51
|
Mancino AS, Glass WG, Yan Y, Biggin PC, Bowie D. Spliced isoforms of the cardiac Nav1.5 channel modify channel activation by distinct structural mechanisms. J Gen Physiol 2022; 154:213074. [PMID: 35297947 PMCID: PMC8939363 DOI: 10.1085/jgp.202112906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is an important cellular mechanism that fine tunes the gating properties of both voltage- and ligand-gated ion-channels. The cardiac voltage-gated sodium channel, Nav1.5, is subject to alternative splicing of the DI S3–S4 linker, which generates two types of channels with different activation properties. Here, we show that the gating differences between the adult (mH1) and neonatal (Nav1.5e) isoforms of Nav1.5 are mediated by two amino acid residues: Thr/Ser at position 207 and Asp/Lys at position 211. Electrophysiological experiments, in conjunction with molecular dynamics simulations, revealed that each residue contributes equally to the overall gating shifts in activation, but that the underlying structural mechanisms are different. Asp/Lys at position 211 acts through electrostatic interactions, whereas Thr/Ser at position 207 is predicted to alter the hydrogen bond network at the top of the S3 helix. These distinct structural mechanisms work together to modify movement of the voltage-sensitive S4 helix to bring about channel activation. Interestingly, mutation of the homologous Asp and Thr residues of the skeletal muscle isoform, Nav1.4, to Lys and Ser, respectively, confers a similar gating shift in channel activation, suggesting that these residues may fulfill a conserved role across other Nav channel family members.
Collapse
Affiliation(s)
- Adamo S Mancino
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - William G Glass
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yuhao Yan
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
52
|
Nakamori M, Shimizu H, Ogawa K, Hasuike Y, Nakajima T, Sakurai H, Araki T, Okada Y, Kakita A, Mochizuki H. Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac154. [PMID: 35770133 PMCID: PMC9218787 DOI: 10.1093/braincomms/fcac154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 is a multisystem genetic disorder involving the muscle, heart and CNS. It is caused by toxic RNA transcription from expanded CTG repeats in the 3′-untranslated region of DMPK, leading to dysregulated splicing of various genes and multisystemic symptoms. Although aberrant splicing of several genes has been identified as the cause of some muscular symptoms, the pathogenesis of CNS symptoms prevalent in patients with myotonic dystrophy type 1 remains unelucidated, possibly due to a limitation in studying a diverse mixture of different cell types, including neuronal cells and glial cells. Previous studies revealed neuronal loss in the cortex, myelin loss in the white matter and the presence of axonal neuropathy in patients with myotonic dystrophy type 1. To elucidate the CNS pathogenesis, we investigated cell type-specific abnormalities in cortical neurons, white matter glial cells and spinal motor neurons via laser-capture microdissection. We observed that the CTG repeat instability and cytosine–phosphate–guanine (CpG) methylation status varied among the CNS cell lineages; cortical neurons had more unstable and longer repeats with higher CpG methylation than white matter glial cells, and spinal motor neurons had more stable repeats with lower methylation status. We also identified splicing abnormalities in each CNS cell lineage, such as DLGAP1 in white matter glial cells and CAMKK2 in spinal motor neurons. Furthermore, we demonstrated that aberrant splicing of CAMKK2 is associated with abnormal neurite morphology in myotonic dystrophy type 1 motor neurons. Our laser-capture microdissection-based study revealed cell type-dependent genetic, epigenetic and splicing abnormalities in myotonic dystrophy type 1 CNS, indicating the significant potential of cell type-specific analysis in elucidating the CNS pathogenesis.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University , 1-1 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Yuhei Hasuike
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital , 3-52 Akasakamachi, Kashiwazaki, Niigata 945-8585 , Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University , 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 , Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry , 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8502 , Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| |
Collapse
|
53
|
Yi H, Liu C, Shi J, Wang S, Zhang H, He Y, Tao J, Li S, Zhang R. EGCG Alleviates Obesity-Induced Myocardial Fibrosis in Rats by Enhancing Expression of SCN5A. Front Cardiovasc Med 2022; 9:869279. [PMID: 35571212 PMCID: PMC9098820 DOI: 10.3389/fcvm.2022.869279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Object Obesity is an increase in body weight beyond the limitation of skeletal and physical requirement, as the result of an excessive accumulation of fat in the body. Obesity could increase the risk of myocardial fibrosis. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant substance in green tea and has been reported to have multiple pharmacological activities. However, there is not enough evidence to show that EGCG has a therapeutic effect on obesity-induced myocardial fibrosis. This study aims to investigate whether EGCG is a potential drug for obesity-induced myocardial fibrosis. Methods Obesity-induced myocardial fibrosis rat model was established by HFD feeding for 36 weeks. EGCG was intragastrically administered at 160 mg/kg/d for the last 4 weeks. The pathological changes of myocardial fibrosis were evaluated by tissue pathological staining and collagen quantification. Furthermore, total RNA was extracted from the heart for RNA-seq to identify the changes in the transcript profile, and the relevant hub genes were verified by quantitative real-time PCR and western blot. Results EGCG significantly relieved HFD diet-induced obesity and alleviated the pathology of myocardial fibrosis. Biochemical analysis showed that EGCG could relieve the burden of lipid metabolism and injury to the myocardium and transcript profile analysis showed that EGCG could alleviate obesity-induced myocardial fibrosis by increasing the level of Scn5a in the heart. Furthermore, quantitative real-time PCR and western blot analysis for SCN5A also confirmed this finding. Conclusion Taken together, these results suggest that EGCG could protect against the obesity-induced myocardial fibrosis. EGCG plays an anti-myocardial fibrosis role by regulating the expression of SCN5A in the heart.
Collapse
Affiliation(s)
- Haoan Yi
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Cong Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Shuo Wang
- Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Haoxin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Jianping Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
- Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- *Correspondence: Shude Li
| | - Renfa Zhang
- Department of Physical Education, Kunming Medical University, Kunming, China
- Renfa Zhang
| |
Collapse
|
54
|
McBride D, Deshmukh A, Shore S, Elafros MA, Liang JJ. Cardiac Involvement and Arrhythmias Associated with Myotonic Dystrophy. Rev Cardiovasc Med 2022; 23:126. [PMID: 36177340 PMCID: PMC9518819 DOI: 10.31083/j.rcm2304126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Myotonic dystrophy is an autosomal dominant genetic disease of nucleotide expansion resulting in neuromuscular disease with two distinct subtypes. There are significant systemic manifestations of this condition including progressive muscular decline, neurologic abnormalities, and cardiac disease. Given the higher prevalence of cardiac dysfunction compared to the general population, there is significant interest in early diagnosis and prevention of cardiac morbidity and mortality. Cardiac dysfunction has an origin in abnormal and unstable nucleotide repeats in the DMPK and CNBP genes which have downstream effects leading to an increased propensity for arrhythmias and left ventricular systolic dysfunction. Current screening paradigms involve the use of routine screening electrocardiograms, ambulatory electrocardiographic monitors, and cardiac imaging to stratify risk and suggest further invasive evaluation. The most common cardiac abnormality is atrial arrhythmia, however there is significant mortality in this population from high-degree atrioventricular block and ventricular arrhythmia. In this review, we describe the cardiac manifestations of myotonic dystrophy with an emphasis on arrhythmia which is the second most common cause of death in this population after respiratory failure.
Collapse
Affiliation(s)
- Daniel McBride
- Electrophysiology Section, Division of Cardiology, Ann Arbor, MI 48109, USA
| | - Amrish Deshmukh
- Electrophysiology Section, Division of Cardiology, Ann Arbor, MI 48109, USA
| | - Supriya Shore
- Heart Failure Section, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa A. Elafros
- Neuromuscular Section, Division of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jackson J. Liang
- Electrophysiology Section, Division of Cardiology, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Hinkle ER, Wiedner HJ, Torres EV, Jackson M, Black AJ, Blue RE, Harris SE, Guzman BB, Gentile GM, Lee EY, Tsai YH, Parker J, Dominguez D, Giudice J. Alternative splicing regulation of membrane trafficking genes during myogenesis. RNA (NEW YORK, N.Y.) 2022; 28:523-540. [PMID: 35082143 PMCID: PMC8925968 DOI: 10.1261/rna.078993.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown. Here, we found that membrane trafficking genes are alternatively spliced in a tissue-specific manner, with striated muscles exhibiting the highest levels of alternative exon inclusion. Treatment of differentiated muscle cells with chromatin-modifying drugs altered exon inclusion in muscle cells. Examination of several RNA-binding proteins revealed that the poly-pyrimidine tract binding protein 1 (PTBP1) and quaking regulate splicing of trafficking genes during myogenesis, and that removal of PTBP1 motifs prevented PTBP1 from binding its RNA target. These findings enhance our understanding of developmental splicing regulation of membrane trafficking proteins which might have implications for muscle disease pathogenesis.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hannah J Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eduardo V Torres
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Micaela Jackson
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bryan B Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gabrielle M Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joel Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
56
|
Hasuike Y, Mochizuki H, Nakamori M. Expanded CUG Repeat RNA Induces Premature Senescence in Myotonic Dystrophy Model Cells. Front Genet 2022; 13:865811. [PMID: 35401669 PMCID: PMC8990169 DOI: 10.3389/fgene.2022.865811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominantly inherited disorder due to a toxic gain of function of RNA transcripts containing expanded CUG repeats (CUGexp). Patients with DM1 present with multisystemic symptoms, such as muscle wasting, cognitive impairment, cataract, frontal baldness, and endocrine defects, which resemble accelerated aging. Although the involvement of cellular senescence, a critical component of aging, was suggested in studies of DM1 patient-derived cells, the detailed mechanism of cellular senescence caused by CUGexp RNA remains unelucidated. Here, we developed a DM1 cell model that conditionally expressed CUGexp RNA in human primary cells so that we could perform a detailed assessment that eliminated the variability in primary cells from different origins. Our DM1 model cells demonstrated that CUGexp RNA expression induced cellular senescence by a telomere-independent mechanism. Furthermore, the toxic RNA expression caused mitochondrial dysfunction, excessive reactive oxygen species production, and DNA damage and response, resulting in the senescence-associated increase of cell cycle inhibitors p21 and p16 and secreted mediators insulin-like growth factor binding protein 3 (IGFBP3) and plasminogen activator inhibitor-1 (PAI-1). This study provides unequivocal evidence of the induction of premature senescence by CUGexp RNA in our DM1 model cells.
Collapse
|
57
|
Degener MJF, van Cruchten RTP, Otero BA, Wang E, Wansink DG, ‘t Hoen PAC. A comprehensive atlas of fetal splicing patterns in the brain of adult myotonic dystrophy type 1 patients. NAR Genom Bioinform 2022; 4:lqac016. [PMID: 35274098 PMCID: PMC8903011 DOI: 10.1093/nargab/lqac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/28/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022] Open
Abstract
In patients with myotonic dystrophy type 1 (DM1), dysregulation of RNA-binding proteins like MBNL and CELF1 leads to alternative splicing of exons and is thought to induce a return to fetal splicing patterns in adult tissues, including the central nervous system (CNS). To comprehensively evaluate this, we created an atlas of developmentally regulated splicing patterns in the frontal cortex of healthy individuals and DM1 patients, by combining RNA-seq data from BrainSpan, GTEx and DM1 patients. Thirty-four splice events displayed an inclusion pattern in DM1 patients that is typical for the fetal situation in healthy individuals. The regulation of DM1-relevant splicing patterns could partly be explained by changes in mRNA expression of the splice regulators MBNL1, MBNL2 and CELF1. On the contrary, interindividual differences in splicing patterns between healthy adults could not be explained by differential expression of these splice regulators. Our findings lend transcriptome-wide evidence to the previously noted shift to fetal splicing patterns in the adult DM1 brain as a consequence of an imbalance in antagonistic MBNL and CELF1 activities. Our atlas serves as a solid foundation for further study and understanding of the cognitive phenotype in patients.
Collapse
Affiliation(s)
- Max J F Degener
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Remco T P van Cruchten
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Brittney A Otero
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, FL 32610-0266 Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, FL 32610-0266 Gainesville, FL, USA
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter A C ‘t Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
58
|
In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput Biol 2022; 18:e1009918. [PMID: 35226669 PMCID: PMC8912908 DOI: 10.1371/journal.pcbi.1009918] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/10/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure. Heart failure is a chronic condition in which the heart does not pump enough blood. It has been shown that in heart failure, the adult heart reverts to a fetal-like metabolic state and oxygen consumption. Additionally, genes and isoforms that are expressed in the heart only during fetal development (i.e. not in the healthy adult heart) are turned on in heart failure. However, the underlying molecular mechanisms and the extent to which the switch to a fetal gene program occurs remains unclear. In this study, we initially characterized the differences between the fetal and adult heart transcriptomes (entire set of expressed genes and isoforms). We found that RNA binding proteins (RBPs), a family of genes that regulate multiple aspects of a transcript’s maturation, including transcription, splicing and post-transcriptional modifications, play a central role in the differences between fetal and adult heart tissues. We observed that many RBPs that are only expressed in the heart during fetal development become reactivated in heart failure, resulting in the expression of 1,523 fetal-specific isoforms. These findings suggest that reactivation of fetal-specific RBPs in heart failure drives a transcriptome-wide switch to expression of fetal-specific isoforms; and hence that RBPs could potentially serve as novel therapeutic targets.
Collapse
|
59
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
60
|
Arandel L, Matloka M, Klein AF, Rau F, Sureau A, Ney M, Cordier A, Kondili M, Polay-Espinoza M, Naouar N, Ferry A, Lemaitre M, Begard S, Colin M, Lamarre C, Tran H, Buée L, Marie J, Sergeant N, Furling D. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 2022; 6:207-220. [PMID: 35145256 DOI: 10.1038/s41551-021-00838-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Magdalena Matloka
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud F Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Frédérique Rau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alain Sureau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Michel Ney
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Aurélien Cordier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Maria Kondili
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Micaela Polay-Espinoza
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Naira Naouar
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Université, Inserm, Phénotypage du petit animal, Paris, France
| | - Séverine Begard
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Morvane Colin
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Chloé Lamarre
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Hélène Tran
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Joëlle Marie
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Nicolas Sergeant
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France.
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
61
|
Kajdasz A, Niewiadomska D, Sekrecki M, Sobczak K. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression. Sci Rep 2022; 12:190. [PMID: 34996980 PMCID: PMC8742084 DOI: 10.1038/s41598-021-03901-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
CUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5' and 3' untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5'UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5'UTRs and 3'UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5' and 3' UTR isoforms within CELF1 mRNA.
Collapse
Affiliation(s)
- Arkadiusz Kajdasz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
62
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
63
|
The molecular pathogenesis of repeat expansion diseases. Biochem Soc Trans 2021; 50:119-134. [PMID: 34940797 DOI: 10.1042/bst20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Expanded short tandem repeats in the genome cause various monogenic diseases, particularly neurological disorders. Since the discovery of a CGG repeat expansion in the FMR1 gene in 1991, more than 40 repeat expansion diseases have been identified to date. In the coding repeat expansion diseases, in which the expanded repeat sequence is located in the coding regions of genes, the toxicity of repeat polypeptides, particularly misfolding and aggregation of proteins containing an expanded polyglutamine tract, have been the focus of investigation. On the other hand, in the non-coding repeat expansion diseases, in which the expanded repeat sequence is located in introns or untranslated regions, the toxicity of repeat RNAs has been the focus of investigation. Recently, these repeat RNAs were demonstrated to be translated into repeat polypeptides by the novel mechanism of repeat-associated non-AUG translation, which has extended the research direction of the pathological mechanisms of this disease entity to include polypeptide toxicity. Thus, a common pathogenesis has been suggested for both coding and non-coding repeat expansion diseases. In this review, we briefly outline the major pathogenic mechanisms of repeat expansion diseases, including a loss-of-function mechanism caused by repeat expansion, repeat RNA toxicity caused by RNA foci formation and protein sequestration, and toxicity by repeat polypeptides. We also discuss perturbation of the physiological liquid-liquid phase separation state caused by these repeat RNAs and repeat polypeptides, as well as potential therapeutic approaches against repeat expansion diseases.
Collapse
|
64
|
Gossios TD, Providencia R, Creta A, Segal OR, Nikolenko N, Turner C, Lopes LR, Wahbi K, Savvatis K. An overview of heart rhythm disorders and management in myotonic dystrophy type 1. Heart Rhythm 2021; 19:497-504. [PMID: 34843968 DOI: 10.1016/j.hrthm.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult form of muscular dystrophy, presenting with a constellation of systemic findings secondary to a CTG triplet expansion of the noncoding region of the DMPK gene. Cardiac involvement is frequent, with conduction disease and supraventricular and ventricular arrhythmias being the most prevalent cardiac manifestations, often developing from a young age. The development of cardiac arrhythmias has been linked to increased morbidity and mortality, with sudden cardiac death well described. Strategies to mitigate risk of arrhythmic death have been developed. In this review, we outline the current knowledge on the pathophysiology of rhythm abnormalities in patients with myotonic dystrophy and summarize available knowledge on arrhythmic risk stratification. We also review management strategies from an electrophysiological perspective, attempting to underline the substantial unmet need to address residual arrhythmic risks for this population.
Collapse
Affiliation(s)
- Thomas D Gossios
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom.
| | - Rui Providencia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Antonio Creta
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Oliver R Segal
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Luis R Lopes
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London Hospital, London, United Kingdom
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Konstantinos Savvatis
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
65
|
Cardiac Pathology in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:ijms222111874. [PMID: 34769305 PMCID: PMC8584352 DOI: 10.3390/ijms222111874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.
Collapse
|
66
|
Schorr AL, Mangone M. miRNA-Based Regulation of Alternative RNA Splicing in Metazoans. Int J Mol Sci 2021; 22:ijms222111618. [PMID: 34769047 PMCID: PMC8584187 DOI: 10.3390/ijms222111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.
Collapse
Affiliation(s)
- Anna L. Schorr
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287, USA;
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-7957
| |
Collapse
|
67
|
Etheridge SP, Niu MC. Electrophysiologic Consequences and Sudden Death in Myotonic Dystrophy: Beyond the ECG and Toward Precision Medicine. JACC Clin Electrophysiol 2021; 7:1049-1051. [PMID: 34412868 DOI: 10.1016/j.jacep.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Susan P Etheridge
- Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, Utah, USA.
| | - Mary C Niu
- Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
68
|
Larrasa-Alonso J, Villalba-Orero M, Martí-Gómez C, Ortiz-Sánchez P, López-Olañeta MM, Rey-Martín MA, Sánchez-Cabo F, McNicoll F, Müller-McNicoll M, García-Pavía P, Lara-Pezzi E. The SRSF4-GAS5-Glucocorticoid Receptor Axis Regulates Ventricular Hypertrophy. Circ Res 2021; 129:669-683. [PMID: 34333993 PMCID: PMC8409900 DOI: 10.1161/circresaha.120.318577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. RBPs (RNA-binding proteins) play critical roles in human biology and disease. Aberrant RBP expression affects various steps in RNA processing, altering the function of the target RNAs. The RBP SRSF4 (serine/arginine-rich splicing factor 4) has been linked to neuropathies and cancer. However, its role in the heart is completely unknown.
Collapse
Affiliation(s)
- Javier Larrasa-Alonso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.).,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.)
| | - Carlos Martí-Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Paula Ortiz-Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Marina M López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - M Ascensión Rey-Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - François McNicoll
- Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt/Main, Germany (F.M., M.M.-M.)
| | - Michaela Müller-McNicoll
- Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt/Main, Germany (F.M., M.M.-M.)
| | - Pablo García-Pavía
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.G.-P.).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.).,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.)
| |
Collapse
|
69
|
Tylock KM, Auerbach DS, Tang ZZ, Thornton CA, Dirksen RT. Biophysical mechanisms for QRS- and QTc-interval prolongation in mice with cardiac expression of expanded CUG-repeat RNA. J Gen Physiol 2021; 152:133632. [PMID: 31968060 PMCID: PMC7062505 DOI: 10.1085/jgp.201912450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, results from the expression of toxic gain-of-function transcripts containing expanded CUG-repeats. DM1 patients experience cardiac electrophysiological defects, including prolonged PR-, QRS-, and QT-intervals, that increase susceptibility to sudden cardiac death (SCD). However, the specific biophysical and molecular mechanisms that underlie the electrocardiograph (ECG) abnormalities and SCD in DM1 are unclear. Here, we addressed this issue using a novel transgenic mouse model that exhibits robust cardiac expression of expanded CUG-repeat RNA (LC15 mice). ECG measurements in conscious LC15 mice revealed significantly prolonged QRS- and corrected QT-intervals, but a normal PR-interval. Although spontaneous arrhythmias were not observed in conscious LC15 mice under nonchallenged conditions, acute administration of the sodium channel blocker flecainide prolonged the QRS-interval and unveiled an increased susceptibility to lethal ventricular arrhythmias. Current clamp measurements in ventricular myocytes from LC15 mice revealed significantly reduced action potential upstroke velocity at physiological pacing (9 Hz) and prolonged action potential duration at all stimulation rates (1–9 Hz). Voltage clamp experiments revealed significant rightward shifts in the voltage dependence of sodium channel activation and steady-state inactivation, as well as a marked reduction in outward potassium current density. Together, these findings indicate that expression of expanded CUG-repeat RNA in the murine heart results in reduced sodium and potassium channel activity that results in QRS- and QT-interval prolongation, respectively.
Collapse
Affiliation(s)
- Kevin M Tylock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - David S Auerbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY.,Department of Pharmacology, Upstate Medical University, Syracuse, NY
| | - Zhen Zhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
70
|
Li K, Krueger SB, Zimmerman SC. A Novel Minor Groove Binder as a Potential Therapeutic Agent for Myotonic Dystrophy Type 1. ChemMedChem 2021; 16:2638-2644. [PMID: 34114350 DOI: 10.1002/cmdc.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/10/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder that is inherited in an autosomal dominant manner. DM1 originates in a (CTG⋅CAG) repeat expansion in the 3'-UTR of the dystrophia myotonic protein kinase (DMPK) gene on chromosome 19. One of the transcripts, r(CUG)exp , is toxic in various ways. Herein we report a rationally designed small molecule with a thiazole peptidomimetic unit that can serve as a minor groove binder for the nucleic acid targets. This peptide unit linked to two triaminotriazine recognition units selectively binds to d(CTG)exp to inhibit the transcription process, and also targets r(CUG)exp selectively to improve representative DM1 pathological molecular features, including foci formation and pre-mRNA splicing defects in DM1 model cells. As such, it represents a new structure type that might serve as a lead compound for future structure-activity optimization.
Collapse
Affiliation(s)
- Ke Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| | - Sarah B Krueger
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| |
Collapse
|
71
|
Hinman MN, Richardson JI, Sockol RA, Aronson ED, Stednitz SJ, Murray KN, Berglund JA, Guillemin K. Zebrafish mbnl mutants model physical and molecular phenotypes of myotonic dystrophy. Dis Model Mech 2021; 14:dmm045773. [PMID: 34125183 PMCID: PMC8246264 DOI: 10.1242/dmm.045773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The muscleblind RNA-binding proteins (MBNL1, MBNL2 and MBNL3) are highly conserved across vertebrates and are important regulators of RNA alternative splicing. Loss of MBNL protein function through sequestration by CUG or CCUG RNA repeats is largely responsible for the phenotypes of the human genetic disorder myotonic dystrophy (DM). We generated the first stable zebrafish (Danio rerio) models of DM-associated MBNL loss of function through mutation of the three zebrafish mbnl genes. In contrast to mouse models, zebrafish double and triple homozygous mbnl mutants were viable to adulthood. Zebrafish mbnl mutants displayed disease-relevant physical phenotypes including decreased body size and impaired movement. They also exhibited widespread alternative splicing changes, including the misregulation of many DM-relevant exons. Physical and molecular phenotypes were more severe in compound mbnl mutants than in single mbnl mutants, suggesting partially redundant functions of Mbnl proteins. The high fecundity and larval optical transparency of this complete series of zebrafish mbnl mutants will make them useful for studying DM-related phenotypes and how individual Mbnl proteins contribute to them, and for testing potential therapeutics. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melissa N. Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jared I. Richardson
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Rose A. Sockol
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eliza D. Aronson
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Sarah J. Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Katrina N. Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA
| | - J. Andrew Berglund
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Humans and the Microbiome Program, CIFAR, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
72
|
New developments in myotonic dystrophies from a multisystemic perspective. Curr Opin Neurol 2021; 34:738-747. [PMID: 33990102 DOI: 10.1097/wco.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The multisystemic involvement of myotonic dystrophies (DMs) intricates disease monitoring, patients' care and trial design. This update of the multifaceted comorbidities observed in DMs aims to assist neurologists in the complex management of patients and to encourage further studies for still under-investigated aspects of the disease. RECENT FINDINGS We reviewed the most recent studies covering pathogenesis and clinical aspects of extra-muscular involvement in DM1 and DM2. The largest body of evidence regards the cardiac and respiratory features, for which experts' recommendations have been produced. Gastrointestinal symptoms emerge as one of the most prevalent complaints in DMs. The alteration of insulin signaling pathways, involved in gastrointestinal manifestations, carcinogenesis, muscle function, cognitive and endocrinological aspects, gain further relevance in the light of recent evidence of metformin efficacy in DM1. Still, too few studies are performed on large DM2 cohorts, so that current recommendations mainly rely on data gathered in DM1 that cannot be fully translated to DM2. SUMMARY Extra-muscular manifestations greatly contribute to the overall disease burden. A multidisciplinary approach is the key for the management of patients. Consensus-based recommendations for DM1 and DM2 allow high standards of care but further evidence are needed to implement these recommendations.
Collapse
|
73
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
74
|
Grande V, Hathazi D, O'Connor E, Marteau T, Schara-Schmidt U, Hentschel A, Gourdon G, Nikolenko N, Lochmüller H, Roos A. Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients. J Neuromuscul Dis 2021; 8:603-619. [PMID: 33682722 DOI: 10.3233/jnd-200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common monogenetic muscular disorder of adulthood. This multisystemic disease is caused by CTG repeat expansion in the 3'-untranslated region of the DM1 protein kinase gene called DMPK. DMPK encodes a myosin kinase expressed in skeletal muscle cells and other cellular populations such as smooth muscle cells, neurons and fibroblasts. The resultant expanded (CUG)n RNA transcripts sequester RNA binding factors leading to ubiquitous and persistent splicing deregulation. The accumulation of mutant CUG repeats is linked to increased activity of glycogen synthase kinase 3 beta (GSK3β), a highly conserved and ubiquitous serine/threonine kinase with functions in pathways regulating inflammation, metabolism, oncogenesis, neurogenesis and myogenesis. As GSK3β-inhibition ameliorates defects in myogenesis, muscle strength and myotonia in a DM1 mouse model, this kinase represents a key player of DM1 pathobiochemistry and constitutes a promising therapeutic target. To better characterise DM1 patients, and monitor treatment responses, we aimed to define a set of robust disease and severity markers linked to GSK3βby unbiased proteomic profiling utilizing fibroblasts derived from DM1 patients with low (80- 150) and high (2600- 3600) CTG-repeats. Apart from GSK3β increase, we identified dysregulation of nine proteins (CAPN1, CTNNB1, CTPS1, DNMT1, HDAC2, HNRNPH3, MAP2K2, NR3C1, VDAC2) modulated by GSK3β. In silico-based expression studies confirmed expression in neuronal and skeletal muscle cells and revealed a relatively elevated abundance in fibroblasts. The potential impact of each marker in the myopathology of DM1 is discussed based on respective function to inform potential uses as severity markers or for monitoring GSK3β inhibitor treatment responses.
Collapse
Affiliation(s)
- Valentina Grande
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Emily O'Connor
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Theo Marteau
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Genevieve Gourdon
- Centre de Recherche en Myologie, Association Institut de Myologie, Sorbonne Université, Inserm UMR 974, Paris, France
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
75
|
Rao AN, Campbell HM, Guan X, Word TA, Wehrens XH, Xia Z, Cooper TA. Reversible cardiac disease features in an inducible CUG repeat RNA-expressing mouse model of myotonic dystrophy. JCI Insight 2021; 6:143465. [PMID: 33497365 PMCID: PMC8021116 DOI: 10.1172/jci.insight.143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths. We developed a transgenic mouse model for tetracycline-inducible and heart-specific expression of human DMPK mRNA containing 960 CUG repeats. CUGexp RNA is expressed in atria and ventricles and induced mice exhibit electrophysiological and molecular features of DM1 disease, including cardiac conduction delays, supraventricular arrhythmias, nuclear RNA foci with Muscleblind protein colocalization, and alternative splicing defects. Importantly, these phenotypes were rescued upon loss of CUGexp RNA expression. Transcriptome analysis revealed gene expression and alternative splicing changes in ion transport genes that are associated with inherited cardiac conduction diseases, including a subset of genes involved in calcium handling. Consistent with RNA-Seq results, calcium-handling defects were identified in atrial cardiomyocytes isolated from mice expressing CUGexp RNA. These results identify potential tissue-specific mechanisms contributing to cardiac pathogenesis in DM1 and demonstrate the utility of reversible phenotypes in our model to facilitate development of targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Hannah M Campbell
- Department of Molecular Physiology and Biophysics, and.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangnan Guan
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Tarah A Word
- Department of Molecular Physiology and Biophysics, and
| | - Xander Ht Wehrens
- Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology.,Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
76
|
Tanner MK, Tang Z, Thornton CA. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res 2021; 49:2240-2254. [PMID: 33503262 PMCID: PMC7913682 DOI: 10.1093/nar/gkab022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.
Collapse
Affiliation(s)
- Matthew K Tanner
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
77
|
Poulin H, Mercier A, Djemai M, Pouliot V, Deschenes I, Boutjdir M, Puymirat J, Chahine M. iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Sci Rep 2021; 11:2500. [PMID: 33510259 PMCID: PMC7844414 DOI: 10.1038/s41598-021-82007-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac complications such as electrical abnormalities including conduction delays and arrhythmias are the main cause of death in individuals with Myotonic Dystrophy type 1 (DM1). We developed a disease model using iPSC-derived cardiomyocytes (iPSC-CMs) from a healthy individual and two DM1 patients with different CTG repeats lengths and clinical history (DM1-1300 and DM1-300). We confirmed the presence of toxic RNA foci and mis-spliced MBNL1/2 transcripts in DM1 iPSC-CMs. In DM1-1300, we identified a switch in the cardiac sodium channel SCN5A from the adult to the neonatal isoform. The down-regulation of adult SCN5A isoforms is consistent with a shift in the sodium current activation to depolarized potentials observed in DM1-1300. L-type calcium current density was higher in iPSC-CMs from DM1-1300, which is correlated with the overexpression of the CaV1.2 transcript and proteins. Importantly, INa and ICaL dysfunctions resulted in prolonged action potentials duration, slower velocities, and decreased overshoots. Optical mapping analysis revealed a slower conduction velocity in DM1-1300 iPSC-CM monolayers. In conclusion, our data revealed two distinct ions channels perturbations in DM1 iPSC-CM from the patient with cardiac dysfunction, one affecting Na+ channels and one affecting Ca2+ channels. Both have an impact on cardiac APs and ultimately on heart conduction.
Collapse
Affiliation(s)
- Hugo Poulin
- CERVO Brain Research Centre, Quebec, QC, Canada
| | | | | | | | - Isabelle Deschenes
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, New York, NY, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, New York, NY, USA
- Depatrment of Medicine, NYU School of Medicine, New York, NY, USA
| | - Jack Puymirat
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, QC, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Quebec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
78
|
Otero BA, Poukalov K, Hildebrandt RP, Thornton CA, Jinnai K, Fujimura H, Kimura T, Hagerman KA, Sampson JB, Day JW, Wang ET. Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Rep 2021; 34:108634. [PMID: 33472074 PMCID: PMC9272850 DOI: 10.1016/j.celrep.2020.108634] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.
Collapse
Affiliation(s)
- Brittney A Otero
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kiril Poukalov
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kenji Jinnai
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo College of Medicine, Nichinomiya, Japan
| | | | | | - John W Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
79
|
Xu Y, Liang C, Luo Y, Zhang T. MBNL1 regulates isoproterenol-induced myocardial remodelling in vitro and in vivo. J Cell Mol Med 2021; 25:1100-1115. [PMID: 33295096 PMCID: PMC7812249 DOI: 10.1111/jcmm.16177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial remodelling is a common phenomenon in cardiovascular diseases, which threaten human health and the quality of life. Due to the lack of effective early diagnosis and treatment methods, the molecular mechanism of myocardial remodelling should be explored in depth. In this study, we observed the high expression of MBNL1 in cardiac tissue and peripheral blood of an isoproterenol (ISO)-induced cardiac hypertrophy mouse model. MBNL1 promoted ISO-induced cardiac hypertrophy and fibrosis by stabilizing Myocardin mRNA in vivo and in vitro. Meanwhile, an increase in MBNL1 may induce the apoptosis of cardiomyocytes treated with ISO via TNF-α signalling. Interestingly, MBNL1 can be activated by p300 in cardiomyocytes treated with ISO. At last, Myocardin can reverse activate the expression of MBNL1. These results suggest that MBNL1 may be a potential target for the early diagnosis and clinical treatment of myocardial remodelling.
Collapse
Affiliation(s)
- Yao Xu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Chen Liang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Ying Luo
- College of Biological Science and TechnologyHubei Minzu UniversityEnshiChina
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic diseasesHubei Minzu UniversityEnshiChina
| | - Tongcun Zhang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
80
|
Xu L, Shi R. Generation of functional Na V1.5 current by endogenous transcriptional activation of SCN5A. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1892524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Rui Shi
- Department of Gynaecology and Obstetrics, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
81
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
82
|
Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, Overby S, Pérez-Alonso M, Llamusí B, Artero R. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:837-849. [PMID: 32805487 PMCID: PMC7452101 DOI: 10.1016/j.omtn.2020.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a chronically debilitating, rare genetic disease that originates from an expansion of a noncoding CTG repeat in the dystrophia myotonica protein kinase (DMPK) gene. The expansion becomes pathogenic when DMPK transcripts contain 50 or more repetitions due to the sequestration of the muscleblind-like (MBNL) family of proteins. Depletion of MBNLs causes alterations in splicing patterns in transcripts that contribute to clinical symptoms such as myotonia and muscle weakness and wasting. We previously found that microRNA (miR)-23b directly regulates MBNL1 in DM1 myoblasts and mice and that antisense technology (“antagomiRs”) blocking this microRNA (miRNA) boosts MBNL1 protein levels. Here, we show the therapeutic effect over time in response to administration of antagomiR-23b as a treatment in human skeletal actin long repeat (HSALR) mice. Subcutaneous administration of antagomiR-23b upregulated the expression of MBNL1 protein and rescued splicing alterations, grip strength, and myotonia in a dose-dependent manner with long-lasting effects. Additionally, the effects of the treatment on grip strength and myotonia were still slightly notable after 45 days. The pharmacokinetic data obtained provide further evidence that miR-23b could be a valid therapeutic target for DM1.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Irene González-Martínez
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Nerea Moreno-Cervera
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Sarah Overby
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Manuel Pérez-Alonso
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Beatriz Llamusí
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain.
| |
Collapse
|
83
|
Klein AF, Varela MA, Arandel L, Holland A, Naouar N, Arzumanov A, Seoane D, Revillod L, Bassez G, Ferry A, Jauvin D, Gourdon G, Puymirat J, Gait MJ, Furling D, Wood MJ. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Invest 2020; 129:4739-4744. [PMID: 31479430 PMCID: PMC6819114 DOI: 10.1172/jci128205] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/01/2019] [Indexed: 01/28/2023] Open
Abstract
Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.
Collapse
Affiliation(s)
- Arnaud F Klein
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Ludovic Arandel
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Ashling Holland
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Naira Naouar
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Andrey Arzumanov
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David Seoane
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Lucile Revillod
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Guillaume Bassez
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Dominic Jauvin
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, Canada
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jack Puymirat
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, Canada
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
84
|
Yadava RS, Yu Q, Mandal M, Rigo F, Bennett CF, Mahadevan MS. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA. Hum Mol Genet 2020; 29:1440-1453. [PMID: 32242217 PMCID: PMC7268549 DOI: 10.1093/hmg/ddaa060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
85
|
Lv L, Zheng N, Zhang L, Li R, Li Y, Yang R, Li C, Fang R, Shabanova A, Li X, Liu Y, Liang H, Zhou Y, Shan H. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur J Pharmacol 2020; 881:173131. [PMID: 32450177 DOI: 10.1016/j.ejphar.2020.173131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Cardiac conduction delay may occur as a common complication of several cardiac diseases. A few therapies and drugs have a good effect on cardiac conduction delay. Metformin (Met) has a protective effect on the heart. This study's aim was to investigate whether Met could ameliorate cardiac conduction delay and its potential mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI) mouse models were used. Mice were administered with Met in an intragastric manner. We found that the expression of miR-1 was significantly up-regulated in H2O2 treated cardiomyocytes as well as in TG and MI mice. The protein levels of inwardly rectifying potassium channel 2.1 (Kir2.1) and Connexin43 (CX43) were down-regulated both in cardiomyocytes treated with H2O2 as well as cardiac tissues of TG and MI mice, as compared to their controls. Furthermore, the PR and QT intervals were prolonged, action potential duration (APD) was delayed, and conduction velocity (CV) was reduced, with upregulation of miR-1 in the hearts. In the meanwhile, intercalated disc injuries were found in the hearts of MI mice. Interestingly, Met can noticeably inhibit miR-1 upregulation and attenuate the changes mentioned above. Taken together, this suggested that Met could play an important role in improving cardiac conduction delay through inhibition of miR-1 expression. Our study proposes that Met is a potential candidate for the treatment of cardiac conduction delay and provides a new idea of treating arrhythmia with a drug.
Collapse
Affiliation(s)
- Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; The Centre of Functional Experiment Teaching, Department of Basic Medicine, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Nan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruotong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingnan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Chao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruonan Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Azaliia Shabanova
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Outpatient and Emergency Pediatric, Bashkir State Medical University, Ground Floor, Teatralnaya Street, 2a, 450000, Ufa, Russia
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
86
|
Shimoyama T, Hayashi H, Suzuki F, Nishiyama Y, Miyamoto Y, Aiba T, Shimizu W, Kimura K. Idiopathic ventricular fibrillation and the V1764fsX1786 frameshift mutation of the SCN5A gene in a myotonic dystrophy type 1 patient. J Clin Neurosci 2020; 74:242-244. [DOI: 10.1016/j.jocn.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
|
87
|
Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo A, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit M, García Pavía P, Gómez Gallego M, Gutiérrez Martínez A, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco J, Olivar Roldán J, Pascual Pascual S, Peinado Peinado R, Pérez H, Poza Aldea J, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez M, Urtizberea J, Zapata-Wainberg G, Gutiérrez-Rivas E. Guía clínica para el diagnóstico y seguimiento de la distrofia miotónica tipo 1, DM1 o enfermedad de Steinert. Neurologia 2020; 35:185-206. [DOI: 10.1016/j.nrl.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/05/2019] [Indexed: 01/18/2023] Open
|
88
|
Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo A, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit M, García Pavía P, Gómez Gallego M, Gutiérrez Martínez A, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco J, Olivar Roldán J, Pascual Pascual S, Peinado Peinado R, Pérez H, Poza Aldea J, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez M, Urtizberea J, Zapata-Wainberg G, Gutiérrez-Rivas E. Clinical guide for the diagnosis and follow-up of myotonic dystrophy type 1, MD1 or Steinert's disease. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
89
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
90
|
Misra C, Bangru S, Lin F, Lam K, Koenig SN, Lubbers ER, Hedhli J, Murphy NP, Parker DJ, Dobrucki LW, Cooper TA, Tajkhorshid E, Mohler PJ, Kalsotra A. Aberrant Expression of a Non-muscle RBFOX2 Isoform Triggers Cardiac Conduction Defects in Myotonic Dystrophy. Dev Cell 2020; 52:748-763.e6. [PMID: 32109384 PMCID: PMC7098852 DOI: 10.1016/j.devcel.2020.01.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals. Mice engineered to express the non-muscle RBFOX240 isoform in heart via tetracycline-inducible transgenesis, or CRISPR/Cas9-mediated genome editing, reproduced DM1-related cardiac conduction delay and spontaneous episodes of arrhythmia. Further, by integrating RNA binding with cardiac transcriptome datasets from DM1 patients and mice expressing the non-muscle RBFOX2 isoform, we identified RBFOX240-driven splicing defects in voltage-gated sodium and potassium channels, which alter their electrophysiological properties. Thus, our results uncover a trans-dominant role for an aberrantly expressed RBFOX240 isoform in DM1 cardiac pathogenesis.
Collapse
Affiliation(s)
- Chaitali Misra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Feikai Lin
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Kin Lam
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sara N Koenig
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ellen R Lubbers
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Nathaniel P Murphy
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Darren J Parker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
91
|
McNally EM, Mann DL, Pinto Y, Bhakta D, Tomaselli G, Nazarian S, Groh WJ, Tamura T, Duboc D, Itoh H, Hellerstein L, Mammen PPA. Clinical Care Recommendations for Cardiologists Treating Adults With Myotonic Dystrophy. J Am Heart Assoc 2020; 9:e014006. [PMID: 32067592 PMCID: PMC7070199 DOI: 10.1161/jaha.119.014006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myotonic dystrophy is an inherited systemic disorder affecting skeletal muscle and the heart. Genetic testing for myotonic dystrophy is diagnostic and identifies those at risk for cardiac complications. The 2 major genetic forms of myotonic dystrophy, type 1 and type 2, differ in genetic etiology yet share clinical features. The cardiac management of myotonic dystrophy should include surveillance for arrhythmias and left ventricular dysfunction, both of which occur in progressive manner and contribute to morbidity and mortality. To promote the development of care guidelines for myotonic dystrophy, the Myotonic Foundation solicited the input of care experts and organized the drafting of these recommendations. As a rare disorder, large scale clinical trial data to guide the management of myotonic dystrophy are largely lacking. The following recommendations represent expert consensus opinion from those with experience in the management of myotonic dystrophy, in part supported by literature-based evidence where available.
Collapse
Affiliation(s)
| | | | - Yigal Pinto
- University of AmsterdamAmsterdamThe Netherlands
| | | | | | | | | | - Takuhisa Tamura
- National Hospital Organization Higashisaitama National HospitalSaitamaJapan
| | - Denis Duboc
- Hopital CochinUniversite Paris DescartesParisFrance
| | - Hideki Itoh
- Shiga University of Medical ScienceShigaJapan
| | | | | |
Collapse
|
92
|
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J 2020; 39:e101112. [PMID: 31721251 PMCID: PMC6939197 DOI: 10.15252/embj.2018101112] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.
Collapse
Affiliation(s)
- Bart Swinnen
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wim Robberecht
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
93
|
Abstract
Mutant DMPK transcripts containing expanded CUG repeats (CUGexp) are retained within the nucleus of myotonic dystrophy type 1 (DM1) cells as discrete foci. Nuclear CUGexp-RNA foci that sequester MBNL1 splicing factor represent a hallmark of this RNA dominant disease caused by the expression of expanded microsatellite repeats. Here we described fluorescent in situ hybridization (FISH) techniques to detect either RNA containing CUG expansion or DMPK transcripts in human DM1 or WT cells. In addition, we propose a combined FISH/immunofluorescence protocol to visualize the colocalization of MBNL1 with CUGexp-RNA foci in DM1 cells.
Collapse
Affiliation(s)
- Arnaud F Klein
- Centre de Recherche en Myologie, Sorbonne Univeristé, Paris, France
- Centre de Recherche en Myologie, Inserm, Paris, France
- Association Institut de Myologie, Paris, France
| | - Ludovic Arandel
- Centre de Recherche en Myologie, Sorbonne Univeristé, Paris, France
- Centre de Recherche en Myologie, Inserm, Paris, France
- Association Institut de Myologie, Paris, France
| | - Joelle Marie
- Centre de Recherche en Myologie, Sorbonne Univeristé, Paris, France
- Centre de Recherche en Myologie, Inserm, Paris, France
- Association Institut de Myologie, Paris, France
| | - Denis Furling
- Centre de Recherche en Myologie, Sorbonne Univeristé, Paris, France.
- Centre de Recherche en Myologie, Inserm, Paris, France.
- Association Institut de Myologie, Paris, France.
| |
Collapse
|
94
|
Bansal P, Arora M. RNA Binding Proteins and Non-coding RNA's in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:105-118. [PMID: 32285407 DOI: 10.1007/978-981-15-1671-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality as well as morbidity worldwide. The disease has been reported to be chronic in nature and the symptoms of the disease worsen progressively over a long period of time. Inspite of noteworthy achievements have been made in the therapy of CVD yet the available drugs are associated with various undesirable factors including drug toxicity, complexity, resistance and many more. The versatility of RNAs makes them crucial therapeutics candidate for many human diseases. Deeper understanding of RNA biology, exploring new classes of RNA that possess therapeutic potential will help in its successful translation to the clinic. Understanding the mode of action of various RNAs such as miRNA, RNA binding proteins and siRNA in CVD will help in improved therapeutics among patients. Multiple strategies are being planned to determine the future potential of miRNAs to treat a disease. This review embodies the recent work done in the field of miRNA and its role in cardiovascular disease as diagnostic biomarker as well as therapeutic agents. In addition the review highlights the future of miRNAs as a potential therapeutic target and need of designing micronome that may reveal potential predictive targets of miRNA-mRNA interaction.
Collapse
Affiliation(s)
- Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Malika Arora
- Multidisciplinary Research Unit, Guru Gobind Singh Medical College, Faridkot, Punjab, India
| |
Collapse
|
95
|
Christou M, Wengel J, Sokratous K, Kyriacou K, Nikolaou G, Phylactou LA, Mastroyiannopoulos NP. Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy. Nucleic Acid Ther 2019; 30:80-93. [PMID: 31873063 PMCID: PMC7133450 DOI: 10.1089/nat.2019.0811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominantly inherited, multisystemic disorder characterized clinically by delayed muscle relaxation and weakness. The disease is caused by a CTG repeat expansion in the 3′ untranslated region (3′ UTR) of the DMPK gene, which leads to the expression of a toxic gain-of-function mRNA. The expanded CUG repeat mRNA sequesters the MBNL1 splicing regulator in nuclear-retained foci structures, resulting in loss of protein function and disruption of alternative splicing homeostasis. In this study, we used CAG repeat antisense oligonucleotides (ASOs), composed of locked nucleic acid (LNA)- and 2′-O-methyl (2′OMe)-modified bases in a chimeric design, to alleviate CUGexpanded-mediated toxicity. Chimeric 14–18mer LNA/2′OMe oligonucleotides, exhibiting an LNA incorporation of ∼33%, significantly ameliorated the misregulated alternative splicing of Mbnl1-dependent exons in primary DM1 mouse myoblasts and tibialis anterior muscles of DM1 mice. Subcutaneous delivery of 14mer and 18mer LNA/2′OMe chimeras in DM1 mice resulted in high levels of accumulation in all tested skeletal muscles, as well as in the diaphragm and heart tissue. Despite the efficient delivery, chimeric LNA/2′OMe oligonucleotides were not able, even at a high-dosage regimen (400 mg/kg/week), to correct the misregulated splicing of Serca1 exon 22 in skeletal muscles. Nevertheless, oligonucleotide doses were well-tolerated as determined by histological and plasma biochemistry analyses. Our results provide proof of concept that inhibition of MBNL1 sequestration by systemic delivery of a steric-blocking ASO is extremely challenging, considering the large number of target sites that need to be occupied per RNA molecule. Although not suitable for DM1 therapy, chimeric LNA/2′OMe oligonucleotides could prove to be highly beneficial for other diseases, such as Duchenne muscular dystrophy, that require inhibition of a single target site per RNA molecule.
Collapse
Affiliation(s)
- Melina Christou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense M, Denmark
| | - Kleitos Sokratous
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Georgios Nikolaou
- Veterinary Diagnostic Laboratory, Vet Ex Machina Ltd, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikolaos P Mastroyiannopoulos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
96
|
Auxerre-Plantié E, Nakamori M, Renaud Y, Huguet A, Choquet C, Dondi C, Miquerol L, Takahashi MP, Gourdon G, Junion G, Jagla T, Zmojdzian M, Jagla K. Straightjacket/α2δ3 deregulation is associated with cardiac conduction defects in myotonic dystrophy type 1. eLife 2019; 8:51114. [PMID: 31829940 PMCID: PMC6908436 DOI: 10.7554/elife.51114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac conduction defects decrease life expectancy in myotonic dystrophy type 1 (DM1), a CTG repeat disorder involving misbalance between two RNA binding factors, MBNL1 and CELF1. However, how DM1 condition translates into conduction disorders remains poorly understood. Here we simulated MBNL1 and CELF1 misbalance in the Drosophila heart and performed TU-tagging-based RNAseq of cardiac cells. We detected deregulations of several genes controlling cellular calcium levels, including increased expression of straightjacket/α2δ3, which encodes a regulatory subunit of a voltage-gated calcium channel. Straightjacket overexpression in the fly heart leads to asynchronous heartbeat, a hallmark of abnormal conduction, whereas cardiac straightjacket knockdown improves these symptoms in DM1 fly models. We also show that ventricular α2δ3 expression is low in healthy mice and humans, but significantly elevated in ventricular muscles from DM1 patients with conduction defects. These findings suggest that reducing ventricular straightjacket/α2δ3 levels could offer a strategy to prevent conduction defects in DM1.
Collapse
Affiliation(s)
- Emilie Auxerre-Plantié
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoan Renaud
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Aline Huguet
- Imagine Institute, Inserm UMR1163, Paris, France.,Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universités, Institut de Myologie, Paris, France
| | | | - Cristiana Dondi
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | | | - Masanori P Takahashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Geneviève Gourdon
- Imagine Institute, Inserm UMR1163, Paris, France.,Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universités, Institut de Myologie, Paris, France
| | - Guillaume Junion
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Teresa Jagla
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Monika Zmojdzian
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
97
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
98
|
Pang PD, Alsina KM, Cao S, Koushik AB, Wehrens XHT, Cooper TA. CRISPR -Mediated Expression of the Fetal Scn5a Isoform in Adult Mice Causes Conduction Defects and Arrhythmias. J Am Heart Assoc 2019; 7:e010393. [PMID: 30371314 PMCID: PMC6404881 DOI: 10.1161/jaha.118.010393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background The sodium channel, Nav1.5, encoded by SCN5A, undergoes developmentally regulated splicing from inclusion of exon 6A in the fetal heart to exon 6B in adults. These mutually exclusive exons differ in 7 amino acids altering the electrophysiological properties of the Nav1.5 channel. In myotonic dystrophy type 1, SCN5A is mis‐spliced such that the fetal pattern of exon 6A inclusion is detected in adult hearts. Cardiac manifestations of myotonic dystrophy type 1 include conduction defects and arrhythmias and are the second‐leading cause of death. Methods and Results This work aimed to determine the impact of SCN5A mis‐splicing on cardiac function. We used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) to delete Scn5a exon 6B in mice, thereby redirecting splicing toward exon 6A. These mice exhibit prolonged PR and QRS intervals, slowed conduction velocity, extended action potential duration, and are highly susceptible to arrhythmias. Conclusions Our findings highlight a nonmutational pathological mechanism of arrhythmias and conduction defects as a result of mis‐splicing of the predominant cardiac sodium channel. Animals homozygous for the deleted exon express only the fetal isoform and have more‐severe phenotypes than heterozygotes that also express the adult isoform. This observation is directly relevant to myotonic dystrophy type 1, and possibly pathological arrhythmias, in which individuals differ with regard to the ratios of the isoforms expressed.
Collapse
Affiliation(s)
- Paul D Pang
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,2 Department of Pathology & Immunology Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX
| | - Katherina M Alsina
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX
| | - Shuyi Cao
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX
| | - Amrita B Koushik
- 2 Department of Pathology & Immunology Baylor College of Medicine Houston TX
| | - Xander H T Wehrens
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX.,5 Department of Medicine Baylor College of Medicine Houston TX.,6 Department of Pediatrics Baylor College of Medicine Houston TX.,7 Center for Space Medicine Baylor College of Medicine Houston TX.,8 Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Thomas A Cooper
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,2 Department of Pathology & Immunology Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX.,4 Department of Molecular & Cellular Biology Baylor College of Medicine Houston TX.,8 Cardiovascular Research Institute Baylor College of Medicine Houston TX
| |
Collapse
|
99
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
100
|
Bosè F, Renna LV, Fossati B, Arpa G, Labate V, Milani V, Botta A, Micaglio E, Meola G, Cardani R. TNNT2 Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2. Front Neurol 2019; 10:992. [PMID: 31611837 PMCID: PMC6776629 DOI: 10.3389/fneur.2019.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Cardiac involvement is one of the most important manifestations of the multisystemic phenotype of patients affected by myotonic dystrophy (DM) and represents the second cause of premature death. Molecular mechanisms responsible for DM cardiac defects are still unclear; however, missplicing of the cardiac isoform of troponin T (TNNT2) and of the cardiac sodium channel (SCN5A) genes might contribute to the reduced myocardial function and conduction abnormalities seen in DM patients. Since, in DM skeletal muscle, the TNNT2 gene shows the same aberrant splicing pattern observed in cardiac muscle, the principal aim of this work was to verify if the TNNT2 aberrant fetal isoform expression could be secondary to myopathic changes or could reflect the DM cardiac phenotype. Analysis of alternative splicing of TNNT2 and of several genes involved in DM pathology has been performed on muscle biopsies from patients affected by DM type 1 (DM1) or type 2 (DM2) with or without cardiac involvement. Our analysis shows that missplicing of muscle-specific genes is higher in DM1 and DM2 than in regenerating control muscles, indicating that these missplicing could be effectively important in DM skeletal muscle pathology. When considering the TNNT2 gene, missplicing appears to be more evident in DM1 than in DM2 muscles since, in DM2, the TNNT2 fetal isoform appears to be less expressed than the adult isoform. This evidence does not seem to be related to less severe muscle histopathological alterations that appear to be similar in DM1 and DM2 muscles. These results seem to indicate that the more severe TNNT2 missplicing observed in DM1 could not be related only to myopathic changes but could reflect the more severe general phenotype compared to DM2, including cardiac problems that appear to be more severe and frequent in DM1 than in DM2 patients. Moreover, TNNT2 missplicing significantly correlates with the QRS cardiac parameter in DM1 but not in DM2 patients, indicating that this splicing event has good potential to function as a biomarker of DM1 severity and it should be considered in pharmacological clinical trials to monitor the possible effects of different therapeutic approaches on skeletal muscle tissues.
Collapse
Affiliation(s)
- Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Giovanni Arpa
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valentina Labate
- University Cardiology Unit, IRCCS-Policlinico San Donato, Milan, Italy
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, Milan, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|