51
|
Adib M, Taghadosi M, Tahmasebi MN, Sharafat Vaziri A, Jamshidi A, Mahmoudi M, Farhadi E. Anti-inflammatory effects of PRIMA-1 MET (mutant p53 reactivator) induced by inhibition of nuclear factor-κB on rheumatoid arthritis fibroblast-like synoviocytes. Inflammopharmacology 2023; 31:385-394. [PMID: 36350424 DOI: 10.1007/s10787-022-01094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Fibroblast-like synoviocytes (FLSs), the main pathological cells in rheumatoid arthritis (RA), display tumor-like phenotype, including hyper-proliferation, apoptosis resistance, and aggressive phenotype. Excessive proliferation and insufficient apoptosis of RA-FLSs can lead to hyperplastic synovial pannus tissue, excess production of inflammatory mediators, and destruction of joints. In this article, we investigate the effect of PRIMA-1MET on the apoptosis induction and inhibition of pro-inflammatory cytokines in RA-FLSs. Synovial tissue samples were obtained from 10 patients with RA. The FLSs were treated with different concentrations of PRIMA-1MET. The rate of apoptosis and cell survival was assessed by flow cytometry and MTT assay and Real-time quantitative PCR was performed to evaluate the transcription of p53, IL-6, IL-1β, TNF-α, Noxa, p21, PUMA, Bax, Survivin, and XIAP in treated RA-FLSs. The protein level of p53, IκBα, and phospho-IκBα were measured using Western blotting. The results showed that PRIMA-1MET induced apoptosis in RA-FLSs and increased significantly the expression of Noxa, and decreased significantly IL-6, IL-1β, p53, and phospho-IκBα expression. PRIMA-1MET can induce apoptosis in RA-FLSs through induction of Noxa expression while p53 was downregulated. Furthermore, PRIMA-1MET treatment results in the suppression of pro-inflammatory cytokine production and NF-κB inhibition. Given the role of p53 and NF-κB in RA-FLSs, PRIMA-1MET can be considered as a new therapeutic strategy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Mehrnoosh Adib
- Immunology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Immunology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Naghi Tahmasebi
- Center of Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Center of Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
52
|
DRP1 Inhibition Enhances Venetoclax-Induced Mitochondrial Apoptosis in TP53-Mutated Acute Myeloid Leukemia Cells through BAX/BAK Activation. Cancers (Basel) 2023; 15:cancers15030745. [PMID: 36765703 PMCID: PMC9913445 DOI: 10.3390/cancers15030745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although TP53 mutations in acute myeloid leukemia (AML) are associated with poor response to venetoclax, the underlying resistance mechanism remains unclear. Herein, we investigated the functional role of dynamin-related protein 1 (DRP1) in venetoclax sensitivity in AML cells with respect to TP53 mutation status. Effects of DRP1 inhibition on venetoclax-induced cell death were compared in TP53-mutated (THP-1 and Kasumi-1) and TP53 wild-type leukemia cell lines (MOLM-13 and MV4-11), as well as in primary AML cells obtained from patients. Venetoclax induced apoptosis in TP53 wild-type AML cells but had limited effects in TP53-mutated AML cells. DRP1 expression was downregulated in MOLM-13 cells after venetoclax treatment but was unaffected in THP-1 cells. Cotreatment of THP-1 cells with venetoclax and a TP53 activator NSC59984 downregulated DRP1 expression and increased apoptosis. Combination treatment with the DRP1 inhibitor Mdivi-1 and venetoclax significantly increased mitochondria-mediated apoptosis in TP53-mutated AML cells. The combination of Mdivi-1 and venetoclax resulted in noticeable downregulation of MCL-1 and BCL-xL, accompanied by the upregulation of NOXA, PUMA, BAK, and BAX. These findings suggest that DRP1 is functionally associated with venetoclax sensitivity in TP53-mutated AML cells. Targeting DRP1 may represent an effective therapeutic strategy for overcoming venetoclax resistance in TP53-mutated AML.
Collapse
|
53
|
Maity D. Inhibition of Amyloid Protein Aggregation Using Selected Peptidomimetics. ChemMedChem 2023; 18:e202200499. [PMID: 36317359 DOI: 10.1002/cmdc.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Aberrant protein aggregation leads to the formation of amyloid fibrils. This phenomenon is linked to the development of more than 40 irremediable diseases such as Alzheimer's disease, Parkinson's disease, type 2 diabetes, and cancer. Plenty of research efforts have been given to understanding the underlying mechanism of protein aggregation, associated toxicity, and the development of amyloid inhibitors. Recently, the peptidomimetic approach has emerged as a potential tool to modulate several protein-protein interactions (PPIs). In this review, we discussed selected peptidomimetic-based approaches for the modulation of important amyloid proteins (Islet Amyloid Polypeptide, Amyloid Beta, α-synuclein, mutant p53, and insulin) aggregation. This approach holds a powerful platform for creating an essential stepping stone for the vital development of anti-amyloid therapeutic agents.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
54
|
Meng D, Zhu C, Jia R, Li Z, Wang W, Song S. The molecular mechanism of ferroptosis and its role in COPD. Front Med (Lausanne) 2023; 9:1052540. [PMID: 36687445 PMCID: PMC9852995 DOI: 10.3389/fmed.2022.1052540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis, a new type of cell death, is mainly characterized by intracellular iron accumulation and lipid peroxidation. The complex regulatory network of iron metabolism, lipid metabolism, amino acid metabolism, p53-related signaling, and Nrf2-related signaling factors is involved in the entire process of ferroptosis. It has been reported that ferroptosis is involved in the pathogenesis of neurological diseases, cancer, and ischemia-reperfusion injury. Recent studies found that ferroptosis is closely related to the pathogenesis of COPD, which, to some extent, indicates that ferroptosis is a potential therapeutic target for COPD. This article mainly discusses the related mechanisms of ferroptosis, including metabolic regulation and signaling pathway regulation, with special attention to its role in the pathogenesis of COPD, aiming to provide safe and effective therapeutic targets for chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Dandan Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengfeng Zhu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Jia
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zongxin Li
- Department of Second Department of Haematology, Jinan Haematology Hospital, Jinan, China
| | - Wantao Wang
- Department of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Wantao Wang ✉
| | - Suhua Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,Suhua Song ✉
| |
Collapse
|
55
|
Abstract
Mutations in the TP53 tumour suppressor gene are very frequent in cancer, and attempts to restore the functionality of p53 in tumours as a therapeutic strategy began decades ago. However, very few of these drug development programmes have reached late-stage clinical trials, and no p53-based therapeutics have been approved in the USA or Europe so far. This is probably because, as a nuclear transcription factor, p53 does not possess typical drug target features and has therefore long been considered undruggable. Nevertheless, several promising approaches towards p53-based therapy have emerged in recent years, including improved versions of earlier strategies and novel approaches to make undruggable targets druggable. Small molecules that can either protect p53 from its negative regulators or restore the functionality of mutant p53 proteins are gaining interest, and drugs tailored to specific types of p53 mutants are emerging. In parallel, there is renewed interest in gene therapy strategies and p53-based immunotherapy approaches. However, major concerns still remain to be addressed. This Review re-evaluates the efforts made towards targeting p53-dysfunctional cancers, and discusses the challenges encountered during clinical development.
Collapse
Affiliation(s)
- Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
56
|
Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem 2023; 11:1145974. [PMID: 37123881 PMCID: PMC10133580 DOI: 10.3389/fchem.2023.1145974] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Computational pharmacology and chemistry of drug-like properties along with pharmacokinetic studies have made it more amenable to decide or predict a potential drug candidate. 4-Hydroxyisoleucine is a pharmacologically active natural product with prominent antidiabetic properties. In this study, ADMETLab 2.0 was used to determine its important drug-related properties. 4-Hydroxyisoleucine is compliant with important drug-like physicochemical properties and pharma giants' drug-ability rules like Lipinski's, Pfizer, and GlaxoSmithKline (GSK) rules. Pharmacokinetically, it has been predicted to have satisfactory cell permeability. Blood-brain barrier permeation may add central nervous system (CNS) effects, while a very slight probability of being CYP2C9 substrate exists. None of the well-known toxicities were predicted in silico, being congruent with wet lab results, except for a "very slight risk" for respiratory toxicity predicted. The molecule is non ecotoxic as analyzed with common indicators such as bioconcentration and LC50 for fathead minnow and daphnia magna. The toxicity parameters identified 4-hydroxyisoleucine as non-toxic to androgen receptors, PPAR-γ, mitochondrial membrane receptor, heat shock element, and p53. However, out of seven parameters, not even a single toxicophore was found. The density functional theory (DFT) study provided support to the findings obtained from drug-like property predictions. Hence, it is a very logical approach to proceed further with a detailed pharmacokinetics and drug development process for 4-hydroxyisoleucine.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aleksey E. Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Santiago, Chile
| | | | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- *Correspondence: Haroon Khan,
| |
Collapse
|
57
|
Unaffected Li-Fraumeni Syndrome Carrier Parent Demonstrates Allele-Specific mRNA Stabilization of Wild-Type TP53 Compared to Affected Offspring. Genes (Basel) 2022; 13:genes13122302. [PMID: 36553570 PMCID: PMC9778056 DOI: 10.3390/genes13122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Li-Fraumeni Syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is inherited by offspring of a carrier parent. p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Unexpectedly, some mutant TP53 carriers remain unaffected, while their children develop cancer early in life. To begin unravelling this paradox, the response of dermal fibroblasts (dFb) isolated from a child with LFS was compared to those from her unaffected father after UV exposure. Phospho-Chk1[S345], a key activator of cell cycle arrest, was increased by UV induction in the LFS patient compared to their unaffected parent dFb. This result, along with previous findings of reduced CDKN1A/p21 UV induction in affected dFb, suggest that cell cycle dysregulation may contribute to cancer onset in the affected LFS subject but not the unaffected parent. Mutant p53 protein and its promoter binding affinity were also higher in dFb from the LFS patient compared to their unaffected parent. These results were as predicted based on decreased mutant TP53 allele-specific mRNA expression previously found in unaffected dFb. Investigation of the potential mechanism regulating this TP53 allele-specific expression found that, while epigenetic promoter methylation was not detectable, TP53 wild-type mRNA was specifically stabilized in the unaffected dFb. Hence, the allele-specific stabilization of wild-type TP53 mRNA may allow an unaffected parent to counteract genotoxic stress by means more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
|
58
|
Malhotra L, Sharma S, Hariprasad G, Dhingra R, Mishra V, Sharma RS, Kaur P, Ethayathulla AS. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119343. [PMID: 36007676 DOI: 10.1016/j.bbamcr.2022.119343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The mutant p53Y220C (mutp53Y220C) is frequently observed in numerous tumors, including pancreatic cancer. The mutation creates a crevice in the DNA binding core domain and makes p53 a thermally unstable non-functional protein that assists tumor progression and confers resistance to chemotherapeutic drugs. Restoring mutp53 function to its wild type by selectively targeting this crevice with small molecules is a pivotal strategy to promote apoptosis. In this study, we have shown through different biophysical and cell-based studies that curcumin binds and rescues mutp53Y220C to an active wild-type conformation and restores its apoptotic transcription function in BxPC-3-pancreatic cancer cells. In addition, the curcumin-rescued-p53Y220C (CRp53) showed significant hyperphosphorylation at Ser15, Ser20, and acetylation at Lys382 with an 8-fold increase in transcription activity in the BxPC-3 cell lines. We also observed that the active CRp53 escapes Mdm2-mediated proteasomal degradation and the majority of the proteins were localized inside the nucleus with an increased half-life and transcription restoration compared to untreated BxPC-3 cells. By label-free proteomics analysis, we observed that upon curcumin treatment almost 227 proteins were dysregulated with the majority of them being transcriptional targets of p53. Based on our studies, it reflects that apoptosis in pancreatic cancer cells is mediated by curcumin-rescued mutant p53Y220C.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Renu Dhingra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Radhey S Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
59
|
Ye X, Lee YC, Gates ZP, Ling Y, Mortensen JC, Yang FS, Lin YS, Pentelute BL. Binary combinatorial scanning reveals potent poly-alanine-substituted inhibitors of protein-protein interactions. Commun Chem 2022; 5:128. [PMID: 36697672 PMCID: PMC9814900 DOI: 10.1038/s42004-022-00737-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023] Open
Abstract
Establishing structure-activity relationships is crucial to understand and optimize the activity of peptide-based inhibitors of protein-protein interactions. Single alanine substitutions provide limited information on the residues that tolerate simultaneous modifications with retention of biological activity. To guide optimization of peptide binders, we use combinatorial peptide libraries of over 4,000 variants-in which each position is varied with either the wild-type residue or alanine-with a label-free affinity selection platform to study protein-ligand interactions. Applying this platform to a peptide binder to the oncogenic protein MDM2, several multi-alanine-substituted analogs with picomolar binding affinity were discovered. We reveal a non-additive substitution pattern in the selected sequences. The alanine substitution tolerances for peptide ligands of the 12ca5 antibody and 14-3-3 regulatory protein are also characterized, demonstrating the general applicability of this new platform. We envision that binary combinatorial alanine scanning will be a powerful tool for investigating structure-activity relationships.
Collapse
Affiliation(s)
- Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yen-Chun Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
| | - Zachary P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138665, Singapore
- Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yingjie Ling
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Jennifer C Mortensen
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Fan-Shen Yang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences and Matters, National Tsing Hua University, 101, Sec. 2, Guang-Fu Road, Hsinchu, 300, Taiwan
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
60
|
Abuetabh Y, Wu HH, Chai C, Al Yousef H, Persad S, Sergi CM, Leng R. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med 2022; 54:1658-1669. [PMID: 36207426 PMCID: PMC9636249 DOI: 10.1038/s12276-022-00863-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Antitumor therapeutic strategies that fundamentally rely on the induction of DNA damage to eradicate and inhibit the growth of cancer cells are integral approaches to cancer therapy. Although DNA-damaging therapies advance the battle with cancer, resistance, and recurrence following treatment are common. Thus, searching for vulnerabilities that facilitate the action of DNA-damaging agents by sensitizing cancer cells is an active research area. Therefore, it is crucial to decipher the detailed molecular events involved in DNA damage responses (DDRs) to DNA-damaging agents in cancer. The tumor suppressor p53 is active at the hub of the DDR. Researchers have identified an increasing number of genes regulated by p53 transcriptional functions that have been shown to be critical direct or indirect mediators of cell fate, cell cycle regulation, and DNA repair. Posttranslational modifications (PTMs) primarily orchestrate and direct the activity of p53 in response to DNA damage. Many molecules mediating PTMs on p53 have been identified. The anticancer potential realized by targeting these molecules has been shown through experiments and clinical trials to sensitize cancer cells to DNA-damaging agents. This review briefly acknowledges the complexity of DDR pathways/networks. We specifically focus on p53 regulators, protein kinases, and E3/E4 ubiquitin ligases and their anticancer potential.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
61
|
An HG, Shin S, Lee B, Kwon Y, Kwon TU, Kwon YJ, Chun YJ. Induction of synergistic apoptosis by tetramethoxystilbene and nutlin-3a in human cervical cancer cells. Toxicol Res 2022; 38:591-600. [PMID: 36277372 PMCID: PMC9532473 DOI: 10.1007/s43188-022-00150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
2,4,3',5'-Tetramethoxystilbene (TMS) is a selective inhibitor of cytochrome P450 1B1 to block the conversion from estradiol to 4-OH-estradiol. Several studies suggested that TMS may act as a potent anti-cancer agent for hormone-related cancer including cervical cancer. Nutlin-3a is a cis-imidazoline analog that interferes with the interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The purpose of the study was to compare the cytotoxic effect of TMS and nutlin-3a treatment individually and in combination in HeLa cells. To assess the potential synergistic effects between TMS and nutlin-3a, low concentrations of TMS and nutlin-3a were simultaneously treated in HeLa cells. Based on cell viability, apoptosis assays, and the increase in cleaved caspase-3 and poly (ADP-ribose) polymerase cleavage, it was demonstrated that the combination with TMS and nutlin-3a exerts a synergistic effect on cancer cell death. Isobologram analysis of HeLa cells noted synergism between TMS and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bax and Bak, and decreased the expression of the XIAP. In addition, combination treatment significantly enhanced the translocation of AIF to the nucleus in HeLa cells. In conclusion, the results demonstrate that the combination of TMS and nutlin-3a induces synergistic apoptosis in HeLa cells, suggesting the possibility that this combination can be applied as a novel therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Hong-Gyu An
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Boyoung Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Yeonju Kwon
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| |
Collapse
|
62
|
Zhuang JJ, Liu Q, Wu DL, Tie L. Current strategies and progress for targeting the "undruggable" transcription factors. Acta Pharmacol Sin 2022; 43:2474-2481. [PMID: 35132191 PMCID: PMC9525275 DOI: 10.1038/s41401-021-00852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
Collapse
Affiliation(s)
- Jing-Jing Zhuang
- Marine College, Shandong University, Weihai, 264209, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Da-Lei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
63
|
Durairaj G, Demir Ö, Lim B, Baronio R, Tifrea D, Hall LV, DeForest JC, Lauinger L, Jebril Fallatah MM, Yu C, Bae H, Lin DW, Kim JK, Salehi F, Jang C, Qiao F, Lathrop RH, Huang L, Edwards R, Rychnovsky S, Amaro RE, Kaiser P. Discovery of compounds that reactivate p53 mutants in vitro and in vivo. Cell Chem Biol 2022; 29:1381-1395.e13. [PMID: 35948006 PMCID: PMC9481737 DOI: 10.1016/j.chembiol.2022.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/13/2021] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
The tumor suppressor p53 is the most frequently mutated protein in human cancer. The majority of these mutations are missense mutations in the DNA binding domain of p53. Restoring p53 tumor suppressor function could have a major impact on the therapy for a wide range of cancers. Here we report a virtual screening approach that identified several small molecules with p53 reactivation activities. The UCI-LC0023 compound series was studied in detail and was shown to bind p53, induce a conformational change in mutant p53, restore the ability of p53 hotspot mutants to associate with chromatin, reestablish sequence-specific DNA binding of a p53 mutant in a reconstituted in vitro system, induce p53-dependent transcription programs, and prevent progression of tumors carrying mutant p53, but not p53null or p53WT alleles. Our study demonstrates feasibility of a computation-guided approach to identify small molecule corrector drugs for p53 hotspot mutations.
Collapse
Affiliation(s)
- Geetha Durairaj
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryant Lim
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Roberta Baronio
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Delia Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Linda V Hall
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jacob C DeForest
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jin Kwang Kim
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Faezeh Salehi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Feng Qiao
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard H Lathrop
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Scott Rychnovsky
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
64
|
Srdanović S, Wolter M, Trinh CH, Ottmann C, Warriner SL, Wilson AJ. Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study. FEBS J 2022; 289:5341-5358. [PMID: 35286747 PMCID: PMC9541495 DOI: 10.1111/febs.16433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023]
Abstract
p53 plays a critical role in regulating diverse biological processes: DNA repair, cell cycle arrest, apoptosis and senescence. The p53 pathway has therefore served as the focus of multiple drug-discovery efforts. p53 is negatively regulated by hDMX and hDM2; prior studies have identified 14-3-3 proteins as hDMX and hDM2 client proteins. 14-3-3 proteins are adaptor proteins that modulate localization, degradation and interactions of their targets in response to phosphorylation. Thus, 14-3-3 proteins may indirectly modulate the interaction between hDMX or hDM2 and p53 and represent potential targets for modulation of the p53 pathway. In this manuscript, we report on the biophysical and structural characterization of peptide/protein interactions that are representative of the interaction between 14-3-3 and hDMX or hDM2. The data establish that proximal phosphosites spaced ~20-25 residues apart in both hDMX and hDM2 co-operate to facilitate high-affinity 14-3-3 binding and provide structural insight that can be utilized in future stabilizer/inhibitor discovery efforts.
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| | - Madita Wolter
- Laboratory of Chemical BiologyDepartment of Biomedical EngineeringTechnische Universiteit EindhovenThe Netherlands,Institute for Complex Molecular SystemsTechnische Universiteit EindhovenThe Netherlands
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Christian Ottmann
- Laboratory of Chemical BiologyDepartment of Biomedical EngineeringTechnische Universiteit EindhovenThe Netherlands,Institute for Complex Molecular SystemsTechnische Universiteit EindhovenThe Netherlands
| | - Stuart L. Warriner
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| | - Andrew J. Wilson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| |
Collapse
|
65
|
Ingelshed K, Spiegelberg D, Kannan P, Påvénius L, Hacheney J, Jiang L, Eisinger S, Lianoudaki D, Lama D, Castillo F, Bosdotter C, Kretzschmar WW, Al-Radi O, Fritz N, Villablanca EJ, Karlsson MCI, Wermeling F, Nestor M, Lane DP, Sedimbi SK. The MDM2 Inhibitor Navtemadlin Arrests Mouse Melanoma Growth In Vivo and Potentiates Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1075-1088. [PMID: 36922937 PMCID: PMC10010373 DOI: 10.1158/2767-9764.crc-22-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53-MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein-protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry-based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo. Significance The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.
Collapse
Affiliation(s)
- Katrine Ingelshed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Pavitra Kannan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Påvénius
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Hacheney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Long Jiang
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Stockholm, Sweden
| | - Silke Eisinger
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Danai Lianoudaki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Francisca Castillo
- Center for Molecular Medicine, Stockholm, Sweden
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Bosdotter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Omayma Al-Radi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Fritz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J. Villablanca
- Center for Molecular Medicine, Stockholm, Sweden
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Corresponding Authors: Saikiran K. Sedimbi and David P. Lane, Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Nobels Väg 16, Stockholm, SE-17177, Sweden. Phone: +46 852 448 6452; E-mail: ; Phone: +46 852 448 6452; E-mail:
| | - Saikiran K. Sedimbi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Corresponding Authors: Saikiran K. Sedimbi and David P. Lane, Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Nobels Väg 16, Stockholm, SE-17177, Sweden. Phone: +46 852 448 6452; E-mail: ; Phone: +46 852 448 6452; E-mail:
| |
Collapse
|
66
|
Abu-Serie MM, Habashy NH. Suppressing crucial oncogenes of leukemia initiator cells by major royal jelly protein 2 for mediating apoptosis in myeloid and lymphoid leukemia cells. Food Funct 2022; 13:8951-8966. [PMID: 35929786 DOI: 10.1039/d2fo00999d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relapse of leukemia and drug resistance are still the major obstacles to therapy due to leukemia-initiating stem/progenitor cells (LICs); thus, targeting them using safe compounds is crucial. Here, we evaluated the anti-leukemic effect of royal jelly (RJ) components, which had a higher safe concentration (EC100 values) than the chemotherapeutic drug doxorubicin (DOX). The RJ-protein fraction 50 (PF50, precipitated at 40-50% ammonium sulfate saturation) and its constituents, major RJ protein (MRJP) 2 and its isoform X1, exhibited the highest growth inhibitory effect against myeloid NFS-60 and lymphoid Jurkat cell lines. MRJP2 has a nanosize, which may be the reason for its higher anti-leukemic activity than its isoform. These RJ proteins, particularly MRJP2, suppressed LIC-associated oncogenes (GATA2 and Evi-1) and eliminated CD34+ LICs, in contrast to the low anti-LIC efficacy of DOX. MRJP2 demonstrated higher apoptotic activity than its isoform by upregulating p53 and p21-mediated cell cycle arrest. This study also reported the potent inhibitory effect of RJ-proteins on matrix metallopeptidase 10 (metastatic marker) and histone deacetylase 8 (mediates LIC survival) activities. Thus, MRJP2 can be considered a promising novel therapeutic agent for both myeloid and lymphoid leukemia.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
67
|
Chan AM, Goodis CC, Pommier EG, Fletcher S. Recent applications of covalent chemistries in protein-protein interaction inhibitors. RSC Med Chem 2022; 13:921-928. [PMID: 36092144 PMCID: PMC9384789 DOI: 10.1039/d2md00112h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2023] Open
Abstract
Protein-protein interactions (PPIs) are large, often featureless domains whose modulations by small-molecules are challenging. Whilst there are some notable successes, such as the BCL-2 inhibitor venetoclax, the requirement for larger ligands to achieve the desired level of potency and selectivity may result in poor "drug-like" properties. Covalent chemistry is presently enjoying a renaissance. In particular, targeted covalent inhibition (TCI), in which a weakly electrophilic "warhead" is installed onto a protein ligand scaffold, is a powerful strategy to develop potent inhibitors of PPIs that are smaller/more drug-like yet have enhanced affinities by virtue of the reinforcing effect on the existing non-covalent interactions by the resulting protein-ligand covalent bond. Furthermore, the covalent bond delivers sustained inhibition, which may translate into significantly reduced therapeutic dosing. Herein, we discuss recent applications of a spectrum of TCIs, as well as covalent screening strategies, in the discovery of more effective inhibitors of PPIs using the HDM2 and BCL-2 protein families as case studies.
Collapse
Affiliation(s)
- Alexandria M Chan
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA
| | - Christopher C Goodis
- University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA
| | - Elie G Pommier
- University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 20 S. Greene St Baltimore MD 21201 USA
| |
Collapse
|
68
|
Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery. Nat Commun 2022; 13:4568. [PMID: 35931667 PMCID: PMC9356039 DOI: 10.1038/s41467-022-32268-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Artificial, synthetic chaperones have attracted much attention in biomedical research due to their ability to control the folding of proteins and peptides. Here, we report bio-inspired multifunctional porous nanoparticles to modulate proper folding and intracellular delivery of therapeutic α-helical peptide. The Synthetic Nano-Chaperone for Peptide (SNCP) based on porous nanoparticles provides an internal hydrophobic environment which contributes in stabilizing secondary structure of encapsulated α-helical peptides due to the hydrophobic internal environments. In addition, SNCP with optimized inner surface modification not only improves thermal stability for α-helical peptide but also supports the peptide stapling methods in situ, serving as a nanoreactor. Then, SNCP subsequently delivers the stabilized therapeutic α-helical peptides into cancer cells, resulting in high therapeutic efficacy. SNCP improves cellular uptake and bioavailability of the anti-cancer peptide, so the cancer growth is effectively inhibited in vivo. These data indicate that the bio-inspired SNCP system combining nanoreactor and delivery carrier could provide a strategy to expedite the development of peptide therapeutics by overcoming existing drawbacks of α-helical peptides as drug candidates. Molecular chaperones play an important part in protein folding and delivery in nature. Here, the authors report on the creation of a synthetic chaperone to control the folding of therapeutic peptides from random coil to alpha helix and demonstrate enhanced therapeutic potential in an in vivo tumour model.
Collapse
|
69
|
Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. Int J Mol Sci 2022; 23:ijms23147960. [PMID: 35887312 PMCID: PMC9316806 DOI: 10.3390/ijms23147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The formation of a tetrameric assembly is essential for the ability of the tumor suppressor protein p53 to act as a transcription factor. Such a quaternary conformation is driven by a specific tetramerization domain, separated from the central DNA-binding domain by a flexible linker. Despite the distance, functional crosstalk between the two domains has been reported. This phenomenon can explain the pathogenicity of some inherited or somatically acquired mutations in the tetramerization domain, including the widespread R337H missense mutation present in the population in south Brazil. In this work, we combined computational predictions through extended all-atom molecular dynamics simulations with functional assays in a genetically defined yeast-based model system to reveal structural features of p53 tetramerization domains and their transactivation capacity and specificity. In addition to the germline and cancer-associated R337H and R337C, other rationally designed missense mutations targeting a significant salt-bridge interaction that stabilizes the p53 tetramerization domain were studied (i.e., R337D, D352R, and the double-mutation R337D plus D352R). The simulations revealed a destabilizing effect of the pathogenic mutations within the p53 tetramerization domain and highlighted the importance of electrostatic interactions between residues 337 and 352. The transactivation assay, performed in yeast by tuning the expression of wild-type and mutant p53 proteins, revealed that p53 tetramerization mutations could decrease the transactivation potential and alter transactivation specificity, in particular by better tolerating negative features in weak DNA-binding sites. These results establish the effect of naturally occurring variations at positions 337 and 352 on p53’s conformational stability and function.
Collapse
|
70
|
You X, Lei Y, Zhang P, Xu D, Ahmed Z, Yang Y. Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Front Microbiol 2022; 13:924004. [PMID: 35928151 PMCID: PMC9344050 DOI: 10.3389/fmicb.2022.924004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by the PRRS virus that leads to reproductive disorders and severe dyspnoea in pigs, which has serious economic impacts. One of the reasons PRRSV cannot be effectively controlled is that it has developed countermeasures against the host immune response, allowing it to survive and replicate for long periods. Transcription Factors acts as a bridge in the interactions between the host and PRRSV. PRRSV can create an environment conducive to PRRSV replication through transcription factors acting on miRNAs, inflammatory factors, and immune cells. Conversely, some transcription factors also inhibit PRRSV proliferation in the host. In this review, we systematically described how PRRSV uses host transcription factors such as SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining the role of transcription factors in immune evasion and understanding the pathogenesis of PRRSV will help to develop new treatments for PRRSV.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
- *Correspondence: Youbing Yang
| |
Collapse
|
71
|
Niu J, Peng D, Liu L. Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Front Oncol 2022; 12:896426. [PMID: 35865470 PMCID: PMC9294245 DOI: 10.3389/fonc.2022.896426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a polyclonal and heterogeneous hematological malignancy. Relapse and refractory after induction chemotherapy are still challenges for curing AML. Leukemia stem cells (LSCs), accepted to originate from hematopoietic stem/precursor cells, are the main root of leukemogenesis and drug resistance. LSCs are dynamic derivations and possess various elusive resistance mechanisms. In this review, we summarized different primary resistance and remolding mechanisms of LSCs after chemotherapy, as well as the indispensable role of the bone marrow microenvironment on LSCs resistance. Through a detailed and comprehensive review of the spectacle of LSCs resistance, it can provide better strategies for future researches on eradicating LSCs and clinical treatment of AML.
Collapse
Affiliation(s)
| | | | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
72
|
Distinct interactors define the p63 transcriptional signature in epithelial development or cancer. Biochem J 2022; 479:1375-1392. [PMID: 35748701 PMCID: PMC9250260 DOI: 10.1042/bcj20210737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The TP63 is an indispensable transcription factor for development and homeostasis of epithelia and its derived glandular tissue. It is also involved in female germline cell quality control, muscle and thymus development. It is expressed as multiple isoforms transcribed by two independent promoters, in addition to alternative splicing occurring at the mRNA 3′-UTR. Expression of the TP63 gene, specifically the amino-deleted p63 isoform, ΔNp63, is required to regulate numerous biological activities, including lineage specification, self-renewal capacity of epithelial stem cells, proliferation/expansion of basal keratinocytes, differentiation of stratified epithelia. In cancer, ΔNp63 is implicated in squamous cancers pathogenesis of different origin including skin, head and neck and lung and in sustaining self-renewal of cancer stem cells. How this transcription factor can control such a diverse set of biological pathways is central to the understanding of the molecular mechanisms through which p63 acquires oncogenic activity, profoundly changing its down-stream transcriptional signature. Here, we highlight how different proteins interacting with p63 allow it to regulate the transcription of several central genes. The interacting proteins include transcription factors/regulators, epigenetic modifiers, and post-transcriptional modifiers. Moreover, as p63 depends on its interactome, we discuss the hypothesis to target the protein interactors to directly affect p63 oncogenic activities and p63-related diseases.
Collapse
|
73
|
Severe cellular stress drives apoptosis through a dual control mechanism independently of p53. Cell Death Dis 2022; 8:282. [PMID: 35680784 PMCID: PMC9184497 DOI: 10.1038/s41420-022-01078-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022]
Abstract
For past two decades, p53 has been claimed as the primary sensor initiating apoptosis. Under severe cellular stress, p53 transcriptional activity activates BH3-only proteins such as Bim, Puma, or Noxa to nullify the inhibitory effects of anti-apoptotic proteins on pro-apoptotic proteins for mitochondrial outer membrane permeabilization. Cellular stress determines the expression level of p53, and the amount of p53 corresponds to the magnitude of apoptosis. However, our studies indicated that Bim and Puma are not the target genes of p53 in three cancer models, prostate cancer, glioblastoma, and osteosarcoma. Bim counteracted with Bcl-xl to activate apoptosis independently of p53 in response to doxorubicin-induced severe DNA damage in prostate cancer. Moreover, the transcriptional activity of p53 was more related to cell cycle arrest other than apoptosis for responding to DNA damage stress generated by doxorubicin in prostate cancer and glioblastoma. A proteasome inhibitor that causes protein turnover dysfunction, bortezomib, produced apoptosis in a p53-independent manner in glioblastoma and osteosarcoma. p53 in terms of both protein level and nuclear localization in combining doxorubicin with bortezomib treatment was obviously lower than when using DOX alone, inversely correlated with the magnitude of apoptosis in glioblastoma. Using a BH3-mimetic, ABT-263, to treat doxorubicin-sensitive p53-wild type and doxorubicin-resistant p53-null osteosarcoma cells demonstrated only limited apoptotic response. The combination of doxorubicin or bortezomib with ABT-263 generated a synergistic outcome of apoptosis in both p53-wild type and p53-null osteosarcoma cells. Together, this suggested that p53 might have no role in doxorubicin-induced apoptosis in prostate cancer, glioblastoma and osteosarcoma. The effects of ABT-263 in single and combination treatment of osteosarcoma or prostate cancer indicated a dual control to regulate apoptosis in response to severe cellular stress. Whether our findings only apply in these three types of cancers or extend to other cancer types remains to be explored.
Collapse
|
74
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
75
|
Fetoni AR, Paciello F, Troiani D. Cisplatin Chemotherapy and Cochlear Damage: Otoprotective and Chemosensitization Properties of Polyphenols. Antioxid Redox Signal 2022; 36:1229-1245. [PMID: 34731023 DOI: 10.1089/ars.2021.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Cisplatin is an important component of treatment regimens for different cancers. Notwithstanding that therapeutic success often results from partial efficacy or stabilizing the disease, chemotherapy failure is driven by resistance to drug treatment and occurrence of side effects, such as progressive irreversible ototoxicity. Cisplatin's side effects, including ototoxicity, are often dose limiting. Recent Advances: Cisplatin ototoxicity results from several mechanisms, including redox imbalance caused by reactive oxygen species production and lipid peroxidation, activation of inflammation, and p53 and its downstream pathways that culminate in apoptosis. Considerable efforts in research have targeted development of molecular interventions that can be concurrently administered with cisplatin or other chemotherapies to reduce side effect toxicities while preserving or enhancing the antineoplastic effects. Evidence from studies has indicated some polyphenols, such as curcumin, can help to regulate redox signaling and inflammatory effects. Furthermore, polyphenols can exert opposing effects in different types of tissues, that is, normal cells undergoing stressful conditions versus cancer cells. Critical Issues: This review article summarizes evidence of curcumin antioxidant effect against cisplatin-induced ototoxicity that is converted to a pro-oxidant activity in cisplatin-treated cancer cells, thus providing an ideal chemosensitivity combined with otoprotection. Polyphenols can modulate the adaptive responses to stress in the cisplatin-exposed cochlea. These adaptive effects can result from the interaction/cross talk between the cell's defenses, inflammatory molecules, and the key signaling molecules of signal transducers and activators of transcription 3 (STAT-3), nuclear factor κ-B (NF-κB), p53, and nuclear factor erythroid 2-related factor 2 (Nrf-2). Future Directions: We provide molecular evidence for alternative strategies for chemotherapy with cisplatin addressing the otoprotection and chemosensitization properties of polyphenols. Antioxid. Redox Signal. 36, 1229-1245.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
76
|
Wang X, Liu Z, Wang Y, Gou S. Platinum(IV) Prodrugs with Cancer Stem Cell Inhibitory Effects on Lung Cancer for Overcoming Drug Resistance. J Med Chem 2022; 65:7933-7945. [PMID: 35635560 DOI: 10.1021/acs.jmedchem.2c00472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
77
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|
78
|
Fröhlich LM, Makino E, Sinnberg T, Schittek B. Enhanced Expression of p21 Promotes Sensitivity of Melanoma Cells Towards Targeted Therapies. Exp Dermatol 2022; 31:1243-1252. [PMID: 35514255 DOI: 10.1111/exd.14585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Metastatic melanoma patients benefit from the approved targeted BRAF inhibitor (BRAFi) therapy. Despite the great progress in the therapeutic approach to combat metastatic melanoma, fast emerging drug resistance in patients limits its long-term efficacy. In this study we aimed to unravel the role of the p53 target gene CDKN1A/p21 in the response of melanoma cells towards BRAFi. We show that p53 activation increases BRAFi sensitivity in a synergistic manner exclusively in cells with a high expression of CDKN1A/p21. In a similar way high expression of p21 was associated with a better response towards the mouse double minute 2 inhibitor (MDM2i) compared to those with low p21 expression. Indeed, p21 knockdown decreased the sensitivity towards both targeted therapies. The results indicate that the sensitivity of melanoma cells towards targeted therapies (BRAFi and MDM2i) is dependent on the p21 protein level in the cells. In addition to that, we found that p53 negatively regulates p73 expression, however, p73 seems not to have an influence on p53 expression. These findings offer new potential strategies for the treatment improvement of melanoma patients with high basal p21 levels with BRAFi by increasing treatment efficacy using combination therapies with p53 activating substances, which are able to further increase p21 expression levels. Furthermore, the data suggest that the expression and induction level of p21 could be used as a predictive biomarker in melanoma patients to forecast the outcome of a treatment with p53 activating substances and BRAFi. All in all, this manuscript shows the distinct roles and of the p53 family members and its impact on melanoma therapy. In the future, individualized treatment regimens based on p21 basal and induction levels could benefit melanoma patients with limited treatment options.
Collapse
Affiliation(s)
- Lisa Marie Fröhlich
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Elena Makino
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
79
|
Bianco G, Coto-Llerena M, Gallon J, Kancherla V, Taha-Mehlitz S, Marinucci M, Konantz M, Srivatsa S, Montazeri H, Panebianco F, Tirunagaru VG, De Menna M, Paradiso V, Ercan C, Dahmani A, Montaudon E, Beerenwinkel N, Kruithof-de Julio M, Terracciano LM, Lengerke C, Jeselsohn RM, Doebele RC, Bidard FC, Marangoni E, Ng CKY, Piscuoglio S. GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers. Commun Biol 2022; 5:373. [PMID: 35440675 PMCID: PMC9018745 DOI: 10.1038/s42003-022-03296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.
Collapse
Affiliation(s)
- Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hesam Montazeri
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Federica Panebianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Marta De Menna
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Viola Paradiso
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Rinath M Jeselsohn
- Division of Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
80
|
Zhang S, Yan Z, Li Y, Gong Y, Lyu X, Lou J, Zhang D, Meng X, Zhao Y. Structure-Based Discovery of MDM2/4 Dual Inhibitors that Exert Antitumor Activities against MDM4-Overexpressing Cancer Cells. J Med Chem 2022; 65:6207-6230. [PMID: 35420431 DOI: 10.1021/acs.jmedchem.2c00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent clinical progress in peptide-based dual inhibitors of MDM2/4, small-molecule ones with robust antitumor activities remain challenging. To tackle this issue, 31 (YL93) was structure-based designed and synthesized, which had MDM2/4 binding Ki values of 1.1 and 642 nM, respectively. In three MDM4-overexpressing cancer cell lines harboring wild-type p53, 31 shows improved cell growth inhibition activities compared to RG7388, an MDM2-selective inhibitor in late-stage clinical trials. Mechanistic studies show that 31 increased cellular protein levels of p53 and p21 and upregulated the expression of p53-targeted genes in RKO cells with MDM4 amplification. In addition, 31 induced cell-cycle arrest and apoptosis in western blot and flow cytometry assays. Taken together, dual inhibition of MDM2/4 by 31 elicited stronger antitumor activities in vitro compared to selective MDM2 inhibitors in wild-type p53 and MDM4-overexpressing cancer cells.
Collapse
Affiliation(s)
- Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
81
|
Allen BL, Quach K, Jones T, Levandowski CB, Ebmeier CC, Rubin JD, Read T, Dowell RD, Schepartz A, Taatjes DJ. Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Rep 2022; 39:110630. [PMID: 35385747 PMCID: PMC9044438 DOI: 10.1016/j.celrep.2022.110630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
DNA-binding transcription factors (TFs) remain challenging to target with molecular probes. Many TFs function in part through interaction with Mediator, a 26-subunit complex that controls RNA polymerase II activity genome-wide. We sought to block p53 function by disrupting the p53-Mediator interaction. Through rational design and activity-based screening, we characterize a stapled peptide, with functional mimics of both p53 activation domains, that blocks p53-Mediator binding and selectively inhibits p53-dependent transcription in human cells; importantly, this "bivalent" peptide has negligible impact, genome-wide, on non-p53 target genes. Our proof-of-concept strategy circumvents the TF entirely and targets the TF-Mediator interface instead, with desired functional outcomes (i.e., selective inhibition of p53 activation). Furthermore, these results demonstrate that TF activation domains represent viable starting points for Mediator-targeting molecular probes, as an alternative to large compound libraries. Different TFs bind Mediator through different subunits, suggesting this strategy could be broadly applied to selectively alter gene expression programs.
Collapse
Affiliation(s)
- Benjamin L. Allen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,These authors contributed equally
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, CT 06520, USA,These authors contributed equally
| | - Taylor Jones
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,These authors contributed equally
| | | | | | - Jonathan D. Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Timothy Read
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,Department of Medicine, Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA,Department of Chemistry, University of California, Berkeley, CA 94720, USA,Correspondence: (A.S.), (D.J.T.)
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,Lead contact,Correspondence: (A.S.), (D.J.T.)
| |
Collapse
|
82
|
AMG-232, a New Inhibitor of MDM-2, Enhance Doxorubicin Efficiency in Pre-B Acute Lymphoblastic Leukemia Cells. Rep Biochem Mol Biol 2022; 11:111-124. [PMID: 35765530 PMCID: PMC9208559 DOI: 10.52547/rbmb.11.1.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 01/11/2023]
Abstract
Background Doxorubicin (DOX)-induced cardiotoxicity appears to be a growing concern for extensive use in acute lymphoblastic leukemia (ALL). The new combination treatment strategies, therefore might be an effective way of decreasing its side effects as well as improving efficacy. AMG232 (KRT-232) is a potential MDM-2 inhibitor, increasing available p53 through disturbing p53-MDM-2 interaction. In this study, we examined the effects of AMG232 on DOX-induced apoptosis of NALM-6 cells. Methods The anti-leukemic effects of Doxorubicin on NALM-6 cells, either alone or in combination with AMG232, were confirmed by MTT assay, Annexin/PI apoptosis assay, and cell cycle analysis. Expression of apoptosis and autophagy-related genes were further evaluated by Real time-PCR method. To investigate the effect of AMG232 on NALM-6 cells, the activation of p53, p21, MDM-2, cleaved Caspase-3 proteins was evaluated using western blot analysis. Results The results showed that AMG232 inhibition of MDM-2 enhances Doxorubicin-induced apoptosis in NALM-6 cells through caspase-3 activation in a time and dose-dependent manner. Furthermore, co-treatment of AMG232 with Doxorubicin hampered the transition of NALM-6 cells from G1 phase through increasing p21 protein. In addition, this combination treatment led to enhanced expression of apoptosis and autophagy-related genes in ALL cell lines. Conclusion The results declared that AMG232 as an MDM-2 inhibitor could be an effective approach to enhance antitumor effects of Doxorubicin on NALM-6 cells as well as an effective future treatment for ALL patients.
Collapse
|
83
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
84
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
85
|
Zhang Q, Balourdas DI, Baron B, Senitzki A, Haran TE, Wiman KG, Soussi T, Joerger AC. Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog. Cell Death Dis 2022; 13:214. [PMID: 35256607 PMCID: PMC8901663 DOI: 10.1038/s41419-022-04653-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023]
Abstract
The extremophile Alvinella pompejana, an annelid worm living on the edge of hydrothermal vents in the Pacific Ocean, is an excellent model system for studying factors that govern protein stability. Low intrinsic stability is a crucial factor for the susceptibility of the transcription factor p53 to inactivating mutations in human cancer. Understanding its molecular basis may facilitate the design of novel therapeutic strategies targeting mutant p53. By analyzing expressed sequence tag (EST) data, we discovered a p53 family gene in A. pompejana. Protein crystallography and biophysical studies showed that it has a p53/p63-like DNA-binding domain (DBD) that is more thermostable than all vertebrate p53 DBDs tested so far, but not as stable as that of human p63. We also identified features associated with its increased thermostability. In addition, the A. pompejana homolog shares DNA-binding properties with human p53 family DBDs, despite its evolutionary distance, consistent with a potential role in maintaining genome integrity. Through extensive structural and phylogenetic analyses, we could further trace key evolutionary events that shaped the structure, stability, and function of the p53 family DBD over time, leading to a potent but vulnerable tumor suppressor in humans.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neuroscience, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Bruno Baron
- Plateforme de Biophysique Moléculaire, Centre de Ressources et de Recherches Technologique (C2RT), Institut Pasteur, 75015, Paris, France
| | - Alon Senitzki
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel.
| | - Klas G Wiman
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden.
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Sorbonne Université, UPMC Univ Paris 06, 75005, Paris, France.
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
86
|
Kumari S, Sharma V, Tiwari R, Maurya JP, Subudhi BB, Senapati D. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities. Eur J Pharmacol 2022; 919:174807. [DOI: 10.1016/j.ejphar.2022.174807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/25/2022]
|
87
|
Upregulation of wild-type p53 by small molecule-induced elevation of NQO1 in non-small cell lung cancer cells. Acta Pharmacol Sin 2022; 43:692-702. [PMID: 34035487 PMCID: PMC8888561 DOI: 10.1038/s41401-021-00691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p53 is usually inactivated by somatic mutations in malignant neoplasms, and its reactivation represents an attractive therapeutic strategy for cancers. Here, we reported that a new quinolone compound RYL-687 significantly inhibited non-small cell lung cancer (NSCLC) cells which express wild type (wt) p53, in contract to its much weaker cytotoxicity on cells with mutant p53. RYL-687 upregulated p53 in cells with wt but not mutant p53, and ectopic expression of wt p53 significantly enhanced the anti-NSCLC activity of this compound. RYL-687 induced production of reactive oxygen species (ROS) and upregulation of Nrf2, leading to an elevation of the NAD(P)H:quinoneoxidoreductase-1 (NQO1) that can protect p53 by inhibiting its degradation by 20S proteasome. RYL-687 bound NQO1, facilitating the physical interaction between NQO1 and p53. NQO1 was required for RYL-687-induced p53 accumulation, because silencing of NQO1 by specific siRNA or an NQO1 inhibitor uridine, drastically suppressed RYL-687-induced p53 upregulation. Moreover, a RYL-687-related prodrug significantly inhibited tumor growth in NOD-SCID mice inoculated with NSCLC cells and in a wt p53-NSCLC patient-derived xenograft mouse model. These data indicate that targeting NQO1 is a rational strategy to reactivate p53, and RYL-687 as a p53 stabilizer bears therapeutic potentials in NSCLCs with wt p53.
Collapse
|
88
|
Chamberlain V, Drew Y, Lunec J. Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53 WT Uterine Leiomyosarcoma. Cancers (Basel) 2021; 14:cancers14010014. [PMID: 35008180 PMCID: PMC8750798 DOI: 10.3390/cancers14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
As there is no optimal therapeutic strategy defined for women with advanced or recurrent uLMS, there is an urgent need for the discovery of novel, targeted approaches. One such area of interest is the pharmacological inhibition of the MDM2-p53 interaction with small-molecular-weight MDM2 inhibitors. Growth inhibition and cytotoxic assays were used to evaluate uLMS cell line responses to MDM2 inhibitors as single agents and in combination, qRT-PCR to assess transcriptional changes and Caspase-Glo 3/7 assay to detect apoptosis. RG7388 and HDM201 are potent, selective antagonists of the MDM2-p53 interaction that can effectively stabilise and activate p53 in a dose-dependent manner. GSK2830371, a potent and selective WIP1 phosphatase inhibitor, was shown to significantly potentiate the growth inhibitory effects of RG7388 and HDM201, and significantly increase the mRNA expression of p53 transcriptional target genes in a p53WT cell line at a concentration that has no growth inhibitory effects as a single agent. RG7388, HDM201 and GSK2830371 failed to induce apoptosis as single agents; however, a combination treatment tipped cells into apoptosis from senescence. These data present the possibility of MDM2 and WIP1 inhibitor combinations as a potential treatment option for p53WT uLMS patients that warrants further investigation.
Collapse
Affiliation(s)
- Victoria Chamberlain
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
| | - Yvette Drew
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- BC Cancer Centre Vancouver and Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 4EH, Canada
| | - John Lunec
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- Correspondence:
| |
Collapse
|
89
|
Aziz YMA, Lotfy G, Said MM, El Ashry ESH, El Tamany ESH, Soliman SM, Abu-Serie MM, Teleb M, Yousuf S, Dömling A, Domingo LR, Barakat A. Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Based p53-MDM2 Inhibitors With Potential Bcl2 Signaling Attenuation. Front Chem 2021; 9:735236. [PMID: 34970530 PMCID: PMC8713455 DOI: 10.3389/fchem.2021.735236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The tumor resistance to p53 activators posed a clinical challenge. Combination studies disclosed that concomitant administration of Bcl2 inhibitors can sensitize the tumor cells and induce apoptosis. In this study, we utilized a rapid synthetic route to synthesize two novel hybrid spirooxindole-based p53-MDM2 inhibitors endowed with Bcl2 signaling attenuation. The adducts mimic the thematic features of the chemically stable potent spiro [3H-indole-3,2'-pyrrolidin]-2(1H)-ones p53-MDM2 inhibitors, while installing a pyrrole ring via a carbonyl spacer inspired by the natural marine or synthetic products that efficiently inhibit Bcl2 family functions. A chemical insight into the two synthesized spirooxindoles including single crystal x-ray diffraction analysis unambiguously confirmed their structures. The synthesized spirooxindoles 2a and 2b were preliminarily tested for cytotoxic activities against normal cells, MDA-MB 231, HepG-2, and Caco-2 via MTT assay. 2b was superior to 5-fluorouracil. Mechanistically, 2b induced apoptosis-dependent anticancer effect (43%) higher than that of 5-fluorouracil (34.95%) in three studied cancer cell lines, activated p53 (47%), downregulated the Bcl2 gene (1.25-fold), and upregulated p21 (2-fold) in the treated cancer cells. Docking simulations declared the possible binding modes of the synthesized compounds within MDM2.
Collapse
Affiliation(s)
- Yasmine M. Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Gehad Lotfy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
90
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
91
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
92
|
Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat Commun 2021; 12:7057. [PMID: 34862374 PMCID: PMC8642532 DOI: 10.1038/s41467-021-27142-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
In response to genotoxic stress, the tumor suppressor p53 acts as a transcription factor by regulating the expression of genes critical for cancer prevention. Mutations in the gene encoding p53 are associated with cancer development. PRIMA-1 and eprenetapopt (APR-246/PRIMA-1MET) are small molecules that are converted into the biologically active compound, methylene quinuclidinone (MQ), shown to reactivate mutant p53 by binding covalently to cysteine residues. Here, we investigate the structural basis of mutant p53 reactivation by MQ based on a series of high-resolution crystal structures of cancer-related and wild-type p53 core domains bound to MQ in their free state and in complexes with their DNA response elements. Our data demonstrate that MQ binds to several cysteine residues located at the surface of the core domain. The structures reveal a large diversity in MQ interaction modes that stabilize p53 and its complexes with DNA, leading to a common global effect that is pertinent to the restoration of non-functional p53 proteins. The tumor suppressor p53 is mutated in more than half of human cancers and the compound methylene quinuclidinone (MQ) was shown to reactivate p53 mutants by binding covalently to cysteine residues. Here, the authors present crystal structures of wild-type and cancer related p53 mutant core domains bound to MQ alone and in complex with their DNA response elements and observe that MQ is bound to several cysteine residues located at the surface of the core domain.
Collapse
|
93
|
Lotfy G, Abdel Aziz YM, Said MM, El Ashry ESH, El Tamany ESH, Abu-Serie MM, Teleb M, Dömling A, Barakat A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg Chem 2021; 117:105427. [PMID: 34794098 DOI: 10.1016/j.bioorg.2021.105427] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Despite the achieved progress in developing efficient MDM2-p53 protein-protein interaction inhibitors (MDM2 inhibitors), the acquired resistance of tumor cells to such p53 activators posed an argument about the druggability of the pathway. Combination studies disclosed that concomitant inhibition of MDM2 and BCL2 functions can sensitize the tumor cells and synergistically induce apoptosis. Herein, we employed a rapid combinatorial approach to generate a novel series of hybrid spirooxindole-based MDM2 inhibitors (5a-s) endowed with BCL2 signaling attenuation. The adducts were designed to mimic the thematic features of the chemically stable potent spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-ones MDM2 inhibitors while installing a pyrrole ring on the core via a carbonyl spacer inspired by the natural product marinopyrrole A that efficiently inhibits BCL2 family functions by various mechanisms. NCI 60 cell-line panel screening revealed their promising broad-spectrum antiproliferative activities. The NCI-selected derivatives were screened for cytotoxic activities against normal fibroblasts, MDA-MB 231, HepG-2, and Caco-2 cells via MTT assay, subjected to mechanistic apoptosis studies for assessment of p53, BCL2, p21, and caspase 3/7 status, then evaluated for potential MDM2 inhibition utilizing MST assay. The most balanced potent and safe derivatives; 5i and 5q were more active than 5-fluorouracil, exhibited low μmrange MDM2 binding (KD=1.32and 1.72 μm, respectively), induced apoptosis-dependent anticancer activities up to 50%, activated p53 by 47-63%, downregulated the BCL2 gene to 59.8%, and reduced its protein level (13.75%) in the treated cancer cells. Further downstream p53 signaling studies revealed > 2 folds p21 upregulation and > 3 folds caspase 3/7 activation. Docking simulations displayed that the active MDM2 inhibitors resided well into the p53 binding sites of MDM2, and shared key interactions with the co-crystalized inhibitor posed by the indolinone scaffold (5i, 5p, and 5q), the halogen substituents (5r), or the installed spiro ring (5s). Finally, in silico ADMET profiling predicted acceptable drug-like properties with full accordance to Lipinski's, Veber's, and Muegge's bioavailability parameters for 5i and a single violation for 5q.
Collapse
Affiliation(s)
- Gehad Lotfy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasmine M Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed M Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El Sayed H El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - El Sayed H El Tamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
94
|
Zhang L, Jia R, Li H, Yu H, Ren K, Jia S, Li Y, Wang Q. Insight into the Double-Edged Role of Ferroptosis in Disease. Biomolecules 2021; 11:1790. [PMID: 34944434 PMCID: PMC8699194 DOI: 10.3390/biom11121790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis, a newly described type of iron-dependent programmed cell death that is distinct from apoptosis, necroptosis, and other types of cell death, is involved in lipid peroxidation (LP), reactive oxygen species (ROS) production, and mitochondrial dysfunction. Accumulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury, cancer, hepatic fibrosis, Parkinson's disease, and Alzheimer's disease. Therefore, ferroptosis has become one of the research hotspots for disease treatment and attracted extensive attention in recent years. This review mainly summarizes the relationship between ferroptosis and various diseases classified by the system, including the urinary system, digestive system, respiratory system, nervous system. In addition, the role and molecular mechanism of multiple inhibitors and inducers for ferroptosis are further elucidated. A deeper understanding of the relationship between ferroptosis and multiple diseases may provide new strategies for researching diseases and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Ruohan Jia
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Huizhen Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Huarun Yu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Keke Ren
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Shuangshuang Jia
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
95
|
Milosevic J, Treis D, Fransson S, Gallo-Oller G, Sveinbjörnsson B, Eissler N, Tanino K, Sakaguchi K, Martinsson T, Wickström M, Kogner P, Johnsen JI. PPM1D Is a Therapeutic Target in Childhood Neural Tumors. Cancers (Basel) 2021; 13:cancers13236042. [PMID: 34885154 PMCID: PMC8657050 DOI: 10.3390/cancers13236042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Medulloblastoma and neuroblastoma are childhood tumors of the central nervous system or the peripheral nervous system, respectively. These are the most common and deadly tumors of childhood. A common genetic feature of medulloblastoma and neuroblastoma is frequent segmental gain or amplification of chromosome 17q. Located on chromosome 17q23.2 is PPM1D which encodes WIP1, a phosphatase that acts as a regulator of p53 and DNA repair. Overexpression of WIP1 correlates with poor patient prognosis. We investigated the effects of genetic or pharmacologic inhibition of WIP1 activity and found that medulloblastoma and neuroblastoma cells were strongly dependent on WIP1 expression for survival. We also tested a number of small molecule inhibitors of WIP1 and show that SL-176 was the most effective compound suppressing the growth of medulloblastoma and neuroblastoma in vitro and in vivo. Abstract Childhood medulloblastoma and high-risk neuroblastoma frequently present with segmental gain of chromosome 17q corresponding to aggressive tumors and poor patient prognosis. Located within the 17q-gained chromosomal segments is PPM1D at chromosome 17q23.2. PPM1D encodes a serine/threonine phosphatase, WIP1, that is a negative regulator of p53 activity as well as key proteins involved in cell cycle control, DNA repair and apoptosis. Here, we show that the level of PPM1D expression correlates with chromosome 17q gain in medulloblastoma and neuroblastoma cells, and both medulloblastoma and neuroblastoma cells are highly dependent on PPM1D expression for survival. Comparison of different inhibitors of WIP1 showed that SL-176 was the most potent compound inhibiting medulloblastoma and neuroblastoma growth and had similar or more potent effects on cell survival than the MDM2 inhibitor Nutlin-3 or the p53 activator RITA. SL-176 monotherapy significantly suppressed the growth of established medulloblastoma and neuroblastoma xenografts in nude mice. These results suggest that the development of clinically applicable compounds inhibiting the activity of WIP1 is of importance since PPM1D activating mutations, genetic gain or amplifications and/or overexpression of WIP1 are frequently detected in several different cancers.
Collapse
Affiliation(s)
- Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: (J.M.); (J.I.J.)
| | - Diana Treis
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden; (S.F.); (T.M.)
| | - Gabriel Gallo-Oller
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
| | - Baldur Sveinbjörnsson
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
| | - Nina Eissler
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
| | - Keiji Tanino
- Laboratory of Organic Chemistry II, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan;
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan;
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden; (S.F.); (T.M.)
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.T.); (G.G.-O.); (B.S.); (N.E.) (M.W.); (P.K.)
- Correspondence: (J.M.); (J.I.J.)
| |
Collapse
|
96
|
Guo Y, Wang FF, Xiang B, Ma HB, Gong YP. Tanshinone IIA potentiates the efficacy of imatinib by regulating the AKT-MDM2-P53 signaling pathway in Philadelphia chromosome-positive acute lymphoblastic leukemia. Oncol Lett 2021; 23:7. [PMID: 34820006 PMCID: PMC8607239 DOI: 10.3892/ol.2021.13125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by breakpoint cluster region-abelson leukemia virus (BCR/ABL) kinase. Targeting BCR/ABL kinase with tyrosine kinase inhibitors combined with chemotherapy is the standard first-line therapy for Ph+ ALL. Imatinib and dasatinib are the preferred agents for the treatment of Ph+ ALL. Dasatinib treatment can induce a faster and deeper remission than imatinib treatment; however, the side effects of dasatinib, especially the cardiovascular side effects, are markedly greater than those of imatinib. Patients will benefit from treatments that improve the efficacy of imatinib without increasing its side effects. The present study revealed that tanshinone IIA markedly potentiated the cytotoxic and apoptotic induction effects of imatinib by regulating the AKT-MDM2-P53 signaling pathway and inhibiting the anti-apoptotic proteins BCL2 and MCL1 apoptosis regulator, BCL2 family member in Ph+ ALL cell lines. In vitro studies, MTT assay, flow cytometry, western blotting and reverse transcription-quantitative PCR were performed in the present study to detect cell viability, cell apoptosis, protein expression and gene expression, respectively. In a Ph+ ALL mouse model, imatinib combined with tanshinone IIA also exhibited a synergistic effect on the reduction in leukemia burden without increasing the toxic side effects of imatinib. These results demonstrated that imatinib combined with tanshinone IIA might be a promising treatment strategy for patients with Ph+ ALL.
Collapse
Affiliation(s)
- Yong Guo
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang-Fang Wang
- Hematology Research Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing Xiang
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Bing Ma
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Ping Gong
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
97
|
Zhang X, Zhou C, Yang Y, Liu H, Wang S, Ding X, Wang H. The Discovery of Potential MDM2 Inhibitors: A Combination of Pharmacophore Modeling, Virtual Screening, Molecular Docking Studies, and in vitro/in vivo Biological Evaluation. ChemMedChem 2021; 17:e202100517. [PMID: 34806333 DOI: 10.1002/cmdc.202100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Small-molecule inhibitors of MDM2 that block the MDM2-p53 protein-protein interaction have been considered as potential therapeutic agents for the treatment of cancer. Here, we identify five highly potent inhibitors of MDM2 (termed as WY 1-5) that display significant inhibitory effects on MDM2-p53 interaction by using a combined strategy of pharmacophore modeling, virtual screening, and molecular docking studies. Among them, WY-5 is the most active MDM2 inhibitor with an IC50 value of 14.1±2.8 nM. Moreover, WY-5 significantly up-regulate the protein level of p53 in SK-Hep-1 cells harboring wild-type p53. In vitro anticancer study reveals that WY-5 markedly inhibits the survival of SK-Hep-1 cells. In vivo anticancer study suggests that WY-5 significantly inhibits the growth of SK-Hep-1 cells-derived xenograft in nude mice, with no observable toxicity. Our results demonstrate that WY-5 may be a promising candidate for the treatment of cancer harboring wild-type p53.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Chunqiao Zhou
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Hailin Liu
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Xiaoli Ding
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Hu Wang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| |
Collapse
|
98
|
Reutershan MH, Machacek MR, Altman MD, Bogen S, Cai M, Cammarano C, Chen D, Christopher M, Cryan J, Daublain P, Fradera X, Geda P, Goldenblatt P, Hill AD, Kemper RA, Kutilek V, Li C, Martinez M, McCoy M, Nair L, Pan W, Thompson CF, Scapin G, Shizuka M, Spatz ML, Steinhuebel D, Sun B, Voss ME, Wang X, Yang L, Yeh TC, Dussault I, Marshall CG, Trotter BW. Discovery of MK-4688: an Efficient Inhibitor of the HDM2-p53 Protein-Protein Interaction. J Med Chem 2021; 64:16213-16241. [PMID: 34714078 DOI: 10.1021/acs.jmedchem.1c01524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties. Ultimately, a strategy focused on leveraging known binding hot spots coupled with biostructural information to guide the design of conformationally constrained analogs and a focus on efficiency metrics led to the discovery of MK-4688 (compound 56), a highly potent, selective, and low-molecular-weight inhibitor suitable for clinical investigation.
Collapse
Affiliation(s)
- Michael H Reutershan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michelle R Machacek
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael D Altman
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Stephane Bogen
- Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, New Jersey 07032, United States
| | - Mingmei Cai
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Carolyn Cammarano
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dapeng Chen
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew Christopher
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - John Cryan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Pierre Daublain
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Xavier Fradera
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Prasanthi Geda
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter Goldenblatt
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Armetta D Hill
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Raymond A Kemper
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Victoria Kutilek
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chaomin Li
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michelle Martinez
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mark McCoy
- Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, New Jersey 07032, United States
| | - Latha Nair
- Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, New Jersey 07032, United States
| | - Weidong Pan
- Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, New Jersey 07032, United States
| | | | - Giovanna Scapin
- Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, New Jersey 07032, United States
| | - Manami Shizuka
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Marianne L Spatz
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dietrich Steinhuebel
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Binyuan Sun
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew E Voss
- Albany Molecular Research Inc., 61 Science Park Road, Singapore (West) 117525, Singapore
| | - Xiao Wang
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Liping Yang
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tammie C Yeh
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Isabelle Dussault
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - C Gary Marshall
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - B Wesley Trotter
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
99
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
100
|
The Role of Long Non-coding RNA, Nuclear Enriched Abundant Transcript 1 (NEAT1) in Cancer and Other Pathologies. Biochem Genet 2021; 60:843-867. [PMID: 34689290 DOI: 10.1007/s10528-021-10138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
Nuclear enriched abundant transcript 1 (NEAT1), consisting of two kinds of lncRNAs of 3.7 kB NEAT1-1 and 23 kB NEAT1-2, can be highly expressed in organs and tissues such as the ovary, prostate, colon, and pancreas, and is involved in paraspeckle formation and mRNA editing and gene expression. Therefore, NEAT1 is a potential biomarker for the treatment of a variety of diseases, which may be caused by two factors (isoforms of NEAT1 and NEAT1 sponging miRNA as ceRNA). However, there is still much confusion about the mechanism and downstream effector between the abnormal expression of NEAT1 and various diseases. This review summarizes recent research progress on NEAT1 in cancer and other pathologies and provides a more reliable theoretical basis for the treatment of related diseases.
Collapse
|