51
|
Choi HY, Kim WG. Tyrosol blocks E. coli anaerobic biofilm formation via YbfA and FNR to increase antibiotic susceptibility. Nat Commun 2024; 15:5683. [PMID: 38971825 PMCID: PMC11227560 DOI: 10.1038/s41467-024-50116-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
Bacteria within mature biofilms are highly resistant to antibiotics than planktonic cells. Oxygen limitation contributes to antibiotic resistance in mature biofilms. Nitric oxide (NO) induces biofilm dispersal; however, low NO levels stimulate biofilm formation, an underexplored process. Here, we introduce a mechanism of anaerobic biofilm formation by investigating the antibiofilm activity of tyrosol, a component in wine. Tyrosol inhibits E. coli and Pseudomonas aeruginosa biofilm formation by enhancing NO production. YbfA is identified as a target of tyrosol and its downstream targets are sequentially determined. YbfA activates YfeR, which then suppresses the anaerobic regulator FNR. This suppression leads to decreased NO production, elevated bis-(3'-5')-cyclic dimeric GMP levels, and finally stimulates anaerobic biofilm formation in the mature stage. Blocking YbfA with tyrosol treatment renders biofilm cells as susceptible to antibiotics as planktonic cells. Thus, this study presents YbfA as a promising antibiofilm target to address antibiotic resistance posed by biofilm-forming bacteria, with tyrosol acting as an inhibitor.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, 34141, Republic of Korea
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
52
|
Liu L, Luo D, Zhang Y, Liu D, Yin K, Tang Q, Chou SH, He J. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis. Microbiol Spectr 2024; 12:e0045024. [PMID: 38819160 PMCID: PMC11218506 DOI: 10.1128/spectrum.00450-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
A riboswitch generally regulates the expression of its downstream genes through conformational change in its expression platform (EP) upon ligand binding. The cyclic diguanosine monophosphate (c-di-GMP) class I riboswitch Bc1 is widespread and conserved among Bacillus cereus group species. In this study, we revealed that Bc1 has a long EP with two typical ρ-independent terminator sequences 28 bp apart. The upstream terminator T1 is dominant in vitro, while downstream terminator T2 is more efficient in vivo. Through mutation analysis, we elucidated that Bc1 exerts a rare and incoherent "transcription-translation" dual regulation with T2 playing a crucial role. However, we found that Bc1 did not respond to c-di-GMP under in vitro transcription conditions, and the expressions of downstream genes did not change with fluctuation in intracellular c-di-GMP concentration. To explore this puzzle, we conducted SHAPE-MaP and confirmed the interaction of Bc1 with c-di-GMP. This shows that as c-di-GMP concentration increases, T1 unfolds but T2 remains almost intact and functional. The presence of T2 masks the effect of T1 unwinding, resulting in no response of Bc1 to c-di-GMP. The high Shannon entropy values of EP region imply the potential alternative structures of Bc1. We also found that zinc uptake regulator can specifically bind to the dual terminator coding sequence and slightly trigger the response of Bc1 to c-di-GMP. This work will shed light on the dual-regulation riboswitch and enrich our understanding of the RNA world.IMPORTANCEIn nature, riboswitches are involved in a variety of metabolic regulation, most of which preferentially regulate transcription termination or translation initiation of downstream genes in specific ways. Alternatively, the same or different riboswitches can exist in tandem to enhance regulatory effects or respond to multiple ligands. However, many putative conserved riboswitches have not yet been experimentally validated. Here, we found that the c-di-GMP riboswitch Bc1 with a long EP could form a dual terminator and exhibit non-canonical and incoherent "transcription-translation" dual regulation. Besides, zinc uptake regulator specifically bound to the coding sequence of the Bc1 EP and slightly mediated the action of Bc1. The application of SHAPE-MaP to the dual regulation mechanism of Bc1 may establish the foundation for future studies of such complex untranslated regions in other bacterial genomes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehua Luo
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongji Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dingqi Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kang Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
53
|
Weiler J, Edel M, Gescher J. Biofilms for Production of Chemicals and Energy. Annu Rev Chem Biomol Eng 2024; 15:361-387. [PMID: 38382126 DOI: 10.1146/annurev-chembioeng-100522-110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.
Collapse
Affiliation(s)
- Janek Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| |
Collapse
|
54
|
Hu XM, Peng L, Wang Y, Ma F, Tao Y, Liang X, Yang JL. Bacterial c-di-GMP triggers metamorphosis of mussel larvae through a STING receptor. NPJ Biofilms Microbiomes 2024; 10:51. [PMID: 38902226 PMCID: PMC11190208 DOI: 10.1038/s41522-024-00523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Yuyi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Fan Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Yu Tao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
55
|
Liu Q, Zhang C, Zhang R, Yuan J. Speed-dependent bacterial surface swimming. Appl Environ Microbiol 2024; 90:e0050824. [PMID: 38717126 PMCID: PMC11218616 DOI: 10.1128/aem.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 06/19/2024] Open
Abstract
Solid surfaces submerged in liquid in natural environments alter bacterial swimming behavior and serve as platforms for bacteria to form biofilms. In the initial stage of biofilm formation, bacteria detect surfaces and increase the intracellular level of the second messenger c-di-GMP, leading to a reduction in swimming speed. The impact of this speed reduction on bacterial surface swimming remains unclear. In this study, we utilized advanced microscopy techniques to examine the effect of swimming speed on bacterial surface swimming behavior. We found that a decrease in swimming speed reduces the cell-surface distance and prolongs the surface trapping time. Both these effects would enhance bacterial surface sensing and increase the likelihood of cells adhering to the surface, thereby promoting biofilm formation. We also examined the surface-escaping behavior of wild-type Escherichia coli and Pseudomonas aeruginosa, noting distinct surface-escaping mechanisms between the two bacterial species. IMPORTANCE In the early phase of biofilm formation, bacteria identify surfaces and increase the intracellular level of the second messenger c-di-GMP, resulting in a decrease in swimming speed. Here, we utilized advanced microscopy techniques to investigate the impact of swimming speed on bacterial surface swimming, focusing on Escherichia coli and Pseudomonas aeruginosa. We found that an increase in swimming speed led to an increase in the radius of curvature and a decrease in surface detention time. These effects were explained through hydrodynamic modeling as a result of an increase in the cell-surface distance with increasing swimming speed. We also observed distinct surface-escaping mechanisms between the two bacterial species. Our study suggests that a decrease in swimming speed could enhance the likelihood of cells adhering to the surface, promoting biofilm formation. This sheds light on the role of reduced swimming speed in the transition from motile to sedentary bacterial lifestyles.
Collapse
Affiliation(s)
- Qiuqian Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Chi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
56
|
Sarangi A, Singh SP, Das BS, Rajput S, Fatima S, Bhattacharya D. Mycobacterial biofilms: A therapeutic target against bacterial persistence and generation of antibiotic resistance. Heliyon 2024; 10:e32003. [PMID: 38882302 PMCID: PMC11176842 DOI: 10.1016/j.heliyon.2024.e32003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of Tuberculosis, one of the deadliest infectious diseases. According to the WHO Report 2023, in 2022, approximately 10.6 million people got infected with TB, and 1.6 million died. It has multiple antibiotics for treatment, but the major drawback of anti-tuberculosis therapy (ATT) is, its prolonged treatment duration. The major contributors to the lengthy treatment period are mycobacterial persistence and drug tolerance. Persistent M. tb is phenotypically drug tolerant and metabolically slow down which makes it difficult to be eliminated during ATT. These persisting bacteria are a huge reservoir of impending disease, waiting to get reactivated upon the onset of an immune compromising state. Directly Observed Treatment Short-course, although effective against replicating bacteria; fails to eliminate the drug-tolerant persisters making TB still the second-highest killer globally. There are different mechanisms for the development of drug-tolerant mycobacterial populations being investigated. Recently, the role of biofilms in the survival and host-evasion mechanism of persisters has come to light. Therefore, it is crucial to understand the mechanism of adaptation, survival and attainment of drug tolerance by persisting M. tb-populations, in order to design better immune responses and therapeutics for the effective elimination of these bacteria by reducing the duration of treatment and also circumvent the generation of drug-resistance to achieve the goal of global eradication of TB. This review summarizes the drug-tolerance mechanism and biofilms' role in providing a niche to dormant-M.tb. We also discuss methods of targeting biofilms to achieve sterile eradication of the mycobacteria and prevent its reactivation by achieving adequate immune responses.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Shashi Prakash Singh
- Vaccine and Gene Therapy Institute (VGTI) Oregon National Primate Research Centre (ONPRC) Oregon Health and Science University (OHSU) Beaverton, Oregon, USA
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sristi Rajput
- Departmental of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Samreen Fatima
- UMass Chan Medical School, University of Massachusetts, Worcester, MA, USA
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
- Departmental of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| |
Collapse
|
57
|
Hultqvist LD, Andersen JB, Nilsson CM, Jansen CU, Rybtke M, Jakobsen TH, Nielsen TE, Qvortrup K, Moser C, Graz M, Qvortrup K, Tolker-Nielsen T, Givskov M. High efficacy treatment of murine Pseudomonas aeruginosa catheter-associated urinary tract infections using the c-di-GMP modulating anti-biofilm compound Disperazol in combination with ciprofloxacin. Antimicrob Agents Chemother 2024; 68:e0148123. [PMID: 38717093 PMCID: PMC11620490 DOI: 10.1128/aac.01481-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 12/07/2024] Open
Abstract
Persistent urinary tract infections (UTIs) in hospitalized patients constitute an important medical problem. It is estimated that 75% of nosocomial UTIs are associated with urinary tract catheters with P. aeruginosa being a species that forms biofilms on these catheters. These infections are highly resistant to standard-of-care antibiotics, and the effects of the host immune defenses, which allows for development of persistent infections. With antibiotics losing their efficacy, new treatment options against resilient infections, such as catheter-associated urinary tract infections (CAUTIs), are critically needed. Central to our anti-biofilm approach is the manipulation of the c-di-GMP signaling pathway in P. aeruginosa to switch bacteria from the protective biofilm to the unprotected planktonic mode of life. We recently identified a compound (H6-335-P1), that stimulates the c-di-GMP degrading activity of the P. aeruginosa BifA protein which plummets the intracellular c-di-GMP content and induces dispersal of P. aeruginosa biofilm bacteria into the planktonic state. In the present study, we formulated H6-335-P1 as a hydrochloride salt (Disperazol), which is water-soluble and facilitates delivery via injection or oral administration. Disperazol can work as a monotherapy, but we observed a 100-fold improvement in efficacy when treating murine P. aeruginosa CAUTIs with a Disperazol/ciprofloxacin combination. Biologically active Disperazol reached the bladder 30 min after oral administration. Our study provides proof of concept that Disperazol can be used in combination with a relevant antibiotic for effective treatment of CAUTIs.
Collapse
Affiliation(s)
- Louise Dahl Hultqvist
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Andersen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl Martin Nilsson
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Eiland Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, CFIM, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Graz
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
58
|
Barbosa A, Azevedo NF, Goeres DM, Cerqueira L. Ecology of Legionella pneumophila biofilms: The link between transcriptional activity and the biphasic cycle. Biofilm 2024; 7:100196. [PMID: 38601816 PMCID: PMC11004079 DOI: 10.1016/j.bioflm.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
There has been considerable discussion regarding the environmental life cycle of Legionella pneumophila and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the L. pneumophila biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted. However, several studies have shown genetic pathways within the biofilm that resemble intracellular mechanisms. Understanding the functionality of L. pneumophila cells within a biofilm is fundamental for assessing the ecology and evaluating how the biofilm architecture influences L. pneumophila survival and persistence in water systems. This manuscript provides an overview of the biphasic cycle of L. pneumophila and its implications in associated intracellular mechanisms in amoeba. It also examines the molecular pathways and gene regulation involved in L. pneumophila biofilm formation and dissemination. A holistic analysis of the transcriptional activities in L. pneumophila biofilms is provided, combining the information of intracellular mechanisms in a comprehensive outline. Furthermore, this review discusses the techniques that can be used to study the morphogenetic states of the bacteria within biofilms, at the single cell and population levels.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Darla M. Goeres
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Laura Cerqueira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
59
|
Wang X, Yi K, Pang H, Liu Z, Li X, Zhang W, Zhang C, Liu S, Huang J, Zhang C. An overview of quorum sensing in shaping activated sludge forms: Mechanisms, applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171886. [PMID: 38531459 DOI: 10.1016/j.scitotenv.2024.171886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Activated sludge method is an effective method for the wastewater treatment and has been widely applied. Activated sludge usually exists in various forms such as activated sludge floc, biofilm and granule. Due to the different character and function for each sludge type, the role and mechanism in the wastewater treatment process are also different, but all were crucial. The quorum sensing (QS) /quorum quenching (QQ) have been demonstrated and proved to regulate the group behavior by secreting signaling molecules among microorganisms and thus affect the manifestation of sludge. However, the complex mechanisms and regulatory strategies of QS/QQ in sludge forms have not been systematically summarized. This review provided an overview on the mechanism of QS/QQ shaping sludge forms from macro to micro (Explore it through signaling molecules, extracellular polymeric substances and microorganisms). In addition, the application and challenges of QS/QQ regulating sludge forms in various wastewater treatment processes including biofilm batch reactor, granule sludge and membrane bioreactor were discussed. Finally, some suggestions for further research and development of effective and economical QS/QQ strategies are put forward.
Collapse
Affiliation(s)
- Xia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Kaixin Yi
- College of Materials and Environmental Engineering, Changsha University, Changsha 410003, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xue Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
60
|
Zhou J, Feng Y, Wu X, Feng Y, Zhao Y, Pan J, Liu S. Communication leads to bacterial heterogeneous adaptation to changing conditions in partial nitrification reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172110. [PMID: 38565348 DOI: 10.1016/j.scitotenv.2024.172110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.
Collapse
Affiliation(s)
- Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ying Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
61
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
62
|
Liu H, Xu G, Guo B, Liu F. Old role with new feature: T2SS ATPase as a cyclic-di-GMP receptor to regulate antibiotic production. Appl Environ Microbiol 2024; 90:e0041824. [PMID: 38624198 PMCID: PMC11107153 DOI: 10.1128/aem.00418-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.
Collapse
Affiliation(s)
- Haofei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
63
|
Huang J, Xu Z, Zhou T, Zhang LH, Xu Z. Suppression of Pseudomonas aeruginosa type III secretion system by a novel calcium-responsive signaling pathway. iScience 2024; 27:109690. [PMID: 38660402 PMCID: PMC11039405 DOI: 10.1016/j.isci.2024.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Expression of the type III secretion system (T3SS) in Pseudomonas aeruginosa is exquisitely controlled by diverse environmental or host-related signals such as calcium (Ca2+), however, the signal transduction pathways remain largely elusive. In this study, we reported that FleR, the response regulator of the two-component system FleS/FleR, inhibits T3SS gene expression and virulence of P. aeruginosa uncoupled from its cognate histidine kinase FleS. Interestingly, FleR was found to repress T3SS gene expression under Ca2+-rich conditions independently of its DNA-binding domain. FleR activates the elevation of intracellular c-di-GMP contents and FleQ serves as the c-di-GMP effector to repress T3SS gene expression through the Gac/Rsm pathway. Remarkably, we found that AmrZ, a member of the FleR regulon, inhibits T3SS gene expression by directly targeting the promoter of exsCEBA in an expression level-dependent manner. This study revealed an intricate regulatory network that connects P. aeruginosa T3SS gene expression to the Ca2+ signal.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zirui Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
64
|
Jusufovic N, Krusenstjerna AC, Savage CR, Saylor TC, Brissette CA, Zückert WR, Schlax PJ, Motaleb MA, Stevenson B. Borrelia burgdorferi PlzA is a cyclic-di-GMP dependent DNA and RNA binding protein. Mol Microbiol 2024; 121:1039-1062. [PMID: 38527857 DOI: 10.1111/mmi.15254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here, we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length and G-C content play a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.
Collapse
Affiliation(s)
- Nerina Jusufovic
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C Krusenstjerna
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R Savage
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Timothy C Saylor
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Paula J Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, Maine, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Brian Stevenson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
65
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
66
|
Mikhailovich V, Heydarov R, Zimenkov D, Chebotar I. Stenotrophomonas maltophilia virulence: a current view. Front Microbiol 2024; 15:1385631. [PMID: 38741741 PMCID: PMC11089167 DOI: 10.3389/fmicb.2024.1385631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen intrinsically resistant to multiple and broad-spectrum antibiotics. Although the bacterium is considered a low-virulence pathogen, it can cause various severe diseases and contributes significantly to the pathogenesis of multibacterial infections. During the COVID-19 pandemic, S. maltophilia has been recognized as one of the most common causative agents of respiratory co-infections and bacteremia in critically ill COVID-19 patients. The high ability to adapt to unfavorable environments and new habitat niches, as well as the sophisticated switching of metabolic pathways, are unique mechanisms that attract the attention of clinical researchers and experts studying the fundamental basis of virulence. In this review, we have summarized the current knowledge on the molecular aspects of S. maltophilia virulence and putative virulence factors, partially touched on interspecific bacterial interactions and iron uptake systems in the context of virulence, and have not addressed antibiotic resistance.
Collapse
Affiliation(s)
- Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Heydarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Danila Zimenkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor Chebotar
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
67
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
68
|
Hu XM, Peng L, Wu J, Wu G, Liang X, Yang JL. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides. NPJ Biofilms Microbiomes 2024; 10:38. [PMID: 38575604 PMCID: PMC10994910 DOI: 10.1038/s41522-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Jingxian Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Guanju Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
69
|
Verma RK, Gondu P, Saha T, Chatterjee S. The Global Transcription Regulator XooClp Governs Type IV Pili System-Mediated Bacterial Virulence by Directly Binding to TFP-Chp Promoters to Coordinate Virulence Associated Functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:357-369. [PMID: 38105438 DOI: 10.1094/mpmi-07-23-0100-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Parimala Gondu
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Tirthankar Saha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | | |
Collapse
|
70
|
Zhang S, Jeffreys LN, Poddar H, Yu Y, Liu C, Patel K, Johannissen LO, Zhu L, Cliff MJ, Yan C, Schirò G, Weik M, Sakuma M, Levy CW, Leys D, Heyes DJ, Scrutton NS. Photocobilins integrate B 12 and bilin photochemistry for enzyme control. Nat Commun 2024; 15:2740. [PMID: 38548733 PMCID: PMC10979010 DOI: 10.1038/s41467-024-46995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.
Collapse
Affiliation(s)
- Shaowei Zhang
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China.
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Harshwardhan Poddar
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yuqi Yu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Kaylee Patel
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Cunyu Yan
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
71
|
Fabian B, Foster C, Asher A, Hassan K, Paulsen I, Tetu S. Identifying the suite of genes central to swimming in the biocontrol bacterium Pseudomonas protegens Pf-5. Microb Genom 2024; 10:001212. [PMID: 38546328 PMCID: PMC11004494 DOI: 10.1099/mgen.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
Swimming motility is a key bacterial trait, important to success in many niches. Biocontrol bacteria, such as Pseudomonas protegens Pf-5, are increasingly used in agriculture to control crop diseases, where motility is important for colonization of the plant rhizosphere. Swimming motility typically involves a suite of flagella and chemotaxis genes, but the specific gene set employed for both regulation and biogenesis can differ substantially between organisms. Here we used transposon-directed insertion site sequencing (TraDIS), a genome-wide approach, to identify 249 genes involved in P. protegens Pf-5 swimming motility. In addition to the expected flagella and chemotaxis, we also identified a suite of additional genes important for swimming, including genes related to peptidoglycan turnover, O-antigen biosynthesis, cell division, signal transduction, c-di-GMP turnover and phosphate transport, and 27 conserved hypothetical proteins. Gene knockout mutants and TraDIS data suggest that defects in the Pst phosphate transport system lead to enhanced swimming motility. Overall, this study expands our knowledge of pseudomonad motility and highlights the utility of a TraDIS-based approach for analysing the functions of thousands of genes. This work sets a foundation for understanding how swimming motility may be related to the inconsistency in biocontrol bacteria performance in the field.
Collapse
Affiliation(s)
- B.K. Fabian
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - C. Foster
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - A. Asher
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - K.A. Hassan
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - I.T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - S.G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
72
|
Cheng T, Cheang QW, Xu L, Sheng S, Li Z, Shi Y, Zhang H, Pang LM, Liu DX, Yang L, Liang ZX, Wang J. A PilZ domain protein interacts with the transcriptional regulator HinK to regulate type VI secretion system in Pseudomonas aeruginosa. J Biol Chem 2024; 300:105741. [PMID: 38340793 PMCID: PMC10912698 DOI: 10.1016/j.jbc.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.
Collapse
Affiliation(s)
- Tianfang Cheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linghui Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Shuo Sheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China; Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhaoting Li
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Shi
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Huiyan Zhang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
73
|
Schuelke-Sanchez A, Yennawar NH, Weinert EE. Oxygen-selective regulation of cyclic di-GMP synthesis by a globin coupled sensor with a shortened linking domain modulates Shewanella sp. ANA-3 biofilm. J Inorg Biochem 2024; 252:112482. [PMID: 38218138 PMCID: PMC11616453 DOI: 10.1016/j.jinorgbio.2024.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.
Collapse
Affiliation(s)
- Ariel Schuelke-Sanchez
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
74
|
Liu C, Shi R, Jensen MS, Zhu J, Liu J, Liu X, Sun D, Liu W. The global regulation of c-di-GMP and cAMP in bacteria. MLIFE 2024; 3:42-56. [PMID: 38827514 PMCID: PMC11139211 DOI: 10.1002/mlf2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 06/04/2024]
Abstract
Nucleotide second messengers are highly versatile signaling molecules that regulate a variety of key biological processes in bacteria. The best-studied examples are cyclic AMP (cAMP) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which both act as global regulators. Global regulatory frameworks of c-di-GMP and cAMP in bacteria show several parallels but also significant variances. In this review, we illustrate the global regulatory models of the two nucleotide second messengers, compare the different regulatory frameworks between c-di-GMP and cAMP, and discuss the mechanisms and physiological significance of cross-regulation between c-di-GMP and cAMP. c-di-GMP responds to numerous signals dependent on a great number of metabolic enzymes, and it regulates various signal transduction pathways through its huge number of effectors with varying activities. In contrast, due to the limited quantity, the cAMP metabolic enzymes and its major effector are regulated at different levels by diverse signals. cAMP performs its global regulatory function primarily by controlling the transcription of a large number of genes via cAMP receptor protein (CRP) in most bacteria. This review can help us understand how bacteria use the two typical nucleotide second messengers to effectively coordinate and integrate various physiological processes, providing theoretical guidelines for future research.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Rui Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Marcus S. Jensen
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information TechnologyNanjing University of Science and TechnologyNanjingChina
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
75
|
Xu LC, Booth JL, Lanza M, Ozdemir T, Huffer A, Chen C, Khursheed A, Sun D, Allcock HR, Siedlecki CA. In Vitro and In Vivo Assessment of the Infection Resistance and Biocompatibility of Small-Molecule-Modified Polyurethane Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8474-8483. [PMID: 38330222 DOI: 10.1021/acsami.3c18231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Bacterial intracellular nucleotide second messenger signaling is involved in biofilm formation and regulates biofilm development. Interference with the bacterial nucleotide second messenger signaling provides a novel approach to control biofilm formation and limit microbial infection in medical devices. In this study, we tethered small-molecule derivatives of 4-arylazo-3,5-diamino-1H-pyrazole on polyurethane biomaterial surfaces and measured the biofilm resistance and initial biocompatibility of modified biomaterials in in vitro and in vivo settings. Results showed that small-molecule-modified surfaces significantly reduced the Staphylococcal epidermidis biofilm formation compared to unmodified surfaces and decreased the nucleotide levels of c-di-AMP in biofilm cells, suggesting that the tethered small molecules interfere with intracellular nucleotide signaling and inhibit biofilm formation. The hemocompatibility assay showed that the modified polyurethane films did not induce platelet activation or red blood cell hemolysis but significantly reduced plasma coagulation and platelet adhesion. The cytocompatibility assay with fibroblast cells showed that small-molecule-modified surfaces were noncytotoxic and cells appeared to be proliferating and growing on modified surfaces. In a 7-day subcutaneous infection rat model, the polymer samples were implanted in Wistar rats and inoculated with bacteria or PBS. Results show that modified polyurethane significantly reduced bacteria by ∼2.5 log units over unmodified films, and the modified polymers did not lead to additional irritation/toxicity to the animal tissues. Taken together, the results demonstrated that small molecules tethered on polymer surfaces remain active, and the modified polymers are biocompatible and resistant to microbial infection in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Tugba Ozdemir
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Amelia Huffer
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
76
|
Kitanishi K, Aoyama N, Shimonaka M. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Vibrio fluvialis. Biochemistry 2024; 63:523-532. [PMID: 38264987 PMCID: PMC10882959 DOI: 10.1021/acs.biochem.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Kenichi Kitanishi
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Nao Aoyama
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Motoyuki Shimonaka
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
77
|
Chen K, Li L, Zhou Z, Wang N, Dai C, Sun D, Li J, Xu C, Liao M, Zhang J. BolA promotes the generation of multicellular behavior in S. Typhimurium by regulating the c-di-GMP pathway genes yeaJ and yhjH. Int J Food Microbiol 2024; 411:110518. [PMID: 38101189 DOI: 10.1016/j.ijfoodmicro.2023.110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The generation of multicellular behavior enhances the stress adaptability, antibiotic resistance, and pathogenic potential of Salmonella enterica serovar Typhimurium (S. Typhimurium), which is challenging for its prevention and control. Therefore, determination of the mechanism of multicellular behavior development is urgently required. Accordingly, this study investigated BolA, a transcription factor that promotes bacterial survival under different stresses. We found that BolA promoted the generation of multicellular behavior. Furthermore, transcriptome analysis revealed that BolA affected the expression of numerous genes, including biofilm formation and motility-related genes. In terms of biofilm formation, compared with the wild-type strain, bolA overexpression (269BolA+) increased the extracellular matrix content (extracellular polysaccharide, extracellular protein, and extracellular DNA (eDNA) by upregulating gene expression, ultimately increasing the biofilm formation ability by 2.56 times. For motility, bolA overexpression inhibited the expression of flagella synthesis genes, resulting in a 91.15 % decrease in motility compared with the wild-type (6 h). Further mechanistic analysis demonstrated that BolA affected the expression of the C-di-GMP pathway genes yeaJ and yhjH, which influenced the generation of multicellular behavior. In terms of biofilms, the extracellular polysaccharide content of 269BolA + ∆Yeaj (bolA overexpression and yeaJ deletion) was reduced by 89.91 % compared with 269BolA+, resulting in a 71.1 % reduction in biofilm forming ability. The motility of the 269∆BolA∆Yhjh (bolA/yhjH double deletion) strain was significantly decreased compared with that of 269∆BolA. Finally, the LacZ gene reporting showed that BolA promoted and inhibited the expression of yeaJ and yhjH, respectively. In conclusion, BolA mainly improves the content of extracellular polysaccharide by promoting the expression of yeaJ, thus enhancing the formation of biofilms. BolA also restricts flagellar synthesis by inhibiting yhjH expression, therefore reducing motility, ultimately promoting multicellular behavior arises. These findings lay a theoretical foundation for the prevention and control of S. Typhimurium.
Collapse
Affiliation(s)
- Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lili Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhouping Zhou
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Nanwei Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Changzhi Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dage Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
78
|
Feng Q, Zhou J, Zhang L, Fu Y, Yang L. Insights into the molecular basis of c-di-GMP signalling in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:20-38. [PMID: 36539391 DOI: 10.1080/1040841x.2022.2154140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can cause severe infections in immunocompromized people or cystic fibrosis (CF) patients. Because of its remarkable ability to invade the host and withstand the bacteriocidal effect of most conventional antibiotics, the infection caused by P. aeruginosa has become a major concern for human health. The switch from acute to chronic infection is governed by the second messenger bis-(3'-5')-cyclic dimeric guanosine mono-phosphate (c-di-GMP) in P. aeruginosa, and c-di-GMP is now recognized to regulate many important biological processes in pathogenesis. The c-di-GMP signalling mechanisms in P. aeruginosa have been studied extensively in the past decade, revealing complicated c-di-GMP metabolism and signalling network. In this review, the underlying mechanisms of this signalling network will be discussed, mainly focussing on how environmental cues regulate c-di-GMP signalling, protein-protein interaction mediated functional regulation, heterogeneity of c-di-GMP and cross talk between c-di-GMP signalling and other signalling systems. Understanding the molecular mechanism underlying the complex c-di-GMP signalling network would be beneficial for developing therapeutic approaches and antibacterial agents to combat the threat from P. aeruginosa.
Collapse
Affiliation(s)
- Qishun Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| |
Collapse
|
79
|
Yang Y, Guo S, Hong CJ, Liang ZX, Ho CL. Initial cyclic-di-GMP upregulation triggers sporadic cellular expansion leading to improved cellular survival. Biotechnol J 2024; 19:e2300542. [PMID: 38403404 DOI: 10.1002/biot.202300542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Bacterial second messenger c-di-GMP upregulation is associated with the transition from planktonic to sessile microbial lifestyle, inhibiting cellular motility, and virulence. However, in-depth elucidation of the cellular processes resulting from c-di-GMP upregulation has not been fully explored. Here, we report the role of upregulated cellular c-di-GMP in promoting planktonic cell growth of Escherichia coli K12 and Pseudomonas aeruginosa PAO1. We found a rapid expansion of cellular growth during initial cellular c-di-GMP upregulation, resulting in a larger planktonic bacterial population. The initial increase in c-di-GMP levels promotes bacterial swarming motility during the growth phase, which is subsequently inhibited by the continuous increase of c-di-GMP, and ultimately facilitates the formation of biofilms. We demonstrated that c-di-GMP upregulation triggers key bacterial genes linked to bacterial growth, swarming motility, and biofilm formation. These genes are mainly controlled by the master regulatory genes csgD and csrA. This study provides us a glimpse of the bacterial behavior of evading potential threats through adapting lifestyle changes via c-di-GMP regulation.
Collapse
Affiliation(s)
- Yongshuai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Siyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Can-Jian Hong
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhao-Xun Liang
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
80
|
Guan C, Huang Y, Zhou Y, Han Y, Liu S, Liu S, Kong W, Wang T, Zhang Y. FlhF affects the subcellular clustering of WspR through HsbR in Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0154823. [PMID: 38112425 PMCID: PMC10807432 DOI: 10.1128/aem.01548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023] Open
Abstract
In bacteria, the second messenger cyclic di-GMP (c-di-GMP) is synthesized and degraded by multiple diguanylate cyclases (DGCs) and phosphodiesterases. A high level of c-di-GMP induces biofilm formation and represses motility. WspR, a hybrid response regulator DGC, produces c-di-GMP when it is phosphorylated. FlhF, a signal recognition particle-type GTPase, is initially localized to the cell poles and is indispensable for polar flagellar localization in Pseudomonas aeruginosa. In this study, we report that deletion of flhF affected biofilm formation and the c-di-GMP level in P. aeruginosa. Phenotypic analysis of a flhF knockout mutant revealed increased biofilm formation, wrinkled colonies on Congo red agar, and an elevated c-di-GMP level compared to the wild-type strain, PAO1. Yeast and bacterial two-hybrid systems showed that FlhF binds to the response regulator HsbR, and HsbR binds to WspR. Deletion of hsbR or wspR in the ΔflhF background abolished the phenotype of ΔflhF. In addition, confocal microscopy demonstrated that WspR-GFP was distributed throughout the cytoplasm and formed a visible cluster at one cell pole in PAO1 and ΔhsbR, but it was mainly distributed as visible clusters at the lateral side of the periplasm and with visible clusters at both cell poles in ΔflhF. These findings suggest that FlhF influences the subcellular cluster and localization of WspR and negatively modulates WspR DGC activity in a manner dependent on HsbR. Together, our findings demonstrate a novel mechanism for FlhF modulating the lifestyle transition between motility and biofilm via HsbR to regulate the DGC activity of WspR.IMPORTANCECyclic di-GMP (c-di-GMP) is a second messenger that controls flagellum biosynthesis, adhesion, virulence, motility, exopolysaccharide production, and biofilm formation in bacteria. Recent research has shown that distinct diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) produce highly specific outputs. Some DGCs and PDEs contribute to the total global c-di-GMP concentration, but others only affect local c-di-GMP in a microenvironment. However, the underlying mechanisms are unclear. Here, we report that FlhF affects the localization and DGC activity of WspR via HsbR and is implicated in local c-di-GMP signaling in Pseudomonas aeruginosa. This study establishes the link between the c-di-GMP signaling system and the flagellar localization and provides insight for understanding the complex regulatory network of c-di-GMP signaling.
Collapse
Affiliation(s)
- Congcong Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yi Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yun Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yuqian Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shuhui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shimin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Weina Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yani Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
81
|
Ling X, Liu X, Wang K, Guo M, Ou Y, Li D, Xiang Y, Zheng J, Hu L, Zhang H, Li W. Lsr2 acts as a cyclic di-GMP receptor that promotes keto-mycolic acid synthesis and biofilm formation in mycobacteria. Nat Commun 2024; 15:695. [PMID: 38267428 PMCID: PMC10808224 DOI: 10.1038/s41467-024-44774-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that promotes biofilm formation in several bacterial species, but the mechanisms are often unclear. Here, we report that c-di-GMP promotes biofilm formation in mycobacteria in a manner dependent on the nucleoid-associated protein Lsr2. We show that c-di-GMP specifically binds to Lsr2 at a ratio of 1:1. Lsr2 upregulates the expression of HadD, a (3R)-hydroxyacyl-ACP dehydratase, thus promoting the synthesis of keto-mycolic acid and biofilm formation. Thus, Lsr2 acts as a c-di-GMP receptor that links the second messenger's function to lipid synthesis and biofilm formation in mycobacteria.
Collapse
Affiliation(s)
- Xiaocui Ling
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Minhao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yanzhe Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Danting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yulin Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiachen Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
82
|
Jusufovic N, Krusenstjerna AC, Savage CR, Saylor TC, Brissette CA, Zückert WR, Schlax PJ, Motaleb MA, Stevenson B. Borrelia burgdorferi PlzA is a cyclic-di-GMP dependent DNA and RNA binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526351. [PMID: 36778503 PMCID: PMC9915621 DOI: 10.1101/2023.01.30.526351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length plays a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.
Collapse
Affiliation(s)
- Nerina Jusufovic
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Andrew C. Krusenstjerna
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Christina R. Savage
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Timothy C. Saylor
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203-9061, USA
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Paula J. Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240-6030, USA
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834-435, USA
| | - Brian Stevenson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| |
Collapse
|
83
|
Ribardo DA, Johnson JJ, Hendrixson DR. Viscosity-dependent determinants of Campylobacter jejuni impacting the velocity of flagellar motility. mBio 2024; 15:e0254423. [PMID: 38085029 PMCID: PMC10790790 DOI: 10.1128/mbio.02544-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion. Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion through diverse environments. These changes may involve increasing power and torque in high-viscosity environments or reducing power and flagellar rotation upon contact with a surface. C. jejuni swimming velocity in low-viscosity environments is comparable to other bacterial flagellates and increases significantly as external viscosity increases. In this work, we provide evidence that the mechanics of the C. jejuni flagellar motor has evolved to naturally promote high swimming velocity in high-viscosity environments. We found that C. jejuni produces VidA and VidB as auxiliary proteins to specifically affect flagellar motor activity in low viscosity to reduce swimming velocity. Our findings provide some of the first insights into different mechanisms that exist in bacteria to alter the mechanics of a flagellar motor, depending on the viscosity of extracellular environments.
Collapse
Affiliation(s)
- Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeremiah J. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
84
|
Zhang J, Liu Y, Hu J, Leng G, Liu X, Cui Z, Wang W, Ma Y, Sha S. Cellulase Promotes Mycobacterial Biofilm Dispersal in Response to a Decrease in the Bacterial Metabolite Gamma-Aminobutyric Acid. Int J Mol Sci 2024; 25:1051. [PMID: 38256125 PMCID: PMC10816823 DOI: 10.3390/ijms25021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Biofilm dispersal contributes to bacterial spread and disease transmission. However, its exact mechanism, especially that in the pathogen Mycobacterium tuberculosis, is unclear. In this study, the cellulase activity of the M. tuberculosis Rv0062 protein was characterized, and its effect on mycobacterial biofilm dispersal was analyzed by observation of the structure and components of Rv0062-treated biofilm in vitro. Meanwhile, the metabolite factors that induced cellulase-related biofilm dispersal were also explored with metabolome analysis and further validations. The results showed that Rv0062 protein had a cellulase activity with a similar optimum pH (6.0) and lower optimum temperature (30 °C) compared to the cellulases from other bacteria. It promoted mycobacterial biofilm dispersal by hydrolyzing cellulose, the main component of extracellular polymeric substrates of mycobacterial biofilm. A metabolome analysis revealed that 107 metabolites were significantly altered at different stages of M. smegmatis biofilm development. Among them, a decrease in gamma-aminobutyric acid (GABA) promoted cellulase-related biofilm dispersal, and this effect was realized with the down-regulation of the bacterial signal molecule c-di-GMP. All these findings suggested that cellulase promotes mycobacterial biofilm dispersal and that this process is closely associated with biofilm metabolite alterations.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Guangxian Leng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Zailin Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| |
Collapse
|
85
|
Kharadi RR, Hsueh BY, Waters CM, Sundin GW. pGpG-signaling regulates virulence and global transcriptomic targets in Erwinia amylovora. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575434. [PMID: 38260453 PMCID: PMC10802605 DOI: 10.1101/2024.01.12.575434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cyclic-di-GMP (c-di-GMP) is a critical bacterial second messenger that enables the physiological phase transition in Erwinia amylovora, the phytopathogenic bacterium that causes fire blight disease. C-di-GMP generation is dependent on diguanylate cyclase enzymes while the degradation of c-di-GMP can occur through the action of phosphodiesterase (PDE) enzymes that contain an active EAL and/or a HD-GYP domain. The HD-GYP-type PDEs, which are absent in E. amylovora, can directly degrade c-di-GMP into two GMP molecules. PDEs that contain an active EAL domain, as found in all active PDEs in E. amylovora, degrade c-di-GMP into pGpG. The signaling function of pGpG is not fully understood in bacterial systems. A transcriptomic approach revealed that elevated levels of pGpG in E. amylovora impacted several genes involved in metabolic and regulatory functions including several type III secretion and extracellular appendage related genes. The heterologous overexpression of an EAL or HD-GYP-type PDE in different background E. amylovora strains with varying c-di-GMP levels revealed that in contrast to the generation of pGpG, the direct breakdown of c-di-GMP into GMP by the HD-GYP-type PDE led to an elevation in amylovoran production and biofilm formation despite a decrease in c-di-GMP levels. The breakdown of c-di-GMP into pGpG (as opposed to GTP) also led to a decrease in virulence in apple shoots. The expression of hrpS was significantly increased in response to the breakdown of c-di-GMP into pGpG. Further, our model suggests that a balance in the intracellular ratio of pGpG and c-di-GMP is essential for biofilm regulation in E. amylovora.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - George W. Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
86
|
Teteneva N, Sanches-Medeiros A, Sourjik V. Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water. THE ISME JOURNAL 2024; 18:wrae096. [PMID: 38874171 PMCID: PMC11188689 DOI: 10.1093/ismejo/wrae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
Collapse
Affiliation(s)
- Nataliya Teteneva
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Ananda Sanches-Medeiros
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
87
|
Tang M, Yang R, Zhuang Z, Han S, Sun Y, Li P, Fan K, Cai Z, Yang Q, Yu Z, Yang L, Li S. Divergent molecular strategies drive evolutionary adaptation to competitive fitness in biofilm formation. THE ISME JOURNAL 2024; 18:wrae135. [PMID: 39052320 PMCID: PMC11307329 DOI: 10.1093/ismejo/wrae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Biofilm is a group of heterogeneously structured and densely packed bacteria with limited access to nutrients and oxygen. These intrinsic features can allow a mono-species biofilm to diversify into polymorphic subpopulations, determining the overall community's adaptive capability to changing ecological niches. However, the specific biological functions underlying biofilm diversification and fitness adaptation are poorly demonstrated. Here, we launched and monitored the experimental evolution of Pseudomonas aeruginosa biofilms, finding that two divergent molecular trajectories were adopted for adaptation to higher competitive fitness in biofilm formation: one involved hijacking bacteriophage superinfection to aggressively inhibit kin competitors, whereas the other induced a subtle change in cyclic dimeric guanosine monophosphate signaling to gain a positional advantage via enhanced early biofilm adhesion. Bioinformatics analyses implicated that similar evolutionary strategies were prevalent among clinical P. aeruginosa strains, indicative of parallelism between natural and experimental evolution. Divergence in the molecular bases illustrated the adaptive values of genomic plasticity for gaining competitive fitness in biofilm formation. Finally, we demonstrated that these fitness-adaptive mutations reduced bacterial virulence. Our findings revealed how the mutations intrinsically generated from the biofilm environment influence the evolution of P. aeruginosa.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
| | - Ruixue Yang
- Community Health Service Center of Southern University of Science and Technology, Nanshan Medical Group Headquarters, Shenzhen 518055, China
| | - Zilin Zhuang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuhong Han
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunke Sun
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyu Li
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Kewei Fan
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Zhao Cai
- Department of Research and Development, Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen 518057, China
| | - Qiong Yang
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuo Li
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
- Allergy Prevention and Control Center, Nanshan People’s Hospital, Shenzhen 518052, China
| |
Collapse
|
88
|
Chen M, Trotter VV, Walian PJ, Chen Y, Lopez R, Lui LM, Nielsen TN, Malana RG, Thorgersen MP, Hendrickson AJ, Carion H, Deutschbauer AM, Petzold CJ, Smith HJ, Arkin AP, Adams MWW, Fields MW, Chakraborty R. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. THE ISME JOURNAL 2024; 18:wrae151. [PMID: 39113613 PMCID: PMC11410051 DOI: 10.1093/ismejo/wrae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romario Lopez
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben N Nielsen
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ria Gracielle Malana
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrew J Hendrickson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Héloïse Carion
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heidi J Smith
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
89
|
Banerjee B, Yuan X, Yang CH. Dissecting the molecular dance: c-di-GMP, cAMP-CRP, and VfmH collaboration in pectate lyase regulation for Dickeya dadantii-unveiling the soft rot pathogen's strategy. Microbiol Spectr 2023; 11:e0153723. [PMID: 37811940 PMCID: PMC10714721 DOI: 10.1128/spectrum.01537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Bacteria respond to environmental changes and adapt to host systems. The response regulator VfmH of the Vfm quorum sensing system regulates a crucial virulence factor, pectate lyase (Pel), in Dickeya dadantii. At high c-di-GMP concentrations, VfmH binds c-di-GMP, resulting in the loss of its activation property in the Pel and virulence regulation in D. dadantii. VfmH binds to c-di-GMP via three conserved arginine residues, and mutations of these residues eliminate the c-di-GMP-related phenotypes of VfmH in Pel synthesis. Our data also show that VfmH interacts with CRP to regulate pelD transcription, thus integrating cyclic AMP and c-di-GMP signaling pathways to control virulence in D. dadantii. We propose that VfmH is an important intermediate factor incorporating quorum sensing and nucleotide signaling pathways for the collective regulation of D. dadantii pathogenesis.
Collapse
Affiliation(s)
- Biswarup Banerjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Xiaochen Yuan
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
90
|
Lee-Lopez C, Islam MS, Meléndez AB, Yukl ET. Influence of the Heme Nitric Oxide/Oxygen Binding Protein (H-NOX) on Cell Cycle Regulation in Caulobacter crescentus. Mol Cell Proteomics 2023; 22:100679. [PMID: 37979947 PMCID: PMC10746521 DOI: 10.1016/j.mcpro.2023.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023] Open
Abstract
The ability of an organism to respond to environmental changes is paramount to survival across a range of conditions. The bacterial heme nitric oxide/oxygen binding proteins (H-NOX) are a family of biofilm-regulating gas sensors that enable bacteria to respond accordingly to the cytotoxic molecule nitric oxide. By interacting with downstream signaling partners, H-NOX regulates the production of the bacterial secondary messenger cyclic diguanylate monophosphate (c-di-GMP) to influence biofilm formation. The aquatic organism Caulobacter crescentus has the propensity to attach to surfaces as part of its transition into the stalked S-phase of its life cycle. This behavior is heavily influenced by intracellular c-di-GMP and thus poses H-NOX as a potential influencer of C. crescentus surface attachment and cell cycle. By generating a strain of C. crescentus lacking hnox, our laboratory has demonstrated that this strain exhibits a considerable growth deficit, an increase in biofilm formation, and an elevation in c-di-GMP. Furthermore, in our comprehensive proteome study of 2779 proteins, 236 proteins were identified that exhibited differential expression in Δhnox C. crescentus, with 132 being downregulated and 104 being upregulated, as determined by a fold change of ≥1.5 or ≤0.66 and a p value ≤0.05. Our systematic analysis unveiled several regulated candidates including GcrA, PopA, RsaA, FtsL, DipM, FlgC, and CpaE that are associated with the regulation of the cellular division process, surface proteins, flagellum, and pili assembly. Further examination of Gene Ontology and pathways indicated that the key differences could be attributed to several metabolic processes. Taken together, our data indicate a role for the HNOX protein in C. crescentus cell cycle progression.
Collapse
Affiliation(s)
- Cameron Lee-Lopez
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Md Shariful Islam
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA; Department of Mathematics and Physics, North South University, Dhaka, Bangladesh
| | - Ady B Meléndez
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Erik T Yukl
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA.
| |
Collapse
|
91
|
Marques Mendonca R, Fulton T, Blackwood C, Costello D. Sublethal nickel toxicity shuts off manganese oxidation and pellicle biofilm formation in Pseudomonas putida GB-1. Environ Microbiol 2023; 25:3639-3654. [PMID: 37875338 DOI: 10.1111/1462-2920.16529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
In sediments, the bioavailability and toxicity of Ni are strongly influenced by its sorption to manganese (Mn) oxides, which largely originate from the redox metabolism of microbes. However, microbes are concurrently susceptible to the toxic effects of Ni, which establishes complex interactions between toxicity and redox processes. This study measured the effect of Ni on growth, pellicle biofilm formation and oxidation of the Mn-oxidizing bacteria Pseudomonas putida GB-1. In liquid media, Ni exposure decreased the intrinsic growth rate but allowed growth to the stationary phase in all intermediate treatments. Manganese oxidation was 67% less than control for bacteria exposed to 5 μM Ni and completely ceased in all treatments above 50 μM. Pellicle biofilm development decreased exponentially with Ni concentration (maximum 92% reduction) and was replaced by planktonic growth in higher Ni treatments. In solid media assays, growth was unaffected by Ni exposure, but Mn oxidation completely ceased in treatments above 10 μM of Ni. Our results show that sublethal Ni concentrations substantially alter Mn oxidation rates and pellicle biofilm development in P. putida GB-1, which has implications for toxic metal bioavailability to the entire benthic community and the environmental consequences of metal contamination.
Collapse
Affiliation(s)
| | - Taylor Fulton
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, Ohio State University, Columbus, Ohio, USA
| | - Christopher Blackwood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - David Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
92
|
Marotta NJ, Weinert EE. Insights into the metabolism, signaling, and physiological effects of 2',3'-cyclic nucleotide monophosphates in bacteria. Crit Rev Biochem Mol Biol 2023; 58:118-131. [PMID: 38064689 PMCID: PMC10877235 DOI: 10.1080/10409238.2023.2290473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) have been discovered within both prokaryotes and eukaryotes in the past decade and a half, raising questions about their conserved existence in cells. In plants and mammals, wounding has been found to cause increased levels of 2',3'-cNMPs. Roles for 2',3'-cNMPs in plant immunity suggest that their regulation may be valuable for both plant hosts and microbial pathogens. In support of this hypothesis, a plethora of microbial enzymes have been found with activities related to these molecules. Studies in bacteria suggest that 2',3'-cNMPs are also produced in response to cellular stress and modulate expression of numerous genes. 2',3'-cNMP levels affect bacterial phenotypes, including biofilm formation, motility, and growth. Within E. coli and Salmonella enterica, 2',3'-cNMPs are produced by RNA degradation by RNase I, highlighting potential roles for Type 2 RNases producing 2',3'-cNMPs in a range of organisms. Development of cellular tools to modulate 2',3'-cNMP levels in bacteria has allowed for interrogation of the effects of 2',3'-cNMP concentration on bacterial transcriptomes and physiology. Pull-downs of cellular 2',3'-cNMP binding proteins have identified the ribosome and in vitro studies demonstrated that 2',3'-cNMPs decrease translation, suggesting a direct mechanism for 2',3-cNMP-dependent control of bacterial phenotypes. Future studies dissecting the cellular roles of 2',3'-cNMPs will highlight novel signaling pathways within prokaryotes and which can potentially be engineered to control bacterial physiology.
Collapse
Affiliation(s)
- Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative
Biosciences, Penn State University, University Park, PA, 16803, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn
State University, University Park, PA, 16803, USA
- Department of Chemistry, Penn State University, University
Park, PA, 16803, USA
| |
Collapse
|
93
|
Fung DK, Trinquier AE, Wang JD. Crosstalk between (p)ppGpp and other nucleotide second messengers. Curr Opin Microbiol 2023; 76:102398. [PMID: 37866203 PMCID: PMC10842992 DOI: 10.1016/j.mib.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aude E Trinquier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
94
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
95
|
Li X, Yin W, Lin JD, Zhang Y, Guo Q, Wang G, Chen X, Cui B, Wang M, Chen M, Li P, He YW, Qian W, Luo H, Zhang LH, Liu XW, Song S, Deng Y. Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2',3'-cyclic guanosine monophosphate. Nat Commun 2023; 14:7654. [PMID: 37996405 PMCID: PMC10667535 DOI: 10.1038/s41467-023-43461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wenfang Yin
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junjie Desmond Lin
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gerun Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
96
|
Schumacher MA, Lent N, Chen VB, Salinas R. Structures of the DarR transcription regulator reveal unique modes of second messenger and DNA binding. Nat Commun 2023; 14:7239. [PMID: 37945601 PMCID: PMC10636190 DOI: 10.1038/s41467-023-42823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The mycobacterial repressor, DarR, a TetR family regulator (TFR), was the first transcription regulator shown to bind c-di-AMP. However, the molecular basis for this interaction and the mechanism involved in DNA binding by DarR remain unknown. Here we describe DarR-c-di-AMP and DarR-DNA structures and complementary biochemical assays. The DarR-c-di-AMP structure reveals a unique effector binding site for a TFR, located between DarR dimer subunits. Strikingly, we show this motif also binds cAMP. The location of the adenine nucleotide binding site between subunits suggests this interaction may facilitate dimerization and hence DNA binding. Indeed, biochemical assays show cAMP enhances DarR DNA binding. Finally, DarR-DNA structures reveal a distinct TFR DNA-binding mechanism involving two interacting dimers on the DNA. Thus, the combined data unveil a newly described second messenger binding motif and DNA binding mode for this important family of regulators.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Nicholas Lent
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Vincent B Chen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
97
|
Cai T, Tang H, Du X, Wang W, Tang K, Wang X, Liu D, Wang P. Genomic Island-Encoded Diguanylate Cyclase from Vibrio alginolyticus Regulates Biofilm Formation and Motility in Pseudoalteromonas. Microorganisms 2023; 11:2725. [PMID: 38004737 PMCID: PMC10672970 DOI: 10.3390/microorganisms11112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Many bacteria use the second messenger c-di-GMP to regulate exopolysaccharide production, biofilm formation, motility, virulence, and other phenotypes. The c-di-GMP level is controlled by the complex network of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that synthesize and degrade c-di-GMP. In addition to chromosomally encoded DGCs, increasing numbers of DGCs were found to be located on mobile genetic elements. Whether these mobile genetic element-encoded DGCs can modulate the physiological phenotypes in recipient bacteria after horizontal gene transfer should be investigated. In our previous study, a genomic island encoding three DGC proteins (Dgc137, Dgc139, and Dgc140) was characterized in Vibrio alginolyticus isolated from the gastric cavity of the coral Galaxea fascicularis. Here, the effect of the three DGCs in four Pseudoalteromonas strains isolated from coral Galaxea fascicularis and other marine environments was explored. The results showed that when dgc137 is present rather than the three DGC genes, it obviously modulates biofilm formation and bacterial motility in these Pseudoalteromonas strains. Our findings implied that mobile genetic element-encoded DGC could regulate the physiological status of neighboring bacteria in a microbial community by modulating the c-di-GMP level after horizontal gene transfer.
Collapse
Affiliation(s)
- Tongxuan Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huan Tang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Du
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
98
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
99
|
Zuo F, Sui Q, Yu D, Gui S, Zhang K, Wei Y. Effective enrichment of anaerobic ammonia oxidation sludge with feast-starvation strategy: activity, sedimentation, growth kinetics, and microbial community. BIORESOURCE TECHNOLOGY 2023; 388:129730. [PMID: 37704089 DOI: 10.1016/j.biortech.2023.129730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
To address the issue of floating and loss of floc sludge caused by gas production in anaerobic ammonia oxidation (anammox) reactors, this study proposes a limited nitrite supply strategy to regulate gas production during the settling and enhance sludge retention. Results indicate that the effluent suspended solids in the anammox reactor can be reduced to as low as 0.11 g/L under specific feast-starvation conditions. Even under long-term intermittent nitrite-starvation stress, the maximum growth rate of Candidatus_Kuenenia can still reach 0.085d-1, with its abundance increasing from 0.47% to 8.83% within 69 days. Although the combined effects of starvation and sedimentation would lead to a temporary decrease in anammox activity, this reversible inhibition can be fully restored through substrate intervention. The limited nitrite supply strategy promotes the sedimentation of anammox sludge without significantly affecting its growth rate, and effective sludge retention is crucial for enriching anammox sludge during initial cultivation.
Collapse
Affiliation(s)
- Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuanglin Gui
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Kai Zhang
- CECEP Engineering Technology Research Institute Co., Ltd., Beijing 100082, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
100
|
Takishita Y, Subramanian S, Souleimanov A, Smith DL. Interactive effects of Pseudomonas entomophila strain 23S and Clavibacter michiganensis subsp. michiganensis on proteome and anti-Cmm compound production. J Proteomics 2023; 289:105006. [PMID: 37717723 DOI: 10.1016/j.jprot.2023.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, the interactions between pure cultures of P. entomophila 23S and Cmm were investigated. First, the population dynamics of each bacterium during the interaction was determined using the selective media. Second, the amount of anti-Cmm compound produced by P. entomophila 23S in the presence of Cmm was quantified using HPLC. Lastly, a label-free shotgun proteomics study of P. entomophila 23S, Cmm, and a co-culture was conducted to understand the effects of the interaction of each bacterium at the proteomic level. Compared with the pure culture grown, the total number of proteins decreased in the interaction for both bacteria. P. entomophila 23S secreted stress-related proteins, such as chaperonins, peptidases, ABC-transporters and elongation factors. The bacterium also produced more proteins related with purine, pyrimidine, carbon and nitrogen metabolisms in the presence of Cmm. The population enumeration study revealed that the Cmm population declined dramatically during the interaction, while the population of P. entomophila 23S maintained. The quantification of anti-Cmm compound indicated that P. entomophila 23S produced significantly higher amount of anti-Cmm compound when it was cultured with Cmm. Overall, the study suggested that P. entomophila 23S, although is cidal to Cmm, was also negatively affected by the presence of Cmm, while trying to adapt to the stress condition, and that such an environment favored increased production of the anti-Cmm compound by P. entomophila 23S. SIGNIFICANCE: Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, secreted proteome of pure cultures of P. entomophila 23S and Cmm, and also of a co-culture was first time identified. Furthermore, the study found that P. entomophila strain 23S produced significantly higher amount of anti-Cmm compound when the bacterium was grown together with Cmm. Co-culture enhancing anti-Cmm compound production by P. entomophila 23S is useful information, particularly from a commercial point of view of biocontrol application, and for scale-up of anti-Cmm compound production.
Collapse
Affiliation(s)
- Yoko Takishita
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Sowmyalakshmi Subramanian
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Alfred Souleimanov
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Donald L Smith
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|