51
|
Wang Y, Chu T, Meng C, Bian Y, Li J. Piezo1-specific Deletion in Macrophage Protects the Progression of Chronic Inflammatory Bowel Disease in Mice. Cell Mol Gastroenterol Hepatol 2025:101495. [PMID: 40081571 DOI: 10.1016/j.jcmgh.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Piezo1, a recently identified mechanically activated nonselective cation channel protein, demonstrates sensitivity to various mechanical stimuli, such as matrix stiffness and shear stress. Although accumulating evidence implicates Piezo1 channels in numerous physiologic and pathophysiologic processes, its involvement in dextran sulfate sodium (DSS)-induced acute and chronic inflammatory bowel disease (IBD) remains incompletely understood. This study aimed to investigate the effect of Piezo1 channels in macrophage polarization and its associated functions in IBD. METHODS DSS-induced inflammatory bowel disease model was established in Piezo1td/Tdt or Piezo1fl/fl and Piezo1△LysM male mice. Additionally, bone marrow-derived macrophages from Piezo1fl/fl and Piezo1△LysM male mice were isolated to elucidate the downstream targets of Piezo1 and the associated underlying molecular mechanisms. RESULTS Our findings revealed that Piezo1 deficiency in macrophages could protect mice from DSS-induced chronic IBD, as evidenced by improved colon length and the preservation of colon structure. The mitigation of inflammation during chronic IBD progression was observed with Piezo1 deficiency in macrophages, characterized by reduced macrophage accumulation, M1 macrophage polarization, T helper 1 infiltration, and decreased inflammatory cytokine secretion. Further investigations unveiled that Piezo1-deficient macrophages inhibit the expression and activity of Nod-like receptor protein 3 and nuclear factor kappa B in colon tissues and bone marrow-derived macrophages while regulating the nuclear translocation of p65. Conversely, macrophage Piezo1 activation enhanced inflammatory cytokine secretion by activating Nod-like receptor protein 3/nuclear factor kappa B pathways. CONCLUSIONS Myeloid Piezo1 mediates colonic immune response, and disrupting Piezo1 inhibits the progression of chronic IBD. This study provides hitherto undocumented evidence of the pivotal role of macrophage Piezo1 channels in regulating the progression of chronic IBD. Targeting macrophage Piezo1 may offer a promising therapeutic strategy against chronic IBD.
Collapse
Affiliation(s)
- Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China; College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China
| | - Chengzhen Meng
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China.
| |
Collapse
|
52
|
Gomez-Diaz C, Greulich W, Wefers B, Wang M, Bolsega S, Effern M, Varga DP, Han Z, Chen M, Bérouti M, Leonardi N, Schillinger U, Holzmann B, Liesz A, Roers A, Hölzel M, Basic M, Wurst W, Hornung V. RNase T2 restricts TLR13-mediated autoinflammation in vivo. J Exp Med 2025; 222:e20241424. [PMID: 39853306 PMCID: PMC11758920 DOI: 10.1084/jem.20241424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation. Consistent with this, mice lacking RNase T2 exhibit interferon-dependent neuroinflammation, impaired hematopoiesis, and splenomegaly. However, the mechanism by which RNase T2 deficiency unleashes inflammation in vivo remains unknown. Here, we report that the inflammatory phenotype found in Rnaset2-/- mice is completely reversed in the absence of TLR13, suggesting aberrant accumulation of an RNA ligand for this receptor. Interestingly, this TLR13-driven inflammatory phenotype is also fully present in germ-free mice, suggesting a role for RNase T2 in limiting erroneous TLR13 activation by an as yet unidentified endogenous ligand. These results establish TLR13 as a potential self-sensor that is kept in check by RNase T2.
Collapse
Affiliation(s)
- Carlos Gomez-Diaz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wilhelm Greulich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Maike Effern
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Daniel P. Varga
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhe Han
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Minyi Chen
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marleen Bérouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natascia Leonardi
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrike Schillinger
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Arthur Liesz
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Axel Roers
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Site Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
53
|
Karjalainen A, Witalisz-Siepracka A, Prchal-Murphy M, Martin D, Sternberg F, Krunic M, Dolezal M, Fortelny N, Farlik M, Macho-Maschler S, Lassnig C, Meissl K, Amenitsch L, Lederer T, Pohl E, Gotthardt D, Bock C, Decker T, Strobl B, Müller M. Cell-type-specific requirement for TYK2 in murine immune cells under steady state and challenged conditions. Cell Mol Life Sci 2025; 82:98. [PMID: 40025196 PMCID: PMC11872851 DOI: 10.1007/s00018-025-05625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Tyrosine kinase 2 (TYK2) deficiency and loss or inhibition of kinase activity in men and mice leads to similar immune compromised phenotypes, predominantly through impairment of interferon (IFN) and interleukin 12 family responses. Here we relate the transcriptome changes to phenotypical changes observed in TYK2-deficient (Tyk2-/-) and TYK2 kinase-inactive (Tyk2K923E) mice in naïve splenic immune cells and upon ex vivo IFN treatment or in vivo tumor transplant infiltration. The TYK2 activities under homeostatic and both challenged conditions are highly cell-type-specific with respect to quantity and quality of transcriptionally dependent genes. The major impact of loss of TYK2 protein or kinase activity in splenic homeostatic macrophages, NK and CD8+ T cells and tumor-derived cytolytic cells is on IFN responses. While reportedly TYK2 deficiency leads to partial impairment of IFN-I responses, we identified cell-type-specific IFN-I-repressed gene sets completely dependent on TYK2 kinase activity. Reported kinase-inactive functions of TYK2 relate to signaling crosstalk, metabolic functions and cell differentiation or maturation. None of these phenotypes relates to respective enriched gene sets in the TYK2 kinase-inactive cell types. Nonetheless, the scaffolding functions of TYK2 are capable to change transcriptional activities at single gene levels and chromatin accessibility at promoter-distal regions upon cytokine treatment most prominently in CD8+ T cells. The cell-type-specific transcriptomic and epigenetic effects of TYK2 shed new light on the biology of this JAK family member and are relevant for current and future treatment of autoimmune and inflammatory diseases with TYK2 inhibitors.
Collapse
Affiliation(s)
- Anzhelika Karjalainen
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Michaela Prchal-Murphy
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Martin
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Milica Krunic
- Campus Tulln, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Marlies Dolezal
- Platform Biostatistics and Bioinformatics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Core Facility VetBiomodels, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena Pohl
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Gotthardt
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Christoph Bock
- Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
54
|
Dalvie S, Li MJ, Kalmin MM, Cole SW, Stein DJ, Shoptaw SJ. The Association between Childhood Adversity and the Conserved Transcriptional Response to Adversity (CTRA) in Sexual Minority Men. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2025; 18:1-9. [PMID: 40098778 PMCID: PMC11910459 DOI: 10.1007/s40653-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 03/19/2025]
Abstract
Adverse childhood experiences (ACEs) increase risk for mental and physical health disorders in adulthood, particularly in individuals from sexual and ethnic minority groups. The effects of ACEs on health may be mediated by the immune system. The exact mechanisms by which an environmental exposure, such as childhood adversity, can affect the immune system are still unknown. The primary aim of this study was to determine whether early adversity is associated with significant changes in the expression of a predefined set of immune-related genes, known as the conserved transcriptional response to adversity (CTRA), in a diverse group (African American and Latino) of sexual minority men (SMM) (n = 259). Participants included HIV positive and negative males, with a median age of 31 years (range = 19-46 years), from the mSTUDY. Expression data from 53 CTRA genes were obtained at baseline and 12-month follow-up. Childhood adversity was measured with the 10-item ACEs questionnaire. Wilcoxon rank sum and chi-squared tests were used to assess differences in sociodemographic variables, HIV status, smoking, weekly alcohol use, and methamphetamine use between exposed (cumulative ACEs ≥ 1) and unexposed groups (cumulative ACEs = 0). As we had transcriptional data from two timepoints, linear mixed models were used to determine associations between ACEs (cumulative score, dichotomous measure (exposed/unexposed), childhood maltreatment, household dysfunction, abuse and neglect subscales) and CTRA gene expression. Exploratory subgroup analysis was conducted in younger (≤ median age) and older (> median age) participant groups. There were no statistically significant differences in sociodemographic variables and substance use between the exposed and unexposed groups. There were no significant associations between any of the ACEs variables and CTRA gene, suggesting that early adversity does not influence immune-related gene expression in a group of ethnically diverse SMM. Further studies are needed to assess the biological effects of ACEs in adulthood. Supplementary Information The online version contains supplementary material available at 10.1007/s40653-024-00661-2.
Collapse
Affiliation(s)
- Shareefa Dalvie
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michael J. Li
- Center for Behavioral and Addiction Medicine, Department of Family Medicine, University of California, Los Angeles, USA
- Center for HIV Identification, Prevention and Treatment Services, University of California, Los Angeles, USA
| | - Mariah M. Kalmin
- Center for Behavioral and Addiction Medicine, Department of Family Medicine, University of California, Los Angeles, USA
- Center for HIV Identification, Prevention and Treatment Services, University of California, Los Angeles, USA
| | - Steven W. Cole
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Dan J. Stein
- SAMRC, Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Steven J. Shoptaw
- Center for Behavioral and Addiction Medicine, Department of Family Medicine, University of California, Los Angeles, USA
- Center for HIV Identification, Prevention and Treatment Services, University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| |
Collapse
|
55
|
Shin SD, Branning R, McGinnis M, Shin A, Ho M, Karpyak VM, Oesterle T. Buprenorphine's Effect on the Human Immune System and Inflammation. Clin Transl Sci 2025; 18:e70180. [PMID: 40065582 PMCID: PMC11893730 DOI: 10.1111/cts.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Opioid use disorder is a persistent epidemic despite several FDA-approved medications for its treatment. While the pathogenesis of opioid use disorder has been classically attributed to dopamine pathways in the brain, there is emerging evidence and interest surrounding the role of inflammation and inflammatory signaling in its development and treatment. Buprenorphine has become the most prescribed medication for opioid use disorder, largely due to its ease of access and tolerability. This review aimed to better characterize contemporary knowledge of how buprenorphine modulates the human immune system and inflammatory functions in this population. A comprehensive review was conducted using 11 key databases, including Embase, MEDLINE, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov. This review captured 8177 records, and 14 studies were ultimately selected for inclusion and discussion in this review. Notably, all 14 clinical studies evaluated buprenorphine's effect on the peripheral immune system, and the majority of the studies supported the notion that initiation and maintenance of buprenorphine restore immune suppression caused by opioid use disorder. In addition, we discuss how recent and ongoing work utilizing advanced imaging and cellular technologies is advancing the understanding of how buprenorphine affects the immune and inflammatory signaling in the brain.
Collapse
Affiliation(s)
- Samuel D. Shin
- Department of Psychiatry and PsychologyCleveland ClinicClevelandOhioUSA
| | - Rachel Branning
- Department of PsychiatryUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
| | | | - Alexandra Shin
- Department of Pathology and Human AnatomyLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Ming‐Fen Ho
- Department of Psychiatry & PsychologyMayo ClinicRochesterMinnesotaUSA
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Victor M. Karpyak
- Department of Psychiatry & PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Tyler Oesterle
- Department of Psychiatry & PsychologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
56
|
Li Y, Li X, Cournoyer P, Choudhuri S, Guo L, Chen S. Comparing the cannabidiol-induced transcriptomic profiles in human and mouse Sertoli cells. Toxicology 2025; 512:154068. [PMID: 39894194 DOI: 10.1016/j.tox.2025.154068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Cannabidiol (CBD), a major cannabinoid found in Cannabis sativa L., has been used in the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex. Recently, concerns have been raised regarding the male reproductive toxicity of CBD in animal models, such as monkeys, rats, and mice. In our previous studies, we reported that CBD inhibited cell proliferation in both primary human Sertoli cells and mouse Sertoli TM4 cells. Transcriptomic analysis revealed that in primary human Sertoli cells CBD disrupted DNA replication, cell cycle, and DNA repair, ultimately causing cellular senescence. In this study, we further investigated the molecular changes induced by CBD in mouse Sertoli TM4 cells using RNA-sequencing analyses and compared the transcriptomic profile with that of primary human Sertoli cells. Our findings demonstrated that, unlike in primary human Sertoli cells, CBD did not induce cellular senescence but caused apoptosis in mouse Sertoli TM4 cells. Through transcriptomic data analysis in mouse Sertoli TM4 cells, immune and cellular stress responses were identified. Moreover, transcriptomic comparisons revealed major differences in molecular changes induced by CBD between mouse Sertoli TM4 and primary human Sertoli cells. This suggests that primary human Sertoli cells and mouse Sertoli cells may respond differently to CBD.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Patrick Cournoyer
- Office of the Commissioner, U S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Premarket Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U S. Food and Drug Administration, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
57
|
Huang J, Hu Y, Wang S, Liu Y, Sun X, Wang X, Yu H. Single-cell RNA sequencing in autoimmune diseases: New insights and challenges. Pharmacol Ther 2025; 267:108807. [PMID: 39894174 DOI: 10.1016/j.pharmthera.2025.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Autoimmune diseases involve a variety of cell types, yet the intricacies of their individual roles within molecular mechanisms and therapeutic strategies remain poorly understood. Single-cell RNA sequencing (scRNA-seq) offers detailed insights into transcriptional diversity at the single-cell level, significantly advancing research in autoimmune diseases. This article explores how scRNA-seq enhances the understanding of cellular heterogeneity and its potential applications in the etiology, diagnosis, treatment, and prognosis of autoimmune diseases. By revealing a comprehensive cellular landscape, scRNA-seq illuminates the functional regulation of different cell subtypes during disease progression. It aids in identifying diagnostic and prognostic markers, and analyzing cell communication networks to uncover potential therapeutic targets. Despite its valuable contributions, addressing the limitations of scRNA-seq is essential for making further advancements.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Yuefang Liu
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
58
|
Wang C, Yang Y, Yang X, Yang Q, Liu R, Li W, Liu X. IFN-mediated lncRNA-ISL promotes SVV infection through G1P3. Vet Microbiol 2025; 302:110318. [PMID: 39823712 DOI: 10.1016/j.vetmic.2024.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 01/20/2025]
Abstract
lncRNAs play important regulatory roles in almost every aspect of physiological processes. However, the mechanisms by which animal-encoded lncRNAs regulate the interaction of viral infection with host antiviral immunity are unknown. To explore the mechanisms of lncRNA regulation of SVV infection and interferon responses. We performed complete transcriptome sequencing analysis of porcine kidney 15 (PK-15) after infection with SVV-1 strain and IFN-α treatment, and identified and screened the sequencing data to obtain potential functional lncRNA-ISL. selected genes were knocked down using CRISPR/Cas9 guide RNAs (gRNAs), and the results of the sequencing were monitored by qRT-PCR and protein blotting in multiple cell lines for selected gene mRNAs and their proteins as well as SVV infection. The results showed that 68 lncRNAs were significantly altered by IFN-α and 176 lncRNAs were significantly altered after SVV infection. We found that lncRNA-ISL gRNA significantly inhibited SVV infection compared to negative gRNA control. The expression of the antiviral ISG G1P3 was significantly increased following lncRNA-ISL gRNA editing compared to negative gRNA control in SVV-infected PK-15 cells. We observed that lncRNA-ISL regulation of SVV was independent of JAK-STAT signaling and not associated with G1P3 DNA methylation. Finally, we confirmed that the regulatory effect of lncRNA-ISL on G1P3 occurs during the initial transcription.
Collapse
Affiliation(s)
- Chen Wang
- Southwest University, College of Veterinary Medicine, Chongqing 400715, China.
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China; Department of VIP ward, The First Branch of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| | - Xiwang Yang
- Southwest University, College of Veterinary Medicine, Chongqing 400715, China.
| | - Qiyue Yang
- Southwest University, College of Veterinary Medicine, Chongqing 400715, China.
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xiao Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; Southwest University, College of Veterinary Medicine, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Chongqing 400715, China.
| |
Collapse
|
59
|
Xia A, Li X, Zhao C, Meng X, Kari G, Wang Y. For Better or Worse: Type I Interferon Responses in Bacterial Infection. Pathogens 2025; 14:229. [PMID: 40137714 PMCID: PMC11945191 DOI: 10.3390/pathogens14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Type I interferons (IFNs) are pleiotropic cytokines, primarily comprising IFN-α and IFN-β, and their effect in host defense against viral infection has been extensively studied and well-established. However, in bacterial infection, the role of type I IFNs is more complex, exhibiting multifaceted effects that depend on several factors, such as the pathogen species, the specific cell populations, and the routes of infection. In this review, we summarize research progress on host type I interferon responses triggered by specific bacteria and their immune regulation function in order to better understand the role of type I IFNs in bacterial infection and provide insights for adjuvant therapies tailored to treat specific bacterial infections.
Collapse
Affiliation(s)
- Aihong Xia
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| | - Xin Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China;
| | - Changjing Zhao
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| | - Xiaojing Meng
- College of Agricultural Economics and Engineering, Kizilsu Vocational Technical College, Kizilsu Kirgiz Autonomous Prefecture 845350, China;
| | - Gulmela Kari
- College of Agricultural Economics and Engineering, Kizilsu Vocational Technical College, Kizilsu Kirgiz Autonomous Prefecture 845350, China;
| | - Yongjuan Wang
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| |
Collapse
|
60
|
Castellan M, Zamperin G, Foiani G, Zorzan M, Priore MF, Drzewnioková P, Melchiotti E, Vascellari M, Monne I, Crovella S, Leopardi S, De Benedictis P. Immunological findings of West Caucasian bat virus in an accidental host. J Virol 2025; 99:e0191424. [PMID: 39846740 PMCID: PMC11853057 DOI: 10.1128/jvi.01914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The Lyssavirus genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events. In this scenario, unveiling the mechanisms underlying the host immune response against a virus is crucial to understand the dynamics of infection and to predict the probability of colonization/adaptation to a new target species. Presently, the host response to lyssaviruses has only been partially explored, with the majority of data extrapolated from RABV infection. West Caucasian bat virus (WCBV), a divergent lyssavirus, has recently been associated with a spillover event to a domestic cat, raising concern about the risks to public health due to the circulation of the virus in its natural host. Through this study we have investigated the immune response determined by the WCBV versus two widely known lyssaviruses. We selected the Syrian hamster as representative of an accidental host, and chose the intramuscular route in order to mimic the natural infection. In hamsters, WCBV was highly pathogenic, determining 100% lethality and mild encephalitis. In comparison with Duvenhage virus (DUVV) and RABV, we found that WCBV displayed an intermediate ability to promote cellular antiviral response, produce pro-inflammatory cytokines, and recruit and activate lymphocytes in the hamsters' central nervous system. IMPORTANCE Although all lyssaviruses cause fatal encephalomyelitis in mammals, they display a different host tropism and pathogenicity, with the ecology of Rabies virus (RABV) continually evolving and adapting to new host species. In 2020, West Caucasian bat virus (WCBV) was identified as the causative agent of rabies in a domestic cat in Italy. This event raised concerns about its public health consequences, due to the absence of biologicals against the infection. Our study investigates the host immune response triggered by WCBV in comparison with a pathogenic strain of RABV and the low pathogenic Duvenhage lyssavirus (DUVV), as a proxy to understand the mechanisms leading to lyssavirus spillover and pathogenicity. We overall confirm that previous evidence indicating an inverse relationship between lyssavirus pathogenicity and immune response is applicable for WCBV as well. Importantly, this work represents the first transcriptomic analysis of the WCBV interaction in the central nervous system with an accidental host.
Collapse
Affiliation(s)
- Martina Castellan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gianpiero Zamperin
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Greta Foiani
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Petra Drzewnioková
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Erica Melchiotti
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marta Vascellari
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabella Monne
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
61
|
Ravenhill BJ, Oliveira M, Wood G, Di Y, Kite J, Wang X, Davies CTR, Lu Y, Antrobus R, Elliott G, Irigoyen N, Hughes DJ, Lyons PA, Chung B, Borner GHH, Weekes MP. Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11. Cell Rep 2025; 44:115263. [PMID: 39921859 DOI: 10.1016/j.celrep.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 02/10/2025] Open
Abstract
Appropriate cellular recognition of viruses is essential for the generation of an effective innate and adaptive immune response. Viral sensors and their downstream signaling components thus provide a crucial first line of host defense. Many of them exhibit subcellular relocalization upon activation, resulting in the expression of interferon and antiviral genes. To comprehensively identify signaling factors, we analyzed protein relocalization on a global scale during viral infection. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivators 2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon infection with multiple viruses in diverse cell types. This movement was dependent on mitochondrial antiviral signaling protein (MAVS), cyclo-oxygenase proteins, and protein kinase A. A key effect of CRTC2/3 translocation is transcription of the fibro-inflammatory cytokine interleukin (IL)-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2. Nuclear translocation of CRTC2/3 is, therefore, identified as an important pathway in the context of viral infection.
Collapse
Affiliation(s)
- Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - George Wood
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xinyue Wang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gill Elliott
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David J Hughes
- School of Biology, University of St. Andrews, St. Andrews, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
62
|
Pan Y, Berkovska O, Marathe S, Mermelekas G, Gudoityte G, Wolide AD, Arslan T, Seashore-Ludlow B, Lehtiö J, Orre LM. Functional-proteomics-based investigation of the cellular response to farnesyltransferase inhibition in lung cancer. iScience 2025; 28:111864. [PMID: 39995872 PMCID: PMC11848503 DOI: 10.1016/j.isci.2025.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Farnesylation is a lipid post-translational modification of proteins crucial for protein membrane anchoring and cellular signaling. Farnesyltransferase inhibitors (FTIs), such as tipifarnib, are being tested in cancer therapy. However, the full impact of FTIs on farnesylation substrates remains poorly understood, thus limiting their use in precision medicine. In this study, we performed a global proteomics analysis to investigate farnesylation and the effects of tipifarnib in lung cancer cell lines. Using metabolic labeling and mass spectrometry, we identified farnesylated proteins and mapped their subcellular localization. We also analyzed tipifarnib-dependent protein relocalization and proteome-wide changes. Key findings include the potential therapeutic value of FTIs for NRAS-mutated melanoma and GNAQ/GNA11-mutated uveal melanoma by inhibiting INPP5A farnesylation. Additionally, we identified a synergistic drug combination involving tipifarnib and a ferroptosis inducer and discovered PTP4A1 as a regulator of interferon signaling. Our data, covering 15,080 proteins, offer valuable insights for future studies of farnesylation and FTIs.
Collapse
Affiliation(s)
- Yanbo Pan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Olena Berkovska
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Soumitra Marathe
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Georgios Mermelekas
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Greta Gudoityte
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Amare D. Wolide
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Taner Arslan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Brinton Seashore-Ludlow
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Janne Lehtiö
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Lukas M. Orre
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
63
|
Shi Y, Zhang J, Li Y, Feng C, Shao C, Shi Y, Fang J. Engineered mesenchymal stem/stromal cells against cancer. Cell Death Dis 2025; 16:113. [PMID: 39971901 PMCID: PMC11839947 DOI: 10.1038/s41419-025-07443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Mesenchymal stem/stromal cells (MSCs) have garnered attention for their potential in cancer therapy due to their ability to home to tumor sites. Engineered MSCs have been developed to deliver therapeutic proteins, microRNAs, prodrugs, chemotherapy drugs, and oncolytic viruses directly to the tumor microenvironment, with the goal of enhancing therapeutic efficacy while minimizing off-target effects. Despite promising results in preclinical studies and clinical trials, challenges such as variability in delivery efficiency and safety concerns persist. Ongoing research aims to optimize MSC-based cancer eradication and immunotherapy, enhancing their specificity and efficacy in cancer treatment. This review focuses on advancements in engineering MSCs for tumor-targeted therapy.
Collapse
Affiliation(s)
- Yuzhu Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jia Zhang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200025, China.
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
64
|
Conrad DN, Phong KT, Korotkevich E, McGinnis CS, Zhu Q, Chow ED, Gartner ZJ. Reducing batch effects in single cell chromatin accessibility measurements by pooled transposition with MULTI-ATAC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638353. [PMID: 40027737 PMCID: PMC11870453 DOI: 10.1101/2025.02.14.638353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Large-scale scATAC-seq experiments are challenging because of their costs, lengthy protocols, and confounding batch effects. Several sample multiplexing technologies aim to address these challenges, but do not remove batch effects introduced when performing transposition reactions in parallel. We demonstrate that sample-to-sample variability in nuclei-to-Tn5 ratios is a major cause of batch effects and develop MULTI-ATAC, a multiplexing method that pools samples prior to transposition, as a solution. MULTI-ATAC provides high accuracy in sample classification and doublet detection while eliminating batch effects associated with variable nucleus-to-Tn5 ratio. We illustrate the power of MULTI-ATAC by performing a 96-plex multiomic drug assay targeting epigenetic remodelers in a model of primary immune cell activation, uncovering tens of thousands of drug-responsive chromatin regions, cell-type specific effects, and potent differences between matched inhibitors and degraders. MULTI-ATAC therefore enables batch-free and scalable scATAC-seq workflows, providing deeper insights into complex biological processes and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniel N. Conrad
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kiet T. Phong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ekaterina Korotkevich
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher S. McGinnis
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Qin Zhu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric D. Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
65
|
Schiffman A, Cheng Z, Ourthiague D, Hoffmann A. Gene regulatory logic of the interferon-β enhancer contains multiple selectively deployed modes of transcription factor synergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636520. [PMID: 39975349 PMCID: PMC11838565 DOI: 10.1101/2025.02.04.636520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferon IFNβ is a key regulator of the immune response, and its dysregulated expression causes disease. The regulation of IFNβ promoter activity has been a touchpoint of mammalian gene control research since the discovery of functional synergy between two stimulus-responsive transcription factors (TFs) nuclear factor kappa B (NFκB) and interferon regulatory factors (IRF). However, subsequent gene knockout studies revealed that this synergy is condition-dependent such that either NFκB or IRF activation can be dispensable, leaving the precise regulatory logic of IFNβ transcription an open question. Here, we developed a series of quantitative enhancer states models of IFNβ expression control and evaluated them with stimulus-response data from TF knockouts. Our analysis confirmed that TF synergy is a hallmark of the regulatory logic but that it need not involve NFκB, as synergy between two adjacent IRF dimers is sufficient. We found that a sigmoidal binding curve at the distal site renders the dual IRF synergy mode ultrasensitive, allowing it only in conditions of high IRF activity upon viral infection. In contrast, the proximal site has high affinity and enables expression in response to bacterial exposure through synergy with NFκB. However, its accessibility is controlled by the competitive repressor p50:p50, which prevents basal IRF levels from synergizing with NFκB, such that NFκB-only stimuli do not activate IFNβ expression. The enhancer states model identifies multiple synergy modes that are accessed differentially in response to different immune threats, enabling a highly stimulus-specific but also versatile regulatory logic for stimulus-specific IFNβ expression.
Collapse
Affiliation(s)
- Allison Schiffman
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Diana Ourthiague
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| |
Collapse
|
66
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
67
|
Zhou M, Xiao H, Yang X, Cheng T, Yuan L, Xia N. Novel vaccine strategies to induce respiratory mucosal immunity: advances and implications. MedComm (Beijing) 2025; 6:e70056. [PMID: 39830020 PMCID: PMC11739453 DOI: 10.1002/mco2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Rapid advances in vaccine technology are becoming increasingly important in tackling global health crises caused by respiratory virus infections. While traditional vaccines, primarily administered by intramuscular injection, have proven effective, they often fail to provide the broad upper respiratory tract mucosal immunity, which is urgently needed for first-line control of respiratory viral infections. Furthermore, traditional intramuscular vaccines may not adequately address the immune escape of emerging virus variants. In contrast, respiratory mucosal vaccines developed using the body's mucosal immune response mechanism can simultaneously establish both systemic and mucosal immunity. This dual action effectively allows the respiratory mucosal immune system to function as the first line of defense, preventing infections at the entry points. This review highlights the efficacy of respiratory mucosal vaccines, including innovative delivery methods such as nasal and oral formulations, in enhancing local and systemic immune barriers. Notably, respiratory mucosal vaccines offer potential advantages in protecting against emerging virus variants and maintaining long-term and multidimensional immune memory in the upper respiratory tract. In addition, a combination of intramuscular and respiratory mucosal delivery of vaccines largely improves their coverage and effectiveness, providing valuable insights for future vaccine development and public inoculation strategies.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Vaccines for Infectious DiseasesNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiang An Biomedicine LaboratorySchool of Life Sciences & School of Public HealthXiamen UniversityXiamenFujianChina
| | - Haiqin Xiao
- State Key Laboratory of Vaccines for Infectious DiseasesNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiang An Biomedicine LaboratorySchool of Life Sciences & School of Public HealthXiamen UniversityXiamenFujianChina
| | - Xinyi Yang
- State Key Laboratory of Vaccines for Infectious DiseasesNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiang An Biomedicine LaboratorySchool of Life Sciences & School of Public HealthXiamen UniversityXiamenFujianChina
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious DiseasesNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiang An Biomedicine LaboratorySchool of Life Sciences & School of Public HealthXiamen UniversityXiamenFujianChina
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious DiseasesNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiang An Biomedicine LaboratorySchool of Life Sciences & School of Public HealthXiamen UniversityXiamenFujianChina
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious DiseasesNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiang An Biomedicine LaboratorySchool of Life Sciences & School of Public HealthXiamen UniversityXiamenFujianChina
| |
Collapse
|
68
|
Arowosegbe A, Guo Z, Vanderleeden E, Derr AG, Wang JP. Janus kinase inhibition prevents autoimmune diabetes in LEW.1WR1 rats. J Autoimmun 2025; 151:103358. [PMID: 39823736 DOI: 10.1016/j.jaut.2025.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/11/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Numerous studies highlight the essential role of type I interferon (IFN) responses in type 1 diabetes. The absence of type I IFN signaling is associated with a partial reduction of autoimmune diabetes incidence in LEW.1WR1 rats. We sought to delineate type I IFN-independent mechanisms that drive diabetes using type I IFN α/β receptor (IFNAR) knockout rats. Rats were treated with polyinosinic:polycytidylic acid plus Kilham rat virus to induce diabetes. Single-cell RNA-sequencing of islets and cytokine measurements in blood and spleen from prediabetic Ifnar1-/- rats were employed to identify factors driving insulitis in the global absence of IFNAR signaling. Islet immune cells were enriched for Ccl4, Ccl5, and Ifng. In addition, interleukin-1 (IL-1) was increased in spleen, and IFN-γ was increased in serum from prediabetic Ifnar1-/- rats. Based on these findings, rats were treated with a C-C chemokine receptor type 5 inhibitor, an IL-1 receptor antagonist, or a nucleotide-binding oligomerization domain-like receptor family pyrin-domain containing 3 inhibitor, none of which prevented diabetes. The Janus kinase inhibitor ruxolitinib, which blocks both type I and II interferon-driven signaling, completely prevented diabetes, but only when given for a sustained period starting from the time of induction. The tyrosine kinase 2 inhibitor deucravacitinib also prevented diabetes to a significant degree. We conclude that type I and II IFNs act in concert as the main drivers of autoimmune diabetes and that inhibition of downstream signaling events for both is required for disease prevention.
Collapse
Affiliation(s)
- Adediwura Arowosegbe
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Zhiru Guo
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Emma Vanderleeden
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Alan G Derr
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Jennifer P Wang
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA.
| |
Collapse
|
69
|
Vasou A, Nightingale K, Cetkovská V, Scheler J, Bamford CGG, Andrejeva J, Rowe JC, Swatek KN, Schwarz‐Linek U, Randall RE, McLauchlan J, Weekes MP, Bogunovic D, Hughes DJ. ISG15-Dependent Stabilisation of USP18 Is Necessary but Not Sufficient to Regulate Type I Interferon Signalling in Humans. Eur J Immunol 2025; 55:e202451651. [PMID: 39931755 PMCID: PMC11811815 DOI: 10.1002/eji.202451651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Type I interferon (IFN) signalling induces the expression of several hundred IFN-stimulated genes (ISGs) that provide an unfavourable environment for viral replication. To prevent an overexuberant response and autoinflammatory disease, IFN signalling requires tight control. One critical regulator is the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), evidenced by autoinflammatory disease in patients with inherited ISG15 deficiencies. Current models suggest that ISG15 stabilises ubiquitin-specific peptidase 18 (USP18), a well-established negative regulator of IFN signalling. USP18 also functions as an ISG15-specific peptidase that cleaves ISG15 from ISGylated proteins; however, USP18's catalytic activity is dispensable for controlling IFN signalling. Here, we show that the ISG15-dependent stabilisation of USP18 involves hydrophobic interactions reliant on tryptophan 123 (W123) in ISG15. Nonetheless, while USP18 stabilisation is necessary, it is not sufficient for the regulation of IFN signalling; ISG15 C-terminal mutants with significantly reduced affinity still stabilised USP18, yet the magnitude of signalling resembled ISG15-deficient cells. Hence, USP18 requires non-covalent interactions with the ISG15 C-terminal diGlycine motif to promote its regulatory function. It shows ISG15 is a repressor of type I IFN signalling beyond its role as a USP18 stabiliser.
Collapse
Affiliation(s)
- Andri Vasou
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Katie Nightingale
- Department of MedicineCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Vladimíra Cetkovská
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Jonathan Scheler
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Connor G. G. Bamford
- Medical Research Council‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Jelena Andrejeva
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Jessica C. Rowe
- Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kirby N. Swatek
- Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ulrich Schwarz‐Linek
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Richard E. Randall
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - John McLauchlan
- Medical Research Council‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Michael P. Weekes
- Department of MedicineCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Dusan Bogunovic
- Department of PediatricsColumbia University Medical CenterNew YorkNew YorkUSA
| | - David J. Hughes
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
70
|
Azizan A, Farhadi E, Faezi ST, Jamshidi A, Alikhani M, Mahmoudi M. Role of miRNAs in Apoptosis Pathways of Immune Cells in Systemic Lupus Erythematosus. Immun Inflamm Dis 2025; 13:e70124. [PMID: 39912562 PMCID: PMC11800236 DOI: 10.1002/iid3.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by dysregulated immune responses and multi-organ involvement. Dysregulation of apoptosis, a key process for maintaining immune homeostasis, plays a critical role in the pathogenesis of SLE. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have emerged as important modulators of apoptosis in immune cells, influencing the balance between immune tolerance and autoimmunity. OBJECTIVES This review aims to comprehensively summarize recent advancements in understanding the roles of miRNAs in apoptosis regulation within immune cells in SLE, highlighting their therapeutic potential for restoring immune balance and mitigating disease progression. RESULTS Aberrant expression of specific miRNAs contributes to the dysregulation of apoptosis in SLE immune cells. Pro-apoptotic miRNAs, such as miR-125b and miR-150, are often downregulated, leading to enhanced survival of autoreactive immune cells. Conversely, anti-apoptotic miRNAs, including miR-21, are upregulated, further disrupting the delicate balance of immune cell apoptosis. Dual-function miRNAs, such as miR-155, exhibit context-dependent roles based on cellular environments and target gene interactions. This dysregulation promotes the persistence of autoreactive immune cells and the development of autoimmunity. CONCLUSIONS miRNAs play critical roles in modulating apoptosis pathways, making them promising therapeutic targets for SLE. Restoring the balance of pro-apoptotic and anti-apoptotic miRNAs could help reinstate immune tolerance and reduce tissue damage. Future research should focus on elucidating miRNA targetomes, improving delivery systems, and addressing off-target effects to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Amin Azizan
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Research Center for Chronic Inflammatory DiseasesTehran University of Medical SciencesTehranIran
| | - Elham Farhadi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Research Center for Chronic Inflammatory DiseasesTehran University of Medical SciencesTehranIran
| | | | - Ahmadreza Jamshidi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Majid Alikhani
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Mahdi Mahmoudi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Research Center for Chronic Inflammatory DiseasesTehran University of Medical SciencesTehranIran
| |
Collapse
|
71
|
Li W, Feng Y, Teng Y, Montero AF, Zhou Y, Zhang X, Ao J, Chen X. P300/RNA polymerase II mediates induction of the teleost viral RNA sensor MDA5 through the interferon regulatory factor IRF11. J Biol Chem 2025; 301:108193. [PMID: 39826689 PMCID: PMC11849104 DOI: 10.1016/j.jbc.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon (IFN) production by detecting cytosolic viral RNA. Mammalian MDA5 is an IFN-inducible gene and controlled by IFN regulatory factor 1 (IRF1). Teleost MDA5 also induces type I IFN production in response to viruses, yet its regulation remains largely unexplored. This study used the large yellow croaker Larimichthys crocea (Lc) as a model organism and revealed that a type I IFN (LcIFNi) triggers the expression of LcMDA5 through the JAK-STAT signaling pathway, which involves phosphorylation of LcIRF11. LcMDA5 was transcriptionally regulated by LcIRF11. Mechanistically, LcIRF11 interacts with the IFN-stimulated response element within the LcMDA5 promoter, via α3 helix and loop1, and loop2 and loop3 in its DNA binding domain. Overexpression of LcIRF11 recruits p300 and RNA polymerase II (Pol II) to the LcMDA5 promoter region. Pull-down analysis further confirmed the interaction of LcIRF11 with these two proteins. This recruitment was accompanied by increased levels of histone H3K27 acetylation (H3K27ac) and histone H3K4 trimethylation (H3K4me3), both of which are strongly associated with active transcription. Conversely, silencing LcIRF11 reduced p300 and Pol II recruitments and hindered the enrichment of H3K27ac/H3K4me3 modifications at the LcMDA5 promoter. Thus, here we present the first report of IRF11 orchestrating the activation of MDA5 transcription by binding to the IFN-stimulated response element of MDA5 promoter and forming a transcriptional complex with p300 and Pol II. Our results revealed an ancient regulatory mechanism of MDA5 in lower vertebrates, providing insights into its function and evolution.
Collapse
Affiliation(s)
- Wenxing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Alvaro Fernandez Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanyuan Zhou
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
72
|
Heaton RA, Ball ST, Staunton CA, Mouly V, Jones SW, McArdle A, Jackson MJ. Peroxiredoxin 2 mediates redox-stimulated adaptations to oxidative phosphorylation induced by contractile activity in human skeletal muscle myotubes. Free Radic Biol Med 2025; 227:395-406. [PMID: 39643135 DOI: 10.1016/j.freeradbiomed.2024.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Skeletal muscle generates superoxide during contractions, which is converted to hydrogen peroxide (H2O2). H2O2 has been proposed to activate signalling pathways and transcription factors that regulate adaptive responses to exercise, but the concentration required to oxidize and activate key redox-sensitive signalling proteins in vitro is much higher than the typical intracellular levels seen in muscle after exercise. We hypothesized that 2-Cys-peroxiredoxins (PRDX), which rapidly oxidize in the presence of physiological concentrations of H2O2, serve as intermediary signalling molecules and play a crucial role in activating adaptive pathways following muscle contractions. This study has examined the human muscle myotube responses to contractile activity, or exposure to low extracellular concentrations (2.5-5 μM) of H2O2 and whether knock down of muscle PRDX2 alters the differential gene expression (DEG) that results from these stresses. Exposure of human skeletal muscle myotubes to a 15 min period of aerobic electrically stimulated isometric contractions or 5 μM H2O2 induced substantial changes in DEG with modification of many genes associated with adaptations of skeletal muscle to contractile activity. Common DEG in these conditions included upregulation of genes associated with increased mitochondrial oxidative phosphorylation, including COX1, COX2, COX3 and ATP6. In myotubes with PRDX2 knock down (94 % decrease in PRDX2 mRNA), the upregulation of genes associated with increased mitochondrial oxidative phosphorylation was abolished following contractile activity or exposure to H2O2. These data indicate that a common effect of contractile activity and exposure to "physiological" levels of H2O2 in human myotubes is to increase the expression of multiple genes associated with increased mitochondrial oxidative phosphorylation. Furthermore, these effects were abolished in PRDX2 knock down myotubes indicating that adaptations to upregulate multiple genes related to increased mitochondrial capacity in human muscle myotubes in response to exercise is both redox regulated and requires PRDX2 as an essential mediator of the effects of H2O2.
Collapse
Affiliation(s)
- Robert A Heaton
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, France
| | - Sam Tm Ball
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, France
| | - Caroline A Staunton
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Samantha W Jones
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, France
| | - Anne McArdle
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, France
| | - Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, France.
| |
Collapse
|
73
|
Yu H, Liu W, Ding K, Wu J, Wang C, Wang S, Wu L, Tang Q, Yin X, Jiang K, Yan D, Wang X, Chen S, Yan S. Sequential Release HydroLipo System for STING Gene Epigenetic Reprogramming and Immune Activation in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408323. [PMID: 39661716 PMCID: PMC11792002 DOI: 10.1002/advs.202408323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Glioblastoma (GBM) remains a daunting oncological challenge because of its aggressive nature and resistance to conventional therapies. Inhibition of the intrinsic STING pathway in GBM hampers the effectiveness of immunotherapies. To overcome this clinical limitation, a Sequential Release HydroLipo System (SRHLS) is developed, in which hydrogels and nanoparticles are combined for controlled drug release. The SRHLS sequentially released decitabine and STING agonists, thereby correcting STING signaling dysfunction through epigenetic reprogramming and enhancing antitumor immunity. According to in vitro and in vivo experiments, the SRHLS reshaped the tumor microenvironment and markedly inhibited tumor growth, recurrence, and metastasis. These findings underscore the potential of the SRHLS as a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Wenjing Liu
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Kaikai Ding
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Jiangjie Wu
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Cheng Wang
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Siyuan Wang
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Lingyun Wu
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Qiuying Tang
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Xin Yin
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Kan Jiang
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Danfang Yan
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Xu Wang
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Si Chen
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Senxiang Yan
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| |
Collapse
|
74
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
75
|
Sarkar S, Carranza C, Gonzalez Y, Zhang J(J, Osornio Vargas ÁR, Ohman-Strickland P, Torres M, Schwander S. Exposure to Urban Air Pollution Particulate Matter Modifies Th1/Th2 Mtb Immunity in the Human Lung. Am J Respir Cell Mol Biol 2025; 72:222-225. [PMID: 39887972 PMCID: PMC11976655 DOI: 10.1165/rcmb.2024-0240le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Affiliation(s)
- Srijata Sarkar
- Rutgers University School of Public HealthPiscataway, New Jersey
| | - Claudia Carranza
- Instituto Nacional de Enfermedades RespiratoriasMéxico City, México
| | - Yolanda Gonzalez
- Instituto Nacional de Enfermedades RespiratoriasMéxico City, México
| | | | | | | | - Martha Torres
- Instituto Nacional de Enfermedades RespiratoriasMéxico City, México
| | | |
Collapse
|
76
|
Schärli S, Luther F, Di Domizio J, Hillig C, Radonjic-Hoesli S, Thormann K, Simon D, Rønnstad ATM, Ruge IF, Fritz BG, Bjarnsholt T, Vallone A, Kezic S, Menden MP, Roesner LM, Werfel T, Thyssen JP, Eyerich S, Gilliet M, Bertschi NL, Schlapbach C. IL-9 sensitizes human T H2 cells to proinflammatory IL-18 signals in atopic dermatitis. J Allergy Clin Immunol 2025; 155:491-504.e9. [PMID: 39521283 DOI: 10.1016/j.jaci.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND TH2 cells crucially contribute to the pathogenesis of atopic dermatitis (AD) by secreting high levels of IL-13 and IL-22. Yet the upstream regulators that activate TH2 cells in AD skin remain unclear. IL-18 is a putative upstream regulator of TH2 cells because it is implicated in AD pathogenesis and has the capacity to activate T cells. OBJECTIVE We sought to decipher the role of IL-18 in TH2 responses in blood and skin of AD patients. METHODS Peripheral blood mononuclear cells and skin biopsy samples from AD patients and healthy donors were used. Functional assays were performed ex vivo using stimulation or blocking experiments. Analysis was performed by flow cytometry, bead-based multiplex assays, RT-qPCR, RNA-Seq, Western blot, and spatial sequencing. RESULTS IL-18Rα+ TH2 cells were enriched in blood and lesional skin of AD patients. Of all the cytokines for which TH2 cells express the receptor, only IL-9 was able to induce IL-18R via an IL-9R-JAK1/JAK3-STAT1 signaling pathway. Functionally, stimulation of circulating TH2 cells with IL-18 induced secretion of IL-13 and IL-22, an effect that was enhanced by costimulation with IL-9. Mechanistically, IL-18 induced TH2 cytokines via activation of IRAK4, NF-κB, and AP-1 signaling in TH2 cells, and neutralization of IL-18 inhibited these cytokines in cultured explants of AD skin lesions. Finally, IL-18 protein levels correlated positively with disease severity in lesional AD skin. CONCLUSION Our data identify a novel IL-9/IL-18 axis that contributes to TH2 responses in AD. Our findings suggest that both IL-9 and IL-18 could represent upstream targets for future treatment of AD.
Collapse
Affiliation(s)
- Stefanie Schärli
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Fabian Luther
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christina Hillig
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Susanne Radonjic-Hoesli
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Kathrin Thormann
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Iben Frier Ruge
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Blaine G Fritz
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Angela Vallone
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sanja Kezic
- Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Michael P Menden
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Munich, Germany; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Stefanie Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
77
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
78
|
Zhang L, Liang D, Tian Y, Liang J, Li X, Liu C, Liang J, Luo TR, Li X. Classical Swine Fever Virus Envelope Glycoproteins E rns, E1, and E2 Activate IL-10-STAT1-MX1/OAS1 Antiviral Pathway via Replacing Classical IFNα/β. Biomolecules 2025; 15:200. [PMID: 40001503 PMCID: PMC11853677 DOI: 10.3390/biom15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Classical swine fever (CSF) is an acute and often fatal disease caused by CSF virus (CSFV) infection. In the present study, we investigated the transcriptional profiles of peripheral blood mononuclear cells (PBMCs) in pigs infected with CSFV. The results revealed that CSFV inhibits IFNα/β production, but up-regulates the expression of signal transducer and activator of transcription 1 (STAT1); this result was verified in vitro. Interestingly, STAT1 is typically a downstream target of IFNα/β, raising the question of how CSFV can inhibit IFNα/β expression, yet up-regulate STAT1 expression. To explore this further, we observed that UV-treated CSFV induced STAT1 expression. Our results demonstrated that CSFV Erns, E1, and E2 could up-regulate STAT1 expression within the host cell cytoplasm and facilitate its translocation into the nucleus. The Erns, E1, and E2 proteins also separately induced the up-regulation of interleukin (IL)-10; IL-10 acts as the communicator connecting Erns, E1, and E2 proteins to STAT1, leading to the subsequent up-regulation, phosphorylation, and nuclear translocation of STAT1. Silencing of IL-10 down-regulated STAT1 expression. Finally, MX1 and OAS1 were identified as downstream targets of the IL-10-STAT1 pathway. In summary, a novel IL-10-STAT1 pathway independent of IFNα/β induced by CSFV Erns, E1, and E2 was identified in this study.
Collapse
Affiliation(s)
- Liyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Dongli Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yu Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Jiaxin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Xiaoquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Cheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
79
|
Dai J, Shui H, Wu Y, Zhang H, Li Y, Zhang S, Yang B, Tang D. Effects of Jianpi therapy for cancer-related fatigue:a meta-analysis of randomized controlled trials. Front Oncol 2025; 15:1512460. [PMID: 39980555 PMCID: PMC11840261 DOI: 10.3389/fonc.2025.1512460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Purpose The Jianpi therapeutic strategy in traditional Chinese medicine aims to enhance the spleen's digestive function and overall wellness. It has shown promise in improving cancer-related fatigue (CRF). This research systematically evaluates the effectiveness of Jianpi therapy in reducing fatigue in cancer patients through a meta-analytic review. Methods An exhaustive search was performed within PubMed, Embase, Web of Science, Cochrane Library, SinoMed, Wanfang Data, China Science and Technology Journal Database, and China National Knowledge Infrastructure (CNKI) for randomized controlled trials concerning the application of Jianpi therapy to address CRF. The search spanned from the commencement of each database's records to April 1, 2024. The extracted data were subjected to analysis using Stata (Version 15.1), with the selection of either a random-effects or fixed-effects model based on the heterogeneity among studies. Outcome measures were demonstrated with standardized mean differences (SMDs) or mean differences (MDs), and each complemented by a 95% confidence interval (CI). The Cochrane Risk of Bias Assessment Tool 2.0 was utilized to assess the potential biases within the studies. Results A comprehensive analysis was performed on 45 eligible studies, all of which were conducted within China and encompassed a total of 3,596 participants. The meta-analysis indicated that Jianpi decoction alone exhibited the most significant improvement in the proportion of CD4 cells (SMD=1.34, 95% CI 0.54 to 2.31, P<0.001) and hemoglobin (MD=7.45, 95% CI 4.18 to 10.72, Z=4.47, P<0.001), while also more significantly reducing Piper Fatigue Scale scores (SMD=-2.05, 95% CI -2.71 to -1.39, P<0.001). The combined therapy, which integrated Jianpi therapy with standard care, demonstrated the greatest advantage in enhancing the proportion of CD3 cells (SMD=1.25, 95% CI 0.46 to 2.04, P<0.001). Furthermore, Jianpi therapy was found to be effective in lowering tumor necrosis factor-alpha levels (MD=-7.79, 95% CI -11.24 to -4.34, P<0.001) and concurrently enhancing interferon-gamma (MD=5.15, 95% CI 3.20 to 7.09, P=0.002), interleukin-2 (MD=8.37, 95% CI 6.14 to 10.59, P<0.001). Conclusion Our research indicates that Jianpi therapy effectively alleviates CRF, reduces inflammation, and strengthens immune function. However, further high-quality, multicenter randomized controlled trials are essential to confirm these findings and strengthen the evidence. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024566739.
Collapse
Affiliation(s)
- Jiaxing Dai
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
| | - Huili Shui
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine (Guizhou Provincial Hospital of Chinese Medicine), Guiyang, China
| | - Yuan Wu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanghui Zhang
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
| | - Yuanyin Li
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
| | - Shaowang Zhang
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
| | - Bing Yang
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine (Guizhou Provincial Hospital of Chinese Medicine), Guiyang, China
| | - Dongxin Tang
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China
- Talent Base for TCM Tumor Inheritance and Science and Technology Innovation of Guizhou Province (Guizhou University of Chinese Medicine), Guiyang, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine (Guizhou Provincial Hospital of Chinese Medicine), Guiyang, China
| |
Collapse
|
80
|
Pan Y, Matsunaga T, Zhang T, Akaike T. The Therapeutic Potential of Supersulfides in Oxidative Stress-Related Diseases. Biomolecules 2025; 15:172. [PMID: 40001475 PMCID: PMC11852411 DOI: 10.3390/biom15020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidation-reduction (redox) reactions are fundamental to sustaining life, with reactive oxygen and nitrogen species playing pivotal roles in cellular signaling and homeostasis. However, excessive oxidative stress disrupts redox balance, contributing to a wide range of diseases, including inflammatory and pulmonary disorders, neurodegeneration, and cancer. Although numerous antioxidant therapies have been developed and tested for oxidative stress-related diseases, their clinical efficacy remains limited. Here, we introduce the emerging concept of 'supersulfides', a class of redox molecule species with unique antioxidant and nucleophilic properties, which have recently been recognized as crucial regulators of cellular redox homeostasis. Unlike traditional antioxidants, supersulfides offer novel mechanisms of action that directly target the underlying processes of oxidative stress. This review summarizes current knowledge on supersulfides, highlighting their roles in oxidative stress and associated diseases, as well as the mechanisms underlying oxidative stress-related pathology. The therapeutic potential of synthetic supersulfides for treating oxidative stress-related diseases is also discussed. A comprehensive understanding of the molecular and cellular basis of redox biology can help to guide the development of innovative redox-based therapeutic strategies aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Grants
- 20348438 Japan Science and Technology Agency
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 23K20040 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 24H00063 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yuexuan Pan
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Tetsuro Matsunaga
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
81
|
Teer E, Mukonowenzou NC, Essop MF. The Role of Sustained Type I Interferon Secretion in Chronic HIV Pathogenicity: Implications for Viral Persistence, Immune Activation, and Immunometabolism. Viruses 2025; 17:139. [PMID: 40006894 PMCID: PMC11860620 DOI: 10.3390/v17020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection induces chronic immune activation by stimulating both the innate and adaptive immune systems, resulting in persistent inflammation and immune cell exhaustion. Of note, the modulation of cytokine production and its release can significantly influence the immune response. Type I interferons (IFN-Is) are cytokines that play a crucial role in innate immunity due to their potent antiviral effects, regulation of IFN-stimulated genes essential for viral clearance, and the initiation of both innate and adaptive immune responses. Thus, an understanding of the dual role of IFN-I (protective versus harmful) during HIV-1 infections and elucidating its contributions to HIV pathogenesis is crucial for advancing HIV therapeutic interventions. This review therefore delves into the intricate involvement of IFN-I in both the acute and chronic phases of HIV infection and emphasizes its impact on viral persistence, immune activation, and immunometabolism in treated HIV-infected individuals.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.T.); (N.C.M.)
| | - Nyasha C. Mukonowenzou
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.T.); (N.C.M.)
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| |
Collapse
|
82
|
Zhang L, Chen H, Zhao X, Chen Y, Li S, Xiao T, Xiong S. NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp ( Ctenopharyngodon idelus). Int J Mol Sci 2025; 26:840. [PMID: 39859554 PMCID: PMC11766192 DOI: 10.3390/ijms26020840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney. Notably, Cinlrc3 expression is markedly upregulated following grass carp reovirus (GCRV) infection both in vivo and in vitro. Functional assays reveal that the overexpression of CiNLRC3 hampers cellular antiviral responses, thereby facilitating viral replication. Conversely, the silencing of CiNLRC3 through siRNA transfection enhances these antiviral activities. Additionally, CiNLRC3 substantially diminishes the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated interferon (IFN) response in fish. Subsequent molecular investigations indicates that CiNLRC3 interacts with the RLR molecule node, IRF7 but not IRF3, by degrading the IRF7 protein in a proteasome-dependent manner. Furthermore, CiNLRC3 co-localizes with CiIRF7 in the cytoplasm and impedes the IRF7-induced IFN response, resulting in impairing IRF7-mediated antiviral immunity. Summarily, these findings underscore the critical inhibitory role of teleost NLRC3 in innate immunity, offering new perspectives on its regulatory functions and potential as a target for resistant breeding in fish.
Collapse
Affiliation(s)
- Lei Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (H.C.); (X.Z.)
| | - Haitai Chen
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (H.C.); (X.Z.)
| | - Xiang Zhao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (H.C.); (X.Z.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China; (Y.C.); (S.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Youcheng Chen
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China; (Y.C.); (S.L.)
| | - Shenpeng Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China; (Y.C.); (S.L.)
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (H.C.); (X.Z.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China; (Y.C.); (S.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Shuting Xiong
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (H.C.); (X.Z.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China; (Y.C.); (S.L.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
83
|
Gupta S, Cai JJ. Gene function revealed at the moment of stochastic gene silencing. Commun Biol 2025; 8:88. [PMID: 39828795 PMCID: PMC11743767 DOI: 10.1038/s42003-025-07530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Gene expression is a dynamic and stochastic process characterized by transcriptional bursting followed by periods of silence. Single-cell RNA sequencing (scRNA-seq) is a powerful tool to measure transcriptional bursting and silencing at the individual cell level. In this study, we introduce the single-cell Stochastic Gene Silencing (scSGS) method, which leverages the natural variability in single-cell gene expression to decipher gene function. For a target gene g under investigation, scSGS classifies cells into transcriptionally active (g + ) and silenced (g-) samples. It then compares these cell samples to identify differentially expressed genes, referred to as SGS-responsive genes, which are used to infer the function of the target gene g. Analysis of real data demonstrates that scSGS can reveal regulatory relationships up- and downstream of target genes, circumventing the survivorship bias that often affects gene knockout and perturbation studies. scSGS thus offers an efficient approach for gene function prediction, with significant potential to reduce the use of genetically modified animals in gene function research.
Collapse
Affiliation(s)
- Shreyan Gupta
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
84
|
Carré A, Samassa F, Zhou Z, Perez-Hernandez J, Lekka C, Manganaro A, Oshima M, Liao H, Parker R, Nicastri A, Brandao B, Colli ML, Eizirik DL, Aluri J, Patel D, Göransson M, Burgos Morales O, Anderson A, Landry L, Kobaisi F, Scharfmann R, Marselli L, Marchetti P, You S, Nakayama M, Hadrup SR, Kent SC, Richardson SJ, Ternette N, Mallone R. Interferon-α promotes HLA-B-restricted presentation of conventional and alternative antigens in human pancreatic β-cells. Nat Commun 2025; 16:765. [PMID: 39824805 PMCID: PMC11748642 DOI: 10.1038/s41467-025-55908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8+ T cells. Lastly, islets of patients with T1D show preferential HLA-B hyper-expression when compared with non-diabetic donors, and islet-infiltrating CD8+ T cells reactive to HLA-B-restricted granule peptides are found in T1D donors. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward alternative epitopes presented by HLA-B, hence recruiting T cells with a distinct repertoire that may be relevant to T1D pathogenesis.
Collapse
Affiliation(s)
- Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Javier Perez-Hernandez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Department of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | - Christiana Lekka
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Hanqing Liao
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Annalisa Nicastri
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Jahnavi Aluri
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Deep Patel
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Marcus Göransson
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Amanda Anderson
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurie Landry
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Farah Kobaisi
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah J Richardson
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
- Indiana Biosciences Research Institute, Indianapolis, IN, USA.
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France.
| |
Collapse
|
85
|
Huang S, Chen Z, Zhong S, Zhang Y, Zeng C, Zheng X, Li Y, Chen S. Inhibition of TOX exerts anti-tumor effects in acute myeloid leukemia by upregulating IRF7 expression. Eur J Pharmacol 2025; 987:177163. [PMID: 39615865 DOI: 10.1016/j.ejphar.2024.177163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Thymocyte selection-associated high mobility group box protein (TOX) is regarded as a crucial transcription factor involved in T cell exhaustion in acute myeloid leukemia (AML). Previous studies have identified aberrant TOX expression as a major oncogenic driver in hematologic malignancies, indicating that TOX may potentially be both an immune biomarker and an immunotherapy target. However, due to heterogeneity in the distribution patterns of TOX and its correlation with clinical prognosis, the mechanism underlying TOX-mediated tumor immune responses remains unclear. In this study, we demonstrate that high TOX expression in AML patients is associated with poor prognosis, and TOX overexpression promotes AML cell proliferation and restricts apoptosis. In vitro TOX inhibition promoted the apoptosis of AML cells, suppressed cell viability, and induced cell cycle arrest in the G0/G1 phase. Moreover, TOX knockdown could reduce tumor burden in vivo in immunodeficient mice and prolong their survival. Furthermore, the anti-AML effects of inhibiting TOX may act through activation of the IFN-α signal pathway and upregulating IRF7 expression. In summary, we report for the first time that TOX knockdown exerts powerful anti-tumor effects in AML. These findings will provide a theoretical basis for targeted therapy in AML patients.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/metabolism
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Up-Regulation/drug effects
- Mice
- Cell Line, Tumor
- Male
- Female
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Leukemic/drug effects
- Gene Knockdown Techniques
- Signal Transduction/drug effects
- Middle Aged
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zheng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
86
|
Zhang L, Wang HL, Zhang YF, Mao XT, Wu TT, Huang ZH, Jiang WJ, Fan KQ, Liu DD, Yang B, Zhuang MH, Huang GM, Liang Y, Zhu SJ, Zhong JY, Xu GY, Li XM, Cao Q, Li YY, Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab 2025; 37:87-103.e10. [PMID: 39366386 DOI: 10.1016/j.cmet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a common and chronic gastrointestinal disorder that is characterized by abdominal discomfort and occasional diarrhea. The pathogenesis of IBS-D is thought to be related to a combination of factors, including psychological stress, abnormal muscle contractions, and inflammation and disorder of the gut microbiome. However, there is still a lack of comprehensive analysis of the logical regulatory correlation among these factors. In this study, we found that stress induced hyperproduction of xanthine and altered the abundance and metabolic characteristics of Lactobacillus murinus in the gut. Lactobacillus murinus-derived spermidine suppressed the basal expression of type I interferon (IFN)-α in plasmacytoid dendritic cells by inhibiting the K63-linked polyubiquitination of TRAF3. The reduction in IFN-α unrestricted the contractile function of colonic smooth muscle cells, resulting in an increase in bowel movement. Our findings provided a theoretical basis for the pathological mechanism of, and new drug targets for, stress-exposed IBS-D.
Collapse
Affiliation(s)
- Li Zhang
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Fang Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Zhi-Hui Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Wan-Jun Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ke-Qi Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan-Dan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei-Hui Zhuang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Ming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang-Yan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
87
|
Liu F, Liu B, Xu S, Ni Y, Liu X. MicroRNA-122 protects against interferon-α-induced hepatic inflammatory response via the Janus kinase-signal transducer and activator of transcription pathway. Endocr J 2025; 72:53-67. [PMID: 39358210 PMCID: PMC11778391 DOI: 10.1507/endocrj.ej24-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Significant overlap in the epidemiology and coinfection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) has been identified, which accelerates the development of severe liver cirrhosis and hepatocellular carcinoma worldwide. Interferon-α (IFN-α), a cytokine with antiviral properties, exerts profound physiological effects on innate immunity by regulating interferon-stimulated genes (ISGs) within cells. However, the underlying mechanism of IFN-α in hepatic inflammation remains to be fully elucidated. Here, we utilized LO2 cells treated with the recombinant IFN-α protein and conducted microRNA (miR) sequencing. MiR-122-3p and miR-122-5p_R+1 were the most enriched miRNAs involved in the pathogenesis of IFN-α-induced inflammatory responses and were significantly downregulated by IFN-α treatment. Furthermore, we identified interferon induced protein with tetratricopeptide repeats 1 (IFIT1) as a potential target gene of miR-122. IFN-α markedly increased the expression of proinflammatory cytokines and fibrogenic genes but decreased the mRNA expression of ISGs. Additionally, IFN-α significantly activated the NF-κB p-p65, MAPK p-p38, and Jak/STAT pathways to trigger inflammation. Importantly, supplementation with a miR-122 mimic significantly alleviated IFN-α-induced inflammation and induced IFIT1 expression in LO2 cells. Conversely, the suppression of miR-122 markedly exacerbated the inflammatory response triggered by IFN-α. Furthermore, silencing IFIT1 via an siRNA elicited an inflammatory response, whereas IFIT1 overexpression ameliorated hepatic inflammation and fibrosis in a manner comparable to that induced by IFN-α treatment. Taken together, our findings suggest that miR-122 and its target, IFIT1, reciprocally regulate the inflammatory response associated with IFN through the Jak/STAT pathway.
Collapse
Affiliation(s)
- Fanwei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Bowen Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Shanshan Xu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
88
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
89
|
Periche-Tomas E, Cattaneo A, Cattane N, Bone C, Tibble J, Bullmore ET, Pariante C, Harrison NA. Acute effects of interferon-alpha on cellular anabolic and catabolic processes are associated with the development of fatigue during Interferon-alpha-based therapy for Hepatitis-C: A preliminary study. Brain Behav Immun 2025; 123:717-724. [PMID: 39414178 DOI: 10.1016/j.bbi.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis-C virus (HCV) infection. Though clinically effective, IFN-α frequently induces functionally impairing mood and motivation symptoms, particularly fatigue. Unlike mood impairment, which typically emerges after weeks of treatment, fatigue tends to emerge and evolve rapidly, typically within hours of the first IFN-α injection. Despite being a major source of functional impairment during IFN-α and other immune-based therapies, the biological mechanisms underlying fatigue remain poorly understood. Here, we aimed to identify acute immune-response signatures to IFN-α that could predict the later development of fatigue. METHODS In this exploratory study, we analyzed whole blood transcriptomics in a longitudinal sample of 27 HCV patients initiating IFN-α and Ribavirin therapy. Blood samples were obtained at baseline and 4½ hours after the first IFN-α dose and transcriptomic data was obtained using Affymetrix Human Gene 1.1 ST Array Strips. Gene expression data visualization and quality control were assessed using Partek Genomics Suite V6.6 and protein-protein interaction networks using STRING and Ingenuity Pathway Analysis (IPA). A Fatigue Visual Analogue Scale (fVAS) was utilized to record fatigue symptoms at baseline, 4½ hours and 4 weeks after initiation of treatment. RESULTS IFN-α was associated with an upregulation of 526 transcripts and a downregulation of 228 genes, indicating a rapid transcriptomic response in whole blood within 4½ hours of injection. 93 genes were significantly positively correlated with changes in fatigue, with gene expression changes measured from baseline to 4.5 h and increases in fatigue assessed from baseline to week 4 on the fVAS. We identified a novel network of predominantly cytosolic ribosomal units and ubiquitin proteins implicated in modulating mTOR signaling that was associated with the development of fatigue 4 weeks after initiation of IFN-α treatment (p = 0.0078). CONCLUSION Our findings suggest that acute activation of this anabolic/catabolic network by IFN-α may predispose to the experience of fatigue similar to evidence found in cancer-related fatigue. Further investigation is warranted to confirm the exploratory nature of these observations.
Collapse
Affiliation(s)
- Eva Periche-Tomas
- CUBRIC, Cardiff University Brain Research Imaging Centre, Cardiff, UK.
| | - Annamaria Cattaneo
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Bone
- CUBRIC, Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Jeremy Tibble
- Department of Gastroenterology, Brighton & Sussex University Hospitals, Brighton, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Neil A Harrison
- CUBRIC, Cardiff University Brain Research Imaging Centre, Cardiff, UK; Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
90
|
Zhang R, Zheng H. Luciferase Reporter Assay for Determining the Signaling Activity of Interferons. Methods Mol Biol 2025; 2854:19-28. [PMID: 39192114 DOI: 10.1007/978-1-0716-4108-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The classic dual luciferase reporter assay has been widely used to rapidly and accurately determine the transcriptional activity of a given promoter induced by certain signal pathways in the cells. In particular, the sensitive characteristics of luciferase highlight its significance in many experiments, such as weak promoter analysis, transfection studies using small amounts of DNA, and detection in cell lines with low transfection efficiency. This chapter presents detailed information and experimental procedures for measuring interferon (IFN)-induced Interferon-Stimulated Response Element (ISRE) promoter activity using the dual luciferase reporter assay.
Collapse
Affiliation(s)
- Renxia Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Institute/Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
91
|
Jiang W, Chen Y, Yu CY, Zou B, Lu Y, Yang Q, Tang Z, Mao W, Li J, Han H, Shao L, Zeng J, Chu Y, Tang J, Lu M. Alveolar epithelial cells shape lipopolysaccharide-induced inflammatory responses and reprogramming of alveolar macrophages. Eur J Immunol 2025; 55:e2350378. [PMID: 39498697 DOI: 10.1002/eji.202350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Alveolar macrophages (AMs) are sentinels in the airways, where they sense and respond to invading microbes and other stimuli. Unlike macrophages in other locations, AMs can remain responsive to Gram-negative lipopolysaccharides (LPS) after they have responded to LPS in vivo (they do not develop "endotoxin tolerance"), suggesting that the alveolar microenvironment may influence their responses. Although alveolar epithelial cells (AECs) normally limit AMs' innate responses, preventing inflammation induced by harmless antigens in the lung, how AECs influence the innate responses of AMs to infectious agents has been uncertain. Here we report that (1) after exposure to aspirated (intranasal instillation) LPS, AMs increase their responses to TLR agonists and elevate their phagocytic and bactericidal activities in mice; (2) Aspirated LPS pre-exposure increases host resistance to pulmonary infection caused by Gram-negative bacteria and the protection effect lasts for at least 35 days; (3) LPS stimulation of AECs both increases AMs' innate immune responses and prevents AMs from developing tolerance in vitro; (4) Upon LPS stimulation, AMs secreted TNF-α induces AECs to release GM-CSF, which potentiates AMs' response. These experiments have revealed a previously unappreciated role that AECs may play in boosting the innate responses of AMs and promoting resistance to pulmonary infections.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yeying Chen
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Cheng-Yun Yu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yimeng Lu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihui Tang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiying Mao
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Han Han
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| |
Collapse
|
92
|
Hile GA, Werth VP. Understanding the Role of Type I Interferons in Cutaneous Lupus and Dermatomyositis: Toward Better Therapeutics. Arthritis Rheumatol 2025; 77:1-11. [PMID: 39262215 DOI: 10.1002/art.42983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
A 29-year-old female presented to a rheumatology-dermatology clinic with a pruritic rash that began 6 months prior, after a viral illness. She had previously been diagnosed with eczema and treated with antihistamines and topical steroids without improvement. She also noted fatigue, hair loss, and severe scalp pruritus. Physical examination was notable for violaceous periorbital edema, scaly erythematous papules on the metacarpophalangeal joints of bilateral hands, dilated capillaries of the proximal nail folds, scaly plaques on bilateral elbows, and excoriated erythematous plaques on upper chest, back and hips. The patient reported no muscle weakness, and strength testing and creatinine phosphokinase were normal. Magnetic resonance imaging of the thigh showed no evidence of inflammation or edema. Antibody testing was negative. A diagnosis of clinically amyopathic dermatomyositis was made. Computed tomography scans of the chest, abdomen and pelvis, colonoscopy, and mammogram showed no evidence of cancer. The patient was initiated on methotrexate. Her cutaneous manifestations persisted with debilitating intractable pruritus, and thus, she was transitioned to mycophenolate mofetil, again with minimal improvement. Intravenous immunoglobulin was not approved by insurance given the lack of muscle involvement in her disease. This patient's case highlights a common clinical scenario in rheumatology and dermatology and raises several important issues related to the immunologic underpinnings of cutaneous lupus erythematosus (CLE) and dermatomyositis (DM): What is the role of type I interferon (IFN) in triggering skin disease in CLE and DM? What is the role of IFN in the pathogenesis of skin inflammation in CLE and DM? Can we apply what we know about IFN-targeted therapeutics in CLE and DM to develop better treatments for skin disease?
Collapse
Affiliation(s)
| | - Victoria P Werth
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center and the University of Pennsylvania, Philadelphia
| |
Collapse
|
93
|
Li X, Xu Y, Zhang W, Chen Z, Peng D, Ren W, Tang Z, Li H, Xu J, Shu Y. Immunoregulatory programs in anti-N-methyl-D-aspartate receptor encephalitis identified by single-cell multi-omics analysis. Clin Transl Med 2025; 15:e70173. [PMID: 39779473 PMCID: PMC11710936 DOI: 10.1002/ctm2.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies. METHODS Peripheral blood mononuclear cells (PBMCs) from patients in the acute phase of anti-NMDARE and healthy controls were sequenced using single-cell joint profiling of transcriptome and chromatin accessibility. Differential gene expression analysis, transcription factor activity profiling, and cell-cell communication modeling were performed to elucidate the immune mechanisms underlying the disease. In parallel, single-cell B cell receptor sequencing (scBCR-seq) and repertoire analysis were conducted to assess antigen-driven clonal expansion within the B cell population. RESULTS The study revealed a significant clonal expansion of B cells, particularly plasma cells, in anti-NMDARE patients. The novel finding of type I interferon (IFN-I) pathway activation suggests a regulatory mechanism that may drive this expansion and enhance antibody secretion. Additionally, activation of Toll-like receptor 2 (TLR2) in myeloid cells was noted, which may connect to tumor necrosis factor-alpha (TNF-α) secretion. This cytokine may contribute to the activation of B and T cells, thereby perpetuating immune dysregulation. CONCLUSIONS This study presents a comprehensive single-cell multi-omics characterization of immune dysregulation in anti-NMDARE, highlighting the expansion of B cell and the activation of the IFN-I and TLR2 pathways. These findings provide deeper insights into the molecular mechanism driving the pathogenesis of anti-NMDARE and offer promising targets for future therapeutic intervention. KEY POINTS Significant B cell clonal expansion, particularly in plasma cells, driven by antigen recognition. IFN-I pathway activation in plasma cells boosts their antibody production and potentially exacerbates immune dysregulation. TLR2 pathway activation in myeloid cells contributes to TNF-α secretion and could influence adaptive immune responses.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yicong Xu
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Weixing Zhang
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zihao Chen
- Institute of Experimental CardiologyHeidelberg UniversityHeidelbergGermany
| | - Dongjie Peng
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wenxu Ren
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhongjie Tang
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Huilu Li
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jin Xu
- State Key Laboratory of Biocontrol|Innovation Center for Evolutionary Synthetic BiologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yaqing Shu
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
94
|
Badii M, Nica V, Straton AR, Kischkel B, Gaal O, Cabău G, Klück V, Hotea I, Novakovic B, Pamfil C, Rednic S, Netea MG, Popp RA, Joosten LAB, Crișan TO. Downregulation of type I interferon signalling pathway by urate in primary human PBMCs. Immunology 2025; 174:100-112. [PMID: 39354748 PMCID: PMC11652411 DOI: 10.1111/imm.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Type I interferons (IFN1s) mediate innate responses to microbial stimuli and regulate interleukin (IL)-1 and IL-1 receptor antagonist (Ra) production in human cells. This study explores interferon-stimulated gene (ISG) alterations in the transcriptome of patients with gout and stimulated human primary cells in vitro in relation to serum urate concentrations. Peripheral blood mononuclear cells (PBMCs) and monocytes of patients with gout were primed in vitro with soluble urate, followed by lipopolysaccharide (LPS) stimulation. Separately, PBMCs were stimulated with various toll-like receptor (TLR) ligands. RNA sequencing and IL-1Ra cytokine measurement were performed. STAT1 phosphorylation was assessed in urate-treated monocytes. Cytokine responses to IFN-β were evaluated in PBMCs cultured with or without urate and restimulated with LPS and monosodium urate (MSU) crystals. Transcriptomics revealed suppressed IFN-related signalling pathways in urate-exposed PBMCs or monocytes which was supported by diminishment of phosphorylated STAT1. The stimulation of PBMCs with IFN-β did not modify the urate-induced inflammation. Interestingly, in vivo, serum urate concentrations were inversely correlated to in vitro ISG expression upon stimulations with TLR ligands. These findings support a deficient IFN1 signalling in the presence of elevated serum urate concentrations, which could translate to increased susceptibility to infections.
Collapse
Affiliation(s)
- Medeea Badii
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| | - Valentin Nica
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Ancuța R. Straton
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Brenda Kischkel
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| | - Orsolya Gaal
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| | - Georgiana Cabău
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Viola Klück
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| | - Ioana Hotea
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalParkvilleVictoriaAustralia
| | - Cristina Pamfil
- Department of RheumatologyIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Simona Rednic
- Department of RheumatologyIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Mihai G. Netea
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| | - Radu A. Popp
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Leo A. B. Joosten
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Hațieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal Medicine and Research Institute for Medical InnovationRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
95
|
Yang T, Yuan Y, Ma F. Luciferase Reporter Systems in Investigating Interferon Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:127-141. [PMID: 39192125 DOI: 10.1007/978-1-0716-4108-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Luciferase reporter systems are commonly used in scientific research to investigate a variety of biological processes, including antiviral innate immunity. These systems employ the use of luciferase enzymes derived from organisms such as fireflies or renilla reniformis, which emit light upon reaction with a substrate. In the context of antiviral innate immunity, the luciferase reporter systems offer a noninvasive and highly sensitive approach for real-time monitoring of immune responses in vitro and in vivo, enabling researchers to delve into the intricate interactions and signaling pathways involved in host-virus dynamic interactions. Here, we describe the methods of the promoter-luciferase reporter and enhancer-luciferase reporter, which provide insights into the transcriptional and post-transcriptional regulation of antiviral innate immunity. Additionally, we outline the split-luciferase complementary reporter method, which was designed to explore protein-protein interactions associated with antiviral immunity. These methodologies offer invaluable knowledge regarding the molecular mechanisms underlying antiviral immune pathways and have the potential to support the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yi Yuan
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| |
Collapse
|
96
|
Skrtic M, Yusuf B, Patel S, Reddy EC, Ting KKY, Cybulsky MI, Freeman SA, Robinson LA. The neurorepellent SLIT2 inhibits LPS-induced proinflammatory signaling in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:141-152. [PMID: 40073268 PMCID: PMC11844144 DOI: 10.1093/jimmun/vkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/30/2024] [Indexed: 03/14/2025]
Abstract
Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known. Using RNA sequencing analysis, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay, we determined that in murine bone marrow-derived macrophages challenged with the potent proinflammatory mediator lipopolysaccharide (LPS), exposure to the bioactive N-terminal fragment of SLIT2 (NSLIT2) suppressed production of proinflammatory cytokines interleukin (IL)-6 and IL-12 and concurrently increased the anti-inflammatory cytokine IL-10. We found that NSLIT2 inhibited LPS-induced MyD88- and TRIF-mediated signaling cascades and did not inhibit LPS-induced internalization of Toll-like receptor 4 (TLR4), but instead inhibited LPS-induced upregulation of macropinocytosis. Inhibition of macropinocytosis in macrophages attenuated LPS-induced production of proinflammatory IL-6 and IL-12 and concurrently enhanced anti-inflammatory IL-10. Taken together, our results indicate that SLIT2 can selectively modulate macrophage response to potent proinflammatory stimuli, such as LPS, by attenuating proinflammatory activation and simultaneously enhancing anti-inflammatory activity. Our results highlight the role of macropinocytosis in proinflammatory activation of macrophages exposed to LPS. Given that LPS-producing bacteria cause host illness through synergistic direct bacterial infection and excessive LPS-induced systemic inflammation, our work suggests a novel therapeutic role for SLIT2 in combatting the significant morbidity and mortality of patients with Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Marko Skrtic
- Division of Nephrology, Kingston Health Sciences Centre, Queen’s University, Kingston, ON, Canada
| | - Bushra Yusuf
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily C Reddy
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kenneth K Y Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Myron I Cybulsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
97
|
Tumlin J, Rovin B, Anders HJ, Mysler EF, Jayne DR, Takeuchi T, Lindholm C, Weiss G, Sorrentino A, Woollard K, Ferrari N. Targeting the Type I Interferon Pathway in Glomerular Kidney Disease: Rationale and Therapeutic Opportunities. Kidney Int Rep 2025; 10:29-39. [PMID: 39810777 PMCID: PMC11725820 DOI: 10.1016/j.ekir.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/16/2025] Open
Abstract
Type I interferons (IFNs) are immunostimulatory molecules that can activate the innate and adaptive immune systems. In cases of immune dysfunction, prolonged activation of the type I IFN pathway has been correlated with kidney tissue damage in a wide range of kidney disorders, such as lupus nephritis (LN) and focal segmental glomerulosclerosis (FSGS). Genetic mutations, such as APOL1 risk variants in conjunction with elevated type I IFN expression, are also associated with higher rates of chronic kidney disease in patients with LN and collapsing FSGS. Long-term activation of the type I IFN pathway can result in chronic inflammation, leading to kidney tissue damage, cell death, and decline in organ function. Thus, therapeutic strategies targeting type I IFN could provide clinical benefits to patients with immune dysregulation who are at risk of developing impaired kidney function. Here, we present a critical review of type I IFN signaling, the consequences of chronically elevated type I IFN expression, and therapeutic strategies targeting type I IFN signaling in the context of kidney disease.
Collapse
Affiliation(s)
- James Tumlin
- NephroNet Clinical Trials Consortium, Buford, Georgia, USA
| | - Brad Rovin
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | - Tsutomu Takeuchi
- Department of Rheumatology and Applied Immunology, Saitama Medical University and Division of Rheumatology, Department of Internal Medicine, Keio University, Tokyo, Japan
| | | | - Gudrun Weiss
- Global Medical Affairs, Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Alessandro Sorrentino
- Global Medical Affairs, Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Nicola Ferrari
- Translational Science and Experimental Medicine, Early R&I, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
98
|
Wang Z, Hu P, Shan X, Wang B, Xiong H, Yu Q. In Vitro and In Vivo Evaluation of Virus-Induced Innate Immunity in Mouse. Methods Mol Biol 2025; 2854:237-251. [PMID: 39192134 DOI: 10.1007/978-1-0716-4108-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The innate immune system is the first line of host defense against infection by pathogenic microorganisms, among which macrophages are important innate immune cells. Macrophages are widely distributed throughout the body and recognize and eliminate viruses through pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs). In the present chapter, we provide detailed protocols for vesicular stomatitis virus (VSV) amplification, VSV titer detection, isolation of mouse primary peritoneal macrophages, in vitro and in vivo VSV infection, detection of interferon-beta (IFN-β) expression, and lung injury. These protocols provide efficient and typical methods to evaluate virus-induced innate immunity in vitro and in vivo.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Penghui Hu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Shan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Baochen Wang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Xiong
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiujing Yu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
99
|
Li T, Jiang S, Dai Y, Wu X, Guo H, Shi L, Sang X, Ren L, Wang J, Shi L, Zhou W, Li H, Hao HD. Total synthesis and target identification of marine cyclopiane diterpenes. Nat Commun 2024; 15:10851. [PMID: 39738095 PMCID: PMC11686375 DOI: 10.1038/s41467-024-55189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton. The stereocontrolled cyclopentenone construction is further investigated on complex settings to demonstrate its synthetic utility. Furthermore, using an alkyne-tagged conidiogenone C-derived probe, IRGM1, a master regulator of type I interferon responses, is identified as a key cellular target of conidiogenone C responsible for its anti-inflammatory activity. Preliminary mechanism of action studies shows that conidiogenone C activates IRGM1-mediate dysfunctional mitochondria autophagy to maintain mitochondria quality control of inflammatory macrophages.
Collapse
Affiliation(s)
- Tian Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yuanhao Dai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Huihui Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueli Sang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Lili Shi
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenming Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.
| | - Hong-Dong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
100
|
Kostopoulos N, Costabile F, Krimitza E, Beghi S, Goia D, Perales-Linares R, Thyfronitis G, LaRiviere MJ, Chong EA, Schuster SJ, Maity A, Koumenis C, Plastaras JP, Facciabene A. Local radiation enhances systemic CAR T-cell efficacy by augmenting antigen crosspresentation and T-cell infiltration. Blood Adv 2024; 8:6308-6320. [PMID: 39213422 DOI: 10.1182/bloodadvances.2024012599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 (CART-19) represents a significant advance in the treatment of patients with relapsed or refractory CD19+ B-cell lymphomas. However, a significant portion of patients either relapse or fail to respond. Moreover, many patients have symptomatic disease, requiring bridging radiation therapy (RT) during the period of CAR T-cell manufacturing. To investigate the impact of 1 to 2 fractions of low-dose RT on CART-19 treatment response, we developed a mouse model using A20 lymphoma cells for CART-19 therapy. We found that low-dose fractionated RT had a positive effect on generating abscopal systemic antitumor responses beyond the irradiated site. The combination of RT with CART-19 therapy resulted in additive effects on tumor growth in irradiated masses. Notably, a significant additional increase in antitumor effect was observed in nonirradiated tumors. Mechanistically, our results validate activation of the cyclic guanosine adenosine synthetase/stimulator of interferon genes pathway, tumor-associated antigen crosspriming, and elicitation of epitope spreading. Collectively, our findings suggest that RT may serve as an optimal priming and bridging modality for CAR T-cell therapy, overcoming treatment resistance and improving clinical outcomes in patients with CD19+ hematologic malignancies.
Collapse
Affiliation(s)
- Nektarios Kostopoulos
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Francesca Costabile
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Elisavet Krimitza
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Silvia Beghi
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Denisa Goia
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - George Thyfronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michael J LaRiviere
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Elise A Chong
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Amit Maity
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - John P Plastaras
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Andrea Facciabene
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA
- The Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|