51
|
Luetragoon T, Daowtak K, Thongsri Y, Potup P, Calder PC, Usuwanthim K. Anti-Inflammatory Potential of 3-Hydroxy-β-Ionone from Moringa oleifera: Decreased Transendothelial Migration of Monocytes Through an Inflamed Human Endothelial Cell Monolayer by Inhibiting the IκB-α/NF-κB Signaling Pathway. Molecules 2024; 29:5873. [PMID: 39769962 PMCID: PMC11678794 DOI: 10.3390/molecules29245873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Moringa leaves provide numerous health benefits due to their anti-inflammatory properties. This study presents the first evidence that endothelial cell inflammation can potentially be ameliorated by moringa leaf extract. Here, we established an experimental human blood vessel cell model of inflammation using EA.hy926 cells. TNF-α was added after pre-treating the cells with crude leaf extract from Moringa oleifera Lam., a constituent fraction of the extract, and the bioactive component 3-hydroxy-β-ionone. The extract and the active ingredient significantly decreased the levels of pro-inflammatory mediators such as IL-6, IL-8, and MCP-1; decreased IκB-α and NF-κB p65 phosphorylation; and decreased the expression of VCAM-1, PECAM-1, and ICAM-1, three significant adhesion molecules. Furthermore, they attenuated THP-1 monocyte adhesion to the EA.hy926 monolayer and decreased monocyte transmigration across the monolayer. These findings suggest that 3-hydroxy-β-ionone and moringa leaf extract have anti-inflammatory properties and can be used as therapeutic agents to reduce the progression of diseases involving the inflamed endothelium by decreasing the production of inflammatory cytokines, chemokines, and adhesion molecules. This is promising for conditions such as atherosclerosis and neuroinflammation.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhon Ratchasima College, Nakhon Ratchasima 30000, Thailand;
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| |
Collapse
|
52
|
Wu Z, He L, Yan L, Tan B, Ma L, He G, Dai Z, Sun R, Li C. Hydrogels Treat Atopic Dermatitis by Transporting Marine-Derived miR-100-5p-Abundant Extracellular Vesicles. ACS Biomater Sci Eng 2024; 10:7667-7682. [PMID: 39585960 DOI: 10.1021/acsbiomaterials.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Atopic dermatitis (AD) is a prevalent skin disorder worldwide. However, many AD medications are unsuitable for long-term use due to low therapeutic efficacy and side effects. Extracellular vesicles (EVs) extracted from Pinctada martensii mucus have demonstrated therapeutic efficacy in AD. It is hypothesized that EVs may exert their activity on mammalian cells through their specific contents. In this study, we analyzed the results of miRNA sequencing of the EVs and investigated the potency of highly expressed miR-100-5p in treating AD. To enhance the therapeutic efficiency of the EVs in AD, we developed oxidized sodium alginate (OSA)-carboxymethyl chitosan (CMCS) self-cross-linked hydrogels as a vehicle to deliver the EVs to BALB/c mice with dermatitis. The miR-100-5p in EVs exhibited a favorable anti-inflammatory function, while the hydrogels provided enhanced skin residency. Additionally, its efficacy in inflammation inhibition and collagen synthesis was demonstrated in in vivo experiments. Mechanistically, miR-100-5p in EVs exerted anti-inflammatory effects by inhibiting the expression of FOXO3, consequently suppressing the activation of the downstream NLRP3 signaling pathway. This study underscores the significance of utilizing OSA-CMCS hydrogels as a vehicle for delivering miR-100-5p in P. martensii mucus-derived EVs for the treatment of AD.
Collapse
Affiliation(s)
- Zijie Wu
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Baoyi Tan
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guoli He
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Ruikun Sun
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Chengyong Li
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
53
|
Yang Y, Hu X, Wang S, Tian Y, Yang K, Li C, Wu Q, Liu W, Gao T, Yuan F, Guo R, Liu Z, Yang Y, Zhou D. Rosmarinic acid-mediated downregulation of RIG-I and p62 in microglia confers resistance to Japanese encephalitis virus-induced inflammation. BMC Vet Res 2024; 20:555. [PMID: 39643884 PMCID: PMC11622684 DOI: 10.1186/s12917-024-04397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic pathogen that causes encephalitis in humans and reproductive failure in pigs. The transmission of JEV between humans and animals poses a significant public health threat and results in substantial economic losses. Excessive inflammation in the central nervous system of JEV-infected patients is a major cause of mortality and disability. Rosmarinic acid (RA), a polyhydroxyphenolic compound isolated from medicinal herbs, has been preliminarily shown to possess anti-inflammatory properties and significantly inhibit JEV-induced neuroinflammation in mice. RESULTS This study investigated the antiviral capacity and potential mechanisms of RA in JEV-infected cells. The results demonstrated that RA could inhibit JEV replication in vitro. Furthermore, the expression levels of inflammatory cytokines (including IL-6, IL-1β, CCL-2, and TNF-α), membrane receptors (including RIG-I, TLR3, TLR4, TLR7, and TLR8), NF-κB complex and p62/SQSTM1 were assessed using qPCR, ELISA, and Western blot, respectively. The findings indicated that RA significantly suppressed the expression of IL-6, IL-1α, TNF-α, and CCL-2 in JEV-infected BV-2 cells in a dose-dependent manner. Additionally, RA treatment downregulated the expression levels of RIG-I and p62, while p62 silencing inhibited the upregulation of inflammatory cytokines in JEV-infected BV-2 cells. CONCLUSION Our present study highlights the important role of RA-mediated reduction of RIG-I and p62 in microglia, conferring resistance to Japanese encephalitis virus-induced inflammation.
Collapse
Affiliation(s)
- Yuxin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - XianWang Hu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Shuangshuang Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China.
| |
Collapse
|
54
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
55
|
Zhou B, Xue J, Wang J, Yu D, Zhou F, Duan JA, Niu Y, Wang H. Amygdalin alleviates LPS-induced acute lung injury in mice by targeting CD5L/iNOS pathway. Mol Immunol 2024; 176:22-29. [PMID: 39561489 DOI: 10.1016/j.molimm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Amygdalins (AMY) from bitter almonds are distinguished by their anti-inflammatory, antibacterial and antioxidant properties, but their role in the treatment of acute lung injury (ALI) and their mechanisms need to be clarified. We sought to investigate whether AMY provides protection against lipopolysaccharide (LPS)-induced ALI in mice and explore the mechanisms of its protection. Results showed that AMY effectively alleviated LPS-induced ALI in a dose-dependent manner by reducing in vivo lung wet/dry ratio, lung/body weight ratio, and myeloperoxidase (MPO). In addition, AMY can significantly reduce lung histopathological injury, decreased bronchoalveolar lavage fluid (BALF) lymphocyte, neutrophil, and monocyte numbers, and decreased the secretion of inflammatory cytokines IL-6, IL-1β, and TNF-α. Through transcriptome sequencing, AMY was found to effectively reduce the mRNA level of CD5L in mice. In AAV-CD5L transfected mice, CD5L overexpression was found to block the protective effect of AMY in LPS-induced ALI mice. It was revealed that AMY inhibited NF-κB entry into the nucleus to reduce iNOS by targeting CD5L. Taken together, AMY can effectively reduce lung inflammation and alleviate ALI, and is a potential novel protective agent against LPS-induced ALI.
Collapse
Affiliation(s)
- Bo Zhou
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiahui Xue
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Wang
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Donghua Yu
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fangling Zhou
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Niu
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hanqing Wang
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
56
|
Kwon TG, Kim YJ, Hong JY, Song JH, Park JY. A review of antidepressant and anxiolytic effects of Soyo-san (Xiaoyao-san) and modified Soyo-san in animal models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155387. [PMID: 39515106 DOI: 10.1016/j.phymed.2024.155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Soyo-san (Xiaoyao-san; SYS), a traditional herbal medicine formula, has been used for treating mood disorders, especially depression and anxiety. Modified SYS (mSYS) is formulated by adding or removing herbs to SYS, and is mainly used in cases of mood disorders with comorbid diseases such as diabetes, digestive disorders, and anorexia. However, there has been no detailed comparative analysis of the differences in efficacy and underlying neurological mechanisms between SYS and mSYS. PURPOSE This review aimed to investigate the present scientific evidence regarding the effects of SYS and mSYS on depression and anxiety in animal models based on behavioral improvements and changes in biomarker levels. METHODS The PubMed, Embase, Scopus, and Medline databases were searched for all depression- and anxiety-model animal studies that used SYS and mSYS. The types of animals, methods for inducing depression or anxiety, publication trends, target diseases, types and proportions of herbs, and significant behavioral and biomolecular changes induced by SYS and mSYS treatment were analyzed. RESULTS A total of 1,120 studies were identified, of which 57 studies were finally included in this review. Behavioral or environmental stress was mainly used to induce depression or anxiety in rodent models. SYS treatment improved body weight, food intake, and depression- and anxiety-like behaviors. The proportions of the herbs in the original SYS formulation were mostly fixed, whereas the types and proportions of herbs used in mSYS formulations were quite diverse. mSYS had a wider range of target diseases than SYS, and it has been used not only for depression and anxiety, but also cancer and stroke. Changes in biomarker levels in the hippocampus of the brain have been studied most extensively for both SYS and mSYS. Both SYS and mSYS are reported to regulate 5-hydroxytryptamine, brain-derived neurotrophic factor, and hypothalamic-pituitary-adrenal axis-related biomolecules in the brain, as well as changes in micro-organisms and metabolite levels in the serum and intestinal environment. CONCLUSIONS SYS and mSYS improved depression- and anxiety-like behaviors by regulating neurotransmission, neuronal survival, and inflammation. Further research is needed to elucidate the clinical value of mSYS through various uses-related in-depth mechanistic studies.
Collapse
Affiliation(s)
- Tae-Gyeong Kwon
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Dosol Korean Medicine Hospital, Pyeongtaek, 17854, Republic of Korea
| | - Yu-Jin Kim
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea
| | - Ja-Young Hong
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ji-Hye Song
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
57
|
Eriten B, Kucukler S, Gur C, Ayna A, Diril H, Caglayan C. Protective Effects of Carvacrol on Mercuric Chloride-Induced Lung Toxicity Through Modulating Oxidative Stress, Apoptosis, Inflammation, and Autophagy. ENVIRONMENTAL TOXICOLOGY 2024; 39:5227-5237. [PMID: 39105374 DOI: 10.1002/tox.24397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mercuric chloride (HgCl2) is extremely toxic to both humans and animals. It could be absorbed via ingestion, inhalation, and skin contact. Exposure to HgCl2 can cause severe health effects, including damages to the gastrointestinal, respiratory, and central nervous systems. The purpose of this work was to explore if carvacrol (CRV) could protect rats lungs from damage caused by HgCl2. Intraperitoneal injections of HgCl2 at a dose of 1.23 mg/kg body weight were given either alone or in conjunction with oral CRV administration at doses of 25 and 50 mg/kg body weight for 7 days. The study included biochemical and histological techniques to examine the lung tissue's oxidative stress, apoptosis, inflammation, and autophagy processes. HgCl2-induced reductions in GSH levels and antioxidant enzymes (SOD, CAT, and GPx) activity were enhanced by CRV co-administration. Furthermore, MDA levels were lowered by CRV. The inflammatory mediators NF-κB, IκB, NLRP3, TNF-α, IL-1β, IL6, COX-2, and iNOS were all reduced by CRV. When exposed to HgCl2, the levels of apoptotic Bax, caspase-3, Apaf1, p53, caspase-6, and caspase-9 increased, but the levels of antiapoptotic Bcl-2 reduced after CRV treatment. CRV decreased levels of Beclin-1, LC3A, and LC3B, which in turn decreased HgCl2-induced autophagy damage. After HgCl2 treatment, higher pathological damage was observed in terms of alveolar septal thickening, congestion, edema, and inflammatory cell infiltration compared to the control group while CRV ameliorated these effects. Consequently, by preventing HgCl2-induced increases in oxidative stress and the corresponding inflammation, autophagy, apoptosis, and disturbance of tissue integrity in lung tissues, CRV might be seen as a useful therapeutic alternative.
Collapse
Affiliation(s)
- Berna Eriten
- Department of Pathology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Türkiye
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Cihan Gur
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Türkiye
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, Bingol University, Bingol, Türkiye
| | - Halit Diril
- Medical Biochemistry Laboratory, Dursun Odabaş Medical Center, Van Yüzüncü Yıl University, Türkiye
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Türkiye
| |
Collapse
|
58
|
Hui Z, Lai-Fa W, Xue-Qin W, Ling D, Bin-Sheng H, Li JM. Mechanisms and therapeutic potential of chinonin in nervous system diseases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1405-1420. [PMID: 38975978 DOI: 10.1080/10286020.2024.2371040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The flavonoid compound chinonin is one of the main active components of Rhizoma anemarrhena with multiple activities, including anti-inflammatory and antioxidant properties, protection of mitochondrial function and regulation of immunity. In this paper, we reviewed recent research progress on the protective effect of chinonin on brain injury in neurological diseases. "Chinonin" OR "Mangiferin" AND "Nervous system diseases" OR "Neuroprotection" was used as the terms for search in PumMed. After discarding duplicated and irrelevant articles, a total of 23 articles relevant to chinonin published between 2012 and 2023 were identified in our study.
Collapse
Affiliation(s)
- Zhang Hui
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Wang Lai-Fa
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Wang Xue-Qin
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Deng Ling
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - He Bin-Sheng
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Ming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
59
|
Huang Y, Li C, Xu W, Li F, Hua Y, Xu C, Wu C, Wang Y, Zhang X, Xia D. Kaempferol attenuates hyperuricemia combined with gouty arthritis via urate transporters and NLRP3/NF-κB pathway modulation. iScience 2024; 27:111186. [PMID: 39524334 PMCID: PMC11550584 DOI: 10.1016/j.isci.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperuricemia (HUA), caused by purine disorders, can lead to gouty arthritis (GA). Kaempferol (KPF), a natural flavonoid, has anti-inflammatory properties, though its mechanism in treating HUA combined with GA remains unclear. This study used a mouse model of HUA combined with GA and in vitro models with HK-2 and THP-1 cells to explore KPF's effects. Cells were treated with KPF or inhibitors of ABCG2, ROS, NLRP3 inflammasome, and nuclear factor κB (NF-κB) pathway. Quantitative assays measured uric acid (UA), creatinine, oxidative stress biomarkers, and pro-inflammatory cytokines. Histopathological analyses showed KPF improved renal and joint inflammation caused by HUA and GA. KPF alleviated oxidative stress, reduced pro-inflammatory cytokines, and regulated UA levels through the modulation of urate transporters, NLRP3 inflammasome, and NF-κB pathway. KPF's actions, partly mediated by ROS reduction, suggest it is a promising candidate for treating HUA combined with GA.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yihuan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
60
|
Yang W, Zhang X, Wang Z, Zheng X, Wu W, Chen Q. PLGA microspheres carrying EMSCs-CM for the effective treatment of murine ulcerative colitis. Int Immunopharmacol 2024; 141:112883. [PMID: 39153305 DOI: 10.1016/j.intimp.2024.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Ectodermal mesenchymal stem cells-derived conditioned medium (EMSCs-CM) has been reported to protect against ulcerative colitis (UC) in mice, but its underlying mechanism in alleviating UC need to be further elucidated. Here, it is reported that EMSCs-CM could attenuate pro-inflammatory response of LPS-induced IEC-6 cells and regulate the polarization of macrophages towards anti-inflammatory type in vitro. Furthermore, PLGA microspheres prepared by the double emulsion method were constructed for oral delivery of EMSCs-CM (EMSCs-CM-PLGA), which are beneficial for colon-targeted adhesion of EMSCs-CM to the damaged colon mucosa. The results showed that orally-administered of EMSCs-CM-PLGA microspheres reduced inflammatory cells infiltration and maintained the intestinal mucosal barrier. Further investigation found that EMSCs-CM-PLGA microspheres treatment gradually inhibited the activation of NF-κB pathway to regulate M1/M2 polarization balance in colon tissue macrophages, thereby alleviating DSS-induced UC. These results of this study will provide a theoretical basis for clinical application of EMSCs-CM in UC repair.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Xingxing Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowen Zheng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Weijiang Wu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
61
|
Deng L, Xie W, Lin M, Xiong D, Huang L, Zhang X, Qian R, Huang X, Tang S, Liu W. Taraxerone inhibits M1 polarization and alleviates sepsis-induced acute lung injury by activating SIRT1. Chin Med 2024; 19:159. [PMID: 39543653 PMCID: PMC11566926 DOI: 10.1186/s13020-024-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is the most lethal disease associated with sepsis, and there is a lack of effective drug treatment. As the major cells of sepsis-induced ALI, macrophages polarize toward the proinflammatory M1 phenotype and secrete multiple inflammatory cytokines to accelerate the disease process through nuclear factor kappa-B (NF-κB) and NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways. Taraxerone, the main component of the Chinese medicinal Sedum, possesses numerous biological activities. However, uncertainty remains regarding the potential of taraxerone to protect against sepsis-induced ALI. This study aimed to investigate the effects and mechanisms of taraxerone against ALI. METHODS An animal model for ALI was established by cecal ligation and puncture and treated with taraxerone via intraperitoneal administration. The protective effect of taraxerone on the lungs was analyzed using H&E staining, dihydroethidium staining, ELISA kits, cell counting, myeloperoxidase kit, malondialdehyde kit, glutathione kit, superoxide dismutase kit and flow cytometry. Western blotting, RT-PCR, flow cytometry, co-immunoprecipitation, and immunofluorescence were used to investigate the regulatory of taraxerone on SIRT1. RESULTS Our study demonstrates for the first time that taraxerone can activate SIRT1 in macrophages, promoting SIRT1 activity. This activation inhibited the NF-κB signaling pathway primarily through the dephosphorylation and deacetylation of p65. Simultaneously, taraxerone disrupted the NLRP3 inflammasome signaling pathway, thereby alleviating M1 polarization of macrophages and mitigating sepsis-induced pulmonary inflammation and oxidative stress. In vivo, EX527 was used to validate the anti-inflammatory and anti-oxidative stress effects of taraxerone mediated by SIRT1. CONCLUSION SIRT1-mediated anti-inflammatory and anti-oxidative stress effects may be important targets for taraxerone in treating ALI.
Collapse
Affiliation(s)
- Lang Deng
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Weixi Xie
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Miao Lin
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Dayan Xiong
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Lei Huang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, 410021, Hunan, China
| | - Xiaohua Zhang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, 410021, Hunan, China
| | - Rui Qian
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China.
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China.
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
62
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
63
|
Ni X, Hong H, Xu H, Qi M, Xu S. Exposure to Trimethyltin Chloride Induces Pyroptosis and Immune Dysfunction in Grass Carp CIK Cells by Activating the NF-κB Pathway Through Oxidative Stress. ENVIRONMENTAL TOXICOLOGY 2024; 39:4984-4994. [PMID: 39004893 DOI: 10.1002/tox.24371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 07/16/2024]
Abstract
Trimethyltin chloride (TMT) is a highly toxic organotin pollutant frequently found in aquatic environments, posing a significant threat to the ecological system. The kidney plays a vital role in the body's detoxification processes, and TMT present in the environment tends to accumulate in the kidneys. However, it remained unclear whether exposure to different doses of TMT could induce pyroptosis and immune dysfunction in grass carp kidney cells (CIK cells). For this purpose, after assessing the half-maximal inhibitory concentration (IC50) of TMT on CIK cells, we established a model for exposure of CIK cells at varying concentrations of TMT. CIK cells were treated with various doses of TMT (2.5, 5, 10 μM) for 24 h. Oxidative stress levels were measured using kits and fluorescence methods, whereas the expression of related genes was verified through western blot and quantitative real-time PCR (qRT-PCR). The results indicated that TMT exposure led to oxidative stress, with increased levels of ROS, H2O2, MDA, and GSH, and inhibited activities of T-AOC, SOD, and CAT. It activated the NF-κB pathway, leading to the upregulation of NF-κB p65, NF-κB p50, GSDMD, NLRP3, ASC, and Caspase-1. Furthermore, TMT exposure also resulted in increased expression of cytokines (IL-18, IL-6, IL-2, IL-1β, and TNF-α) and decreased expression of antimicrobial peptides (LEAP2, HEPC, and β-defensin). In summary, exposure to TMT induces dose-dependent oxidative stress that activates the NF-κB pathway, leading to pyroptosis and immune dysfunction in grass carp CIK cells.
Collapse
Affiliation(s)
- Xiaotong Ni
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, People's Republic of China
| | - Haozheng Hong
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, People's Republic of China
| | - Haotian Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, People's Republic of China
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Alar, Xinjiang, People's Republic of China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, People's Republic of China
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Alar, Xinjiang, People's Republic of China
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, People's Republic of China
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Alar, Xinjiang, People's Republic of China
| |
Collapse
|
64
|
Guo B, Shi X, Jiang Q, Pan Y, Yang Y, Liu Y, Chen S, Zhu W, Ren L, Liang R, Chen X, Xu H, Wei L, Lin Y, Wang J, Qiu C, Zhou H, Rao L, Wang L, Chen R, Chen S. Targeting Immunoproteasome in Polarized Macrophages Ameliorates Experimental Emphysema Via Activating NRF1/2-P62 Axis and Suppressing IRF4 Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405318. [PMID: 39356034 PMCID: PMC11600198 DOI: 10.1002/advs.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Indexed: 10/03/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Bingxin Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Qiong Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yuqiong Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory DiseaseFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Yuanyuan Liu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Wenjiao Zhu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Ruifang Liang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Xue Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haizhao Xu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laiyou Wei
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yongjian Lin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Jinyong Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
65
|
Shi J, Li C, Liang Q, Yao Y, Ji Z, Zhou M, Cai J, Yao X, Zhang X. HSP90-regulated mitophagy can alleviate heat stress damage by inhibiting pyroptosis in the hepatocytes of Wenchang chickens. Int J Biol Macromol 2024; 280:135979. [PMID: 39332550 DOI: 10.1016/j.ijbiomac.2024.135979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Heat shock protein 90 (HSP90) has a recognized anti-heat stress injury effect, but its function and corresponding molecular mechanism in heat-stressed hepatocytes are not fully understood, especially in tropical animals. In the present study, we identified several key factors affecting resistance to injury liver tissues from heat-stressed Wenchang chickens (a typical tropical species), such as HSP90, cellular pyroptosis and mitophagy. Heat stress upregulated the NLRP3/Caspase-1/GSDMD-N-mediated cellular pyroptosis pathway and the Pink1/Parkin-mediated mitophagy pathway in chicken hepatocytes, accompanied by the upregulation of HSP90. We also found that HSP90 overexpression significantly reduced heat stress-induced hepatocyte pyroptosis and enhanced mitophagy in primary hepatocytes from Wenchang chickens (PHWCs). HSP90 knockdown significantly increased heat stress-induced hepatocyte pyroptosis and decreased mitophagy in PHWCs. Interestingly, we performed immunoprecipitation and immunofluorescence colocalization and found that HSP90 and Pink1 can interact and directly regulate the level of mitophagy in PHWCs. Our results suggest that HSP90, which regulates Pink1, is an important factor in mitophagy that attenuates heat stress injury by inhibiting cellular pyroptosis.
Collapse
Affiliation(s)
- Jiachen Shi
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Chengyun Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Qijun Liang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Yujie Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zeping Ji
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Menglin Zhou
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Jiawei Cai
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xu Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xiaohui Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China.
| |
Collapse
|
66
|
Lukova P, Kokova V, Baldzhieva A, Murdjeva M, Katsarov P, Delattre C, Apostolova E. Alginate from Ericaria crinita Possesses Antioxidant Activity and Attenuates Systemic Inflammation via Downregulation of Pro-Inflammatory Cytokines. Mar Drugs 2024; 22:482. [PMID: 39590762 PMCID: PMC11595431 DOI: 10.3390/md22110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Alginates are anionic polysaccharides present in the cell walls of brown seaweeds. Various biological activities of alginate and its derivatives have been described. In this study, we assessed the potential of alginate obtained from Ericaria crinita (formerly Cystoseira crinita) to scavenge free radicals and function as a ferric ion reductor. The anti-inflammatory effect on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment was also examined. Ericaria crinita alginate showed antioxidant activities of IC50 = 505 µg/mL (DPPH) and OD700 > 2 (ferric reducing power). A significant decrease in serum levels of IL-1β was observed only in animals treated with the polysaccharide at a dose of 100 mg/kg bw. Both doses of E. crinita alginate (25 and 100 mg/kg bw) significantly reduced the serum concentrations of pro-inflammatory cytokines TNF-α and IL-6, but no statistical significance was observed in the levels of the anti-inflammatory cytokine IL-10. Our findings show the potential of E. crinita alginate to act as an antioxidant and anti-inflammatory agent. It is likely that the exhibited antioxidant ability of the polysaccharide contributes to its antiphlogistic effects. More in-depth studies are needed to fully understand the specific mechanisms and the molecular pathways involved in these activities.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
67
|
Bohlen J, Bagarić I, Vatovec T, Ogishi M, Ahmed SF, Cederholm A, Buetow L, Sobrino S, Le Floc’h C, Arango-Franco CA, Seabra L, Michelet M, Barzaghi F, Leardini D, Saettini F, Vendemini F, Baccelli F, Catala A, Gambineri E, Veltroni M, Aguilar de la Red Y, Rice GI, Consonni F, Berteloot L, Largeaud L, Conti F, Roullion C, Masson C, Bessot B, Seeleuthner Y, Le Voyer T, Rinchai D, Rosain J, Neehus AL, Erazo-Borrás L, Li H, Janda Z, Cho EJ, Muratore E, Soudée C, Lainé C, Delabesse E, Goulvestre C, Ma CS, Puel A, Tangye SG, André I, Bole-Feysot C, Abel L, Erlacher M, Zhang SY, Béziat V, Lagresle-Peyrou C, Six E, Pasquet M, Alsina L, Aiuti A, Zhang P, Crow YJ, Landegren N, Masetti R, Huang DT, Casanova JL, Bustamante J. Autoinflammation in patients with leukocytic CBL loss of heterozygosity is caused by constitutive ERK-mediated monocyte activation. J Clin Invest 2024; 134:e181604. [PMID: 39403923 PMCID: PMC11475086 DOI: 10.1172/jci181604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Patients heterozygous for germline CBL loss-of-function (LOF) variants can develop myeloid malignancy, autoinflammation, or both, if some or all of their leukocytes become homozygous for these variants through somatic loss of heterozygosity (LOH) via uniparental isodisomy. We observed an upregulation of the inflammatory gene expression signature in whole blood from these patients, mimicking monogenic inborn errors underlying autoinflammation. Remarkably, these patients had constitutively activated monocytes that secreted 10 to 100 times more inflammatory cytokines than those of healthy individuals and CBL LOF heterozygotes without LOH. CBL-LOH hematopoietic stem and progenitor cells (HSPCs) outgrew the other cells, accounting for the persistence of peripheral monocytes homozygous for the CBL LOF variant. ERK pathway activation was required for the excessive production of cytokines by both resting and stimulated CBL-LOF monocytes, as shown in monocytic cell lines. Finally, we found that about 1 in 10,000 individuals in the UK Biobank were heterozygous for CBL LOF variants and that these carriers were at high risk of hematological and inflammatory conditions.
Collapse
Affiliation(s)
- Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Ivan Bagarić
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Taja Vatovec
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Syed F. Ahmed
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lori Buetow
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Steicy Sobrino
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Laboratory of Chromatin and Gene Regulation during Development, Paris Cité University, INSERM U1163, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM U1163, Imagine Institute, Paris, France
| | - Corentin Le Floc’h
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Luis Seabra
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Marine Michelet
- Unit of Allergy and Pneumology, Children’s Hospital, Toulouse, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Albert Catala
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Eleonora Gambineri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Marinella Veltroni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | | | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filippo Consonni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laureline Berteloot
- Department of Pediatric Imaging, Necker Hospital for Sick Children, Paris, France
- INSERM U1163, Paris, France
| | - Laetitia Largeaud
- Laboratory of Hematology, Hospital Center of the University of Toulouse, Toulouse, France
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Cécile Roullion
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Genomics Core Facility and
| | - Cécile Masson
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Bioinformatic Plateform, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Cité University, Paris, France
| | - Boris Bessot
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children–AP-HP, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Lucia Erazo-Borrás
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Zarah Janda
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - En-Jui Cho
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Eric Delabesse
- Department of Hematology, CHU and Centre de Recherche de Cancérologie de Toulouse, Paul-Sabatier University, Toulouse, France
| | | | - Cindy S. Ma
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Isabelle André
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Christine Bole-Feysot
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Genomics Core Facility and
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Chantal Lagresle-Peyrou
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Emmanuelle Six
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM U1163, Imagine Institute, Paris, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Oncology, Centre Hospitalo–Universitaire de Toulouse, Toulouse, France
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Yanick J. Crow
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Riccardo Masetti
- Unit of Allergy and Pneumology, Children’s Hospital, Toulouse, France
| | - Danny T. Huang
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children–AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children–AP-HP, Paris, France
| |
Collapse
|
68
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
69
|
Liu K, An J, Zhang J, Zhao J, Sun P, He Z. Network pharmacology combined with experimental validation show that apigenin as the active ingredient of Campsis grandiflora flower against Parkinson's disease by inhibiting the PI3K/AKT/NF-κB pathway. PLoS One 2024; 19:e0311824. [PMID: 39383141 PMCID: PMC11463827 DOI: 10.1371/journal.pone.0311824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
The exploration of novel natural products for Parkinson's disease (PD) is a focus of current research, as there are no definitive drugs to cure or stop the disease. Campsis grandiflora (Thunb.) K. Schum (Lingxiaohua) is a traditional Chinese medicine (TCM), and the exact active constituents and putative mechanisms for treating PD are unknown. Through data mining and network pharmacology, apigenin (APi) was identified as the main active ingredient of Lingxiaohua, and key targets (TNF, AKT1, INS, TP53, CASP3, JUN, BCL2, MMP9, FOS, and HIF1A) of Lingxiaohua for the treatment of PD were discovered. The primary routes implicated were identified as PI3K/AKT, Apoptosis, TNF, and NF-κB pathways. Subsequently, therapeutic potential of APi in PD and its underlying mechanism were experimentally evaluated. APi suppressed the release of mediators of inflammation and initiation of NF-κB pathways in MES23.5 cells induced by MPP+. APi suppressed caspase-3 activity and apoptosis and elevated p-AKT levels in MES23.5 cells. Pretreatment with LY294002, a PI3K inhibitor, resulted in APi treatment blocking the activation of NF-κB pathway and expression of inflammatory factors in MES23.5 cells by activating the PI3K/AKT pathway. In conclusion, APi protects dopaminergic neurons by controlling the PI3K/AKT/NF-κB pathway, giving novel insights into the pharmacological mechanism of Lingxiaohua in treating PD.
Collapse
Affiliation(s)
- Kai Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical College, Rizhao, Shandong, China
| | - Jing An
- Department of Pathology, People’s Hospital of Rizhao, Jining Medical College, Rizhao, Shandong, China
| | - Jing Zhang
- Department of Pharmacy, Jining Medical College, Rizhao, Shandong, China
| | - Jihu Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
70
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
71
|
Yang Y, Li S, Liu K, Zhang Y, Zhu F, Ben T, Chen Z, Zhi F. Lipocalin-2-mediated intestinal epithelial cells pyroptosis via NF-κB/NLRP3/GSDMD signaling axis adversely affects inflammation in colitis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167279. [PMID: 38844113 DOI: 10.1016/j.bbadis.2024.167279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) characterized by intestinal epithelium damage. Recently, Lipocalin-2 (LCN2) has been identified as a potential fecal biomarker for patients with UC. However, further investigation is required to explore its pro-inflammatory role in UC and the underlying mechanism. The biological analysis revealed that Lcn2 serves as a putative signature gene in the colon mucosa of patients with UC and its association with the capsase/pyroptosis signaling pathway in UC. In wild-type mice with DSS-induced colitis, LCN2 overexpression in colon mucosa via in vivo administration of Lcn2 overexpression plasmid resulted in exacerbation of colitis symptoms and epithelium damage, as well as increased expression levels of pyroptosis markers (cleaved caspase1, GSDMD, IL-1β, HMGB1 and IL-18). Additionally, we observed downregulation in the expression levels of pyroptosis markers following in vivo silencing of LCN2. However, the pro-inflammatory effect of LCN2 overexpression was effectively restrained in GSDMD-KO mice. Moreover, single-cell RNA-sequencing analysis revealed that Lcn2 was predominantly expressed in the intestinal epithelial cells (IECs) within the colon mucosa of patients with UC. We found that LCN2 effectively regulated pyroptosis events by modulating the NF-κB/NLRP3/GSDMD signaling axis in NCM460 cells stimulated by LPS and ATP. These findings demonstrate the pro-inflammatory role of LCN2 in colon epithelium and provide a potential target for inhibiting pyroptosis in UC.
Collapse
Affiliation(s)
- Yuyi Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Gastroenterology, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512026, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fangqing Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Teng Ben
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
72
|
Cao W, Xiong Y, Chen D. Contradiction: Inhibiting inflammation and immunosuppression in the treatment of IBD. Proc Natl Acad Sci U S A 2024; 121:e2415439121. [PMID: 39284069 PMCID: PMC11441512 DOI: 10.1073/pnas.2415439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Affiliation(s)
- Wenfu Cao
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| | - Yongjian Xiong
- First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning province 116044, China
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| |
Collapse
|
73
|
Liu J, Xu Z, Yu J, Zang X, Jiang S, Xu S, Wang W, Hong S. MiR-146a-5p engineered hucMSC-derived extracellular vesicles attenuate Dermatophagoides farinae-induced allergic airway epithelial cell inflammation. Front Immunol 2024; 15:1443166. [PMID: 39364406 PMCID: PMC11446808 DOI: 10.3389/fimmu.2024.1443166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
INTRODUCTION Allergic asthma is prevalent in children, with Dermatophagoides farinae as a common indoor allergen. Current treatments for allergic airway inflammation are limited and carry risks. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) show promise as a cell-free therapeutic approach. However, the use of engineered MSC-EVs for D. farinae-induced allergic airway epithelial cell inflammation remains unexplored. METHODS We generated miR-146a-5p-engineered EVs from human umbilical cord mesenchymal stem cells (hucMSCs) and established D. farinae-induced mouse and human bronchial epithelial cell allergic models. Levels of IL-1β, IL-18, IL-4, IL-5, IL-6, IL-10, IL-33, TNF-α and IgE were detected using ELISA. The relative TRAF6 and IRAK1 mRNA expression was quantified using qPCR assay and the NLRP3, NF-κB, IRAK1 and TRAF6 protein expression was determined using Western blotting. The regulatory effect of IRAK1 and TRAF6 by miR-146a-5p was examined using a dual luciferase reporter assay, and the nuclear translocation of NF-κB p65 into 16-HBE cells was evaluated using immunofluorescence assay. RESULTS Treatment with hucMSC-EVs effectively reduced allergic inflammation, while miR-146a-5p engineered hucMSC-EVs showed greater efficacy. The enhanced efficacy in alleviating allergic airway inflammation was attributed to the downregulation of IRAK1 and TRAF6 expression, facilitated by miR-146a-5p. This downregulation subsequently led to a decrease in NF-κB nuclear translocation, which in turn resulted in reduced activation of the NLRP3 inflammasome and diminished production of inflammatory cytokines, including IL-6, TNF-α, IL-1β and IL-18. CONCLUSION Our study underscores the potential of miR-146a-5p engineered hucMSC-EVs as a cell-free therapeutic strategy for D. farinae-induced allergic airway inflammation, offering a promising avenue for boosting anti-inflammatory responses.
Collapse
Affiliation(s)
- Jiaxi Liu
- School of Clinical Laboratory Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuyu Xu
- School of Clinical Laboratory Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Yu
- School of Clinical Laboratory Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Zang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shangde Jiang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuyue Xu
- Department of Clinical Laboratory, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Wei Wang
- National Health Commission Key Laboratory on Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Shanchao Hong
- Department of Clinical Laboratory, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
74
|
Eriten B, Caglayan C, Gür C, Küçükler S, Diril H. Hepatoprotective effects of zingerone on sodium arsenite-induced hepatotoxicity in rats: Modulating the levels of caspase-3/Bax/Bcl-2, NLRP3/NF-κB/TNF-α and ATF6/IRE1/PERK/GRP78 signaling pathways. Biochem Biophys Res Commun 2024; 725:150258. [PMID: 38897041 DOI: 10.1016/j.bbrc.2024.150258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.
Collapse
Affiliation(s)
- Berna Eriten
- Department of Pathology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey.
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Halit Diril
- Medical Biochemistry Laboratory, Dursun Odabaş Medical Center, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
75
|
Sharma S, Gilberto VS, Levens CL, Chatterjee A, Kuhn KA, Nagpal P. Microbiome- and Host Inflammasome-Targeting Inhibitor Nanoligomers Are Therapeutic in the Murine Colitis Model. ACS Pharmacol Transl Sci 2024; 7:2677-2693. [PMID: 39296260 PMCID: PMC11406689 DOI: 10.1021/acsptsci.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024]
Abstract
Autoimmune and autoinflammatory diseases account for more than 80 chronic conditions affecting more than 24 million people in the US. Among these autoinflammatory diseases, noninfectious chronic inflammation of the gastrointestinal (GI) tract causes inflammatory bowel diseases (IBDs), primarily Crohn's and ulcerative colitis (UC). IBD is a complex disease, and one hypothesis is that these are either caused or worsened by compounds produced by bacteria in the gut. While traditional approaches have focused on pan immunosuppressive techniques (e.g., steroids), low remission rates, prolonged illnesses, and an increased frequency of surgical procedures have prompted the search for more targeted and precision therapeutic approaches. IBD is a complex disease resulting from both genetic and environmental factors, but several recent studies have highlighted the potential pivotal contribution of gut microbiota dysbiosis. Gut microbiota are known to modulate the immune status of the gut by producing metabolites that are encoded in biosynthetic gene clusters (BGCs) of the bacterial genome. Here, we show a targeted and high-throughput screening of more than 90 biosynthetic genes in 41 gut anaerobes, through downselection using available bioinformatics tools, targeted gene manipulation in these genetically intractable organisms using the Nanoligomer platform, and identification and synthesis of top microbiome targets as a Nanoligomer BGC cocktail (SB_BGC_CK1, abbreviated as CK1) as a feasible precision therapeutic approach. Further, we used a host-directed immune target screening to identify the NF-κB and NLRP3 cocktail SB_NI_112 (or NI112 for short) as a targeted inflammasome inhibitor. We used these top two microbe- and host-targeted Nanoligomer cocktails in acute and chronic dextran sulfate sodium (DSS) mouse colitis and in TNFΔARE/+ transgenic mice that develop spontaneous Crohn's like ileitis. The mouse microbiome was humanized to replicate that in human IBD through antibiotic treatment, followed by mixed fecal gavage from 10 human donors and spiked with IBD-inducing microbial species. Following colonization, colitis was induced in mice using 1 week of 3% DSS (acute) or 6 weeks of 3 rounds of 2.5% DSS induction for a week followed by 1 week of no DSS (chronic colitis model). Both Nanoligomer cocktails (CK1 and NI112) showed a strong reduction in disease severity, significant improvement in disease histopathology, and profound downregulation of disease biomarkers in colon tissue, as assessed by multiplexed ELISA. Further, we used two different formulations of intraperitoneal injections (IP) and Nanoligomer pills in the chronic DSS colitis model. Although both formulations were highly effective, the oral pill formulation demonstrated a greater reduction in biochemical markers compared to IP. A similar therapeutic effect was observed in the TNFΔARE/+ model. Overall, these results point to the potential for further development and testing of this inflammasome-targeting host-directed therapy (NI112) and more personalized microbiome cocktails (CK1) for patients with recalcitrant IBD.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| | - Vincenzo S Gilberto
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| | - Cassandra L Levens
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anushree Chatterjee
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| |
Collapse
|
76
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
77
|
Zhao Z, Yi S, E H, Jiang L, Zhou C, Zhao X, Yang L. α-amanitin induce inflammatory response by activating ROS/NF-κB-NLRP3 signaling pathway in human hepatoma HepG2 cells. CHEMOSPHERE 2024; 364:143157. [PMID: 39178962 DOI: 10.1016/j.chemosphere.2024.143157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
α-amanitin (AMA) is a hepatotoxic mushroom toxin responsible for over 90% of mushroom poisoning fatalities worldwide, seriously endangering human life and health. Few evidences have indicated that AMA leads to inflammatory responses and inflammatory infiltration in vitro and in vivo. However, the molecular mechanism remains unknown. In this study, human hepatocellular carcinomas cells (HepG2) were exposed to AMA at various concentrations for short period of times. Results revealed that AMA increased ROS production and elevated the releases of malondialdehyde (MDA) and lactate dehydrogenase (LDH), resulting in oxidative damage in HepG2 cells. Also, AMA exposure significantly increased the secreted levels of inflammatory cytokines and activated the NLRP3 inflammasome. The inflammatory responses were reversed by NLRP3 inhibitor MCC950 and NF-κB inhibitor Bay11-7082. Additionally, N-acetylcysteine (NAC) blocked the upregulation of the NF-κB/NLRP3 signaling pathway and remarkably alleviated the inflammatory response. These results demonstrated that AMA could induce inflammation through activating the NLRP3 inflammasome triggered by ROS/NF-κB signaling pathway. Our research provides new insights into the molecular mechanism of AMA-induced inflammation damage and may contribute to establish new prevention strategies for AMA hepatotoxicity.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China; Shanghai Guosen Biotechnology Co., Ltd., Shanghai, 201400, PR China.
| | - Siliang Yi
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China; College of Veterinary Medicine, Hunan Agricultural University, No.1 Nongda Road, Changsha, 410128, PR China
| | - Hengchao E
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China
| | - Lihuang Jiang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China; College of Veterinary Medicine, Hunan Agricultural University, No.1 Nongda Road, Changsha, 410128, PR China
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China.
| | - Lingchen Yang
- College of Veterinary Medicine, Hunan Agricultural University, No.1 Nongda Road, Changsha, 410128, PR China.
| |
Collapse
|
78
|
Erdem M, Erdem Ş, Alver A, Kıran TR, Karahan SC. β 2-adrenoceptor agonist formoterol attenuates NLRP3 inflammasome activation and GSDMD-mediated pyroptosis in microglia through enhancing IκBα/NF-κB inhibition, SQSTM1/p62-dependent selective autophagy and ESCRT-III-mediated plasma membrane repair. Mol Cell Neurosci 2024; 130:103956. [PMID: 39097250 DOI: 10.1016/j.mcn.2024.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β2-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β2-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β2-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.
Collapse
Affiliation(s)
- Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Malatya Turgut Özal University, Malatya 44900, Turkey; Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon 61080, Turkey.
| | - Şeniz Erdem
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon 61080, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Faculty of Medicine, Malatya Turgut Özal University, Malatya 44900, Turkey
| | - Süleyman Caner Karahan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
79
|
Liu F, Bai Y, Wan Y, Luo S, Zhang L, Wu X, Chen R, Yin Z, Xie Y, Guo P. DaiTongXiao improves gout nephropathy by inhibiting inflammatory response through the TLR4/MyD88/NF-κB pathway. Front Pharmacol 2024; 15:1447241. [PMID: 39170709 PMCID: PMC11336418 DOI: 10.3389/fphar.2024.1447241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Gouty nephropathy (GN) arises from factors like excessive purine intake, metabolic disorders or abnormal synthesis, and uric acid hypersaturation in the blood, leading to urate crystal deposition in kidney tissue. DaiTongXiao (DTX) is a remedy used by the Dai people of China. It shows efficacy in lowering uric acid levels and exhibits anti-inflammatory and kidney-protective properties. Methods: A GN rat model was induced using adenine and potassium oxonate. Following DTX administration, various parameters were assessed in urine, serum, and kidney tissue. Western blot analysis evaluated TLR4/MyD88/NF-κB signaling proteins, while immunofluorescence examined NF-κB nuclear expression. Results: DTX treatment improved kidney morphology, increased body weight, and kidney index and enhanced urinary levels of blood urea nitrogen (Bun), 24-h urinary protein, uric acid (UA), and allantoin in GN rats, reducing UA, Bun, creatinine (Cre), cystatin C (CysC), serum amyloid A (SAA), α1-microglobulin (MG), and β2-MG in serum analysis. Renal tissue assessments showed decreased xanthine oxidase (XOD), hydroxyproline (Hyp), α-smooth muscle actin (α-SMA), and collage type Ⅳ (COL-Ⅳ). Kidney damage severity was notably reduced. DTX lowered serum inflammatory factors like interleukin (IL) -18, tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), transforming growth factor-β1 (TGF-β1), and IL-1β in the rat serum, reducing chemokine monocyte chemoattractant protein-1 (MCP-1) and adhesion factor vascular cell adhesion molecule-1(VCAM-1). Western blotting demonstrated the downregulation of TLR4/MyD88/NF-κB pathway proteins, and immunofluorescence revealed reduced NF-κB expression in renal tissue. Discussion: DTX exhibits significant anti-GN effects by modulating TLR4/MyD88/ NF-κB pathway protein expression, reducing inflammatory factor release, and inhibiting GN progression.
Collapse
Affiliation(s)
- Feifan Liu
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanmei Bai
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yan Wan
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shifang Luo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Linao Zhang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Wu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zili Yin
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhuan Xie
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
80
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
81
|
Pearson A, Koprivica M, Eisenbaum M, Ortiz C, Browning M, Vincennie T, Tinsley C, Mullan M, Crawford F, Ojo J. PPARγ activation ameliorates cognitive impairment and chronic microglial activation in the aftermath of r-mTBI. J Neuroinflammation 2024; 21:194. [PMID: 39097742 PMCID: PMC11297749 DOI: 10.1186/s12974-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| | - Milica Koprivica
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | | | - Tessa Vincennie
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Cooper Tinsley
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
82
|
Zeng Y, Wang C, Yang C, Shan X, Meng XQ, Zhang M. Unveiling the role of chronic inflammation in ovarian aging: insights into mechanisms and clinical implications. Hum Reprod 2024; 39:1599-1607. [PMID: 38906835 DOI: 10.1093/humrep/deae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.
Collapse
Affiliation(s)
- Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Chun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xudong Shan
- Genital Medicine Center, The Third People's Hospital of Cheng, Sichuan, China
| | - Xiang-Qian Meng
- Department of Reproductive Medicine, Sichuan Jinxin Xinan Woman & Children Hospital, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
83
|
Yue L, Luo J, Zhao C, Zhao J, Ye J, He K, Zou J. Oleanane triterpenoids with C-14 carboxyl group from Astilbe grandis inhibited LPS-induced macrophages activation by suppressing the NF- κB signaling pathway. Front Pharmacol 2024; 15:1413876. [PMID: 39148539 PMCID: PMC11324442 DOI: 10.3389/fphar.2024.1413876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background Excessive inflammation poses significant risks to human physical and mental health. Astilbe grandis, a traditional Miao medicine, is renowned for its anti-inflammatory properties. However, the specific anti-inflammatory effects and mechanisms of many compounds within this plant remain unclear. This study aims to investigate the anti-inflammatory effects and mechanisms of two characteristic oleanane triterpenoids, 3α-acetoxyolean-12-en-27-oic acid (1) and 3β-acetoxyolean-12-en-27-oic acid (2), isolated from Astilbe grandis, using lipopolysaccharide (LPS)-induced Macrophages. Methods The anti-inflammatory effects and mechanisms of compounds 1 and 2 were investigated by establishing an LPS-induced inflammation model in RAW 264.7 cells and THP-1 cells. Nitric oxide (NO) levels were assessed using the Griess method. The concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β) were measured via enzyme-linked immunosorbent assay (ELISA). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was determined using western blotting and quantitative real-time PCR (qRT-PCR). Additionally, the phosphorylation level of p65 in nuclear factor-kappa B (NF-κB) was assessed through western blotting. The nuclear translocation of NF-κB p65 was assessed through immunofluorescence staining. Finally, the binding affinity of the compounds to NF-κB p65 target was validated through molecular docking. Results Compounds 1 and 2 significantly inhibited the expression of NO, TNF-α, IL-6, IL-1β, COX-2, and iNOS in LPS-induced Macrophages. Mechanistically, they attenuated the activation of the NF-κB signaling pathway by downregulating the phosphorylation level and nuclear translocation of p65. Conclusion This study elucidates the anti-inflammatory activities and potential mechanism of the characteristic oleanane triterpenoids with C-14 carboxyl group, compounds 1 and 2, in LPS-induced Macrophages by inhibiting the NF-κB signaling pathway for the first time. These findings suggest that these two compounds hold promise as potential candidates for anti-inflammatory interventions in the future.
Collapse
Affiliation(s)
- Lan Yue
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinfang Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenliang Zhao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinfeng Zhao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kang He
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Zou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
84
|
Liu Z, Gao Y, Feng X, Su Y, Lian H, Zhao J, Xu J, Liu Q, Song F. Hecogenin alleviates LPS-induced osteolysis via regulating pyroptosis and ROS involved Nrf2 activation. Biomed Pharmacother 2024; 177:116933. [PMID: 38901204 DOI: 10.1016/j.biopha.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
Reactive oxidative species (ROS) generation triggers pyroptosis and induces development of inflammatory osteolysis. Hecogenin (HG) has anti-inflammatory and antioxidative property, but its effects on inflammatory osteolysis remains unclear. In our study, we investigated the mechanism of HG on pyroptosis and its effect on inflammatory osteolysis in vitro and in vivo. The impact of HG on osteoclastogenesis was evaluated using cytotoxicity, TRAcP staining and bone resorption assays. The RNA-sequencing was employed to identify potential signaling pathways, and then RT-qPCR, western blot, immunofluorescence, and ELISA were used to verify. To determine the protective effect of HG in vivo, Lipopolysaccharide (LPS)-induced animal models were utilized, along with micro-CT and histological examination. HG suppressed RANKL-induced osteoclast differentiation, bone resorption, NFATc1 activity and downstream factors. RNA-sequencing results showed that HG inhibited osteoclastogenesis by modulating the inflammatory response and macrophage polarization. Furthermore, HG inhibited the NF-κB pathway, and deactivated the NLRP3 inflammasome. HG activated the expression of nuclear factor E2-related factor 2 (Nrf2) to eliminate ROS generation. Importantly, the inhibitory effect of HG on NLRP3 inflammasome could be reversed by treatment with the Nrf2 inhibitor ML385. In vivo, HG prevented the mice against LPS-induced osteolysis by suppressing osteoclastogenesis and inflammatory factors. In conclusion, HG could activate Nrf2 to eliminate ROS generation, inactivate NLRP3 inflammasome and inhibit pyroptosis, thereby suppressing osteoclastogenesis in vitro and alleviating inflammatory osteolysis in vivo, which indicating that HG might be a promising candidate to treat inflammatory osteolysis.
Collapse
Affiliation(s)
- Zhijuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yijie Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoliang Feng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haoyu Lian
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Biomedical Sciences, the University of Western Australia, Perth, Australia.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Fangming Song
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
85
|
Gao H, Li Z, Gan L, Chen X. The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling. J Cardiovasc Transl Res 2024; 17:923-934. [PMID: 38558377 DOI: 10.1007/s12265-024-10498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs. Graphical Abstract.
Collapse
Affiliation(s)
- Haizhu Gao
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zhongxin Li
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lijun Gan
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China
| | - Xueying Chen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China.
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
86
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J Neuroinflammation 2024; 21:182. [PMID: 39068433 PMCID: PMC11283709 DOI: 10.1186/s12974-024-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sydney J Risen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Tobias Emge
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sadhana Sharma
- Sachi Bio, Colorado Technology Center, Louisville, CO, USA
| | | | | | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA.
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
87
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
88
|
Chun-peng ZHANG, Tian CAO, Xue YANG. Pharmacological mechanisms of Taohe Chengqi decoction in diabetic cardiovascular complications: A systematic review, network pharmacology and molecular docking. Heliyon 2024; 10:e33308. [PMID: 39044965 PMCID: PMC11263673 DOI: 10.1016/j.heliyon.2024.e33308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background Diabetic cardiovascular complications are the leading cause of diabetes-related deaths. These complications place an enormous and growing burden on global health systems and economies. The objective of this study was to conduct a systematic review on the therapeutic mechanisms of Taohe Chengqi Decoction (THCQD) in the treatment of diabetic cardiovascular complications. To predict the potential mechanisms of action of THCQD on diabetic cardiovascular complications using network pharmacology, and to validate these predictions through molecular docking analysis. Methods To collect relevant animal experiments, we searched a total of 6 databases. Eligibility for the study was determined based on inclusion and exclusion criteria. Data extraction was then performed on the literature. Methodological quality of animal studies was assessed using SYRCLE criteria. Based on network pharmacology, intersecting genes for THCQD and diabetic cardiovascular complications were obtained using Venny, PPI analysis and topology analysis of intersecting genes were performed; GO and KEGG were used for enrichment analysis and prediction of new targets of action. Molecular docking techniques were employed to model the interactions between drug components and target genes, thereby validating the results of network pharmacology predictions. Results A total of 16 studies were finally identified that fit the direction of this review. Included 6 studies of the myocardium, 1 study of the aortic arch, 5 studies of the femoral artery, 4 studies of the thoracic aorta. THCQD exhibited anti-inflammatory, anti-fibrotic and anti-atherosclerotic effects on cardiovascular complications in diabetic rats. Network pharmacology results showed that C0363 (Resveratrol), C0041 (Emodin), and C1114 (Baicalein) were the key components in the treatment of diabetic cardiovascular complications by THCQD. PPI results showed that INS, AKT1, TNF, ALB, IL6, IL1B as the genes that interact with the top 6. KEGG enrichment analysis identified the AGE-RAGE signaling pathway in diabetic complications as the most prominent pathway enriched by THCQD for diabetic cardiovascular complications genes. The results of molecular docking showed that the key active components demonstrated favorable interactions with their corresponding target genes. Conclusion In conclusion, the results of both basic and web-based pharmacological studies support the beneficial effects of the natural herbal formulation THCQD on diabetic cardiovascular complications. This decoction has anti-inflammatory and antifibrotic properties and is effective in ameliorating diabetic cardiovascular disease. The network pharmacology results further support these ideas and identify the AGE-RAGE signaling pathway in diabetic complications as possibly the most relevant pathway for THCQD in the treatment of diabetic cardiovascular complications. The extent of the therapeutic potential of all-natural herbal components in the treatment of diabetic cardiovascular disease merits further investigation.
Collapse
Affiliation(s)
- ZHANG Chun-peng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - CAO Tian
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - YANG Xue
- Department of Traditional Chinese Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| |
Collapse
|
89
|
Li J, Chi H, Wu Y, Peng K, Wang J, Lin W. Sulfur dioxide-triggered visualization tool for auxiliary diagnosis of alcohol-induced "anti-inflammatory and pro-inflammatory" development process. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134685. [PMID: 38797075 DOI: 10.1016/j.jhazmat.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Inflammation is the most common disease in humans. Alcohol has been part of human culture throughout history. To avoid alcohol prompting inflammation to develop into a more serious disease, it is important for human health to explore the effects of alcohol on the development of inflammation.Endogenous sulfur dioxide (SO2) is considered an important regulator of the development of inflammation and is involved in the entire development process of inflammation. Taken together, it is of great significance to explore the impact of alcohol on the development process of inflammation through changes in SO2 concentration in the inflammatory microenvironment. Herein, we report the development of a molecular tool (Nu-SO2) with rapid (5 s) response to the important inflammatory modulator sulfur dioxide (SO2) for the diagnosis of inflammation, assessment of therapeutic effects, and evaluation of the development process of alcohol-induced inflammation. The rationality of Nu-SO2 was confirmed through molecular docking calculations, density functional theory (DFT) theoretical calculations, DNA/RNA titration experiments and co-localization experiments. Furthermore, Nu-SO2 was effectively applied for specific response and highly sensitive visualization imaging of SO2 in solution, cells and mice. Importantly, Nu-SO2 was successfully used to diagnose lipopolysaccharide-induced inflammation in cells and mice and evaluate the efficacy of dexamethasone in treating inflammation. More significantly, based on the excellent performance of Nu-SO2 in dynamically reporting the further development of inflammation in mice triggered by alcohol, we successfully elucidated the "anti-inflammatory and pro-inflammatory" trend in the development of inflammation caused by alcohol stimulation. Thus, this work not only advances the research on the relationship between alcohol, inflammation and SO2, but also provides a new non-invasive assessment method for the development mechanism of inflammation induced by external stimuli and the precise diagnosis and treatment of drug efficacy evaluation.
Collapse
Affiliation(s)
- Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yu Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kanghui Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
90
|
Maia CMDA, Vasconcelos PGS, Pasetto S, Godwin WC, Silva JPRE, Tavares JF, Pardi V, Costa EMMDB, Murata RM. Anadenanthera colubrina regulated LPS-induced inflammation by suppressing NF-κB and p38-MAPK signaling pathways. Sci Rep 2024; 14:16028. [PMID: 38992070 PMCID: PMC11239917 DOI: 10.1038/s41598-024-66590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
We aimed to determine the chemical profile and unveil Anadenanthera colubrina (Vell.) Brenan standardized extract effects on inflammatory cytokines expression and key proteins from immunoregulating signaling pathways on LPS-induced THP-1 monocyte. Using the RT-PCR and Luminex Assays, we planned to show the gene expression and the levels of IL-8, IL-1β, and IL-10 inflammatory cytokines. Key proteins of NF-κB and MAPK transduction signaling pathways (NF-κB, p-38, p-NF-κB, and p-p38) were detected by Simple Western. Using HPLC-ESI-MSn (High-Performance Liquid-Chromatography) and HPLC-HRESIMS, we showed the profile of the extract that includes an opus of flavonoids, including the catechins, quercetin, kaempferol, and the proanthocyanidins. Cell viability was unaffected up to 250 µg/mL of the extract (LD50 = 978.7 µg/mL). Thereafter, the extract's impact on the cytokine became clear. Upon LPS stimuli, in the presence of the extract, gene expression of IL-1β and IL-10 were downregulated and the cytokines expression of IL-1β and IL-10 were down an upregulated respectively. The extract is involved in TLR-4-related NF-κB/MAPK pathways; it ignited phosphorylation of p38 and NF-κB, orchestrating a reduced signal intensity. Therefore, Anadenanthera colubrina's showed low cytotoxicity and profound influence as a protector against the inflammation, modulating IL-1β and IL-10 inflammatory cytokines gene expression and secretion by regulating intracellular NF-κB and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | | | - Silvana Pasetto
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Walton Colby Godwin
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Joanda Paolla Raimundo E Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Edja Maria Melo de Brito Costa
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil.
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
91
|
Shan Q, Wang X, Yang H, Zhu Y, Wang J, Yang G. Bacillus cereus CwpFM induces colonic tissue damage and inflammatory responses through oxidative stress and the NLRP3/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173079. [PMID: 38735331 DOI: 10.1016/j.scitotenv.2024.173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B. cereus, caused oxidative stress and inflammatory responses in mouse colon and colonic epithelial cells. Colon proteomics revealed that CwpFM elevated proteins associated with inflammation and oxidative stress. Notably, CwpFM induced activation of the NLRP3/NF-κB signaling, but suppressed antioxidant NFE2L2/HO-1 expression in the intestine and epithelial cells. Consistently, CwpFM exposure led to cytotoxicity and ROS accumulation in Caco-2 cells in a dose-dependent manner. Further, NAC (ROS inhibitor) treatment abolished NLRP3/NF-κB activation due to CwpFM. Moreover, overexpression of Nfe2l2 or activation of NFE2L2 by NK-252 reduced ROS production and inhibited activation of the NLRP3/NF-κB pathway. Inhibition of NF-κB by ADPC and/or suppression of NLRP3 by MCC950 attenuated CwpFM-induced inflammatory responses in Caco-2 cells. Collectively, CwpFM induced oxidative stress and NLRP3/NF-κB activation by inhibiting the NFE2L2/HO-1 signaling and ROS accumulation, leading to the development of intestinal inflammation. Our data elucidate the role of oxidative stress and innate immunity in CwpFM enterotoxicity and contribute to developing diagnostic and therapeutic products for B. cereus-related food safety issues.
Collapse
Affiliation(s)
- Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Hao Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
92
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
93
|
Alvarez AM, Trufen CEM, Buri MV, de Sousa MBN, Arruda-Alves FI, Lichtenstein F, Castro de Oliveira U, Junqueira-de-Azevedo IDLM, Teixeira C, Moreira V. Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells. Cells 2024; 13:1161. [PMID: 38995013 PMCID: PMC11240656 DOI: 10.3390/cells13131161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.
Collapse
Affiliation(s)
- Angela María Alvarez
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Reproduction Group, Pharmacy Department, School of Pharmaceutical and Food Sciences, University of Antioquia—UdeA, Medellín 050010, Colombia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| | - Carlos Eduardo Madureira Trufen
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.i, 252 50 Vestec, Czech Republic
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Marcela Bego Nering de Sousa
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| | - Francisco Ivanio Arruda-Alves
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Catarina Teixeira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Laboratório de Farmacologia, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Vanessa Moreira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| |
Collapse
|
94
|
Nguyen TL, Phan NM, Kim J. Administration of ROS-Scavenging Cerium Oxide Nanoparticles Simply Mixed with Autoantigenic Peptides Induce Antigen-Specific Immune Tolerance against Autoimmune Encephalomyelitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33106-33120. [PMID: 38906850 DOI: 10.1021/acsami.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
95
|
Wang Z, Luo W, Zhang G, Li H, Zhou F, Wang D, Feng X, Xiong Y, Wu Y. FoxO1 knockdown inhibits RANKL-induced osteoclastogenesis by blocking NLRP3 inflammasome activation. Oral Dis 2024; 30:3272-3285. [PMID: 37927112 DOI: 10.1111/odi.14800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This study aimed to elucidate the connection between osteoclastic forkhead transcription factor O1 (FoxO1) and periodontitis and explore the underlying mechanism by which FoxO1 knockdown regulates osteoclast formation. MATERIALS AND METHODS A conventional ligature-induced periodontitis model was constructed to reveal the alterations in the proportion of osteoclastic FoxO1 in periodontitis via immunofluorescence staining. Additionally, RNA sequencing (RNA-seq) was performed to explore the underlying mechanisms of FoxO1 knockdown-mediated osteoclastogenesis, followed by western blotting, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS FoxO1+ osteoclasts were enriched in the alveolar bone in experimental periodontitis. Moreover, FoxO1 knockdown led to impaired osteoclastogenesis with low expression of osteoclast differentiation-related genes, accompanied by an insufficient osteoclast maturation phenotype. Mechanistically, RNA-seq revealed that the nuclear factor kappa B (NF-κB) and nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways were inhibited in FoxO1-knockdown osteoclasts. Consistent with this, MCC950, an effective inhibitor of the NLRP3 inflammasome, substantially attenuated osteoclast formation. CONCLUSIONS FoxO1 knockdown contributed to the inhibition of osteoclastogenesis by effectively suppressing NF-κB signaling and NLRP3 inflammasome activation. This prospective study reveals the role of FoxO1 in mediating osteoclastogenesis and provides a viable therapeutic target for periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
96
|
Sun Q, Hu M, Yuan C, Ren B, Zhong M, Zhou S, Wang X, Gao Q, Zeng M, Cai X, Song H. Astragaloside IV ameliorates indomethacin-induced intestinal inflammation in rats through inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 135:112281. [PMID: 38762925 DOI: 10.1016/j.intimp.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) may cause significant intestinal alteration and inflammation and lead to the occurrence of inflammatory diseases resembling duodenal ulcers. Astragaloside IV (AS-IV) is a glycoside of cycloartane-type triterpene isolated from the dried root of Astragalus membranaceus (Fisch.) Bge. (family Fabaceae), and has been used for ameliorating the NSAID-induced inflammation in the small intestine. The present study aimed to investigate the effects of AS-IV on indomethacin (IND)-induced inflammation in the small intestine of rats and its underlying mechanisms. Hematoxylin-eosin (H&E) staining, transmission and scanning electron microscopy were carried out to observe the surface morphology and ultrastructure of the small intestinal mucosa. Immunofluorescence and ELISA tests were employed to detect the expressions of NLRP3, ASC, caspase-1, and NF-κB proteins, as well as inflammatory factors IL-1β and IL-18, to uncover potential molecular mechanisms responsible for mitigating small intestinal inflammation. The results demonstrated that AS-IV significantly decreased the ulcer index, improved the surface morphology and microstructure of the small intestinal mucosa, and increased mucosal blood flow. Molecular docking revealed a strong and stable binding capacity of AS-IV to NLRP3, ASC, caspase-1, and NF-κB proteins. Further experimental validation exhibited that AS-IV markedly decreased levels of IL-1β and IL-18, and inhibited the protein expression of NLRP3, ASC, caspase-1, and NF-κB. Our data demonstrate that AS-IV ameliorates IND-induced intestinal inflammation in rats by inhibiting the activation of NLRP3 inflammasome and reducing the release of IL-1β and IL-18, thereby representing a promising therapy for IND-induced intestinal inflammation.
Collapse
Affiliation(s)
- Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Mingyue Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shunhua Zhou
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaojuan Wang
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qing Gao
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
97
|
Xu X, Feng J, Wang X, Zeng X, Luo Y, He X, Yang M, Lv T, Feng Z, Bao L, Zhao L, Huang D, Huang Y. Mitochondrial GRIM19 Loss Induces Liver Fibrosis through NLRP3/IL33 Activation via Reactive Oxygen Species/NF-кB Signaling. J Clin Transl Hepatol 2024; 12:539-550. [PMID: 38974954 PMCID: PMC11224902 DOI: 10.14218/jcth.2023.00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background and Aims Hepatic fibrosis (HF) is a critical step in the progression of hepatocellular carcinoma (HCC). Gene associated with retinoid-IFN-induced mortality 19 (GRIM19), an essential component of mitochondrial respiratory chain complex I, is frequently attenuated in various human cancers, including HCC. Here, we aimed to investigate the potential relationship and underlying mechanism between GRIM19 loss and HF pathogenesis. Methods GRIM19 expression was evaluated in normal liver tissues, hepatitis, hepatic cirrhosis, and HCC using human liver disease spectrum tissue microarrays. We studied hepatocyte-specific GRIM19 knockout mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) lentivirus-mediated GRIM19 gene-editing in murine hepatocyte AML12 cells in vitro and in vivo. We performed flow cytometry, immunofluorescence, immunohistochemistry, western blotting, and pharmacological intervention to uncover the potential mechanisms underlying GRIM19 loss-induced HF. Results Mitochondrial GRIM19 was progressively downregulated in chronic liver disease tissues, including hepatitis, cirrhosis, and HCC tissues. Hepatocyte-specific GRIM19 heterozygous deletion induced spontaneous hepatitis and subsequent liver fibrogenesis in mice. In addition, GRIM19 loss caused chronic liver injury through reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation via an IKK/IкB partner in hepatocytes. Furthermore, GRIM19 loss activated NLRP3-mediated IL33 signaling via the ROS/NF-кB pathway in hepatocytes. Intraperitoneal administration of the NLRP3 inhibitor MCC950 dramatically alleviated GRIM19 loss-driven HF in vivo. Conclusions The mitochondrial GRIM19 loss facilitates liver fibrosis through NLRP3/IL33 activation via ROS/NF-кB signaling, providing potential therapeutic approaches for earlier HF prevention.
Collapse
Affiliation(s)
- Xiaohui Xu
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Key Cardiovascular Specialty, Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Jinmei Feng
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Laboratory Medicine, Chongqing Western Hospital, Chongqing, China
| | - Xin Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Xin Zeng
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Luo
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xinyu He
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Meihua Yang
- Departments of Neurology, Epilepsy Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Tiewei Lv
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Key Cardiovascular Specialty, Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Zijuan Feng
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Liming Bao
- Department of Clinical Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Li Zhao
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Daochao Huang
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yi Huang
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Key Cardiovascular Specialty, Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
- Departments of Medicine (Oncology), Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
98
|
He C, Liu J, Li J, Wu H, Jiao C, Ze X, Xu S, Zhu Z, Guo W, Xu J, Yao H. Hit-to-Lead Optimization of the Natural Product Oridonin as Novel NLRP3 Inflammasome Inhibitors with Potent Anti-Inflammation Activity. J Med Chem 2024; 67:9406-9430. [PMID: 38751194 DOI: 10.1021/acs.jmedchem.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Targeting NLRP3 inflammasome with inhibitors is a novel strategy for NLRP3-driven diseases. Herein, hit compound 5 possessing an attractive skeleton was identified from our in-house database of oridonin, and then a potential lead compound 32 was obtained by optimization of 5, displaying two-digit nanomolar inhibition on NLRP3. Moreover, compound 32 showed enhanced safety index (SI) relative to oridonin (IC50 = 77.2 vs 780.4 nM, SI = 40.5 vs 8.5) and functioned through blocking ASC oligomerization and interaction of NLRP3-ASC/NEK7, thereby suppressing NLRP3 inflammasome assembly and activation. Furthermore, diverse agonists-induced activations of NLRP3 could be impeded by compound 32 without altering NLRC4 or AIM2 inflammasome. Crucially, compound 32 possessed tolerable pharmaceutical properties and significant anti-inflammatory activity in MSU-induced gouty arthritis model. Therefore, this work enriched the SAR of NLRP3 inflammasome inhibitors and provided a potential candidate for the treatment of NLRP3-associated diseases.
Collapse
Affiliation(s)
- Chen He
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Junda Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hongyu Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
99
|
Li W, Cai Z, Schindler F, Afjehi-Sadat L, Montsch B, Heffeter P, Heiss EH, Weckwerth W. Elevated PINK1/Parkin-Dependent Mitophagy and Boosted Mitochondrial Function Mediate Protection of HepG2 Cells from Excess Palmitic Acid by Hesperetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13039-13053. [PMID: 38809522 PMCID: PMC11181321 DOI: 10.1021/acs.jafc.3c09132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Deregulation of mitochondrial functions in hepatocytes contributes to many liver diseases, such as nonalcoholic fatty liver disease (NAFLD). Lately, it was referred to as MAFLD (metabolism-associated fatty liver disease). Hesperetin (Hst), a bioactive flavonoid constituent of citrus fruit, has been proven to attenuate NAFLD. However, a potential connection between its preventive activities and the modulation of mitochondrial functions remains unclear. Here, our results showed that Hst alleviates palmitic acid (PA)-triggered NLRP3 inflammasome activation and cell death by inhibition of mitochondrial impairment in HepG2 cells. Hst reinstates fatty acid oxidation (FAO) rates measured by seahorse extracellular flux analyzer and intracellular acetyl-CoA levels as well as intracellular tricarboxylic acid cycle metabolites levels including NADH and FADH2 reduced by PA exposure. In addition, Hst protects HepG2 cells against PA-induced abnormal energetic profile, ATP generation reduction, overproduction of mitochondrial reactive oxygen species, and collapsed mitochondrial membrane potential. Furthermore, Hst improves the protein expression involved in PINK1/Parkin-mediated mitophagy. Our results demonstrate that it restores PA-impaired mitochondrial function and sustains cellular homeostasis due to the elevation of PINK1/Parkin-mediated mitophagy and the subsequent disposal of dysfunctional mitochondria. These results provide therapeutic potential for Hst utilization as an effective intervention against fatty liver disease.
Collapse
Affiliation(s)
- Wan Li
- Molecular
Systems Biology (MOSYS), Department of Functional and Evolutionary
Ecology, University of Vienna, Vienna 1030, Austria
- Vienna
Doctoral School of Ecology and Evolution, University of Vienna, Vienna 1030, Austria
| | - Zhengnan Cai
- Molecular
Systems Biology (MOSYS), Department of Functional and Evolutionary
Ecology, University of Vienna, Vienna 1030, Austria
- Vienna
Doctoral School of Ecology and Evolution, University of Vienna, Vienna 1030, Austria
| | - Florian Schindler
- Molecular
Systems Biology (MOSYS), Department of Functional and Evolutionary
Ecology, University of Vienna, Vienna 1030, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sports Sciences, University of Vienna, Vienna 1090, Austria
| | - Leila Afjehi-Sadat
- Mass
Spectrometry (Core) Facility, University
of Vienna, Vienna 1030, Austria
- Research
Support Facilities UBB, University of Vienna, Vienna 1030, Austria
| | - Bianca Montsch
- Center for
Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
- Department
of Food Chemistry and Toxicology, University
of Vienna, Vienna 1090, Austria
| | - Petra Heffeter
- Center for
Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Elke H. Heiss
- Department
of Pharmaceutical Sciences, University of
Vienna, Vienna 1090, Austria
| | - Wolfram Weckwerth
- Molecular
Systems Biology (MOSYS), Department of Functional and Evolutionary
Ecology, University of Vienna, Vienna 1030, Austria
- Vienna
Metabolomics Center (VIME), University of
Vienna, Vienna 1030, Austria
| |
Collapse
|
100
|
Wang C, Liu Z, Cai J, Xu X. The regulatory effect of intermittent fasting on inflammasome activation in health and disease. Nutr Rev 2024; 82:978-987. [PMID: 37634143 DOI: 10.1093/nutrit/nuad104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Intermittent fasting (IF), one of the most popular diets, can regulate inflammation and promote health; however, the detailed molecular mechanisms are not fully understood. The present review aims to provide an overview of recent preclinical and clinical studies that have examined the effect of IF on inflammasome signaling, and to discuss the translational gap between preclinical and clinical studies. Three databases (PubMed, Web of Science, and Embase) were searched to identify all relevant preclinical and clinical studies up to October 30, 2022. A total of 1544 studies were identified through the database searches, and 29 preclinical and 10 clinical studies were included. Twenty-three of the 29 preclinical studies reported that IF treatment could reduce inflammasome activation in neurological diseases, metabolic and cardiovascular diseases, immune and inflammatory diseases, gastrointestinal diseases, and pulmonary diseases, and 7 of the 10 clinical studies demonstrated reduced inflammasome activation after IF intervention in both healthy and obese participants. Among various IF regimens, time-restricted eating seemed to be the most effective one in terms of inflammasome regulation, and the efficacy of IF might increase over time. This review highlights the regulatory effect of IF on inflammasome activation in health and disease. Future studies using different IF regimens, in various populations, are needed in order to evaluate its potential to be used alone or as an adjunct therapy in humans to improve health and counteract diseases.
Collapse
Affiliation(s)
- Chenchen Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Zhiqin Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Jinpeng Cai
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| |
Collapse
|