51
|
Zhang C, Zhao S, Tan Y, Pan S, An W, Chen Q, Wang X, Xu H. The SKA3-DUSP2 Axis Promotes Gastric Cancer Tumorigenesis and Epithelial-Mesenchymal Transition by Activating the MAPK/ERK Pathway. Front Pharmacol 2022; 13:777612. [PMID: 35295342 PMCID: PMC8918524 DOI: 10.3389/fphar.2022.777612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Spindle and kinetochore-related complex subunit 3 (SKA3), a member of the SKA family of proteins, is associated with the progression of multiple cancers. However, the role of SKA3 in gastric cancer has not been studied.Methods: The expression levels of SKA3 and dual-specificity phosphatase 2 (DUSP2) proteins were detected by immunohistochemistry. The effects of SKA3 and DUSP2 on the proliferation, migration, invasion, adhesion, and epithelial-mesenchymal transition of gastric cancer were studied in vitro and in vivo.Results: Immunohistochemical analysis of 164 cases of gastric cancer revealed that high expression of SKA3 was negatively correlated with DUSP2 expression and related to N stage, peritoneal metastasis, and poor prognosis. In vitro studies showed that silencing SKA3 expression inhibited the proliferation, migration, invasion, adhesion and epithelial-mesenchymal transition of gastric cancer. In vivo experiments showed that silencing SKA3 inhibited tumor growth and peritoneal metastasis. Mechanistically, SKA3 negative regulates the tumor suppressor DUSP2 and activates the MAPK/ERK pathway to promote gastric cancer.Conclusion: Our results indicate that the SKA3-DUSP2-ERK1/2 axis is involved in the regulation of gastric cancer progression, and SKA3 is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shutao Zhao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuen Tan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Wen An
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Qingchuan Chen
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| | - Huimian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| |
Collapse
|
52
|
A Review on the Immunomodulatory Mechanism of Acupuncture in the Treatment of Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8528938. [PMID: 35075366 PMCID: PMC8783701 DOI: 10.1155/2022/8528938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/01/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with a high prevalence and canceration rate. The immune disorder is one of the recognized mechanisms. Acupuncture is widely used to treat patients with IBD. In recent years, an increasing number of studies have proven the effectiveness of acupuncture in the treatment of IBD, and some progress has been made in the mechanism. In this paper, we reviewed the studies related to acupuncture for IBD and focused on the immunomodulatory mechanism. We found that acupuncture could regulate the innate and adaptive immunity of IBD patients in many ways. Acupuncture exerts innate immunomodulatory effects by regulating intestinal epithelial barrier, toll-like receptors, NLRP3 inflammasomes, oxidative stress, and endoplasmic reticulum stress and exerts adaptive immunomodulation by regulating the balance of Th17/Treg and Th1/Th2 cells. In addition, acupuncture can also regulate intestinal flora.
Collapse
|
53
|
Weber T, Schmitz R. Molecular Subgroups of Diffuse Large B Cell Lymphoma: Biology and Implications for Clinical Practice. Curr Oncol Rep 2022; 24:13-21. [PMID: 35060000 PMCID: PMC8831345 DOI: 10.1007/s11912-021-01155-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Purpose of Review Genomic analyses have immensely advanced our conception of the heterogeneity of diffuse large B cell lymphoma (DLBCL), resulting in subgroups with distinct molecular profiles. In this review, we summarize our current knowledge of the biology of DLBCL complexity and discuss the potential implications for precision medicine. Recent Findings During the last two decades, gene expression profiling, copy number analysis, and high throughput sequencing enabled the identification of molecular subclasses of DLBCL that are biologically and clinically meaningful. The resulting classifications provided novel prospects of diagnosis, prognostication, and therapeutic strategies for this aggressive disease. Summary The molecular characterization of DLBCL offers unprecedented insights into the biology of these lymphomas that can guide precision medicine. The knowledge of the molecular setup of an individual DLBCL patients enables prognostication of patients and will be useful to stratify patients in clinical trials. Future direction should focus to implement the molecular classifications of DLBCL in the clinical practice to evaluate their significance and scope using real-world data.
Collapse
|
54
|
Huang YH, Chen KD, Kuo KC, Guo MMH, Chang LS, Yang YL, Kuo HC. Human Transcriptome Array Analysis Identifies CDR2 as a Novel Suppressed Gene for Kawasaki Disease. Diagnostics (Basel) 2022; 12:diagnostics12020240. [PMID: 35204331 PMCID: PMC8871175 DOI: 10.3390/diagnostics12020240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Kawasaki disease (KD) is a febrile childhood vasculitis that involves the coronary arteries. Most previous studies have focused on the genes activated in the acute phase of KD. However, in this study, we focused on suppressed genes in the acute stage of KD and identified novel targets with clinical significance and potential prognostic value for KD patients. We enrolled 18 patients with KD, 18 healthy controls (HC), and 18 febrile controls (FC) for human transcriptome array analysis. Another 19 healthy controls, 20 febrile controls, and 31 patients with KD were recruited for RT-PCR validation of target mRNA expressions. The results of Human Transcriptome Array (HTA) 2.0 showed 461 genes that were significantly higher in KD and then normalized after IVIG, as well as 99 suppressed genes in KD. Furthermore, we identified the four genes in KD with the most downregulation, including BCL11B, DUSP2, DDX24, and CDR2, as well as the upregulation of their expression following IVIG administration. The mRNA expression of CDR2 by qRT-PCR was the most compatible with the pattern of the HTA2.0 results. Furthermore, we found higher DDX24 mRNA expression in KD patients with CAL when compared to those without CAL 3 weeks after IVIG administration. In summary, activated gene expression represented a majority in the immune response of KD. In this study, we identified CDR2 as a novel suppressed gene for Kawasaki disease via human transcriptome array analysis and DDX24 associated with CAL formation, which may contribute to further understanding of CAL pathogenesis in KD.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-H.H.); (K.-D.C.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuang-Den Chen
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-H.H.); (K.-D.C.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Institute for Translational Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuang-Che Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-H.H.); (K.-D.C.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Mindy Ming-Huey Guo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-H.H.); (K.-D.C.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ling-Sai Chang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-H.H.); (K.-D.C.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-H.H.); (K.-D.C.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: or ; Tel.: +886-7731-7123
| |
Collapse
|
55
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
56
|
Li H, Xiong J, Du Y, Huang Y, Zhao J. Dual-Specificity Phosphatases and Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:13-25. [PMID: 35224004 DOI: 10.1159/000520142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dual-specificity phosphatases (DUSPs) belong to the family of protein tyrosine phosphatases, which can dephosphorylate both serine/threonine and tyrosine residues. During the past decades, DUSPs have been implicated in various physiological and pathological activities. Besides mitogen-activated protein kinases (MAPKs) as the main substrates, other protein and nonprotein substrates can also be dephosphorylated by DUSPs. Aberrant regulations of DUSPs have been found in various diseases such as cancer, neurological disorders, and kidney diseases, suggesting the involvement of DUSPs in the pathogenesis of diseases. SUMMARY In this review, we summarize the general characteristics of DUSPs and the research progress made in the field of kidney diseases, including diabetic nephropathy, hypertensive nephropathy, chronic kidney disease, acute kidney injury, and lupus nephritis. As the main biochemical function of DUSPs is to dephosphorylate MAPKs activity, decreased DUSPs are found in kidney disease models, whereas forced DUSPs expression reverses the disease presentation, which was proved by using transgenic or gene knockout model. KEY MESSAGES Mounting evidence demonstrates that DUSPs have essential physiological and pathological functions in kidney disease. Fully understanding the functions and mechanisms of DUSPs in kidney disease contributes to their clinical application in translation medicine.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Du
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
57
|
Cheng WX, Ren Y, Lu MM, Xu LL, Gao JG, Chen D, Kalyani FS, Lv ZY, Chen CX, Ji F, Lin HN, Jin X. Palmitoylation in Crohn's disease: Current status and future directions. World J Gastroenterol 2021; 27:8201-8215. [PMID: 35068865 PMCID: PMC8717020 DOI: 10.3748/wjg.v27.i48.8201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
S-palmitoylation is one of the most common post-translational modifications in nature; however, its importance has been overlooked for decades. Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is an autoimmune disease characterized by chronic inflammation involving the entire gastrointestinal tract. Bowel damage and subsequent disabilities caused by CD are a growing global health issue. Well-acknowledged risk factors for CD include genetic susceptibility, environmental factors, such as a westernized lifestyle, and altered gut microbiota. However, the pathophysiological mechanisms of this disorder are not yet comprehensively understood. With the rapidly increasing global prevalence of CD and the evident role of S-palmitoylation in CD, as recently reported, there is a need to investigate the relationship between CD and S-palmitoylation. In this review, we summarize the concept, detection, and function of S-palmitoylation as well as its potential effects on CD, and provide novel insights into the pathogenesis and treatment of CD.
Collapse
Affiliation(s)
- Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Miao-Miao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Farhin Shaheed Kalyani
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zi-Yan Lv
- Wenzhou Medical University Renji College, Wenzhou 325035, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - He-Ning Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, United States
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
58
|
Vazquez J, Chavarria M, Chasman DA, Schwartz RW, Tyler CT, Lopez G, Fisher RC, Ong IM, Stanic AK. Multiomic analysis reveals decidual-specific transcriptional programing of MAIT cells. Am J Reprod Immunol 2021; 86:e13495. [PMID: 34411378 PMCID: PMC8720468 DOI: 10.1111/aji.13495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/24/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Mucosal-Associated Invariant T (MAIT) cells have been recently identified at the maternal-fetal interface. However, transcriptional programming of decidual MAIT cells in pregnancy remains poorly understood. METHOD OF STUDY We employed a multiomic approach to address this question. Mononuclear cells from the decidua basalis and parietalis, and control PBMCs, were analyzed via flow cytometry to investigate MAIT cells in the decidua and assess their transcription factor expression. In a separate study, both decidual and matched peripheral MAIT cells were analyzed using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) coupled with gene expression analysis. Lastly, decidual MAIT cells were stimulated with E.coli and expression of MR1 by antigen presenting cells was measured to evaluate decidual MAIT cell function. RESULTS First, we identified MAIT cells in both the decidua basalis and parietalis. CITE-seq, coupled with scRNA-seq gene expression analysis, highlighted transcriptional programming differences between decidual and matched peripheral MAIT cells at a single cell resolution. Transcription factor expression analysis further highlighted transcriptional differences between decidual MAIT cells and non-matched peripheral MAIT cells. Functionally, MAIT cells are skewed towards IFNγ and TNFα production upon stimulation, with E.coli leading to IFNγ production. Lastly, we demonstrate that MR1, the antigen presenting molecule restricting MAIT cells, is expressed by decidual APCs. CONCLUSION MAIT cells are present in the decidua basalis and obtain a unique gene expression profile. The presence of MR1 on APCs coupled with in vitro activation by E.coli suggests that MAIT cells might be involved in tissue-repair mechanisms at the maternal-fetal interface.
Collapse
Affiliation(s)
| | | | - Deborah A. Chasman
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
| | | | | | | | - Irene M. Ong
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
- University of Wisconsin Carbone Comprehensive Cancer Center
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
59
|
Liu L, Hu J, Wang Y, Lei H, Xu D. The role and research progress of the balance and interaction between regulatory T cells and other immune cells in obesity with insulin resistance. Adipocyte 2021; 10:66-79. [PMID: 33472506 PMCID: PMC7834085 DOI: 10.1080/21623945.2021.1876375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metabolic homoeostasis in adipose tissue plays a major role in obesity-related insulin resistance (IR). Regulatory T (Treg) cells have been recorded to regulate metabolic homoeostasis in adipose tissue. However, their specific mechanism is not yet known. This review aims to present the role of Treg cells and other immune cells in obesity-associated IR, focusing on the balance of numbers and functions of Treg cells and other immune cells as well as the crucial role of their interactions in maintaining adipose tissue homoeostasis. Th1 cells, Th17 cells, CD8+ T cells, and pro-inflammatory macrophages mediate the occurrence of obesity and IR by antagonizing Treg cells, while anti-inflammatory dendritic cells, eosinophils and type 2 innate lymphoid cells (ILC2s) regulate the metabolic homoeostasis of adipose tissue by promoting the proliferation and differentiation of Treg cells. γ δ T cells and invariant natural killer T (iNKT) cells have complex effects on Treg cells, and their roles in obesity-associated IR are controversial. The balance of Treg cells and other immune cells can help maintain the metabolic homoeostasis of adipose tissue. Further research needs to explore more specific molecular mechanisms, thus providing more precise directions for the treatment of obesity with IR.
Collapse
Affiliation(s)
- Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yating Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Lei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
60
|
The MAPK dual specific phosphatase (DUSP) proteins: A versatile wrestler in T cell functionality. Int Immunopharmacol 2021; 98:107906. [PMID: 34198238 DOI: 10.1016/j.intimp.2021.107906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
The functional state of T cells is diverse and under dynamic control for adapting to the changes of microenvironment. Reversible protein phosphorylation represents an important post-translational modification that not only involves in the immediate early response of T cells, but also affects their functionality in the long run. Perturbation of global phosphorylation profile and/or phosphorylation of specific signaling nodes result in aberrant T cell activity. Dual specific phosphatases (DUSPs), which target MAPKs and beyond, have increasingly been emerged as a versatile regulator in T cell biology. Herein in this mini review, we sought to summarize and discuss the impact of DUSP proteins on the regulation of effector T cell activity, T cell polarization, regulatory T cell development and T cell senescence/exhaustion. Given the distinctive engagement of each DUSP member under various disease settings such as chronic infection, autoimmune disorders, cancer and age-related diseases, DUSP proteins likely hold the promise to become a druggable target other than the existing therapeutics that are predominantly by manipulating protein kinase activity.
Collapse
|
61
|
Liu X, Liu X, Du Y, Hu M, Tian Y, Li Z, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. DUSP5 promotes osteogenic differentiation through SCP1/2-dependent phosphorylation of SMAD1. STEM CELLS (DAYTON, OHIO) 2021; 39:1395-1409. [PMID: 34169608 PMCID: PMC8518947 DOI: 10.1002/stem.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
Dual‐specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C‐terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2‐dependent manner. Specifically, DUSP5 attenuates the SCP1/2‐SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xuenan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yangge Du
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Menglong Hu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yueming Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Zheng Li
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Longwei Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xiao Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yunsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Ping Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
62
|
Shi Q, Ni X, Lei M, Xia Q, Dong Y, Zhang Q, Wang W. Phosphorylation of islet-1 serine 269 by CDK1 increases its transcriptional activity and promotes cell proliferation in gastric cancer. Mol Med 2021; 27:47. [PMID: 33962568 PMCID: PMC8106192 DOI: 10.1186/s10020-021-00302-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Background Despite recent advances in diagnostic and therapeutic approaches for gastric cancer (GC), the survival of patients with advanced GC remains very low. Islet-1 (ISL1) is a LIM-homeodomain transcription factor, which is upregulated and promotes cell proliferation in GC. The exact mechanism by which ISL1 influences GC development is unclear. Methods Co-immunoprecipitation (co-IP) and glutathione S-transferase (GST)-pulldown assays were employed to evaluate the interaction of ISL1 with CDK1. Western blot and immunohistochemistry analyses were performed to evaluate the ability of CDK1 to phosphorylate ISL1 at Ser 269 in GC cell and tissue specimens. Chromatin immunoprecipitation (ChIP), ChIP re-IP, luciferase reporter, and CCK-8 assays were combined with flow cytometry cell cycle analysis to detect the transactivation potency of ISL1-S269-p and its ability to promote cell proliferation. The self-stability and interaction with CDK1 of ISL1-S269-p were also determined. Results ISL1 is phosphorylated by CDK1 at serine 269 (S269) in vivo. Phosphorylation of ISL1 by CDK1 on serine 269 strengthened its binding on the cyclin B1 and cyclin B2 promoters and increased its transcriptional activity in GC. Furthermore, CDK1-dependent phosphorylation of ISL1 correlated positively with ISL1 protein self-stability in NIH3T3 cells. Conclusions ISL1-S269-p increased ISL1 transcriptional activity and self-stability while binding to the cyclinB1 and cyclinB2 promoters promotes cell proliferation. ISL1-S269-p is therefore crucial for tumorigenesis and potentially a direct therapeutic target for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00302-6.
Collapse
Affiliation(s)
- Qiong Shi
- Clinical Laboratory, The Third Affiliated Hospital, Kunming Medical University & Yunnan Cancer Center, Yunnan, Kunming, P. R. China
| | - Xiaomei Ni
- Clinical Laboratory, The Third Affiliated Hospital, Kunming Medical University & Yunnan Cancer Center, Yunnan, Kunming, P. R. China
| | - Ming Lei
- Clinical Laboratory, The Third Affiliated Hospital, Kunming Medical University & Yunnan Cancer Center, Yunnan, Kunming, P. R. China
| | - Quansong Xia
- Clinical Laboratory, The Third Affiliated Hospital, Kunming Medical University & Yunnan Cancer Center, Yunnan, Kunming, P. R. China
| | - Yan Dong
- Pathology Department, The Third Affiliated Hospital, Kunming Medical University & Yunnan Cancer Center, Yunnan, Kunming, P. R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, P. R. China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P. R. China.
| |
Collapse
|
63
|
Hwang S, Kim MH, Lee CW. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. Int J Mol Sci 2021; 22:3791. [PMID: 33917542 PMCID: PMC8038829 DOI: 10.3390/ijms22073791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
More than 70% of eukaryotic proteins are regulated by phosphorylation. However, the mechanism of dephosphorylation that counteracts phosphorylation is less studied. Phosphatases are classified into 104 distinct groups based on substrate-specific features and the sequence homologies in their catalytic domains. Among them, dual-specificity phosphatases (DUSPs) that dephosphorylate both phosphoserine/threonine and phosphotyrosine are important for cellular homeostasis. Ssu72 is a newly studied phosphatase with dual specificity that can dephosphorylate both phosphoserine/threonine and phosphotyrosine. It is important for cell-growth signaling, metabolism, and immune activation. Ssu72 was initially identified as a phosphatase for the Ser5 and Ser7 residues of the C-terminal domain of RNA polymerase II. It prefers the cis configuration of the serine-proline motif within its substrate and regulates Pin1, different from other phosphatases. It has recently been reported that Ssu72 can regulate sister chromatid cohesion and the separation of duplicated chromosomes during the cell cycle. Furthermore, Ssu72 appears to be involved in the regulation of T cell receptor signaling, telomere regulation, and even hepatocyte homeostasis in response to a variety of stress and damage signals. In this review, we aim to summarize various functions of the Ssu72 phosphatase, their implications in diseases, and potential therapeutic indications.
Collapse
Affiliation(s)
- Soeun Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Curogen Technology, Suwon 16419, Korea
| |
Collapse
|
64
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
65
|
Li G, Zhang B, Hao J, Chu X, Wiestler M, Cornberg M, Xu CJ, Liu X, Li Y. Identification of Novel Population-Specific Cell Subsets in Chinese Ulcerative Colitis Patients Using Single-Cell RNA Sequencing. Cell Mol Gastroenterol Hepatol 2021; 12:99-117. [PMID: 33545427 PMCID: PMC8081991 DOI: 10.1016/j.jcmgh.2021.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Genome-wide association studies (GWAS) and transcriptome analyses have been performed to better understand the pathogenesis of ulcerative colitis (UC). However, current studies mainly focus on European ancestry, highlighting a great need to identify the key genes, pathways and cell types in colonic mucosal cells of adult UC patients from other ancestries. Here we aimed to identify key genes and cell types in colonic mucosal of UC. METHODS We performed Single-cell RNA sequencing (scRNA-seq) analysis of 12 colon biopsies of UC patients and healthy controls from Chinese Han ancestry. RESULTS Two novel plasma subsets were identified. Five epithelial/stromal and three immune cell subsets show significant difference in abundance between inflamed and non-inflamed samples. In general, UC risk genes show consistent expression alteration in both Immune cells of inflamed and non-inflamed tissues. As one of the exceptions, IgA defection, marking the signal of immune dysfunction, is specific to the inflamed area. Moreover, Th17 derived activation was observed in both epithelial cell lineage and immune cell lineage of UC patients as compared to controls , suggesting a systemic change of immune activities driven by Th17. The UC risk genes show enrichment in progenitors, glial cells and immune cells, and drug-target genes are differentially expressed in antigen presenting cells. CONCLUSIONS Our work identifies novel population-specific plasma cell molecular signatures of UC. The transcriptional signature of UC is shared in immune cells from both inflamed and non-inflamed tissues, whereas the transcriptional response to disease is a local effect only in inflamed epithelial/stromal cells.
Collapse
Affiliation(s)
- Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Bowen Zhang
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Xiaojing Chu
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Miriam Wiestler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China,Correspondence Address correspondence to: Xinjuan Liu, PhD, Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100020, China.
| | - Yang Li
- Centre for Individualised Infection Medicine and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
66
|
Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. J Immunol Res 2021; 2021:8816041. [PMID: 33553436 PMCID: PMC7846404 DOI: 10.1155/2021/8816041] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Autoimmune diseases (such as rheumatoid arthritis, asthma, autoimmune bowel disease) are a complex disease. Improper activation of the immune system or imbalance of immune cells can cause the immune system to transform into a proinflammatory state, leading to autoimmune pathological damage. Recent studies have shown that autoimmune diseases are closely related to CD4+ T helper cells (Th). The original CD4 T cells will differentiate into different T helper (Th) subgroups after activation. According to their cytokines, the types of Th cells are different to produce lineage-specific cytokines, which play a role in autoimmune homeostasis. When Th differentiation and its cytokines are not regulated, it will induce autoimmune inflammation. Autoimmune bowel disease (IBD) is an autoimmune disease of unknown cause. Current research shows that its pathogenesis is closely related to Th17 cells. This article reviews the role and plasticity of the upstream and downstream cytokines and signaling pathways of Th17 cells in the occurrence and development of autoimmune bowel disease and summarizes the new progress of IBD immunotherapy.
Collapse
|
67
|
Wang J, Xu Y, Chen Z, Liang J, Lin Z, Liang H, Xu Y, Wu Q, Guo X, Nie J, Lu B, Huang B, Xian H, Wang X, Wu Q, Zeng J, Chai C, Zhang M, Lin Y, Zhang L, Zhao S, Tong Y, Zeng L, Gu X, Chen ZG, Yi S, Zhang T, Delfouneso D, Zhang Y, Nutt SL, Lew AM, Lu L, Bai F, Xia H, Wen Z, Zhang Y. Liver Immune Profiling Reveals Pathogenesis and Therapeutics for Biliary Atresia. Cell 2020; 183:1867-1883.e26. [PMID: 33248023 DOI: 10.1016/j.cell.2020.10.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/01/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yanhui Xu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics (IGS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiankun Liang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zefeng Lin
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huiying Liang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yiping Xu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Qi Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xuanjie Guo
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Junli Nie
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Bingtai Lu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Bing Huang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huifang Xian
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hongkong; Chongqing International Institute for Immunology, Hongkong, China
| | - Qiang Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Chengwei Chai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Meixue Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yuzhen Lin
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Li Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Shanmeizi Zhao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yanlu Tong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Liang Zeng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xiaoqiong Gu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Hepatic Surgery, Liver Transplant Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shuhong Yi
- Department of Pediatrics and Hepatic Surgery, Liver Transplant Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Tong Zhang
- Department of Pediatrics and Hepatic Surgery, Liver Transplant Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - David Delfouneso
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hongkong; Chongqing International Institute for Immunology, Hongkong, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics (IGS), School of Life Sciences, Peking University, Beijing, 100871, China; Center for Translational Cancer Research, First Hospital, Peking University, Beijing 100871, China.
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Zhe Wen
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Yuxia Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
68
|
Arnold NS, Noren Hooten N, Zhang Y, Lehrmann E, Wood W, Camejo Nunez W, Thorpe RJ, Evans MK, Dluzen DF. The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. PLoS One 2020; 15:e0239654. [PMID: 32970748 PMCID: PMC7514036 DOI: 10.1371/journal.pone.0239654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Socioeconomic status (SES), living in poverty, and other social determinants of health contribute to health disparities in the United States. African American (AA) men living below poverty in Baltimore City have a higher incidence of mortality when compared to either white males or AA females living below poverty. Previous studies in our laboratory and elsewhere suggest that environmental conditions are associated with differential gene expression (DGE) patterns in peripheral blood mononuclear cells (PBMCs). DGE have also been associated with hypertension and cardiovascular disease (CVD) and correlate with race and sex. However, no studies have investigated how poverty status associates with DGE between male and female AAs and whites living in Baltimore City. We examined DGE in 52 AA and white participants of the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) cohort, who were living above or below 125% of the 2004 federal poverty line at time of sample collection. We performed a microarray to assess DGE patterns in PBMCs from these participants. AA males and females living in poverty had the most genes differentially-expressed compared with above poverty controls. Gene ontology (GO) analysis identified unique and overlapping pathways related to the endosome, single-stranded RNA binding, long-chain fatty-acyl-CoA biosynthesis, toll-like receptor signaling, and others within AA males and females living in poverty and compared with their above poverty controls. We performed RT-qPCR to validate top differentially-expressed genes in AA males. We found that KLF6, DUSP2, RBM34, and CD19 are expressed at significantly lower levels in AA males in poverty and KCTD12 is higher compared to above poverty controls. This study serves as an additional link to better understand the gene expression response in peripheral blood mononuclear cells in those living in poverty.
Collapse
Affiliation(s)
- Nicole S. Arnold
- Department of Biology, Morgan State University, Baltimore, MD, United States of America
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - William Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Wendy Camejo Nunez
- Department of Biology, Morgan State University, Baltimore, MD, United States of America
| | - Roland J. Thorpe
- Program for Research on Men’s Health, Hopkins Center for Health Disparities Solutions, Johns Hopkins University, Baltimore, MD, United States of America
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Douglas F. Dluzen
- Department of Biology, Morgan State University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
69
|
Enhancing and Complementary Mechanisms of Synergistic Action of Acori Tatarinowii Rhizoma and Codonopsis Radix for Alzheimer's Disease Based on Systems Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6317230. [PMID: 32802132 PMCID: PMC7334796 DOI: 10.1155/2020/6317230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Materials and Methods In this study, a systems pharmacology-based strategy was used to elucidate the synergistic mechanism of Acori Tatarinowii Rhizoma and Codonopsis Radix for the treatment of AD. This novel systems pharmacology model consisted of component information, pharmacokinetic analysis, and pharmacological data. Additionally, the related pathways were compressed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the organ distributions were determined in the BioGPS bank. Results Sixty-eight active ingredients with suitable pharmacokinetic profiles and biological activities were selected through ADME screening in silico. Based on 62 AD-related targets, such as APP, CHRM1, and PTGS1, systematic analysis showed that these two herbs were mainly involved in the PI3K-Akt signaling pathway, MAPK signaling pathway, neuroactive ligand-receptor interaction, and fluid shear stress and atherosclerosis, indicating that they had a synergistic effect on AD. However, ATR acted on the KDR gene, while CR acted on IGF1R, MET, IL1B, and CHUK, showing that they also had complementary effects on AD. The ingredient contribution score involved 29 ingredients contributing 90.14% of the total contribution score of this formula for AD treatment, which emphasized that the effective therapeutic effects of these herbs for AD were derived from both ATR and CR, not a single herb. Organ distribution showed that the targets of the active ingredients were mainly located in the whole blood, the brain, and the muscle, which are associated with AD. Conclusions In sum, our findings suggest that the systems pharmacology methods successfully revealed the synergistic and complementary mechanisms of ATR and CR for the treatment of AD.
Collapse
|
70
|
Hisert KB, Birkland TP, Schoenfelt KQ, Long ME, Grogan B, Carter S, Liles WC, McKone EF, Becker L, Manicone AM, Gharib SA. CFTR Modulator Therapy Enhances Peripheral Blood Monocyte Contributions to Immune Responses in People With Cystic Fibrosis. Front Pharmacol 2020; 11:1219. [PMID: 33013356 PMCID: PMC7461946 DOI: 10.3389/fphar.2020.01219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background CFTR modulators decrease some etiologies of CF airway inflammation; however, data indicate that non-resolving airway infection and inflammation persist in individuals with CF and chronic bacterial infections. Thus, identification of therapies that diminish airway inflammation without allowing unrestrained bacterial growth remains a critical research goal. Novel strategies for combatting deleterious airway inflammation in the CFTR modulator era require better understanding of cellular contributions to chronic CF airway disease, and how inflammatory cells change after initiation of CFTR modulator therapy. Peripheral blood monocytes, which traffic to the CF airway, can develop both pro-inflammatory and inflammation-resolving phenotypes, represent intriguing cellular targets for focused therapies. This therapeutic approach, however, requires a more detailed knowledge of CF monocyte cellular programming and phenotypes. Material and Methods In order to characterize the inflammatory phenotype of CF monocytes, and how these cells change after initiation of CFTR modulator therapy, we studied adults (n=10) with CF, chronic airway infections, and the CFTR-R117H mutations before and 7 days after initiation of ivacaftor. Transcriptomes of freshly isolated blood monocytes were interrogated by RNA-sequencing (RNA-seq) followed by pathway-based analyses. Plasma concentrations of cytokines and chemokines were evaluated by multiplex ELISA. Results RNAseq identified approximately 50 monocyte genes for which basal expression was significantly changed in all 10 subjects after 7 days of ivacaftor. Of these, the majority were increased in expression post ivacaftor, including many genes traditionally associated with enhanced inflammation and immune responses. Pathway analyses confirmed that transcriptional programs were overwhelmingly up-regulated in monocytes after 7 days of ivacaftor, including biological modules associated with immunity, cell cycle, oxidative phosphorylation, and the unfolded protein response. Ivacaftor increased plasma concentrations of CXCL2, a neutrophil chemokine secreted by monocytes and macrophages, and CCL2, a monocyte chemokine. Conclusions Our results demonstrate that ivacaftor causes acute changes in blood monocyte transcriptional profiles and plasma chemokines, and suggest that increased monocyte inflammatory signals and changes in myeloid cell trafficking may contribute to changes in airway inflammation in people taking CFTR modulators. To our knowledge, this is the first report investigating the transcriptomic response of circulating blood monocytes in CF subjects treated with a CFTR modulator.
Collapse
Affiliation(s)
- Katherine B Hisert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, United States.,Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Timothy P Birkland
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kelly Q Schoenfelt
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Matthew E Long
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Brenda Grogan
- Department of Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Suzanne Carter
- Department of Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - W Conrad Liles
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Edward F McKone
- Department of Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Anne M Manicone
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sina A Gharib
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
71
|
Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn's disease. World J Gastroenterol 2020; 26:4055-4075. [PMID: 32821070 PMCID: PMC7403801 DOI: 10.3748/wjg.v26.i28.4055] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
In 2018, the pan-Janus kinase (JAK) inhibitor tofacitinib was launched for the treatment of ulcerative colitis (UC). Although tofacitinib has proven efficacious in patients with active UC, it failed in patients with Crohn's disease (CD). This finding strongly hints at a different contribution of JAK signaling in both entities. Here, we review the current knowledge on the interplay between the JAK/signal transducer and activator of transcription (STAT) pathway and inflammatory bowel diseases (IBD). In particular, we provide a detailed overview of the differences and similarities of JAK/STAT-signaling in UC and CD, highlight the impact of the JAK/STAT pathway in experimental colitis models and summarize the published evidence on JAK/STAT-signaling in immune cells of IBD as well as the genetic association between the JAK/STAT pathway and IBD. Finally, we describe novel treatment strategies targeting JAK/STAT inhibition in UC and CD and comment on the limitations and challenges of the new drug class.
Collapse
Affiliation(s)
- Friederike Cordes
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - John Nik Ding
- Department of Gastroenterology, St. Vincent’s Hospital, Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, East Melbourne 3002, Australia
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| |
Collapse
|
72
|
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:323-337. [PMID: 32203403 DOI: 10.1038/s41575-020-0273-0] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn's disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK-STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.
Collapse
Affiliation(s)
- Azucena Salas
- Department of Gastroenterology, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristian Hernandez-Rocha
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital Inflammatory Bowel Disease Group, Toronto, Ontario, Canada
| | - Marjolijn Duijvestein
- Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - William Faubion
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Niels Vande Casteele
- Robarts Clinical Trials, London, ON, Canada. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
73
|
Mola S, Foisy S, Boucher G, Major F, Beauchamp C, Karaky M, Goyette P, Lesage S, Rioux JD. A transcriptome-based approach to identify functional modules within and across primary human immune cells. PLoS One 2020; 15:e0233543. [PMID: 32469933 PMCID: PMC7259617 DOI: 10.1371/journal.pone.0233543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - François Major
- Unité de recherche en ingénierie des ARN, Institut de recherche en immunologie et en cancérologie, Montréal, Québec, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - John D. Rioux
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
74
|
Stojković L, Jovanović I, Zivković M, Zec M, Djurić T, Zivotić I, Kuveljić J, Kolaković A, Kolić I, Djordjević A, Glibetić M, Alavantić D, Stanković A. The Effects of Aronia melanocarpa Juice Consumption on the mRNA Expression Profile in Peripheral Blood Mononuclear Cells in Subjects at Cardiovascular Risk. Nutrients 2020; 12:E1484. [PMID: 32443695 PMCID: PMC7285191 DOI: 10.3390/nu12051484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Foods and food products that contain polyphenols are proposed to modulate risk of cardiovascular disease. The aim of this three-arm, crossover, randomized, double-blind, placebo-controlled intervention study was to examine the impact of Aronia melanocarpa juice (AMJ), high-polyphenol (AMJ treatment, 1.17 g/100 mL polyphenols) and low-polyphenol (dAMJ treatment, 0.29 g/100 mL polyphenols) dose, on the transcriptome in peripheral blood mononuclear cells (PBMC) of 19 subjects at cardiovascular risk. Transcriptome data were obtained by microarray. Bioinformatic functional annotation analysis was performed on both the whole transcriptome datasets and the differentially expressed genes (DEGs). Expression of selected DEGs was validated by RT-qPCR. Administration of AMJ and dAMJ treatments during the two consecutive four-week treatment periods had additive effects on PBMC transcriptome profiles, with the most pronounced and specific effect noticed for AMJ in the last treatment period (TP3) of the trial. Between the high-dose and low-dose treatments in TP3, there was a multitude of overlapping DEGs and DEG-enriched biological processes and pathways, which primarily included immunomodulation and regulation of cell proliferation/death. Increased expression of TNF, IL1B, IL8, RGS1, OSM, and DUSP2 in TP3 was confirmed by RT-qPCR. The results suggest the immunomodulatory effects of prolonged habitual consumption of polyphenol-rich aronia juice in individuals at cardiovascular risk.
Collapse
Affiliation(s)
- Ljiljana Stojković
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Ivan Jovanović
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Maja Zivković
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Manja Zec
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.G.)
| | - Tamara Djurić
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Ivan Zivotić
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Jovana Kuveljić
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Ana Kolaković
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Ivana Kolić
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Ana Djordjević
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Marija Glibetić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.G.)
| | - Dragan Alavantić
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| | - Aleksandra Stanković
- Laboratory for Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia; (L.S.); (I.J.); (M.Z.); (T.D.); (I.Z.); (J.K.); (A.K.); (I.K.); (A.D.); (D.A.)
| |
Collapse
|
75
|
Burja B, Mertelj T, Frank-Bertoncelj M. Hi- JAKi-ng Synovial Fibroblasts in Inflammatory Arthritis With JAK Inhibitors. Front Med (Lausanne) 2020; 7:124. [PMID: 32432116 PMCID: PMC7214667 DOI: 10.3389/fmed.2020.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
The Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is one of the central signaling hubs in inflammatory, immune and cancer cells. Inhibiting the JAK-STAT pathway with JAK inhibitors (jakinibs) constitutes an important therapeutic strategy in cancer and chronic inflammatory diseases like rheumatoid arthritis (RA). FDA has approved different jakinibs for the treatment of RA, including tofacitinib, baricitinib and upadacitinib, and several jakinibs are being tested in clinical trials. Here, we reviewed published studies of jakinib effects on resolving synovial pathology in inflammatory arthritis. We discussed the results of jakinibs on structural joint damage in clinical trials and explored the effects of jakinibs across different in vitro, ex vivo, and in vivo synovial experimental models. We delved rigorously into experimental designs of in vitro fibroblast studies, deconvoluted jakinib efficacy in synovial fibroblasts across diverse experimental conditions and discussed their translatability in vivo. Synovial fibroblasts can readily activate the JAK-STAT signaling pathway in response to cytokine stimulation. We highlighted rather limited effects of jakinibs on the in vitro cultured synovial fibroblasts and inferred that direct and indirect (immune cell-dependent) actions of jakinibs are required to curb the fibroblast pathology in vivo. These actions have not been mimicked optimally in current in vitro experimental designs, where inflammatory stimuli do not naturally clear out with treatment as they do in vivo. While summarizing the broad knowledge of synovial jakinib effects, our review uniquely challenges future study designs to better mimick the jakinib actions in broader cell communities, as occurring in vivo in the inflamed synovium. This can deepen our understanding of collective synovial activities of jakinibs and their therapeutic limitations, thereby fostering jakinib development in arthritis.
Collapse
Affiliation(s)
- Blaž Burja
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland.,Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tonja Mertelj
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | | |
Collapse
|
76
|
Motwani K, Peters LD, Vliegen WH, El-sayed AG, Seay HR, Lopez MC, Baker HV, Posgai AL, Brusko MA, Perry DJ, Bacher R, Larkin J, Haller MJ, Brusko TM. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front Immunol 2020; 11:611. [PMID: 32351504 PMCID: PMC7174770 DOI: 10.3389/fimmu.2020.00611] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Willem H. Vliegen
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ahmed Gomaa El-sayed
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - M. Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
77
|
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37:551-568.e14. [PMID: 32289277 PMCID: PMC8459709 DOI: 10.1016/j.ccell.2020.03.015] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Precision Medicine
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Q Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey Tang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | - Calvin A Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David W Scott
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
78
|
Dexamethasone suppresses the Th17/1 cell polarization in the CD4 + T cells from patients with primary immune thrombocytopenia. Thromb Res 2020; 190:26-34. [PMID: 32278222 DOI: 10.1016/j.thromres.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease with increased Th17 cells in peripheral blood. Th17/1 cells, which were recently characterized as a new differentiated Th17 lineage secreting IL-17 and IFN-γ, play an important role in the pathogenesis of multiple autoimmune diseases. In this study, we investigated whether Th17/1 cells are involved in the pathogenesis of ITP. MATERIALS AND METHODS Peripheral blood was obtained from 44 ITP patients and 50 healthy controls. The percentages of T cell subsets were evaluated. We also detected molecular signature of Th17/1 cells in CD4+ T cells. Besides, CD4+ T cells from ITP patients were treated with dexamethasone, the inhibitor of NF-κB, or rapamycin to evaluate the impact and mechanism of dexamethasone treatment on Th17/1 cells. RESULTS We found an elevated percentage and an enhanced specific molecular signature of Th17/1 cells in CD4+ T cells in ITP patients. The percentage of Th17/1 cells was correlated positively with Th17 cells in ITP patients and healthy controls. The percentage of Th17/1 cells was correlated with corticosteroid resistance. Dexamethasone reversed the molecular signature of Th17/1 cells and decreased the percentage of Th17/1 cells in vitro. Treatment of dexamethasone and the inhibitor of NF-κB suppressed the phosphorylation of STAT3, while dexamethasone treatment also inhibited the phosphorylation of NF-κB p65. CONCLUSIONS Our data suggested Th17/1 cells may contribute to the pathogenesis of ITP and dexamethasone could inhibit Th17/1 cells through NF-κB/STAT3 pathway. These results may provide a potential therapeutic strategy of correcting the Th17/1 cell deviation in ITP.
Collapse
|
79
|
Wang CA, Chang IH, Hou PC, Tai YJ, Li WN, Hsu PL, Wu SR, Chiu WT, Li CF, Shan YS, Tsai SJ. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. J Extracell Vesicles 2020; 9:1746529. [PMID: 32341770 PMCID: PMC7170376 DOI: 10.1080/20013078.2020.1746529] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Early dissemination is a unique characteristic and a detrimental process of pancreatic ductal adenocarcinoma (PDAC); however, the underlying mechanism remains largely unknown. Here, we investigate the role of dual-specificity phosphatase-2 (DUSP2)-vascular endothelial growth factor-C (VEGF-C) axis in mediating PDAC lymphangiogenesis and lymphovascular invasion. Expression of DUSP2 is greatly suppressed in PDAC, which results in increased aberrant expression of extracellular vesicle (EV)-associated VEGF-C secretion. EV-VEGF-C exerts paracrine effects on lymphatic endothelial cells and autocrine effects on cancer cells, resulting in the lymphovascular invasion of cancer cells. Tissue-specific knockout of Dusp2 in mouse pancreas recapitulates PDAC phenotype and lymphovascular invasion. Mechanistically, loss-of-DUSP2 enhances proprotein convertase activity and vesicle trafficking to promote the release of the mature form of EV-VEGF-C. Collectively, these findings represent a conceptual advance in understanding pancreatic cancer lymphovascular invasion and suggest that loss-of-DUSP2-mediated VEGF-C processing may play important roles in early dissemination of pancreatic cancer. Abbreviations: DUSP2: dual-specificity phosphatase-2; VEGF-C: vascular endothelial growth factor-C; EV: extracellular vesicles; PDAC: pancreatic ductal adenocarcinoma; KD: knockdown.
Collapse
Affiliation(s)
- Chu-An Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Heng Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Pei-Chi Hou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jing Tai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
80
|
Dan Lu, Liu L, Sun Y, Song J, Yin Q, Zhang G, Qi F, Hu Z, Yang Z, Zhou Z, Hu Y, Zhang L, Ji J, Zhao X, Jin Y, McNutt MA, Yin Y. The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity. Nat Immunol 2020; 21:287-297. [PMID: 31932812 DOI: 10.1038/s41590-019-0577-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells subvert immune surveillance through inhibition of T cell effector function. Elucidation of the mechanism of T cell dysfunction is therefore central to cancer immunotherapy. Here, we report that dual specificity phosphatase 2 (DUSP2; also known as phosphatase of activated cells 1, PAC1) acts as an immune checkpoint in T cell antitumor immunity. PAC1 is selectively upregulated in exhausted tumor-infiltrating lymphocytes and is associated with poor prognosis of patients with cancer. PAC1hi effector T cells lose their proliferative and effector capacities and convert into exhausted T cells. Deletion of PAC1 enhances immune responses and reduces cancer susceptibility in mice. Through activation of EGR1, excessive reactive oxygen species in the tumor microenvironment induce expression of PAC1, which recruits the Mi-2β nucleosome-remodeling and histone-deacetylase complex, eventually leading to chromatin remodeling of effector T cells. Our study demonstrates that PAC1 is an epigenetic immune regulator and highlights the importance of targeting PAC1 in cancer immunotherapy.
Collapse
Affiliation(s)
- Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Liang Liu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yizhe Sun
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jia Song
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fang Qi
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zixi Hu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Zeliang Yang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Zhou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China. .,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China. .,Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
81
|
Cohen JN, Bowman S, Laszik ZG, North JP. Clinicopathologic overlap of psoriasis, eczema, and psoriasiform dermatoses: A retrospective study of T helper type 2 and 17 subsets, interleukin 36, and β-defensin 2 in spongiotic psoriasiform dermatitis, sebopsoriasis, and tumor necrosis factor α inhibitor-associated dermatitis. J Am Acad Dermatol 2019; 82:430-439. [PMID: 31859047 DOI: 10.1016/j.jaad.2019.08.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND T helper (Th) type 17 and Th2 cells mediate psoriasis and eczema, respectively. Some dermatoses exhibit overlapping clinicopathologic features, and their immunopathology is relatively unexplored. OBJECTIVE To determine whether Th17 and Th2 subsets and interleukin (IL) 36 and β-defensin 2 (BD-2) markers of IL-17 signaling expression can discriminate between biopsy samples of psoriasis and eczematous/spongiotic dermatitis and to use those markers to immunophenotype cases with clinicopathologic overlap. METHODS A retrospective study was performed on biopsy samples of psoriasis, eczema/spongiotic dermatitis, sebopsoriasis, tumor necrosis factor α inhibitor-associated psoriasiform dermatitis, and ambiguous cases diagnosed as spongiotic psoriasiform dermatitis. Dual CD4/GATA3 and CD4/RORC, IL-36, and BD-2 immunohistochemistry was performed. RESULTS IL-36 and BD-2 were strongly expressed in biopsy samples of psoriasis compared with eczema/spongiotic dermatitis. No significant differences were observed in the percentages of Th2 and Th17 cells between disease types. Strong expression of IL-36 and BD-2 was observed in a subset of spongiotic psoriasiform dermatitis, sebopsoriasis, and tumor necrosis factor α inhibitor-associated psoriasiform dermatitis biopsy samples. LIMITATIONS This was an exploratory study with a small sample size. No multiple testing adjustment was done. Clinical follow-up was limited. CONCLUSIONS In cases with clinicopathologic overlap between psoriasis and spongiotic dermatitis, IL-36, and to a lesser extent BD-2, may be used to assess for a psoriasis-like/IL-17 phenotype, which could inform therapeutic clinical decisions.
Collapse
Affiliation(s)
- Jarish N Cohen
- Department of Pathology, University of California, San Francisco, CA; Department of Dermatology, University of California, San Francisco, CA; UCSF Dermatopathology Service, University of California, San Francisco, CA
| | - Sarah Bowman
- Department of Pathology, University of California, San Francisco, CA; UCSF Dermatopathology Service, University of California, San Francisco, CA
| | - Zoltan G Laszik
- Department of Pathology, University of California, San Francisco, CA; UCSF Dermatopathology Service, University of California, San Francisco, CA
| | - Jeffrey P North
- Department of Pathology, University of California, San Francisco, CA; Department of Dermatology, University of California, San Francisco, CA; UCSF Dermatopathology Service, University of California, San Francisco, CA.
| |
Collapse
|
82
|
Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat Immunol 2019; 20:1621-1630. [PMID: 31740800 DOI: 10.1038/s41590-019-0542-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Interferon-γ (IFN-γ) is essential for the innate immune response to intracellular bacteria. Noncoding RNAs and RNA-binding proteins (RBPs) need to be further considered in studies of regulation of the IFN-γ-activated signaling pathway in macrophages. In the present study, we found that the microRNA miR-1 promoted IFN-γ-mediated clearance of Listeria monocytogenes in macrophages by indirectly stabilizing the Stat1 messenger RNA through the degradation of the cytoplasmic long noncoding RNA Sros1. Inducible degradation or genetic loss of Sros1 led to enhanced IFN-γ-dependent activation of the innate immune response. Mechanistically, Sros1 blocked the binding of Stat1 mRNA to the RBP CAPRIN1, which stabilized the Stat1 mRNA and, consequently, promoted IFN-γ-STAT1-mediated innate immunity. These observations shed light on the complex RNA-RNA regulatory networks involved in cytokine-initiated innate responses in host-pathogen interactions.
Collapse
|
83
|
Chuang HC, Tan TH. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells 2019; 8:cells8111433. [PMID: 31766293 PMCID: PMC6912701 DOI: 10.3390/cells8111433] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.
Collapse
|
84
|
Shi X, Yang W, Wang N, Zhu J. Circulating JNK pathway-associated phosphatase level correlates with decreased risk, activity, inflammation level and reduced clinical response to tumor necrosis factor-α inhibitor in Crohn disease patients. Medicine (Baltimore) 2019; 98:e16622. [PMID: 31415355 PMCID: PMC6831387 DOI: 10.1097/md.0000000000016622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the correlation of serum Jun-amino-terminal kinase (JNK) pathway-associated phosphatase (JKAP) level with disease risk, severity, inflammation, and treatment response to tumor necrosis factor (TNF)-α inhibitor in Crohn disease (CD) patients. METHOD Ninety-six active CD patients and 90 healthy controls (HCs) were consecutively enrolled. Serum JKAP level of participants was determined via enzyme-linked immunosorbent assay (ELISA). In CD patients, C-reactive protein (CRP), erythrocyte sedimentation rate, Crohn disease activity index (CDAI), and inflammatory cytokine levels (determined by ELISA) were recorded. All CD patients underwent infliximab (IFX) treatment for 12 weeks, then treatment response (defined as decrement of CDAI ≥70) was assessed at week 12 (W12). RESULTS Serum JKAP level in CD patients was lower compared to HCs, and it disclosed a good predictive value for decreased CD risk; meanwhile, it was negatively correlated with CRP level, CDAI score, TNF-α, interleukin (IL)-6, and IL-17 levels in CD patients. Sixty-eight (70.8%) patients achieved treatment response to IFX at W12, and JKAP level was increased at W12 compared to baseline. Interestingly, baseline JKAP level in response patients was decreased compared to nonresponse patients, and it exhibited a good predictive value for decreased treatment response to IFX, multivariate logistic regression revealed that JKAP was an independent factor for predicting reduced IFX response. CONCLUSION Circulating JKAP expression correlates with decreased disease risk, activity, and inflammation level, and it could be served as a novel biomarker for predicting reduced clinical response to TNF-α inhibitor in CD patients.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Wei Yang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang
| | - Nian Wang
- Division of Gastroenterology and Hepatology, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Hospital
| | - Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
85
|
Castro-Sánchez P, Aguilar-Sopeña O, Alegre-Gómez S, Ramirez-Munoz R, Roda-Navarro P. Regulation of CD4 + T Cell Signaling and Immunological Synapse by Protein Tyrosine Phosphatases: Molecular Mechanisms in Autoimmunity. Front Immunol 2019; 10:1447. [PMID: 31297117 PMCID: PMC6607956 DOI: 10.3389/fimmu.2019.01447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cell activation and effector function is mediated by the formation of a long-lasting interaction established between T cells and antigen-presenting cells (APCs) called immunological synapse (IS). During T cell activation, different signaling molecules as well as the cytoskeleton and the endosomal compartment are polarized to the IS. This molecular dynamics is tightly regulated by phosphorylation networks, which are controlled by protein tyrosine phosphatases (PTPs). While some PTPs are known to be important regulators of adhesion, ligand discrimination or the stimulation threshold, there is still little information about the regulatory role of PTPs in cytoskeleton rearrangements and endosomal compartment dynamics. Besides, spatial and temporal regulation of PTPs and substrates at the IS is only barely known. Consistent with an important role of PTPs in T cell activation, multiple mutations as well as altered expression levels or dynamic behaviors have been associated with autoimmune diseases. However, the precise mechanism for the regulation of T cell activation and effector function by PTPs in health and autoimmunity is not fully understood. Herein, we review the current knowledge about the regulatory role of PTPs in CD4+ T cell activation, IS assembly and effector function. The potential molecular mechanisms mediating the action of these enzymes in autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Rocio Ramirez-Munoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| |
Collapse
|
86
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
87
|
FAM64A positively regulates STAT3 activity to promote Th17 differentiation and colitis-associated carcinogenesis. Proc Natl Acad Sci U S A 2019; 116:10447-10452. [PMID: 31061131 DOI: 10.1073/pnas.1814336116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STAT3 is a transcription factor that plays central roles in various physiological processes, including differentiation of Th cells. Its deregulation results in serious diseases, including inflammatory diseases and cancer. The mechanisms related to how STAT3 activity is regulated remain enigmatic. Here we show that overexpression of FAM64A potentiates IL-6-induced activation of STAT3 and expression of downstream target genes, whereas deficiency of FAM64A has the opposite effects. FAM64A interacts with STAT3 in the nucleus and regulates binding of STAT3 to the promoters of its target genes. Deficiency of Fam64a significantly impairs differentiation of Th17 but not Th1 or induced regulatory T cells (iTreg). In addition, Fam64a deficiency attenuates experimental autoimmune encephalomyelitis (EAE) and dextran sulfate sodium (DSS)-induced colitis, which is correlated with decreased differentiation of Th17 cells and production of proinflammatory cytokines. Furthermore, Fam64a deficiency suppresses azoxymethane (AOM)/DSS-induced colitis-associated cancer (CAC) in mice. These findings suggest that FAM64A regulates Th17 differentiation and colitis and inflammation-associated cancer by modulating transcriptional activity of STAT3.
Collapse
|
88
|
Activation of naïve CD4 + T cells re-tunes STAT1 signaling to deliver unique cytokine responses in memory CD4 + T cells. Nat Immunol 2019; 20:458-470. [PMID: 30890796 PMCID: PMC7610646 DOI: 10.1038/s41590-019-0350-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
The cytokine IL-6 controls the survival, proliferation and effector characteristics of lymphocytes through activation of the transcription factors STAT1 and STAT3. While STAT3 activity is an ever-present feature of IL-6 signaling in CD4+ T cells, prior T-cell receptor activation limits the IL-6 control of STAT1 in effector and memory populations. Here we show that STAT1 phosphorylation in response to IL-6 was regulated by protein tyrosine phosphatases (PTPN2, PTPN22) expressed in response to the activation of naïve CD4+ T cells. Transcriptomic and chromatin immunoprecipitation-sequencing of IL-6 responses in naïve and effector memory CD4+ T cells showed how the suppression of STAT1 activation shaped the functional identity and effector characteristics of memory CD4+ T cells. Thus, protein tyrosine phosphatases induced by activation of naïve T cells determined the way activated or memory CD4+ T cells sensed and interpreted cytokine signals.
Collapse
|
89
|
Glal D, Sudhakar JN, Lu HH, Liu MC, Chiang HY, Liu YC, Cheng CF, Shui JW. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol 2018; 9:2522. [PMID: 30455690 PMCID: PMC6230592 DOI: 10.3389/fimmu.2018.02522] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
In gut epithelium, IL-22 transmits signals through STAT3 phosphorylation (pSTAT3) which provides intestinal immunity. Many components in the IL-22-pSTAT3 pathway have been identified as risk factors for inflammatory bowel disease (IBD) and some of them are considered as promising therapeutic targets. However, new perspectives are still needed to understand IL-22-pSTAT3 signaling for effective clinical interventions in IBD patients. Here, we revealed activating transcription factor 3 (ATF3), recently identified to be upregulated in patients with active IBD, as a crucial player in the epithelial IL-22-pSTAT3 signaling cascade. We found ATF3 is central to intestinal homeostasis and provides protection during colitis. Loss of ATF3 led to decreased crypt numbers, more shortened colon length, impaired ileal fucosylation at the steady state, and lethal disease activity during DSS-induced colitis which can be effectively ameliorated by rectal transplantation of wild-type colonic organoids. Epithelial stem cells and Paneth cells form a niche to orchestrate epithelial regeneration and host-microbe interactions, and IL-22-pSTAT3 signaling is a key guardian for this niche. We found ATF3 is critical for niche maintenance as ATF3 deficiency caused compromised stem cell growth and regeneration, as well as Paneth cell degeneration and loss of anti-microbial peptide (AMP)-producing granules, indicative of malfunction of Paneth/stem cell network. Mechanistically, we found IL-22 upregulates ATF3, which is required to relay IL-22 signaling leading to STAT3 phosphorylation and subsequent AMP induction. Intriguingly, ATF3 itself does not act on STAT3 directly, instead ATF3 regulates pSTAT3 by negatively targeting protein tyrosine phosphatases (PTPs) including SHP2 and PTP-Meg2. Furthermore, we identified ATF3 is also involved in IL-6-mediated STAT3 activation in T cells and loss of ATF3 leads to reduced capacity of Th17 cells to produce their signature cytokine IL-22 and IL-17A. Collectively, our results suggest that via IL-22-pSTAT3 signaling in the epithelium and IL-6-pSTAT3 signaling in Th17 cells, ATF3 mediates a cross-regulation in the barrier to maintain mucosal homeostasis and immunity.
Collapse
Affiliation(s)
- Doaa Glal
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | | | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Che Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Yu Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
90
|
Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, McNutt MA, Yin Y. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun 2018; 94:156-165. [PMID: 30100102 DOI: 10.1016/j.jaut.2018.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Dysregulation of innate immunity accompanied by excessive interferon production contributes to autoimmune disease. However, the mechanism by which the immune response is modulated in autoimmune disorders is largely unknown. Here we identified loss-of-function mutations of OTUD1 associated with multiple autoimmune diseases. Under inflammatory conditions, inducible OTUD1 acts as an immune checkpoint and blocks RIG-I-like receptors signaling. As a deubiquitinase, OTUD1 directly interacts with transcription factor IRF3 and removes the K63-linked poly-ubiquitin chains on IRF3 Lysine 98, which inhibits IRF3 nuclear translocation and transcriptional activity. In contrast, OTUD1 mutants impair its suppressive effects on IRF3 via attenuating the OTUD1 deubiquinase activity or its association with IRF3. Moreover, we found FOXO3 signaling is required for OTUD1 induction upon antigenic stimulation. Our data demonstrate that OTUD1 is involved in maintaining immune homeostasis and loss-of-function mutations of OTUD1 enhance the immune response and are associated with autoimmunity.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Case-Control Studies
- Cell Line, Tumor
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Female
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/immunology
- Gene Expression Regulation
- HEK293 Cells
- Hashimoto Disease/genetics
- Hashimoto Disease/immunology
- Hashimoto Disease/pathology
- Homeostasis/immunology
- Humans
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lymphocytes/immunology
- Lymphocytes/pathology
- Male
- Mutation
- Protein Transport
- Receptors, Immunologic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Ubiquitin-Specific Proteases/genetics
- Ubiquitin-Specific Proteases/immunology
Collapse
Affiliation(s)
- Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Jia Song
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yizhe Sun
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Fang Qi
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Liang Liu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yan Jin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
91
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
92
|
DUSP10 constrains innate IL-33-mediated cytokine production in ST2 hi memory-type pathogenic Th2 cells. Nat Commun 2018; 9:4231. [PMID: 30315197 PMCID: PMC6185962 DOI: 10.1038/s41467-018-06468-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/11/2018] [Indexed: 01/21/2023] Open
Abstract
ST2hi memory-type Th2 cells are identified as a pathogenic subpopulation in eosinophilic airway inflammation. These ST2hi pathogenic Th2 cells produce large amount of IL-5 upon T cell receptor stimulation, but not in response to IL-33 treatment. By contrast, IL-33 alone induces cytokine production in ST2+ group 2 innate lymphoid cells (ILC2). Here we show that a MAPK phosphatase Dusp10 is a key negative regulator of IL-33-induced cytokine production in Th2 cells. In this regard, Dusp10 is expressed by ST2hi pathogenic Th2 cells but not by ILC2, and Dusp10 expression inhibits IL-33-induced cytokine production. Mechanistically, this inhibition is mediated by DUSP10-mediated dephosphorylation and inactivation of p38 MAPK, resulting in reduced GATA3 activity. The deletion of Dusp10 renders ST2hi Th2 cells capable of producing IL-5 by IL-33 stimulation. Our data thus suggest that DUSP10 restricts IL-33-induced cytokine production in ST2hi pathogenic Th2 cells by controlling p38-GATA3 activity. T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2) respond differently to interleukin-33 (IL-33) stimulation. Here the authors show that a phosphatase, Dusp10, is expressed in Th2, but not ILC2, to dephosphorylate p38 kinase, reduce GATA3 transcription factor activity, and suppress the induction of IL-5 in response to IL-33.
Collapse
|
93
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
94
|
Two novel SHP-1 agonists, SC-43 and SC-78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. Cell Death Discov 2018; 4:25. [PMID: 30109144 PMCID: PMC6089896 DOI: 10.1038/s41420-018-0084-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/28/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been shown to play a critical role in the maintenance of cancer stem cells (CSCs). Hence, the inhibition of STAT3 signaling has been suggested to be a viable therapeutic approach for cancers. Moreover, the efficacy of combinations of chemotherapeutic drugs and napabucasin, a small-molecule STAT3 inhibitor, have been assessed in various clinical trials, including those involving patients with metastatic colorectal cancer (CRC). Two recently developed small-molecule STAT3 inhibitors, SC-43 and SC-78, which can stimulate SHP-1 to inactivate STAT3, were found to have anti-tumor activity. In this study, the inhibitory effects of SC-43, SC-78, and regorafenib (a reference drug) on cell viability, STAT3 phosphorylation, and various stemness properties [e.g., sphere-forming and soft agar colony-forming abilities, CD133+/CD44+ (stem cell-like) subpopulations, and the expression of several CSC markers] were examined for both HCT-116 and HT-29 human CRC cells. We found that SC-43 and SC-78 but not regorafenib inhibited constitutive and IL-6-induced STAT3 phosphorylation in HCT-116 and HT-29 cells, respectively. Moreover, SC-43 and SC-78 were more potent than regorafenib in suppressing the stemness properties (except stem cell-like subpopulations) of these cells. As expected, SHP-1 knockdown almost completely abolished the suppressive effects of SC-43 and SC-78 on the sphere formation in both cell lines. Furthermore, SC-43 and SC-78 showed synergistic inhibitory effects with oxaliplatin and/or irinotecan on sphere formation. Overall, our results suggest that SC-43 and SC-78 are potent STAT3 inhibitors that may potentially be used in combination therapy for CRC.
Collapse
|
95
|
Wenzel TJ, Klegeris A. Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer's disease. Life Sci 2018; 207:314-322. [DOI: 10.1016/j.lfs.2018.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
|
96
|
Attili I, Karachaliou N, Bonanno L, Berenguer J, Bracht J, Codony-Servat J, Codony-Servat C, Ito M, Rosell R. STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Ther Adv Med Oncol 2018; 10:1758835918763744. [PMID: 29636826 PMCID: PMC5888808 DOI: 10.1177/1758835918763744] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 12/27/2022] Open
Abstract
Immune checkpoint blockade has modified the treatment landscape for many types of tumors, including lung cancer. Still our knowledge on the biology of the interaction between tumor cells and the microenvironment is limited, preventing the optimal use of these new compounds and the maximum benefit that the patients can derive from them. We have actively worked on the role of STAT3, a transcriptional factor that causes innate resistance to targeted therapies in oncogene-addicted tumors. In this short review we take the opportunity to express our opinion and review existing knowledge on the immune role of STAT3 and the possible implications that this may have for the discovery of new biomarkers to predict response to immunotherapy, as well as new partners to combine with and increase the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ilaria Attili
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 53, Padova 35128, Italy
| | - Niki Karachaliou
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
- Instituto Oncológico Dr Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | | | - Jordi Berenguer
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jillian Bracht
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jordi Codony-Servat
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Carles Codony-Servat
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Masaoki Ito
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Rafael Rosell
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
- Instituto Oncológico Dr Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
- Institut d’Investigació en Ciències Germans Trias i Pujol, Badalona, Spain
- Institut Català d’Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
97
|
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018; 23:12. [PMID: 29588647 PMCID: PMC5863838 DOI: 10.1186/s11658-018-0078-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor with many important functions in the biology of normal and transformed cells. Its regulation is highly complex as it is involved in signaling pathways in many different cell types and under a wide variety of conditions. Besides other functions, STAT3 is an important regulator of normal stem cells and cancer stem cells. p63 which is a member of the p53 protein family is also involved in these functions and is both physically and functionally connected with STAT3. This review summarizes STAT3 function and regulation, its role in stem cell and cancer stem cell properties and highlights recent reports about its relationship to p63.
Collapse
Affiliation(s)
- Michaela Galoczova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
98
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key regulator of numerous physiological functions, including the immune response. As pathogens elicit an acute phase response with concerted activation of STAT3, they are confronted with two evolutionary options: either curtail it or employ it. This has important consequences for the host, since abnormal STAT3 function is associated with cancer development and other diseases. This review provides a comprehensive outline of how human viruses cope with STAT3-mediated inflammation and how this affects the host. Finally, we discuss STAT3 as a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
99
|
Kanemaru H, Yamane F, Tanaka H, Maeda K, Satoh T, Akira S. BATF2 activates DUSP2 gene expression and up-regulates NF-κB activity via phospho-STAT3 dephosphorylation. Int Immunol 2018. [DOI: 10.1093/intimm/dxy023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Hisashi Kanemaru
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Fumihiro Yamane
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Hiroki Tanaka
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kazuhiko Maeda
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
100
|
Kalim KW, Yang JQ, Li Y, Meng Y, Zheng Y, Guo F. Reciprocal Regulation of Glycolysis-Driven Th17 Pathogenicity and Regulatory T Cell Stability by Cdc42. THE JOURNAL OF IMMUNOLOGY 2018; 200:2313-2326. [PMID: 29440353 DOI: 10.4049/jimmunol.1601765] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2018] [Indexed: 12/29/2022]
Abstract
A balance between Th17 cells and regulatory T cells (Tregs) is important for host immunity and immune tolerance. The underlying molecular mechanisms remain poorly understood. Here we have identified Cdc42 as a central regulator of Th17/Treg balance. Deletion of Cdc42 in T cells enhanced Th17 differentiation but diminished induced Treg differentiation and suppressive function. Treg-specific deletion of Cdc42 decreased natural Tregs but increased effector T cells including Th17 cells. Notably, Cdc42-deficient Th17 cells became pathogenic associated with enhanced glycolysis and Cdc42-deficient Tregs became unstable associated with weakened glycolytic signaling. Inhibition of glycolysis in Cdc42-deficient Th17 cells diminished their pathogenicity and restoration of glycolysis in Cdc42-deficient Tregs rescued their instability. Intriguingly, Cdc42 deficiency in T cells led to exacerbated wasting disease in mouse models of colitis and Treg-specific deletion of Cdc42 caused early, fatal lymphoproliferative diseases. In summary, we show that Cdc42 is a bona fide regulator of peripheral tolerance through suppression of Th17 aberrant differentiation/pathogenicity and promotion of Treg differentiation/stability/function involving metabolic signaling and thus Cdc42 pathway might be harnessed in autoimmune disease therapy.
Collapse
Affiliation(s)
- Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229.,Key Laboratory for Parasitic Disease Control and Prevention, Ministry of Health, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214000, China; and
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Yan Meng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229.,Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229;
| |
Collapse
|