George Washington University, Washington, DC, USA
| | - Jaycob Avaylon
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Josh Wallsh
- Department of Ophthalmology, Albany Medical College, Albany, NY, USA
| | - Ron P Gallemore
- Retina Macula Institute, Torrance, CA, USA.,Jules Eye Institute, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
92
|
The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells Int 2021; 2021:5511630. [PMID: 34122554 PMCID: PMC8172295 DOI: 10.1155/2021/5511630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
An estimated 6.2 million Americans aged 65 or older are currently living with Alzheimer's disease (AD), a neurodegenerative disease that disrupts an individual's ability to function independently through the degeneration of key regions in the brain, including but not limited to the hippocampus, the prefrontal cortex, and the motor cortex. The cause of this degeneration is not known, but research has found two proteins that undergo posttranslational modifications: tau, a protein concentrated in the axons of neurons, and amyloid precursor protein (APP), a protein concentrated near the synapse. Through mechanisms that have yet to be elucidated, the accumulation of these two proteins in their abnormal aggregate forms leads to the neurodegeneration that is characteristic of AD. Until the invention of induced pluripotent stem cells (iPSCs) in 2006, the bulk of research was carried out using transgenic animal models that offered little promise in their ability to translate well from benchtop to bedside, creating a bottleneck in the development of therapeutics. However, with iPSC, patient-specific cell cultures can be utilized to create models based on human cells. These human cells have the potential to avoid issues in translatability that have plagued animal models by providing researchers with a model that closely resembles and mimics the neurons found in humans. By using human iPSC technology, researchers can create more accurate models of AD ex vivo while also focusing on regenerative medicine using iPSC in vivo. The following review focuses on the current uses of iPSC and how they have the potential to regenerate damaged neuronal tissue, in the hopes that these technologies can assist in getting through the bottleneck of AD therapeutic research.
Collapse
|
93
|
Lee AR, Park JH, Shim SH, Hong K, La H, Park KS, Lee DR. Genome stabilization by RAD51-stimulatory compound 1 enhances efficiency of somatic cell nuclear transfer-mediated reprogramming and full-term development of cloned mouse embryos. Cell Prolif 2021; 54:e13059. [PMID: 34021643 PMCID: PMC8249786 DOI: 10.1111/cpr.13059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The genetic instability and DNA damage arise during transcription factor-mediated reprogramming of somatic cells, and its efficiency may be reduced due to abnormal chromatin remodelling. The efficiency in somatic cell nuclear transfer (SCNT)-mediated reprogramming is also very low, and it is caused by development arrest of most reconstituted embryos. MATERIALS AND METHODS Whether the repair of genetic instability or double-strand breaks (DSBs) during SCNT reprogramming may play an important role in embryonic development, we observed and analysed the effect of Rad 51, a key modulator of DNA damage response (DDR) in SCNT-derived embryos. RESULTS Here, we observed that the activity of Rad 51 is lower in SCNT eggs than in conventional IVF and found a significantly lower level of DSBs in SCNT embryos during reprogramming. To address this difference, supplementation with RS-1, an activator of Rad51, during the activation of SCNT embryos can increase RAD51 expression and DSB foci and thereby increased the efficiency of SCNT reprogramming. Through subsequent single-cell RNA-seq analysis, we observed the reactivation of a large number of genes that were not expressed in SCNT-2-cell embryos by the upregulation of DDR, which may be related to overcoming the developmental block. Additionally, there may be an independent pathway involving histone demethylase that can reduce reprograming-resistance regions. CONCLUSIONS This technology can contribute to the production of comparable cell sources for regenerative medicine.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| |
Collapse
|
94
|
Schweitzer JS, Song B, Kim KS. A step closer to autologous cell therapy for Parkinson's disease. Cell Stem Cell 2021; 28:595-597. [PMID: 33798419 DOI: 10.1016/j.stem.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a recent report in Nature Medicine, Tao et al. (2021) demonstrate that MPTP-treated monkeys receiving autologous, but not allogeneic, transplantation showed significant long-term improvement in motor and depressive behaviors, supporting the feasibility of autologous cell therapy for Parkinson's disease (PD).
Collapse
Affiliation(s)
- Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA.
| | - Bin Song
- Institute for Translational Brain Research, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, MA 02478, USA.
| |
Collapse
|
95
|
Bram Y, Nguyen DHT, Gupta V, Park J, Richardson C, Chandar V, Schwartz RE. Cell and Tissue Therapy for the Treatment of Chronic Liver Disease. Annu Rev Biomed Eng 2021; 23:517-546. [PMID: 33974812 PMCID: PMC8864721 DOI: 10.1146/annurev-bioeng-112619-044026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Liver disease is an important clinical problem, impacting 600 million people worldwide. It is the 11th-leading cause of death in the world. Despite constant improvement in treatment and diagnostics, the aging population and accumulated risk factors led to increased morbidity due to nonalcoholic fatty liver disease and steatohepatitis. Liver transplantation, first established in the 1960s, is the second-most-common solid organ transplantation and is the gold standard for the treatment of liver failure. However, less than 10% of the global need for liver transplantation is met at the current rates of transplantation due to the paucity of available organs. Cell- and tissue-based therapies present an alternative to organ transplantation. This review surveys the approaches and tools that have been developed, discusses the distinctive challenges that exist for cell- and tissue-based therapies, and examines the future directions of regenerative therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Duc-Huy T Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Vikas Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chanel Richardson
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; .,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
96
|
Abstract
Human pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide unprecedented opportunities for cell therapies against intractable diseases and injuries. Both ESCs and iPSCs are already being used in clinical trials. However, we continue to encounter practical issues that limit their use, including their inherent properties of tumorigenicity, immunogenicity, and heterogeneity. Here, I review two decades of research aimed at overcoming these three difficulties.
Collapse
|
97
|
Sutcliffe DJ, Dinasarapu AR, Visser JE, Hoed JD, Seifar F, Joshi P, Ceballos-Picot I, Sardar T, Hess EJ, Sun YV, Wen Z, Zwick ME, Jinnah HA. Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sci Rep 2021; 11:8523. [PMID: 33875724 PMCID: PMC8055678 DOI: 10.1038/s41598-021-87955-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND.
Collapse
Affiliation(s)
- Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ashok R Dinasarapu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jasper E Visser
- Department of Neurology, Cognition and Behavior, Donders Institute for Brain, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Amphia Hospital, Breda, The Netherlands
| | - Joery den Hoed
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Fatemeh Seifar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
| | - Piyush Joshi
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Irene Ceballos-Picot
- Laboratoire de Biochimie Métabolomique Et Protéomique, Hôpital Universitaire Necker, Paris, France
| | - Tejas Sardar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ellen J Hess
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA. 30322, USA
| | - Zhexing Wen
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
98
|
Maali A, Maroufi F, Sadeghi F, Atashi A, Kouchaki R, Moghadami M, Azad M. Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics. Epigenomics 2021; 13:631-647. [PMID: 33823614 DOI: 10.2217/epi-2020-0409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology, based on autologous cells' reprogramming to the embryonic state, is a new approach in regenerative medicine. Current advances in iPSC technology have opened up new avenues for multiple applications, from basic research to clinical therapy. Thus, conducting iPSC trials have attracted increasing attention and requires an extensive understanding of the molecular basis of iPSCs. Since iPSC reprogramming is based on the methods inducing the expression of specific genes involved in pluripotency states, it can be concluded that iPSC reprogramming is strongly influenced by epigenetics. In this study, we reviewed the molecular basis of reprogramming, including the reprogramming factors (OCT4, SOX2, KLF4, c-MYC, NANOG, ESRRB, LIN28 as well as their regulatory networks), applied vectors (retroviral vectors, adenoviral vectors, Sendaiviral vectors, episomal plasmids, piggyBac, simple vectors, etc.) and epigenetic modifications (miRNAs, histones and DNA methylation states) to provide a comprehensive guide for reprogramming studies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzin Sadeghi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amir Atashi
- Stem Cells & Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Kouchaki
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mona Moghadami
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
99
|
Kosanke M, Osetek K, Haase A, Wiehlmann L, Davenport C, Schwarzer A, Adams F, Kleppa MJ, Schambach A, Merkert S, Wunderlich S, Menke S, Dorda M, Martin U. Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Mol Ther 2021; 29:2535-2553. [PMID: 33831558 DOI: 10.1016/j.ymthe.2021.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.
Collapse
Affiliation(s)
- Maike Kosanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Katarzyna Osetek
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Schwarzer
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Felix Adams
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
100
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|