51
|
Mandelli A, Tacconi E, Levinger I, Duque G, Hayes A. The role of estrogens in osteosarcopenia: from biology to potential dual therapeutic effects. Climacteric 2021; 25:81-87. [PMID: 34423690 DOI: 10.1080/13697137.2021.1965118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoporosis and sarcopenia are two conditions associated with aging and characterized by a simultaneous decline in bone and muscle mass, respectively. These conditions share common risk factors (genetic, endocrine, nutritional and lifestyle factors) and biological pathways that often co-exist in a syndrome known as osteosarcopenia. Among the endocrine causes, estrogens play a critical role, especially in women. Estrogens have been demonstrated to exert a positive effect on bone and muscle development and maintenance. For this reason, menopause is characterized by a loss in bone mineral density and skeletal muscle quality and quantity. To date, studies indicate a positive effect of hormonal therapy on the prevention and management of osteoporosis, to the point that estrogen is prescribed as a first-line treatment for osteoporosis by the major international authorities. While results on sarcopenia are still disputable, such that estrogens are not recommended to prevent muscle loss in postmenopausal women, increased response to anabolic stimuli with estrogen therapy suggests similar beneficial effects on muscle as seen with bone, particularly when combined with resistance exercise.
Collapse
Affiliation(s)
- A Mandelli
- Institute for Health and Sport, Victoria University, St Albans, VIC, Australia
| | - E Tacconi
- Explorer Training S.r.l. Massa and Cozzile, Tuscany, Italy
| | - I Levinger
- Institute for Health and Sport, Victoria University, St Albans, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne, St Albans, VIC, Australia.,Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - G Duque
- Institute for Health and Sport, Victoria University, St Albans, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne, St Albans, VIC, Australia.,Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - A Hayes
- Institute for Health and Sport, Victoria University, St Albans, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne, St Albans, VIC, Australia.,Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| |
Collapse
|
52
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
53
|
Association of TGF-β1 and IL-10 Gene Polymorphisms with Osteoporosis in a Study of Taiwanese Osteoporotic Patients. Genes (Basel) 2021; 12:genes12060930. [PMID: 34207210 PMCID: PMC8233820 DOI: 10.3390/genes12060930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is a rising health threat in the increasingly aging world population. It is a common skeletal disease strongly linked to genetic predisposition. We aim to identify the effects of the anti-inflammatory TGF-β1- and IL-10-specific single-nucleotide polymorphism (SNP) combination on the risk for osteoporosis. We investigated and analyzed the relationships between three TGF-β1 SNPs (-509C/T, +869 T/C and +29T/C), one IL-10 SNP (+1927A/C) and the level of bone mineral density (BMD), as well as the risk of osteoporosis in Taiwanese osteoporotic patients. A total of 217 subjects were recruited, including 88 osteoporotic patients and 129 healthy controls, for SNPs, BMD and clinical characteristics statistical analyses. Females with TGF-β1 SNP (-509 C/C) and IL-10 SNP (+1927 C/C) genotypes showed a great benefit for femoral neck T-scores. However, the combination of TGF-β1 SNP (-509 T/T) and IL-10 SNP (+1927 A/A) genotypes in all subjects showed a significant decrease in total hip BMD T-scores. The TGF-β1 SNP (-509 C/T) genotype in all subjects and TGF-β1 SNP (-509 T/T) and IL-10 SNP (+1927 A/C) genotypes in males showed positive effects on body height. The combination of the many SNPs in the anti-inflammatory TGF-β1 and IL-10 genes may be cooperatively involved in the development of osteoporosis. Our data suggested that the specific SNP combination of TGF-β1 (-509) and IL-10 (+1927) may act as a predictive factor for postmenopausal osteoporosis in Taiwanese women.
Collapse
|
54
|
Estrogen Decreases Cytoskeletal Organization by Forming an ERα/SHP2/c-Src Complex in Osteoclasts to Protect against Ovariectomy-Induced Bone Loss in Mice. Antioxidants (Basel) 2021; 10:antiox10040619. [PMID: 33920630 PMCID: PMC8073670 DOI: 10.3390/antiox10040619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Loss of ovarian function is closely related to estrogen (E2) deficiency, which is responsible for increased osteoclast (OC) differentiation and activity. We aimed to investigate the action mechanism of E2 to decrease bone resorption in OCs to protect from ovariectomy (OVX)-induced bone loss in mice. In vivo, tartrate-resistant acid phosphatase (TRAP) staining in femur and serum carboxy-terminal collagen crosslinks-1 (CTX-1) were analyzed upon E2 injection after OVX in mice. In vitro, OCs were analyzed by TRAP staining, actin ring formation, carboxymethylation, determination of reactive oxygen species (ROS) level, and immunoprecipitation coupled with Western blot. In vivo and in vitro, E2 decreased OC size more dramatically than OC number and Methyl-piperidino-pyrazole hydrate dihydrochloride (MPPD), an estrogen receptor alpha (ERα) antagonist, augmented the OC size. ERα was found in plasma membranes and E2/ERα signaling affected receptor activator of nuclear factor κB ligand (RANKL)-induced actin ring formation by rapidly decreasing a proto-oncogene tyrosine-protein kinase, cellular sarcoma (c-Src) (Y416) phosphorylation in OCs. E2 exposure decreased physical interactions between NADPH oxidase 1 (NOX1) and the oxidized form of c-Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), leading to higher levels of reduced SHP2. ERα formed a complex with the reduced form of SHP2 and c-Src to decrease c-Src activation upon E2 exposure, which blocked a signal for actin ring formation by decreased Vav guanine nucleotide exchange factor 3 (Vav3) (p-Y) and Ras-related C3 botulinum toxin substrate 1 (Rac1) (GTP) activation in OCs. E2/ERα signals consistently inhibited bone resorption in vitro. In conclusion, our study suggests that E2-binding to ERα forms a complex with SHP2/c-Src to attenuate c-Src activation that was induced upon RANKL stimulation in a non-genomic manner, resulting in an impaired actin ring formation and reducing bone resorption.
Collapse
|
55
|
Zhang H, Wang A, Shen G, Wang X, Liu G, Yang F, Chen B, Wang M, Xu Y. Hepcidin-induced reduction in iron content and PGC-1β expression negatively regulates osteoclast differentiation to play a protective role in postmenopausal osteoporosis. Aging (Albany NY) 2021; 13:11296-11314. [PMID: 33820875 PMCID: PMC8109081 DOI: 10.18632/aging.202817] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
As a necessary trace element, iron is involved in many physiological processes. Clinical and basic studies have found that disturbances in iron metabolism, especially iron overload, might lead to bone loss and even be involved in postmenopausal osteoporosis. Hepcidin is a key regulator of iron homeostasis. However, the exact role of hepcidin in bone metabolism and the underlying mechanism remain unknown. In this study, we found that in postmenopausal osteoporosis cohort, the concentration of hepcidin in the serum was significantly reduced and positively correlated with bone mineral density. Ovariectomized (OVX) mice were then used to construct an osteoporosis model. Hepcidin overexpression in these mice significantly improved bone mass and rescued the phenotype of bone loss. Additionally, overexpression of hepcidin in OVX mice greatly reduced the number and differentiation of osteoclasts in vivo and in vitro. This study found that overexpression of hepcidin significantly inhibited ROS production, mitochondrial biogenesis, and PGC-1β expression. These data showed that hepcidin protected osteoporosis by reducing iron levels in bone tissue, and in conjunction with PGC-1β, reduced ROS production and the number of mitochondria, thus inhibiting osteoclast differentiation and bone absorption. Hepcidin could provide new targets for the clinical treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Aifei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Guangsi Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215004, China
| | - Fan Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Bin Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Mingyong Wang
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| |
Collapse
|
56
|
Ma Z, Li X, Chen Y, Tang X, Gao Y, Wang H, Liu R. Comprehensive evaluation of the combined extracts of Epimedii Folium and Ligustri Lucidi Fructus for PMOP in ovariectomized rats based on MLP-ANN methods. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113563. [PMID: 33176184 DOI: 10.1016/j.jep.2020.113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney deficiency is the main pathogenesis of osteoporosis based on the theory of "kidney governing bones" in traditional Chinese medicine (TCM). Osteoporosis is a systemic disease; kidney deficiency influences the growth, aging and reproduction of human body, reflecting in endocrine, nerve, immunity, metabolism and other functions. Multi-target drugs composed of natural non-toxic products from kidney-reinforcing herbs, are being investigated for the treatment of osteoporosis. Therefore, it is necessary and imperative to develop an objective and comprehensive method to evaluate and compare the effects of herbs with listed drugs. AIM OF THE STUDY This study was designed to evaluate and compare the therapeutic effects and the underlying molecular mechanism of the combined extracts of Epimedii Folium and Ligustri Lucidi Fructus (EL) with Raloxifene hydrochloride (RH) in ovariectomy (OVX)-induced postmenopausal osteoporosis (PMOP) rats based on the multi-layer perception (MLP)-artificial neural network (ANN) model. MATERIALS AND METHODS Female SD rats were subjected to either sham surgery (n = 8) or bilateral OVX (n = 48). One week after recovering from surgery, the OVX-induced rats were randomly divided into three groups: OVX model group (n = 32, every 8 rats were killed at the end of the 5th, 9th, 11th or 13th week after OVX), EL group (treated with EL 0.35 g/kg, n = 8), and RH group (treated with RH 6.25 mg/kg, n = 8). The rats in the treatment groups were administrated once a day for 12 weeks, then sacrificed. We observed bone mass and quality, bone remodeling, the function of estrogen and TGF-β1/Smads pathway in all rats. RESULTS Both EL and RH could increase bone mineral density, enhance bone strength, relieve bone micro-structure degeneration, re-balance bone remodeling, regulate estrogen dysfunction, and up-regulate TGF-β1 expression. The evaluation of the MLP-ANN model showed that EL and RH had markedly anti-PMOP effects, and there was no significant difference in the comprehensive evaluation of anti-osteoporosis between the two drugs. However, RH had better effects on bone mass and quality and TGF-β1/Smads pathway than EL; EL had better effects on estrogen function than RH. CONCLUSION Combined extracts of Epimedii Folium and Ligustri Lucidi Fructus (EL) exhibited bone-protective effects on PMOP. The MLP-ANN method evaluated the efficacy of drugs more comprehensively, which provided a new direction for the evaluation and comparison of drugs.
Collapse
Affiliation(s)
- Zitong Ma
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Xiaoxi Li
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Yuheng Chen
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Xiufeng Tang
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Yingying Gao
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Han Wang
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Renhui Liu
- School of Traditional Chinese Medicine, Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
57
|
Gamsjaeger S, Eriksen EF, Paschalis EP. Effect of hormone replacement therapy on bone formation quality and mineralization regulation mechanisms in early postmenopausal women. Bone Rep 2021; 14:101055. [PMID: 33850974 PMCID: PMC8022851 DOI: 10.1016/j.bonr.2021.101055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/26/2022] Open
Abstract
Post-menopausal osteoporosis is characterized by a negative imbalance between bone formation and bone resorption resulting in a net bone loss, increasing the risk of fracture. One of the earliest interventions to protect against this was hormonal replacement therapy (HRT). Bone strength depends on both the amount and quality of bone, the latter including compositional / material and structural properties. Bone compositional / material properties are greatly dependent on both patient-, and tissue-age. Raman spectroscopy is an analytical tool ideally suited for the determination of bone compositional / material properties as a function of tissue age as it is capable of analyzing areas ~1 × 1 μm2 in tetracycline labeled bone forming areas. Using such analysis of humeri from an ovariectomized primate animal model, we reported that loss of estrogen results in alteration in the mineralization regulation mechanisms by osteoid organic matrix attributes at actively forming bone surfaces. In the present work, we used Raman microspectroscopic techniques to compare osteoid and youngest mineralized tissue composition, as well as relationships between osteoid organic matrix quality and quality attributes of the earliest mineralized tissue in paired iliac crest biopsies obtained from early postmenopausal women before and after two years of HRT therapy. Significant correlations between osteoid proteoglycans, sulfated proteoglycans, pyridinoline, and earliest mineralized tissue mineral content were observed, suggesting that in addition to changes in bone turnover rates, HRT affects the osteoid composition, mineralization regulation mechanisms, and potentially fibrillogenesis.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute for Osteology, at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - E F Eriksen
- Department of Clinical Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Institute of Clinical Medicine, Oslo University, Oslo, Norway
| | - E P Paschalis
- Ludwig Boltzmann Institute for Osteology, at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| |
Collapse
|
58
|
Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, Sole CJ, Haque A, Banik NL. The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021; 22:3057. [PMID: 33802713 PMCID: PMC8002377 DOI: 10.3390/ijms22063057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects approximately 300,000 people in the United States. Most individuals who sustain severe SCI also develop subsequent osteoporosis. However, beyond immobilization-related lack of long bone loading, multiple mechanisms of SCI-related bone density loss are incompletely understood. Recent findings suggest neuronal impairment and disability may lead to an upregulation of receptor activator of nuclear factor-κB ligand (RANKL), which promotes bone resorption. Disruption of Wnt signaling and dysregulation of RANKL may also contribute to the pathogenesis of SCI-related osteoporosis. Estrogenic effects may protect bones from resorption by decreasing the upregulation of RANKL. This review will discuss the current proposed physiological and cellular mechanisms explaining osteoporosis associated with SCI. In addition, we will discuss emerging pharmacological and physiological treatment strategies, including the promising effects of estrogen on cellular protection.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Kelsey P. Drasites
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
| | - Dena P. Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Christopher J. Sole
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| |
Collapse
|
59
|
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield NC, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten SE, Pettitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 2021; 184:1330-1347.e13. [PMID: 33636130 PMCID: PMC7938889 DOI: 10.1016/j.cell.2021.02.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Michelle M McDonald
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Weng Hua Khoo
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Pei Ying Ng
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Ya Xiao
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jad Zamerli
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Thatcher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Wunna Kyaw
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Abigail K Grootveld
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Imogen Moran
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Danyal Butt
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Akira Nguyen
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alexander Corr
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Sean Warren
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Yongxiao Li
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sindhu T Mohanty
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Niall Byrne
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rachael L Terry
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Marija K Simic
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Ryan Chai
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julian M W Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Scott E Youlten
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jessica A Pettitt
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Abi-Hanna
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rohit Jain
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mischa Lundberg
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | | | | | - Paul Timpson
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Woei Ming Lee
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul A Baldock
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Michael J Rogers
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Robert Brink
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John P Kemp
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Peter I Croucher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia.
| | - Tri Giang Phan
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
60
|
Shigehara K, Izumi K, Kadono Y, Mizokami A. Testosterone and Bone Health in Men: A Narrative Review. J Clin Med 2021; 10:jcm10030530. [PMID: 33540526 PMCID: PMC7867125 DOI: 10.3390/jcm10030530] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bone fracture due to osteoporosis is an important issue in decreasing the quality of life for elderly men in the current aging society. Thus, osteoporosis and bone fracture prevention is a clinical concern for many clinicians. Moreover, testosterone has an important role in maintaining bone mineral density (BMD) among men. Some testosterone molecular mechanisms on bone metabolism have been currently established by many experimental data. Concurrent with a decrease in testosterone with age, various clinical symptoms and signs associated with testosterone decline, including decreased BMD, are known to occur in elderly men. However, the relationship between testosterone levels and osteoporosis development has been conflicting in human epidemiological studies. Thus, testosterone replacement therapy (TRT) is a useful tool for managing clinical symptoms caused by hypogonadism. Many recent studies support the benefit of TRT on BMD, especially in hypogonadal men with osteopenia and osteoporosis, although a few studies failed to demonstrate its effects. However, no evidence supporting the hypothesis that TRT can prevent the incidence of bone fracture exists. Currently, TRT should be considered as one of the treatment options to improve hypogonadal symptoms and BMD simultaneously in symptomatic hypogonadal men with osteopenia.
Collapse
|
61
|
Abdi S, Binbaz RA, Mohammed AK, Ansari MG, Wani K, Amer OE, Alnaami AM, Aljohani N, Al-Daghri NM. Association of RANKL and OPG Gene Polymorphism in Arab Women with and without Osteoporosis. Genes (Basel) 2021; 12:genes12020200. [PMID: 33572979 PMCID: PMC7910965 DOI: 10.3390/genes12020200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022] Open
Abstract
Receptor activator of the nuclear factor-κB ligand (RANKL) and osteoprotegerin genes (OPG) were identified as susceptible loci for postmenopausal osteoporosis (PMO) in various ethnicities, but neither have been studied in an Arabian population. Hence, the current study aimed to fill this gap. A total of 372 postmenopausal women (174 osteoporosis (OP) and 198 control group (CTRs)) were genotyped for four SNPs: rs2277438A/G and rs9533156T/C (RANKL), and rs2073618C/G and rs3102735T/C (OPG). Anthropometrics, bone mineral density, 25(OH)D and several other bone markers were measured. The frequency distribution of the heterozygous CG genotype of rs2073618 (OPG) was lower in the OP (36.8%) than in CTRs (47%) (OR: 0.6, 95% CI: 0.3–0.97; p = 0.041). No differences in the allelic/genotypic frequencies were detected between the two groups for all other studied SNPs. However, the heterozygous TC genotype of rs3102735 (OPG) was associated significantly with lower BMD at the femoral neck in OP subjects (p = 0.04). The homozygous rare CC genotype of rs9533156 (RANKL) was associated with lower 25(OH)D levels in CTRs (p = 0.032). In contrast, heterozygous AG genotype of rs2277438 (RANKL) is associated with lower 25(OH)D in the OP group (p = 0.02). Our results suggest that RANKL SNPs may impact 25(OH)D levels and that OPG SNP rs2073618A/G is a significant genetic risk factor for PMO Saudi Arabian women.
Collapse
Affiliation(s)
- Saba Abdi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
| | - Rawan A. Binbaz
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
| | - Abdul Khader Mohammed
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah 27272, UAE;
| | - Mohammed G.A. Ansari
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah 27272, UAE;
| | - Kaiser Wani
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
| | - Osama E. Amer
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
| | - Abdullah M. Alnaami
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
| | - Naji Aljohani
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
- Obesity, Endocrine and Metabolic Center, King Fahad Medical City, Riyadh 59046, Saudi Arabia
| | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (R.A.B.); (A.K.M.); (K.W.); (O.E.A.); (A.M.A.); (N.A.)
- Correspondence: ; Tel.: +966-1-4675939
| |
Collapse
|
62
|
Yang N, Liu Y. The Role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci 2021; 18:3697-3707. [PMID: 34790042 PMCID: PMC8579305 DOI: 10.7150/ijms.61080] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bone is an active tissue, being constantly renewed in healthy individuals with participation of the immune system to a large extent. Any imbalance between the processes of bone formation and bone resorption is linked to various inflammatory bone diseases. The immune system plays an important role in tissue formation and bone resorption. Recently, many studies have demonstrated complex interactions between the immune and skeletal systems. Both of immune cells and cytokines contribute to the regulation of bone homeostasis, and bone cells, including osteoblasts, osteoclasts, osteocytes, also influence the cellular functions of immune cells. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Therefore, the immune microenvironment is crucial in determining the speed and outcome of bone healing, repair, and regeneration. In this review, we summarise the role of the immune microenvironment in bone regeneration from the aspects of immune cells and immune cytokines. The elucidation of immune mechanisms involved in the process of bone regeneration would provide new therapeutic targets for improving the curative effects of bone injury treatment.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
63
|
George CN, Canuas-Landero V, Theodoulou E, Muthana M, Wilson C, Ottewell P. Oestrogen and zoledronic acid driven changes to the bone and immune environments: Potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions. J Bone Oncol 2020; 25:100317. [PMID: 32995253 PMCID: PMC7516134 DOI: 10.1016/j.jbo.2020.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Late stage breast cancer commonly metastasises to bone and patient survival averages 2-3 years following diagnosis of bone involvement. One of the most successful treatments for bone metastases is the bisphosphonate, zoledronic acid (ZOL). ZOL has been used in the advanced setting for many years where it has been shown to reduce skeletal complications associated with bone metastasis. More recently, several large adjuvant clinical trials have demonstrated that administration of ZOL can prevent recurrence and improve survival when given in early breast cancer. However, these promising effects were only observed in post-menopausal women with confirmed low concentrations of circulating ovarian hormones. In this review we focus on potential interactions between the ovarian hormone, oestrogen, and ZOL to establish credible hypotheses that could explain why anti-tumour effects are specific to post-menopausal women. Specifically, we discuss the molecular and immune cell driven mechanisms by which ZOL and oestrogen affect the tumour microenvironment to inhibit/induce tumour growth and how oestrogen can interact with zoledronic acid to inhibit its anti-tumour actions.
Collapse
Affiliation(s)
- Christopher N. George
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Victor Canuas-Landero
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Elizavet Theodoulou
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Caroline Wilson
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| |
Collapse
|
64
|
Hollenberg AM, Smith CO, Shum LC, Awad H, Eliseev RA. Lactate Dehydrogenase Inhibition With Oxamate Exerts Bone Anabolic Effect. J Bone Miner Res 2020; 35:2432-2443. [PMID: 32729639 PMCID: PMC7736558 DOI: 10.1002/jbmr.4142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022]
Abstract
Cellular bioenergetics is a promising new therapeutic target in aging, cancer, and diabetes because these pathologies are characterized by a shift from oxidative to glycolytic metabolism. We have previously reported such glycolytic shift in aged bone as a major contributor to bone loss in mice. We and others also showed the importance of oxidative phosphorylation (OxPhos) for osteoblast differentiation. It is therefore reasonable to propose that stimulation of OxPhos will have bone anabolic effect. One strategy widely used in cancer research to stimulate OxPhos is inhibition of glycolysis. In this work, we aimed to evaluate the safety and efficacy of pharmacological inhibition of glycolysis to stimulate OxPhos and promote osteoblast bone-forming function and bone anabolism. We tested a range of glycolytic inhibitors including 2-deoxyglucose, dichloroacetate, 3-bromopyruvate, and oxamate. Of all the studied inhibitors, only a lactate dehydrogenase (LDH) inhibitor, oxamate, did not show any toxicity in either undifferentiated osteoprogenitors or osteoinduced cells in vitro. Oxamate stimulated both OxPhos and osteoblast differentiation in osteoprogenitors. In vivo, oxamate improved bone mineral density, cortical bone architecture, and bone biomechanical strength in both young and aged C57BL/6J male mice. Oxamate also increased bone formation by osteoblasts without affecting bone resorption. In sum, our work provided a proof of concept for the use of anti-glycolytic strategies in bone and identified a small molecule LDH inhibitor, oxamate, as a safe and efficient bone anabolic agent. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alex M. Hollenberg
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Charles O. Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Laura C. Shum
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Hani Awad
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| |
Collapse
|
65
|
Bitenc-Jasiejko A, Konior K, Gonta K, Dulęba M, Lietz-Kijak D. Prophylaxis of Pain and Fractures within Feet in the Course of Osteoporosis: The Issue of Diagnosing. Pain Res Manag 2020; 2020:1391026. [PMID: 33312316 PMCID: PMC7719525 DOI: 10.1155/2020/1391026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Background Considering the enormous risk of fractures in the course of osteoporosis in the area of the feet, an important aspect of prophylaxis is periodic and, in special cases, ongoing monitoring of defects and deformations as well as pressure distribution. The purpose of this article is to indicate the role of the examination of posture and pressure distribution during standing, postural balance, and gait, in the prevention of fatigue fractures in the course of osteoporosis, based on the literature review and examples of patients. Methods The manuscript consists of two parts; it has a review-analytical character. The first part reviews the literature. The data were obtained using the MEDLINE (PubMed), as well as Cochrane and Embase databases. The database review was carried out focusing mainly on English-language publications, while taking into account the topicality of scientific and research works in the area of osteoporosis. The problem of multiaspects in the area of bone density was pointed out. Considering the above, in the second part, the authors analyzed 11 exemplary patients with osteoporosis, referring to the assessment of foot and lower limb defects using traditional posturological methods and including pedobarography to diagnostic procedures that are used in the assessment of pressure distribution, standing and moving, and an attempt to balance. Results Analysis of the research and scientific literature proved the lack of unambiguous diagnostic procedures of the locomotor system recommended for the prevention of fatigue fractures in the course of osteoporosis. The main diagnostic recommendations are imaging tests (most often X-ray), which are recommended in the case of specific clinical symptoms. The analysis of exemplary patients with osteoporosis showed numerous disorders in the distribution of pressure in the plantar part of the feet, which are related, among other things, with their individual defects and lower limbs. Conclusions Detailed posture diagnostics and gait estimation, along with the analysis of pressure distribution within the feet are a very important aspect of the prevention of structural degradation and fatigue fractures within the feet. An important postulate for further research and scientific work is the elaboration of the procedures that will serve the preventive diagnostics of the locomotor system, aimed at early detection of threats of fatigue fractures.
Collapse
Affiliation(s)
- Aleksandra Bitenc-Jasiejko
- Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krzysztof Konior
- Doctoral Study Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Medical Center in Nowogard, Szczecin, Poland
| | - Kinga Gonta
- College of Physiotherapy in Wroclaw, Ortogenic Rehabilitation and Podology Center in Wroclaw, Wroclaw, Poland
| | - Magdalena Dulęba
- College of Physiotherapy in Wroclaw, Ortogenic Rehabilitation and Podology Center in Wroclaw, Wroclaw, Poland
| | - Danuta Lietz-Kijak
- Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
66
|
Bär I, Ast V, Meyer D, König R, Rauner M, Hofbauer LC, Müller JP. Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks. Cells 2020; 9:cells9112443. [PMID: 33182501 PMCID: PMC7697865 DOI: 10.3390/cells9112443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a haematopoietic malignancy caused by a combination of genetic and epigenetic lesions. Activation of the oncoprotein FLT3 ITD (Fms-like tyrosine kinase with internal tandem duplications) represents a key driver mutation in 25–30% of AML patients. FLT3 is a class III receptor tyrosine kinase, which plays a role in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Mutant FLT3 ITD results in an altered signalling quality, which causes cell transformation. Recent evidence indicates an effect of FLT3 ITD on bone homeostasis in addition to haematological aberrations. Using gene expression data repositories of FLT3 ITD-positive AML patients, we identified activated cytokine networks that affect the formation of the haematopoietic niche by controlling osteoclastogenesis and osteoblast functions. In addition, aberrant oncogenic FLT3 signalling of osteogenesis-specific cytokines affects survival of AML patients and may be used for prognosis. Thus, these data highlight the intimate crosstalk between leukaemic and osteogenic cells within the osteohaematopoietic niche.
Collapse
Affiliation(s)
- Isabel Bär
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
| | - Volker Ast
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany;
| | - Daria Meyer
- Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; (D.M.); (R.K.)
| | - Rainer König
- Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; (D.M.); (R.K.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), 07745 Jena, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany;
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany;
- Correspondence: (L.C.H.); (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.)
| | - Jörg P. Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
- Correspondence: (L.C.H.); (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.)
| |
Collapse
|
67
|
Abstract
MicroRNAs (miRNAs) represent RNA species found in serum. Many miRNAs were observed that were related to osteoporosis and osteopenia. However, expression and function analysis of miRNAs in postmenopausal osteoporosis (PMOP) remain unaddressed. We first compared the miRNA expression of blood samples in postmenopausal women with osteopenia or with osteoporosis via analysis of GSE64433. Bioinformatics analyses were conducted to get the key miRNAs and their functions and pathways. 331 miRNAs were being identified as differentially expressed miRNAs. Among these, 122 miRNA (36.86%) were up-regulated, and the remaining 209 miRNAs (63.14%) were down-regulated. 105 genes were predicted as the targets of these miRNAs. GO enrichment analysis results showed that the miRNAs mainly enriched in DNA binding, ATP binding, gene expression, regulation of the apoptotic process, chromatin binding, and protein kinase binding. KEGG enrichment analysis results demonstrated that the miRNAs mainly enriched in the TGF beta signaling pathway, wnt signaling pathway, JAK-STAT signaling pathway, and androgen receptor signaling pathway. This study identified the abundant differentially expressed miRNAs in the blood samples of postmenopausal women with osteopenia or with osteoporosis. This study may contribute to getting new diagnostic and therapeutic strategies for PMOP.
Collapse
Affiliation(s)
- Yulin Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
68
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
69
|
Abstract
Osteoclasts are the principal mediators of bone resorption. They form through the fusion of mononuclear precursor cells under the principal influence of the cytokines macrophage colony stimulating factor (M-CSF, aka CSF-1) and receptor activator of NF-κB ligand (RANKL, aka TNFSF11). Sexual dimorphism in the development of the skeleton and in the incidence of skeletal diseases is well described. In general, females, at any given age, have a lower bone mass than males. The reasons for the differences in the bone mass of the skeleton between women and men at various ages, and the incidence of certain metabolic bone diseases, are multitude, and include the actions of sex steroids, genetics, age, environment and behavior. All of these influence the rate that osteoclasts form, resorb and die, and frequently produce different effects in females and males. Hence, a variety of factors are responsible for the sexual dimorphism of the skeleton and the activity of osteoclasts in bone. This review will provide an overview of what is currently known about these factors and their effects on osteoclasts.
Collapse
|
70
|
Dell'Aquila E, Armento G, Iuliani M, Simonetti S, D'Onofrio L, Zeppola T, Madaudo C, Russano M, Citarella F, Ribelli G, Pantano F, Vincenzi B, Tonini G, Santini D. Denosumab for cancer-related bone loss. Expert Opin Biol Ther 2020; 20:1261-1274. [PMID: 32835531 DOI: 10.1080/14712598.2020.1814731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Prolonged use of anti-cancer treatments in breast and prostate tumors alters physiological bone turnover leading to adverse skeletal related events, such as osteoporosis, loss of bone mass, and increased risk of fractures. These complications known as cancer treatment-induced bone loss (CTIBL) should be managed with bone targeting agents such as the bisphosphonates and denosumab. The latter is a monoclonal antibody against the receptor activator of nuclear factor-kB ligand (RANKL) that suppresses osteoclasts function and survival increasing bone mass. AREAS COVERED This review will focus on the mechanisms associated with bone loss induced by cancer treatments and the most recent evidence about the use of denosumab as preventive and therapeutic strategy to protect bone health. Moreover, we will discuss several key aspects regarding the clinical practical use of denosumab to optimize the management of CTLIB in breast and prostate cancer. EXPERT OPINION Denosumab treatment strongly prevents cancer therapies-related skeletal issues in breast and prostate cancer with a good safety profile. Adjuvant six-monthly denosumab delays the time to first fracture onset in early stage breast cancer patients with normal or altered bone mineral density (BMD). Similarly, denosumab treatment is able to prevent fractures and BMD loss in nonmetastatic prostate cancer patients.
Collapse
Affiliation(s)
| | - Grazia Armento
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Michele Iuliani
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Sonia Simonetti
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Loretta D'Onofrio
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Tea Zeppola
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Cristina Madaudo
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Marco Russano
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Fabrizio Citarella
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Giulia Ribelli
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Bruno Vincenzi
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Giuseppe Tonini
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| | - Daniele Santini
- Medical Oncology Department, Campus Bio-Medico University of Rome , Rome, Itlay
| |
Collapse
|
71
|
Dole NS, Yee CS, Mazur CM, Acevedo C, Alliston T. TGFβ Regulation of Perilacunar/Canalicular Remodeling Is Sexually Dimorphic. J Bone Miner Res 2020; 35:1549-1561. [PMID: 32282961 PMCID: PMC9126317 DOI: 10.1002/jbmr.4023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Bone fragility is the product of defects in bone mass and bone quality, both of which show sex-specific differences. Despite this, the cellular and molecular mechanisms underpinning the sexually dimorphic control of bone quality remain unclear, limiting our ability to effectively prevent fractures, especially in postmenopausal osteoporosis. Recently, using male mice, we found that systemic or osteocyte-intrinsic inhibition of TGFβ signaling, achieved using the 9.6-kb DMP1 promoter-driven Cre recombinase (TβRIIocy-/- mice), suppresses osteocyte perilacunar/canalicular remodeling (PLR) and compromises bone quality. Because systemic TGFβ inhibition more robustly increases bone mass in female than male mice, we postulated that sex-specific differences in bone quality could likewise result, in part, from dimorphic regulation of PLR by TGFβ. Moreover, because lactation induces PLR, we examined the effect of TGFβ inhibition on the female skeleton during lactation. In contrast to males, female mice that possess an osteocyte-intrinsic defect in TGFβ signaling were protected from TGFβ-dependent defects in PLR and bone quality. The expression of requisite PLR enzymes, the lacunocanalicular network (LCN), and the flexural strength of female TβRIIocy-/- bone was intact. With lactation, however, bone loss and induction in PLR and osteocytic parathyroid hormone type I receptor (PTHR1) expression, were suppressed in TβRIIocy-/- bone, relative to the control littermates. Indeed, differential control of PTHR1 expression, by TGFβ and other factors, may contribute to dimorphism in PLR regulation in male and female TβRIIocy-/- mice. These findings provide key insights into the sex-based differences in osteocyte PLR that underlie bone quality and highlight TGFβ signaling as a crucial regulator of lactation-induced PLR. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Cristal S Yee
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA.,University of California (UC) Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
72
|
Oliveira MC, Pieters BCH, Guimarães PB, Duffles LF, Heredia JE, Silveira ALM, Oliveira ACC, Teixeira MM, Ferreira AVM, Silva TA, van de Loo FAJ, Macari S. Bovine Milk Extracellular Vesicles Are Osteoprotective by Increasing Osteocyte Numbers and Targeting RANKL/OPG System in Experimental Models of Bone Loss. Front Bioeng Biotechnol 2020; 8:891. [PMID: 32850743 PMCID: PMC7411003 DOI: 10.3389/fbioe.2020.00891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Studying effects of milk components on bone may have a clinical impact as milk is highly associated with bone maintenance, and clinical studies provided controversial associations with dairy consumption. We aimed to evaluate the impact of milk extracellular vesicles (mEVs) on the dynamics of bone loss in mice. MEVs are nanoparticles containing proteins, mRNA and microRNA, and were supplemented into the drinking water of mice, either receiving diet-induced obesity or ovariectomy (OVX). Mice receiving mEVs were protected from the bone loss caused by diet-induced obesity. In a more severe model of bone loss, OVX, higher osteoclast numbers in the femur were found, which were lowered by mEV treatment. Additionally, the osteoclastogenic potential of bone marrow-derived precursor cells was lowered in mEV-treated mice. The reduced stiffness in the femur of OVX mice was consequently reversed by mEV treatment, accompanied by improvement in the bone microarchitecture. In general, the RANKL/OPG ratio increased systemically and locally in both models and was rescued by mEV treatment. The number of osteocytes, as primary regulators of the RANKL/OPG system, raised in the femur of the OVX mEVs-treated group compared to OVX non-treated mice. Also, the osteocyte cell line treated with mEVs demonstrated a lowered RANKL/OPG ratio. Thus, mEVs showed systemic and local osteoprotective properties in two mouse models of bone loss reflected in reduced osteoclast presence. Data reveal mEV potential in bone modulation, acting via osteocyte enhancement and RANKL/OPG regulation. We suggest that mEVs could be a therapeutic candidate for the treatment of bone loss.
Collapse
Affiliation(s)
- Marina C Oliveira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bartijn C H Pieters
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Polianna B Guimarães
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Letícia F Duffles
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joyce E Heredia
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana L M Silveira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda C C Oliveira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene V M Ferreira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcilia A Silva
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Soraia Macari
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
73
|
Kim HN, Ponte F, Nookaew I, Ucer Ozgurel S, Marques-Carvalho A, Iyer S, Warren A, Aykin-Burns N, Krager K, Sardao VA, Han L, de Cabo R, Zhao H, Jilka RL, Manolagas SC, Almeida M. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors. Sci Rep 2020; 10:11933. [PMID: 32686739 PMCID: PMC7371870 DOI: 10.1038/s41598-020-68890-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Loss of estrogens at menopause is a major cause of osteoporosis and increased fracture risk. Estrogens protect against bone loss by decreasing osteoclast number through direct actions on cells of the myeloid lineage. Here, we investigated the molecular mechanism of this effect. We report that 17β-estradiol (E2) decreased osteoclast number by promoting the apoptosis of early osteoclast progenitors, but not mature osteoclasts. This effect was abrogated in cells lacking Bak/Bax-two pro-apoptotic members of the Bcl-2 family of proteins required for mitochondrial apoptotic death. FasL has been previously implicated in the pro-apoptotic actions of E2. However, we show herein that FasL-deficient mice lose bone mass following ovariectomy indistinguishably from FasL-intact controls, indicating that FasL is not a major contributor to the anti-osteoclastogenic actions of estrogens. Instead, using microarray analysis we have elucidated that ERα-mediated estrogen signaling in osteoclast progenitors decreases "oxidative phosphorylation" and the expression of mitochondria complex I genes. Additionally, E2 decreased the activity of complex I and oxygen consumption rate. Similar to E2, the complex I inhibitor Rotenone decreased osteoclastogenesis by promoting osteoclast progenitor apoptosis via Bak/Bax. These findings demonstrate that estrogens decrease osteoclast number by attenuating respiration, and thereby, promoting mitochondrial apoptotic death of early osteoclast progenitors.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Filipa Ponte
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Serra Ucer Ozgurel
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Adriana Marques-Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Srividhya Iyer
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Aaron Warren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Vilma A Sardao
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, NIA, NIH, Baltimore, MD, USA
| | - Haibo Zhao
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, USA.,Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St. #587, Little Rock, 72205-7199, USA. .,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, USA. .,Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| |
Collapse
|
74
|
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D, Aurora R. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res 2020; 35:1174-1187. [PMID: 31995253 PMCID: PMC8061311 DOI: 10.1002/jbmr.3966] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The loss of estrogen (E2 ) initiates a rapid phase of bone loss leading to osteoporosis in one-half of postmenopausal women, but the mechanism is not fully understood. Here, we show for the first time how loss of E2 activates low-grade inflammation to promote the acute phase of bone catabolic activity in ovariectomized (OVX) mice. E2 regulates the abundance of dendritic cells (DCs) that express IL-7 and IL-15 by inducing the Fas ligand (FasL) and apoptosis of the DC. In the absence of E2 , DCs become long-lived, leading to increased IL-7 and IL-15. We find that IL-7 and IL-15 together, but not alone, induced antigen-independent production of IL-17A and TNFα in a subset of memory T cells (TMEM ). OVX of mice with T-cell-specific ablation of IL15RA showed no IL-17A and TNFα expression, and no increase in bone resorption or bone loss, confirming the role of IL-15 in activating the TMEM and the need for inflammation. Our results provide a new mechanism by which E2 regulates the immune system, and how menopause leads to osteoporosis. The low-grade inflammation is likely to cause or contribute to other comorbidities observed postmenopause. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ariel Axelbaum
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena Shashkova
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mousumi Chakraborty
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Prabhjyot Panesar
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Macey Peterson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Angel Baldan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
75
|
Periostin Mediates Oestrogen-Induced Osteogenic Differentiation of Bone Marrow Stromal Cells in Ovariectomised Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9405909. [PMID: 32420385 PMCID: PMC7210524 DOI: 10.1155/2020/9405909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a metabolic disease that results in the progressive loss of bone mass, which, in postmenopausal women, is related to oestrogen deficiency. Periostin (POSTN) plays a key role in the early stages of bone formation. However, whether POSTN participates in oestradiol regulation of osteogenic differentiation of bone marrow stromal cells (BMSCs) from ovariectomised (OVX) rats remains unclear. In vivo, using microcomputed tomography (micro-CT), immunohistochemistry, and dynamic analysis of femurs, we found that 17β-E2 promotes bone formation and POSTN expression at the endosteal surface. In vitro, 17β-E2 upregulated POSTN expression in OVX-BMSCs. POSTN overexpression activated the Wnt/β-catenin signalling pathway and enhanced osteogenic differentiation of OVX-BMSCs. Furthermore, knockdown of Postn blocks the involvement of 17β-E2 in the osteogenic differentiation of OVX-BMSCs. Collectively, our study indicated the role of POSTN in the osteogenesis and stemness of OVX-BMSCs and proves that 17β-E2 reduces osteoporosis and promotes osteogenesis through the POSTN-Wnt/β-catenin pathway. POSTN could, therefore, be a novel target gene for anti-osteoporosis therapies.
Collapse
|
76
|
Wang T, He H, Liu S, Jia C, Fan Z, Zhong C, Yu J, Liu H, He C. Autophagy: A Promising Target for Age-related Osteoporosis. Curr Drug Targets 2020; 20:354-365. [PMID: 29943700 DOI: 10.2174/1389450119666180626120852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is a process the primary role of which is to clear up damaged cellular components such as long-lived proteins and organelles, thus participating in the conservation of different cells. Osteoporosis associated with aging is characterized by consistent changes in bone metabolism with suppression of bone formation as well as increased bone resorption. In advanced age, not only bone mass but also bone strength decrease in both sexes, resulting in an increased incidence of fractures. Clinical and animal experiments reveal that age-related bone loss is associated with many factors such as accumulation of autophagy, increased levels of reactive oxygen species, sex hormone deficiency, and high levels of endogenous glucocorticoids. Available basic and clinical studies indicate that age-associated factors can regulate autophagy. Those factors play important roles in bone remodeling and contribute to decreased bone mass and bone strength with aging. In this review, we summarize the mechanisms involved in bone metabolism related to aging and autophagy, supplying a theory for therapeutic targets to rescue bone mass and bone strength in older people.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongchen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shaxin Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyan Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Can Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiadan Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Honghong Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Macías I, Alcorta-Sevillano N, Rodríguez CI, Infante A. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21051653. [PMID: 32121265 PMCID: PMC7084428 DOI: 10.3390/ijms21051653] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis, the most common chronic metabolic bone disease, is characterized by low bone mass and increased bone fragility. Nowadays more than 200 million individuals are suffering from osteoporosis and still the number of affected people is dramatically increasing due to an aging population and longer life, representing a major public health problem. Current osteoporosis treatments are mainly designed to decrease bone resorption, presenting serious adverse effects that limit their safety for long-term use. Numerous studies with mesenchymal stem cells (MSCs) have helped to increase the knowledge regarding the mechanisms that underlie the progression of osteoporosis. Emerging clinical and molecular evidence suggests that inflammation exerts a significant influence on bone turnover, thereby on osteoporosis. In this regard, MSCs have proven to possess broad immunoregulatory capabilities, modulating both adaptive and innate immunity. Here, we will discuss the role that MSCs play in the etiopathology of osteoporosis and their potential use for the treatment of this disease.
Collapse
|
78
|
Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition 2020; 70:110486. [DOI: 10.1016/j.nut.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
|
79
|
Sullivan LK, Livingston EW, Lau AG, Rao-Dayton S, Bateman TA. A Mouse Model for Skeletal Structure and Function Changes Caused by Radiation Therapy and Estrogen Deficiency. Calcif Tissue Int 2020; 106:180-193. [PMID: 31583426 DOI: 10.1007/s00223-019-00617-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Abstract
Radiation therapy and estrogen deficiency can damage healthy bone and lead to an increased fracture risk. The goal of this study is to develop a mouse model for radiation therapy using a fractionated biologically equivalent dose for cervical cancer treatment in both pre- and postmenopausal women. Thirty-two female C57BL/6 mice 13 weeks of age were divided into four groups: Sham + non-irradiated (SHAM + NR), Sham + irradiated (SHAM + IRR), ovariectomy + non-irradiated (OVX + NR) and ovariectomy + irradiated (OVX + IRR). The irradiated mice received a 6 Gy dose of X-rays to the hindlimbs at Day 2, Day 4 and Day 7 (18 Gy total). Tissues were collected at Day 35. DEXA, microCT analysis and FEA were used to quantify structural and functional changes at the proximal tibia, midshaft femur, proximal femur and L1 vertebra. There was a significant (p < 0.05) decline in proximal tibia trabecular BV/TV from (1) IRR compared to NR mice within Sham (- 46%) and OVX (- 41%); (2) OVX versus Sham within NR mice (- 36%) and IRR mice (- 30%). With homogenous material properties applied to the proximal tibia mesh using FEA, there was (1) an increase in whole bone (trabecular + cortical) structural stiffness from IRR compared to NR mice within Sham (+ 10%) and OVX (+ 15%); (2) a decrease in stiffness from OVX versus Sham within NR mice (- 18%) and IRR mice (- 14%). Fractionated irradiation and ovariectomy both had a negative effect on skeletal microarchitecture. Ovariectomy had a systemic effect, while skeletal radiation damage was largely specific to trabecular bone within the X-ray field.
Collapse
Affiliation(s)
- Lindsay K Sullivan
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA.
| | - Eric W Livingston
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
| | - Anthony G Lau
- Department of Biomedical Engineering, The College of New Jersey, Ewing, USA
| | - Sheila Rao-Dayton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
80
|
Russo V, Chen R, Armamento-Villareal R. Hypogonadism, Type-2 Diabetes Mellitus, and Bone Health: A Narrative Review. Front Endocrinol (Lausanne) 2020; 11:607240. [PMID: 33537005 PMCID: PMC7848021 DOI: 10.3389/fendo.2020.607240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
One of the complications from chronic hyperglycemia and insulin resistance due to type 2 diabetes mellitus (T2DM) on the hypothalamic-pituitary-gonadal axis in men is the high prevalence of hypogonadotropic hypogonadism (HH). Both T2DM and hypogonadism are associated with impaired bone health and increased fracture risk but whether the combination results in even worse bone disease than either one alone is not well-studied. It is possible that having both conditions predisposes men to an even greater risk for fracture than either one alone. Given the common occurrence of HH or hypogonadism in general in T2DM, a significant number of men could be at risk. To date, there is very little information on the bone health men with both hypogonadism and T2DM. Insulin resistance, which is the primary defect in T2DM, is associated with low testosterone (T) levels in men and may play a role in the bidirectional relationship between these two conditions, which together may portend a worse outcome for bone. The present manuscript aims to review the available evidences on the effect of the combination of hypogonadism and T2DM on bone health and metabolic profile, highlights the possible metabolic role of the skeleton, and examines the pathways involved in the interplay between bone, insulin resistance, and gonadal steroids.
Collapse
Affiliation(s)
- Vittoria Russo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rui Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
81
|
Mohamad NV, Ima-Nirwana S, Chin KY. Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocr Metab Immune Disord Drug Targets 2020; 20:1478-1487. [PMID: 32496996 PMCID: PMC8383467 DOI: 10.2174/1871530320666200604160614] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Osteoporosis is one of the major health issues associated with menopause-related estrogen deficiency. Various reports suggest that the hormonal changes related to menopausal transition may lead to the derangement of redox homeostasis and ultimately oxidative stress. Estrogen deficiency and oxidative stress may enhance the expression of genes involved in inflammation. All these factors may contribute, in synergy, to the development of postmenopausal osteoporosis. Previous studies suggest that estrogen may act as an antioxidant to protect the bone against oxidative stress, and as an antiinflammatory agent in suppressing pro-inflammatory and pro-osteoclastic cytokines. Thus, the focus of the current review is to examine the relationship between estrogen deficiency, oxidative stress and inflammation, and the impacts of these phenomena on skeletal health in postmenopausal women.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
82
|
Indriasari V, Suparwitri S, Christnawati C, Alhasyimi AA. Different effects of soybean isoflavone genistein on transforming growth factor levels during orthodontic tooth movement among young and old rabbits. F1000Res 2019; 8:2074. [PMID: 32566133 PMCID: PMC7295133 DOI: 10.12688/f1000research.21211.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Orthodontic treatment to improve aesthetics and for health reasons is performed in children and adults. Elderly individuals have low levels of estrogen, this results in alveolar bone resorption being greater than alveolar bone apposition. Isoflavones present in soybeans may be able to improve the remodeling process through the induction of osteoblastogenesis by increasing transforming growth factor-β1 (TGF-β1) levels. This study aimed to assess the comparative effect of soybean genistein isoflavone to TGF-β1 during orthodontic tooth movement among juvenile and adult rabbits. Methods: In this study, 12 healthy female rabbits were used. Subjects were divided into four groups (n=3); YG group (young rabbits), YGI group (young rabbits + isoflavones genistein), OG group (old rabbits), and OGI group (old rabbits + isoflavones genistein). Two lower incisors of the rabbit were moved distally using an orthodontic force (50 grams force) delivered by an open coil spring, which was inserted between two brackets. During active movements, the genistein isoflavones were given from the initial installation of the device until days 21, at a dose of 1.2 mg/kg BW once a day. Measurement of TGF-β levels were performed on days 1, 7, 14, 21 after appliance installation. TGF-β1 expression was analyzed using enzyme-linked immunosorbent assay (ELISA) and the optical density (OD) of the sample quantifed using a standard curve. The data obtained were analyzed using one-way Anova followed by Tukey HSD test. Results: The TGF-β1 levels were found to highest in the YGI group, and the TGF-β levels were significantly lower in the OG group ( p<0.05). ELISA analysis also revealed that TGF-β1 levels of the OGI group were significantly higher when compared with the OG group ( p<0.05). Conclusion: The administration of soybean genistein isoflavones could improve TGF-β1 levels in old rabbit's during active orthodontic tooth movement.
Collapse
Affiliation(s)
- Verastuti Indriasari
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| | - Sri Suparwitri
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| | - Christnawati Christnawati
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| |
Collapse
|
83
|
Indriasari V, Suparwitri S, Christnawati C, Alhasyimi AA. Different effects of soybean isoflavone genistein on transforming growth factor levels during orthodontic tooth movement among young and old rabbits. F1000Res 2019; 8:2074. [PMID: 32566133 PMCID: PMC7295133 DOI: 10.12688/f1000research.21211.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 12/17/2023] Open
Abstract
Background: Orthodontic treatment to improve aesthetics and for health reasons is performed in children and adults. Elderly individuals have low levels of estrogen, this results in alveolar bone resorption being greater than alveolar bone apposition. Isoflavones present in soybeans may be able to improve the remodeling process through the induction of osteoblastogenesis by increasing transforming growth factor-β1 (TGF-β1) levels. This study aimed to assess the comparative effect of soybean genistein isoflavone to TGF-β1 during orthodontic tooth movement among juvenile and adult rabbits. Methods: In this study, 12 healthy female rabbits were used. Subjects were divided into four groups (n=3); YG group (young rabbits), YGI group (young rabbits + isoflavones genistein), OG group (old rabbits), and OGI group (old rabbits + isoflavones genistein). Two lower incisors of the rabbit were moved distally using an orthodontic force (50 grams force) delivered by an open coil spring, which was inserted between two brackets. During active movements, the genistein isoflavones were given from the initial installation of the device until days 21, at a dose of 1.2 mg/kg BW once a day. Measurement of TGF-β levels were performed on days 1, 7, 14, 21 after appliance installation. TGF-β1 expression was analyzed using enzyme-linked immunosorbent assay (ELISA) and the optical density (OD) of the sample quantifed using a standard curve. The data obtained were analyzed using one-way Anova followed by Tukey HSD test. Results: The TGF-β1 levels were found to highest in the YGI group, and the TGF-β levels were significantly lower in the OG group ( p<0.05). ELISA analysis also revealed that TGF-β1 levels of the OGI group were significantly higher when compared with the OG group ( p<0.05). Conclusion: The administration of soybean genistein isoflavones could improve TGF-β1 levels in old rabbit's during active orthodontic tooth movement.
Collapse
Affiliation(s)
- Verastuti Indriasari
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| | - Sri Suparwitri
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| | - Christnawati Christnawati
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta, 55281, Indonesia
| |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW The goal of the review is to assess the appropriateness of menopausal hormone therapy (MHT) for the primary prevention of bone loss in women at elevated risk in the early years after menopause. RECENT FINDINGS Estrogen alone or combined with progestin to protect the uterus from cancer significantly reduces the risk of osteoporosis-related fractures. MHT increases type 1 collagen production and osteoblast survival and maintains the equilibrium between bone resorption and bone formation by modulating osteoblast/osteocyte and T cell regulation of osteoclasts. Estrogens have positive effects on muscle and cartilage. Estrogen, but not antiresorptive therapies, can attenuate the inflammatory bone-microenvironment associated with estrogen deficiency. However, already on second year of administration, MHT is associated with excess breast cancer risk, increasing steadily with duration of use. MHT should be considered in women with premature estrogen deficiency and increased risk of bone loss and osteoporotic fractures. However, MHT use for the prevention of bone loss is hindered by increase in breast cancer risk even in women younger than 60 years old or who are within 10 years of menopause onset.
Collapse
Affiliation(s)
- Jan J Stepan
- Institute of Rheumatology, Prague, Czech Republic.
| | - Hana Hruskova
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Prague, Czech Republic
- Charles University, Prague, Czech Republic
- General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
- Institute of Experimental Medicine of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| |
Collapse
|
85
|
Katao Y, Sawai H, Inami K, Domae N, Matsumoto N. Direct effects of estrogen on differentiation and apoptosis of osteoclasts. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2010.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuko Katao
- Graduate School of Dentistry, Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Hirofumi Sawai
- Department of Internal Medicine, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Kaoru Inami
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Naochika Domae
- Department of Internal Medicine, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
86
|
Allison H, McNamara LM. Inhibition of osteoclastogenesis by mechanically stimulated osteoblasts is attenuated during estrogen deficiency. Am J Physiol Cell Physiol 2019; 317:C969-C982. [DOI: 10.1152/ajpcell.00168.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoporotic bone loss and fracture have long been regarded to arise upon depletion of circulating estrogen, which increases osteoclastogenesis and bone resorption. Osteoblasts from human osteoporotic patients also display deficient osteogenic responses to mechanical loading. However, while osteoblasts play an important role in regulating osteoclast differentiation, how this relationship is affected by estrogen deficiency is unknown. This study seeks to determine how mechanically stimulated osteoblasts regulate osteoclast differentiation and matrix degradation under estrogen deficiency. Here, we report that osteoblast-induced osteoclast differentiation (indicated by tartrate-resistant acid phosphatase, cathepsin K, and nuclear factor of activated T cells, cytoplasmic 1) and matrix degradation were inhibited by estrogen treatment and mechanical loading. However, estrogen-deficient osteoblasts exacerbated osteoclast formation and matrix degradation in conditioned medium and coculture experiments. This was accompanied by higher expression of cyclooxygenase-2 and macrophage colony-stimulating factor, but not osteoprotegerin, by osteoblasts under estrogen deficiency. Interestingly, this response was exacerbated under conditions that block the Rho-Rho-associated protein kinase signaling pathway. This study provides an important, but previously unrecognized, insight into bone loss in postmenopausal osteoporosis, whereby estrogen-deficient osteoblasts fail to produce inhibitory osteoprotegerin after mechanical stimulation but upregulate macrophage colony-stimulating factor and cyclooxygenase-2 expression and, thus, leave osteoclast activity unconstrained.
Collapse
Affiliation(s)
- H. Allison
- Mechanobiology and Medical Devices Research Group, Centre for Biomechanics Research, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - L. M. McNamara
- Mechanobiology and Medical Devices Research Group, Centre for Biomechanics Research, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
87
|
Hutami IR, Tanaka E, Izawa T. Crosstalk between Fas and S1P 1 signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:12-19. [PMID: 30733840 PMCID: PMC6354287 DOI: 10.1016/j.jdsr.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) mainly affects various joints of the body, including the temporomandibular joint (TMJ), and it involves an infiltration of autoantibodies and inflammatory leukocytes into articular tissues and the synovium. Initially, the synovial lining tissue becomes engaged with several kinds of infiltrating cells, including osteoclasts, macrophages, lymphocytes, and plasma cells. Eventually, bone degradation occurs. In order to elucidate the best therapy for RA, a comprehensive study of RA pathogenesis needs to be completed. In this article, we discuss a Fas-deficient condition which develops into RA, with an emphasis on the role of sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling which induces the migration of osteoclast precursor cells. We describe that Fas/S1P1 signaling via NF-κB activation in osteoclasts is a key factor in TMJ-RA severity and we discuss a strategy for blocking nuclear translocation of the p50 NF-κB subunit as a potential therapy for attenuating osteoclastogenesis.
Collapse
Affiliation(s)
| | | | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University, Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| |
Collapse
|
88
|
Soysa NS, Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep 2019; 11:100225. [PMID: 31720316 PMCID: PMC6838739 DOI: 10.1016/j.bonr.2019.100225] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Survival and apoptosis are of major importance in the osteoclast life cycle. As osteoclasts have short lifespan, any alteration that prolongs their viability may cause enhanced osteoclast activity. Hence, the regulation of OC apoptosis has been recognized as a critical factor in bone remodeling. An imbalance in bone remodeling due to increased osteoclast activity leads to most adult bone diseases such as osteoporosis, rheumatoid arthritis and multiple myeloma. Therefore, manipulating osteoclast death would be a viable therapeutic approach in ameliorating bone diseases, with accelerated resorption. Over the last few decades we have witnessed the unraveling of many of the intracellular mechanisms responsible for osteoclast apoptosis. Thus, an understanding of the underlying mechanisms by which osteoclasts undergo programmed cell death and the regulators that modulate that activity will undoubtedly provide an insight into the development of pharmacological agents to treat such pathological bone diseases.
Collapse
Affiliation(s)
- Niroshani Surangika Soysa
- Division of Pharmacology, Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
| |
Collapse
|
89
|
Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol 2019; 193:105400. [PMID: 31175968 DOI: 10.1016/j.jsbmb.2019.105400] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/25/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
Decreased bone mass and an increased risk of bone fractures become more common with age. This condition is often associated with osteoporosis and is caused by an imbalance of bone resorption and new bone formation. Lifestyle factors that affect the risk of osteoporosis include alcohol, diet, hormones, physical activity, and smoking. Calcium and vitamin D are particularly important for the age-related loss of bone density and skeletal muscle mass, but other minerals, such as magnesium, also have an important role. Here, we summarize how optimal magnesium and vitamin D balance improve health outcomes in the elderly, the role of magnesium and vitamin D on bone formation, and the implications of widespread deficiency of these factors in the United States and worldwide, particularly in the elderly population.
Collapse
Affiliation(s)
- Sarah Erem
- Department of Pathology, Saba University School of Medicine, Saba, Dutch Caribbean, Netherlands
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed S Razzaque
- Department of Pathology, Saba University School of Medicine, Saba, Dutch Caribbean, Netherlands; College of Advancing & Professional Studies (CAPS), University of Massachusetts Boston (UMB), Boston, MA, USA; Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
90
|
Shang N, Wu J. Egg White Ovotransferrin Attenuates RANKL-Induced Osteoclastogenesis and Bone Resorption. Nutrients 2019; 11:nu11092254. [PMID: 31546863 PMCID: PMC6770797 DOI: 10.3390/nu11092254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/13/2023] Open
Abstract
Ovotransferrin, a member of the transferrin family, is the second main protein found in egg white. Ovotransferrin was reported to have antimicrobial, antioxidant, and immunomodulating activities. The aim of this work was to characterize the cellular and molecular functions of egg white ovotransferrin on osteoclasts differentiation and function. Osteoclasts were prepared from mouse macrophage RAW 264.7 cells stimulated with receptor activator of nuclear factor κB ligand (RANKL). Ovotransferrin inhibited osteoclasts differentiation and the calcium–phosphate resorptive ability via the suppression of RANKL-induced nuclear factor κ-light chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Ovotransferrin induced apoptosis of matured osteoclasts, accompanied by increased expression of Bcl-2-like protein 11 (Bim) and Bcl-2-assoicated death promoter (Bad), but decreased expression of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-xl). We established a novel role of egg white ovotransferrin as an inhibitor of osteoclastogenesis, which may be used for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
91
|
Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev 2019; 49:59-69. [PMID: 31543432 DOI: 10.1016/j.cytogfr.2019.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| |
Collapse
|
92
|
Cao HJ, Li CR, Wang LY, Ziadlou R, Grad S, Zhang Y, Cheng Y, Lai YX, Yao XS, Alini M, Qin L, Wang XL. Effect and mechanism of psoralidin on promoting osteogenesis and inhibiting adipogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152860. [PMID: 31048126 DOI: 10.1016/j.phymed.2019.152860] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Psoralidin (PL), a prenylated coumestrol, is isolated from Psoralea corylifolia L. (Fabaceae), which is frequently used for treatment of osteoporosis. PURPOSE This study was designed to investigate the dual effects and potential mechanism of PL on promoting osteogenesis and inhibiting adipogenesis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were used to investigate the effect of PL on stimulating osteogenesis and inhibiting adipogenesis, while preosteoblast MC3T3-E1 cells and preadipocyte 3T3-L1 cells were employed to explore the potential mechanisms. Estradiol (E2) and ICI 182,780 (ICI) were used as the specific agonist and antagonist of classical estrogen receptors (ER), respectively, to interfere with classical ER signaling. Meanwhile, G-1 and G-15 were introduced as the selective agonist and antagonist of G protein coupled receptor 30 (GRP30, a membrane ER) to further clarify if membrane ER involved in PL mediating osteogenesis and adipogenesis RESULTS: PL not only promoted mineralization, but also inhibited adipocytes formation of BMSCs. In terms of osteogenesis, PL enhanced calcium nodule formation, alkaline phosphatase activity and osteocalcin levels in MC3T3-E1 cells. As for adipogenesis, PL decreased adipocyte formation in 3T3-L1 cells through down-regulating several mRNA expressions and protein synthesis of adipogenesis related factors. ICI completely blocked the effect of PL in promoting osteogenesis, but only partially suppressed its effect in inhibition of adipogenesis, while G-15 partially suppressed the effect of PL on promoting mineralization and inhibiting oil drop formation. Furthermore, during suppression of adipocyte differentiation, PL regulated protein kinase B / glycogen synthase kinase 3β / β-catenin signaling pathway. CONCLUSION PL promoted osteogenesis via mediating classical ER pathway, and inhibited adipocytes formation by regulating combined classical and membrane ER pathways. PL might be a potential candidate for the treatment of postmenopausal osteoporosis by modulating the competitive relationship between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Hui-Juan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Cai-Rong Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Lin-Ying Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Reihane Ziadlou
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410008, China
| | - Yu-Xiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xin-Sheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
93
|
Alternations of Metabolic Profiles in Synovial Fluids and the Correlation with T2 Relaxation Times of Cartilage and Meniscus-A Study on Anterior Cruciate Ligament- (ACL-) Injured Rabbit Knees at Early Stage. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8491301. [PMID: 31467914 PMCID: PMC6699263 DOI: 10.1155/2019/8491301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/05/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
Objectives To examine the metabolic profiles alterations of synovial fluids from anterior cruciate ligament- (ACL-) injured rabbit knees at early stage and analyze the correlation with T2 relaxation times of cartilage and meniscus. Methods The right knees of 15 rabbits were selected for the construction of ACL injury models, whereas the contralateral knees served as control group. After 4 weeks, both knees were examined by MRI with quantitative T2 mapping sequence, and the T2 relaxation times of cartilage and meniscus were measured. Then, the synovial fluids were obtained from both knee capsules and performed liquid chromatography-mass spectrometry analysis (LC-MS). Results The T2 relaxation times of cartilage and meniscus in ACL-injured knees were significantly higher than those in control knees (Cartilage: 41.52 ± 2.98 ms vs 36.02 ± 2.71 ms, P < 0.001; Meniscus: 33.35 ± 3.57 ms vs 27.27 ± 2.10 ms, P < 0.001). Twenty-eight differential metabolites were identified based on a total of 1569 detected signatures between ACL-injured knees and control knees. These differential metabolites primarily implied perturbations in the fluxes of lipids and steroid-based compounds. The Linear regression analysis demonstrated satisfactory correlations between glycerophospholipid metabolism and T2 relaxation times of both cartilage and meniscus in ACL-injured knees (R2 = 0.8204 and 0.8197, respectively). Conclusion ACL injury of rabbit knees resulted in elevated T2 relaxation times of cartilage and meniscus and perturbed metabolism of various lipids and steroids in synovial fluids, particularly glycerophospholipids. Glycerophospholipid metabolism related compounds could serve as potential biomarkers for early degenerative changes of cartilage and meniscus after ACL injury.
Collapse
|
94
|
Estrogen signaling impacts temporomandibular joint and periodontal disease pathology. Odontology 2019; 108:153-165. [PMID: 31270648 DOI: 10.1007/s10266-019-00439-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Women experience a higher incidence of oral diseases including periodontal diseases and temporomandibular joint disease (TMD) implicating the role of estrogen signaling in disease pathology. Fluctuating levels of estrogen during childbearing age potentiates facial pain, high estrogen levels during pregnancy promote gingivitis, and low levels of estrogen during menopause predisposes the TMJ to degeneration and increases alveolar bone loss. In this review, an overview of estrogen signaling pathways in vitro and in vivo that regulate pregnancy-related gingivitis, TMJ homeostasis, and alveolar bone remodeling is provided. Deciphering the specific estrogen signaling pathways for individual oral diseases is crucial for potential new drug therapies to promote and maintain healthy tissue.
Collapse
|
95
|
Che Y, Sugita N, Yoshihara A, Iwasaki M, Miyazaki H, Nakamura K, Yoshie H. A polymorphism rs6815464 in the macrophage erythroblast attacher gene is associated with low bone mineral density in postmenopausal Japanese women. Gene 2019; 700:1-6. [DOI: 10.1016/j.gene.2019.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/20/2023]
|
96
|
Wong SK, Mohamad NV, Jayusman PA, Shuid AN, Ima-Nirwana S, Chin KY. The use of selective estrogen receptor modulators on bone health in men. Aging Male 2019; 22:89-101. [PMID: 29508640 DOI: 10.1080/13685538.2018.1448058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.
Collapse
Affiliation(s)
- Sok Kuan Wong
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Nur-Vaizura Mohamad
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Putri Ayu Jayusman
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Ahmad Nazrun Shuid
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Soelaiman Ima-Nirwana
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Kok-Yong Chin
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| |
Collapse
|
97
|
Connexin 43 hemichannels protect bone loss during estrogen deficiency. Bone Res 2019; 7:11. [PMID: 31016065 PMCID: PMC6476886 DOI: 10.1038/s41413-019-0050-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Estrogen deficiency in postmenopausal women is a major cause of bone loss, resulting in osteopenia, osteoporosis, and a high risk for bone fracture. Connexin 43 (Cx43) hemichannels (HCs) in osteocytes play an important role in osteocyte viability, bone formation, and remodeling. We showed here that estrogen deficiency reduced Cx43 expression and HC function. To determine if functional HCs protect osteocytes and bone loss during estrogen deficiency, we adopted an ovariectomy model in wild-type (WT) and two transgenic Cx43 mice: R76W (dominant-negative mutant inhibiting only gap junction channels) and Cx43 Δ130–136 (dominant-negative mutant compromising both gap junction channels and HCs). The bone mineral density (BMD), bone structure, and histomorphometric changes of cortical and trabecular bones after ovariectomy were investigated. Our results showed that the Δ130–136 transgenic cohort had greatly decreased vertebral trabecular bone mass compared to WT and R76W mice, associated with a significant increase in the number of apoptotic osteocyte and empty lacunae. Moreover, osteoclast surfaces in trabecular and cortical bones were increased after ovariectomy in the R76W and WT mice, respectively, but not in ∆130–136 mice. These data demonstrate that impairment of Cx43 HCs in osteocytes accelerates vertebral trabecular bone loss and increase in osteocyte apoptosis, and further suggest that Cx43 HCs in osteocytes protect trabecular bone against catabolic effects due to estrogen deficiency. Channels that form between cells and their extracellular environment help protect bone tissue from the damage wrought by low estrogen levels, a major cause of bone loss in post-menopausal women. Jean Jiang from the UT Health San Antonio and colleagues showed that depleting the estrogen hormone in mouse bone cells reduced levels of connexin 43 and impaired the protein’s ability to forms pores known as ‘hemichannels’. The researchers surgically removed the ovaries of various mouse strains to induce estrogen deficiencies. They found that transgenic mice without working hemichannels had reduced bone mass compared to normal mice or mice that could make hemichannels but lacked the ability for those channels to come together to form complete passageways. The findings highlight the importance of connexin 43 hemichannels in protecting bone tissue against osteoporosis.
Collapse
|
98
|
Abstract
Anorexia nervosa, a psychiatric disease predominantly affecting women, is characterized by self- induced starvation and a resultant low-weight state. During starvation, a number of hormonal adaptations - including hypothalamic amenorrhea and growth hormone resistance - allow for decreased energy expenditure during periods of decreased nutrient intake, but these very same adaptations also contribute to the medical complications associated with chronic starvation, including low bone mass. Almost 90% of women with anorexia nervosa have bone mineral density (BMD) values more than one-standard deviation below the mean of healthy women at peak bone mineral density and this disease is associated with a significantly increased risk of fracture. Although multiple therapies have been studied for the treatment of low bone mass in anorexia nervosa, there are currently no approved therapies and few promising long-term therapeutic options. This review will outline the mediators of low bone mass in anorexia nervosa, discuss therapies that have been studied for the treatment of low BMD in this disorder, and highlight the important challenges that remain, including the differences in bone modeling in adolescents with anorexia nervosa as compared to adults, necessitating that potential therapies be tested in these two populations separately, and the paucity of long-term therapeutic strategies for treating bone loss in this disorder.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
99
|
Ponzetti M, Rucci N. Updates on Osteoimmunology: What's New on the Cross-Talk Between Bone and Immune System. Front Endocrinol (Lausanne) 2019; 10:236. [PMID: 31057482 PMCID: PMC6482259 DOI: 10.3389/fendo.2019.00236] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
The term osteoimmunology was coined many years ago to describe the research field that deals with the cross-regulation between bone cells and the immune system. As a matter of fact, many factors that are classically considered immune-related, such as InterLeukins (i.e., IL-6, -11, -17, and -23), Tumor Necrosis Factor (TNF)-α, Receptor-Activator of Nuclear factor Kappa B (RANK), and its Ligand (RANKL), Nuclear Factor of Activated T-cell, cytoplasmatic-1 (NFATc1), and others have all been found to be crucial in osteoclast and osteoblast biology. Conversely, bone cells, which we used to think would only regulate each other and take care of remodeling bone, actually regulate immune cells, by creating the so-called "endosteal niche." Both osteoblasts and osteoclasts participate to this niche, either by favoring engraftment, or mobilization of Hematopoietic Stem Cells (HSCs). In this review, we will describe the main milestones at the base of the osteoimmunology and present the key cellular players of the bone-immune system cross-talk, including HSCs, osteoblasts, osteoclasts, bone marrow macrophages, osteomacs, T- and B-lymphocytes, dendritic cells, and neutrophils. We will also briefly describe some pathological conditions in which the bone-immune system cross-talk plays a crucial role, with the final aim to portray the state of the art in the mechanisms regulating the bone-immune system interplay, and some of the latest molecular players in the field. This is important to encourage investigation in this field, to identify new targets in the treatment of bone and immune diseases.
Collapse
|
100
|
The autosomal Gsdf gene plays a role in male gonad development in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 2018; 8:17716. [PMID: 30531973 PMCID: PMC6286346 DOI: 10.1038/s41598-018-35553-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Gsdf is a key gene for testicular differentiation in teleost. However, little is known about the function of Gsdf in Chinese tongue sole (Cynoglossus semilaevis). In this study, we obtained the full-length Gsdf gene (CS-Gsdf), and functional characterization revealed its potential participation during germ cell differentiation in testes. CS-Gsdf transcription was predominantly detected in gonads, while the levels in testes were significantly higher than those in ovaries. During the different developmental stages in male gonads, the mRNA level was significantly upregulated at 86 dph, and a peak appeared at 120 dph; then, the level decreased at 1 and 2 yph. In situ hybridization revealed that CS-Gsdf mRNA was mainly localized in the Sertoli cells, spermatogonia, and spermatids in mature testes. After CS-Gsdf knockdown in the male testes cell line by RNA interference, a series of sex-related genes was influenced, including several sex differentiation genes, CS-Wnt4a, CS-Cyp19a1a and CS-Star. Based on these data, we speculated that CS-Gsdf may play a positive role in germ differentiation and proliferation via influencing genes related to sex differentiation.
Collapse
|