51
|
Fiévet A, Merrouch M, Brasseur G, Eve D, Biondi EG, Valette O, Pauleta SR, Dolla A, Dermoun Z, Burlat B, Aubert C. OrpR is a σ 54 -dependent activator using an iron-sulfur cluster for redox sensing in Desulfovibrio vulgaris Hildenborough. Mol Microbiol 2021; 116:231-244. [PMID: 33595838 PMCID: PMC8359166 DOI: 10.1111/mmi.14705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/15/2023]
Abstract
Enhancer binding proteins (EBPs) are key players of σ54 -regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54 -RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe-4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe-S redox regulator belonging to the σ54 -dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.
Collapse
Affiliation(s)
| | | | | | - Danaé Eve
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Dept. Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alain Dolla
- Aix Marseille Univ, Toulon Univ, CNRS, IRD, MIO, Marseille, France
| | | | | | | |
Collapse
|
52
|
Altair T, Sartori LM, Rodrigues F, de Avellar MGB, Galante D. Natural Radioactive Environments as Sources of Local Disequilibrium for the Emergence of Life. ASTROBIOLOGY 2020; 20:1489-1497. [PMID: 32907342 DOI: 10.1089/ast.2019.2133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Certain subterranean environments of Earth have naturally accumulated long-lived radionuclides, such as 238U, 232Th, and 40K, near the presence of liquid water. In these natural radioactive environments, water radiolysis can produce chemical species of biological importance, such as H2. Although the proposal of radioactive decay as an alternative source of energy for living systems has existed for >30 years, this hypothesis gained strength after the recent discovery of a peculiar ecosystem in a gold mine in South Africa, whose existence is dependent on chemical species produced by water radiolysis. In this study, we calculate the chemical disequilibrium generated locally by water radiolysis due to gamma radiation. We then analyze the possible contribution of this disequilibrium for the emergence of life, considering conditions of early Earth and having as reference the alkaline hydrothermal vent theory. Results from our kinetic model point out the similarities between the conditions caused by water radiolysis and those found on alkaline hydrothermal systems. Our model produces a steady increase of pH with time, which favors the formation of a natural electrochemical gradient and the precipitation of minerals with catalytic activity for protometabolism in this aqueous environment. We conclude by describing a possible free-energy conversion mechanism based on protometabolism, which could be a requisite for the emergence of life in Hadean Earth.
Collapse
Affiliation(s)
- Thiago Altair
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Larissa M Sartori
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcio G B de Avellar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
53
|
Luo F, Li Y, Norgbey E, Li R, Ya Z, Nwankwegu AS, Lie H, Sarpong L. A study on the occurrence of black water in reservoirs in Eucalyptus Plantation region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34927-34940. [PMID: 32577983 DOI: 10.1007/s11356-020-09613-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Tianbao reservoir in southern China (surrounded by Eucalyptus plantation) serves as a source of drinking water for the inhabitants. However, the reservoir water experiences black water (BW) of which the cause remains unclear. In this study, field observation and simulated laboratory experiment were conducted to understand the cause of the BW. The diffusive gradient in thin-film (DGT) device monitored the spatial changes in concentration of iron (Fe2+), manganese (Mn2+), sulfide (S2-), and dissolved organic carbon (DOC) at the SWI. The planar optode (PO) showed that hypoxia contributed immensely to the high positive fluxes Fe2+, Mn2+, and S2- measured, which co-precipitated to form black materials (FeS and MnS) at the SWI. The co-precipitation between Fe-S and Mn-S was supported by their significant positive correlation (Fe-S: r > 0.05, p < 0.05, Mn-S: r > 0.2, p < 0.05). Significant reduction (p < 0.05) in tannins concentration from November (strong thermal stratification) to December (weak thermal stratification) indicated that Fe2+ and tannins reacted during the mixing of reservoir water in December due to weak stratification. The simulated experiment confirmed that fresh Eucalyptus leaves produces a significant (p < 0.05) amount of tannins during hypoxia and reacts with Fe2+ to produce black water. A high positive correlation (r > 0.8) between Fe2+ and DOC demonstrated that Fe2+ and DOC combined and contributed to the reservoir water blackening. The study provides a better understanding on the impact of Eucalyptus plantation on water quality and provide guidance for scientific planting of Eucalyptus plantation in reservoir basins in southern China to ensure safe drinking water.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ronghui Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Guangxi Institute of Water Resources Research, Nanning, 530023, China
| | - Zhu Ya
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Amechi S Nwankwegu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huang Lie
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Linda Sarpong
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
54
|
Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris. ISME JOURNAL 2020; 14:2862-2876. [PMID: 32934357 DOI: 10.1038/s41396-020-00753-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 11/08/2022]
Abstract
Elevated nitrate in the environment inhibits sulfate reduction by important microorganisms of sulfate-reducing bacteria (SRB). Several SRB may respire nitrate to survive under elevated nitrate, but how SRB that lack nitrate reductase survive to elevated nitrate remains elusive. To understand nitrate adaptation mechanisms, we evolved 12 populations of a model SRB (i.e., Desulfovibrio vulgaris Hildenborough, DvH) under elevated NaNO3 for 1000 generations, analyzed growth and acquired mutations, and linked their genotypes with phenotypes. Nitrate-evolved (EN) populations significantly (p < 0.05) increased nitrate tolerance, and whole-genome resequencing identified 119 new mutations in 44 genes of 12 EN populations, among which six functional gene groups were discovered with high mutation frequencies at the population level. We observed a high frequency of nonsense or frameshift mutations in nitrosative stress response genes (NSR: DVU2543, DVU2547, and DVU2548), nitrogen regulatory protein C family genes (NRC: DVU2394-2396, DVU2402, and DVU2405), and nitrate cluster (DVU0246-0249 and DVU0251). Mutagenesis analysis confirmed that loss-of-functions of NRC and NSR increased nitrate tolerance. Also, functional gene groups involved in fatty acid synthesis, iron regulation, and two-component system (LytR/LytS) known to be responsive to multiple stresses, had a high frequency of missense mutations. Mutations in those gene groups could increase nitrate tolerance through regulating energy metabolism, barring entry of nitrate into cells, altering cell membrane characteristics, or conferring growth advantages at the stationary phase. This study advances our understanding of nitrate tolerance mechanisms and has important implications for linking genotypes with phenotypes in DvH.
Collapse
|
55
|
Norgbey E, Li Y, Ya Z, Li R, Nwankwegu AS, Takyi-Annan GE, Luo F, Jin W, Huang Y, Sarpong L. High resolution evidence of iron-phosphorus-sulfur mobility at hypoxic sediment water interface: An insight to phosphorus remobilization using DGT-induced fluxes in sediments model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138204. [PMID: 32408451 DOI: 10.1016/j.scitotenv.2020.138204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The deterioration of reservoirs in southern China due to the kinetics of Iron (Fe), Phosphorus (P) and sulphide (S) at the sediment-water interface (SWI) is a major problem that needs urgent attention. Studies on the biogeochemistry of Fe, P, and S using high-resolution profile techniques in reservoirs in this region are limited. The diffusive gradient in thin films (DGT) technique, high-resolution dialysis, DGT-computer imaging densitometry (CID), DGT-induced fluxes in sediments (DIFS) and planar optode (PO) device were used to describe the dynamics Fe-P-S in SWI during hypoxia. The results showed the release of Fe-P-S in SWI was due to sulfate reduction and iron reduction influenced greatly by hypoxia. Positive apparent fluxes were recorded indicating that the sediments release Fe-P-S to the overlying water. High positive correlations (r2 > 0.7) for DGT-labile Fe and DGT-labile P in sediments revealed that iron-bound P controlled the release of P at SWI during reductive dissolution. The low correlation between DGT-labile Fe and DGT-labile S (r2 < 0.4) disclosed the combative nature between sulfate reduction and iron reduction process. The low correlation occurred because of the co-precipitation between Fe and S, forming black materials such as monosulfide (FeS) and pyrite (FeS2) in a hypoxic environment. The DIFS model showed the resupply ability (R-values) of P in sediments belonged to the partially sustained case with a steady state case of resupply at TB3 (Tc = 1088s, Kd = 1005.61 cm3/g R = 0.72, K-1 = 0.19 day-1) and TB4 (Tc = 712 s, Kd = 712.53 cm3/g, R = 0.78, K-1 = 0.46 day-1). The resupply rate belonged to the non-steady state case at TB1 (Tc = 10,990 s, Kd = 396.3 cm3/g, R = 0.35, K-1 = 0.07 day-1) and TB2 (Tc = 6097 s, Kd = 578.5 cm3/g, R = 0.45, K-1 = 0.10 day-1). The DGT-CID-PO-DIFS provided a deep insight on the mechanism of Fe-P-S and remobilization of P at SWI leading to Blackwater events and eutrophication.
Collapse
Affiliation(s)
- Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhu Ya
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ronghui Li
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Guangxi Institute of Water Resources Research, Nanning 530023, China; Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning 530023, China
| | - Amechi S Nwankwegu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Georgina Esi Takyi-Annan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; School of Architecture, Southeast University, Nanjing 210096, China
| | - Fan Luo
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Jin
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yanan Huang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Linda Sarpong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
56
|
Fang W, Gu M, Liang D, Chen GH, Wang S. Generation of zero valent sulfur from dissimilatory sulfate reduction under methanogenic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121197. [PMID: 31541951 DOI: 10.1016/j.jhazmat.2019.121197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Dissimilatory sulfate reduction mediated by sulfate-reducing microorganisms (SRMs) has a pivotal role in the sulfur cycle, from which the generation of zero valent sulfur (ZVS) represents a novel pathway. Nonetheless, information on ZVS production from the dissimilatory sulfate reduction remains scarce. This study successfully showed the ZVS production from the dissimilatory sulfate reduction both in a bioreactor and batch experiments under the methanogenic condition. The ZVS was produced in the form of polysulfide and largely located at extracellular sites. In the bioreactor, interestingly, ZVS could be generated first from partial sulfide oxidation mediated by sulfide-oxidizing bacteria (e.g., Thiobacillus) and later from the dissimilatory sulfate reduction in SRMs when changing the reactor operation from anoxic to obligate anaerobic and black condition. In batch experiments, increasing sulfate concentration was shown to enhance ZVS production. Based on these results, together with thermodynamic calculations, a scenario was proposed for the ZVS production from dissimilatory sulfate reduction, in which SRMs might utilize sulfate-to-ZVS as an alternative pathway to sulfate-to-sulfide to increase the thermodynamic favorability and alleviate the inhibitive effects of sulfide. This study expands our understanding of the SRMs-mediated dissimilatory sulfate reduction and may have important implications in environmental bioremediation.
Collapse
Affiliation(s)
- Wenwen Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Manfei Gu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dongqing Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
57
|
Xu Z, Li G, Huda N, Zhang B, Wang M, Luo W. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. BIORESOURCE TECHNOLOGY 2020; 298:122503. [PMID: 31837581 DOI: 10.1016/j.biortech.2019.122503] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the maturity and gaseous emission during direct composting of cornstalks used as organic media for filtration of anaerobically digested manure centrate. Effects of moisture and carbon/nitrogen (C/N) ratio on composting performance were evaluated. Results show that cornstalks could effectively retain suspended solids and organic matter in digested manure centrate to lower their C/N ratio and attain microbial inoculation. Filtered cornstalks became more compostable when their moisture decreased from 76% to 60% or C/N ratio increased from 12 to 24. Nevertheless, such adjustment aggravated the emission of greenhouse and odours gases during composting. Regardless of composting conditions, the phylum Firmicutes was the most dominant with reduced abundance during composting. Similar reduction also occurred to several abundant phyla, including Atribacteria, Synergistetes and Euryarchaeota. By contrast, the phylum Bacteroidetes, Chloroflexi, Proteobacteria and Actinobacteria enriched as composting progressed. In addition, compost maturity was insignificantly affected by matrix moisture and C/N ratio.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nazmul Huda
- Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Bangxi Zhang
- Institute of Soil and Fertiliser, Guizhou Academy of Agricultural Sciences, Guizhou Guiyang 550006, China
| | - Meng Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
58
|
Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME JOURNAL 2019; 14:450-462. [PMID: 31659234 DOI: 10.1038/s41396-019-0540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors can be used to control the functionality of microbial communities by targeting specific metabolisms. The targeted inhibition of dissimilatory sulfate reduction limits the generation of toxic and corrosive hydrogen sulfide across several industrial systems. Sulfate-reducing microorganisms (SRM) are specifically inhibited by sulfate analogs, such as perchlorate. Previously, we showed pure culture SRM adaptation to perchlorate stress through mutation of the sulfate adenylyltransferase, a central enzyme in the sulfate reduction pathway. Here, we explored adaptation to perchlorate across unconstrained SRM on a community scale. We followed natural and bio-augmented sulfidogenic communities through serial transfers in increasing concentrations of perchlorate. Our results demonstrated that perchlorate stress altered community structure by initially selecting for innately more resistant strains. Isolation, whole-genome sequencing, and molecular biology techniques allowed us to define subsequent genetic mechanisms of adaptation that arose across the dominant adapting SRM. Changes in the regulation of divalent anion:sodium symporter family transporters led to increased intracellular sulfate to perchlorate ratios, allowing SRM to escape the effects of competitive inhibition. Thus, in contrast to pure-culture results, SRM in communities cope with perchlorate stress via changes in anion transport and its regulation. This highlights the value of probing evolutionary questions in an ecological framework, bridging the gap between ecology, evolution, genomics, and physiology.
Collapse
|
59
|
Krantz GP, Lucas K, Wunderlich EL, Hoang LT, Avci R, Siuzdak G, Fields MW. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm. BIOFOULING 2019; 35:669-683. [PMID: 31402749 DOI: 10.1080/08927014.2019.1646731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Desulfovibrio alaskensis G20 biofilms were cultivated on 316 steel, 1018 steel, or borosilicate glass under steady-state conditions in electron-acceptor limiting (EAL) and electron-donor limiting (EDL) conditions with lactate and sulfate in a defined medium. Increased corrosion was observed on 1018 steel under EDL conditions compared to 316 steel, and biofilms on 1018 carbon steel under the EDL condition had at least twofold higher corrosion rates compared to the EAL condition. Protecting the 1018 metal coupon from biofilm colonization significantly reduced corrosion, suggesting that the corrosion mechanism was enhanced through attachment between the material and the biofilm. Metabolomic mass spectrometry analyses demonstrated an increase in a flavin-like molecule under the 1018 EDL condition and sulfonates under the 1018 EAL condition. These data indicate the importance of S-cycling under the EAL condition, and that the EDL is associated with increased biocorrosion via indirect extracellular electron transfer mediated by endogenously produced flavin-like molecules.
Collapse
Affiliation(s)
- Gregory P Krantz
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Kilean Lucas
- Image and Chemical Analysis Laboratory, Montana State University, Bozeman, USA
| | - Erica L- Wunderlich
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, USA
| | - Linh T Hoang
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, USA
| | - Recep Avci
- Image and Chemical Analysis Laboratory, Montana State University, Bozeman, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, USA
- Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
60
|
Gao SH, Ho JY, Fan L, Nouwens A, Hoelzle RD, Schulz B, Guo J, Zhou J, Yuan Z, Bond PL. A comparative proteomic analysis of Desulfovibrio vulgaris Hildenborough in response to the antimicrobial agent free nitrous acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:625-633. [PMID: 30974354 DOI: 10.1016/j.scitotenv.2019.03.442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Sulfate reducing bacteria (SRB) can contribute to facilitating serious concrete corrosion through the production of hydrogen sulfide in sewers. Recently, free nitrous acid (FNA) was discovered as a promising antimicrobial agent to inhibit SRB activities thereby limiting hydrogen sulfide production in sewers. However, knowledge of the bacterial response to increasing levels of the antimicrobial agent is unknown. Here we report the proteomic response of Desulfovibrio vulgaris Hildenborough and reveal that the antimicrobial effect of FNA is multi-targeted and dependent on the FNA levels. This was achieved using a sequential window acquisition of all theoretical mass spectrometry analysis to determine protein abundance variations in D. vulgaris during exposure to different FNA concentrations. When exposed to 1.0 μg N/L FNA, nitrite reduction (nitrite reductase) related proteins and nitrosative stress related proteins, including the hybrid cluster protein, showed distinct increased abundances. When exposed to 4.0 and 8.0 μg N/L FNA, increased abundance was detected for proteins putatively involved in nitrite reduction. Abundance of proteins involved in the sulfate reduction pathway (from adenylylphophosulfate to sulfite) and lactate oxidation pathway (from pyruvate to acetate) were initially inhibited in response to FNA at 8 h incubation, and then recovered at 12 h incubation. Lowered ribosomal protein abundance in D. vulgaris was detected, however, total cellular protein levels were mostly constant in the presence or absence of FNA. In addition, this study indicates that proteins coded by genes DVU2543, DVU0772, and DVU3212 potentially participate in resisting oxidative stress with FNA exposure. These findings share new insights for understanding the dynamic responses of D. vulgaris to FNA and could be useful to guide and improve the practical applications of FNA-based technologies for control of sewer corrosion.
Collapse
Affiliation(s)
- Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Jun Yuan Ho
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Amanda Nouwens
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Robert D Hoelzle
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Benjamin Schulz
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
61
|
Luo J, Tao Q, Jupa R, Liu Y, Wu K, Song Y, Li J, Huang Y, Zou L, Liang Y, Li T. Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in Sedum alfredii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6954-6963. [PMID: 31145612 DOI: 10.1021/acs.est.9b01093] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The transmission mode of shoot-associated endophytes in hyperaccumulators and their roles in root microbiome assembly and heavy metal accumulation remain unclear. Using 16S rRNA gene profiling, we investigated the vertical transmission of shoot-associated endophytes in relation to growth and Cd/Zn accumulation of Sedum alfredii ( Crassulaceae). Endophytes were transmitted from shoot cuttings to the rhizocompartment of new plants in both sterilized (γ-irradiated) and native soils. Vertical transmission was far more efficient in the sterile soil, and the transmitted endophytes have become a dominant component of the newly established root-associated microbiome. Based on 16S rRNA genes, the vertically transmitted taxa were identified as the families of Streptomycetaceae, Nocardioidaceae, Pseudonocardiaceae, and Rhizobiaceae. Abundances of Streptomycetaceae, Nocardioidaceae, and Pseudonocardiaceae were strongly correlated with increased shoot biomass and total Cd/Zn accumulation. Inoculation of S. alfredii with the synthetic bacterial community sharing the same phylogenetic relatedness with the vertically transmitted endophytes resulted in significant improvements in plant biomass, root morphology, and Cd/Zn accumulation. Our results demonstrate that successful vertical transmission of endophytes from shoots of S. alfredii to its rhizocompartments is possible, particularly in soils with attenuated microbiomes. Furthermore, the endophyte-derived microbiome plays an important role in metal hyperaccumulation.
Collapse
Affiliation(s)
- Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qi Tao
- College of Resources , Sichuan Agricultural University , Chengdu 611130 , China
| | - Radek Jupa
- Department of Experimental Biology, Faculty of Science , Masaryk University , Kotlářská 2 , 61137 Brno , Czech Republic
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yue Huang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Linyun Zou
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
62
|
Comparison of bacterial community structure and potential functions in hypoxic and non-hypoxic zones of the Changjiang Estuary. PLoS One 2019; 14:e0217431. [PMID: 31170168 PMCID: PMC6553723 DOI: 10.1371/journal.pone.0217431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterioplankton play a key role in the global cycling of elements. To characterize the effects of hypoxia on bacterioplankton, bacterial community structure and function were investigated in the Changjiang Estuary. Water samples were collected from three layers (surface, middle, and bottom) at ten sampling sites in the Changjiang Estuary hypoxic and non-hypoxic zones. The community structure was analyzed using high-throughput sequencing of 16S rDNA genes, and the predictive metagenomic approach was used to investigate the functions of the bacterial community. Co-occurrence networks are constructed to investigate the relationship between different bacterioplankton. The results showed that community composition in hypoxic and non-hypoxic zones were markedly different. The diversity and richness of bacterial communities in the bottom layer (hypoxic zone) were remarkably higher than that of the surface layer (non-hypoxic). In the non-hypoxic zone, it was found that Proteobacteria, Bacteroidetes, and Flavobacteriia were the dominant groups while Alphaproteobacteria, SAR406 and Deltaproteobacteria were the dominant groups in the hypoxic zone. From the RDA analysis, it was shown that dissolved oxygen (DO) explained most of the bacterial community variation in the redundancy analysis targeting only hypoxia zones, whereas nutrients and salinity explained most of the variation across all samples in the Changjiang Estuary. To understand the genes involved in nitrogen metabolism, an analysis of the oxidation state of nitrogen was performed. The results showed that the bacterial community in the surface layer (non-hypoxic) had more genes involved in dissimilatory nitrate reduction, assimilatory nitrate reduction, denitrification, and anammox, while that in the middle and bottom layers (hypoxic zone) had more abundant genes associated with nitrogen fixation and nitrification. Co-occurrence networks revealed that microbial assemblages in the middle and bottom layers shared more niche spaces than in the surface layer (non-hypoxic zone). The environmental heterogeneity in the hypoxic and non-hypoxic zones might be important environmental factors that determine the bacterial composition in these two zones.
Collapse
|
63
|
Chen J, Li B, Zheng J, Chen J. Control of H 2S generation in simultaneous removal of NO and SO 2 by rotating drum biofilter coupled with Fe II(EDTA). ENVIRONMENTAL TECHNOLOGY 2019; 40:1576-1584. [PMID: 29319417 DOI: 10.1080/09593330.2018.1426640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
Simultaneous removal of SO2 and NO from flue gas can be biologically achieved by the rotating drum biofilter with FeII(EDTA) as a solvent. One issue related with this process is the generation of H2S. To control its generation, the pathways of H2S formation were investigated, and the parametric tests were conducted. The addition of FeII(EDTA) (10 mM) increased the removal efficiency of NO and SO2, while the S2- concentration decreased from 81 to 3.5 mM. The parametric tests showed that the high NO concentration favored the SO2 removal and significantly inhibited the H2S generation. High-throughput sequencing showed that the dominant denitrifying bacteria were Pseudomonas (9.09%), and the main sulfate-reducing bacteria were Desulfovibrio (5.84%). The long-term operation confirmed that the system could effectively simultaneous perform biological denitrification and desulfurization, and the H2S could be controlled.
Collapse
Affiliation(s)
- Jun Chen
- a Engineering Research Center of the Ministry of Education for Bioconversion and Biopurification , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Bingbin Li
- b College of Environment , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Ji Zheng
- b College of Environment , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Jianmeng Chen
- a Engineering Research Center of the Ministry of Education for Bioconversion and Biopurification , Zhejiang University of Technology , Hangzhou , People's Republic of China
| |
Collapse
|
64
|
Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Rajeev L, Luning EG, Zane GM, Juba TR, Kazakov AE, Novichkov PS, Wall JD, Mukhopadhyay A. LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species. PLoS One 2019; 14:e0214960. [PMID: 30964892 PMCID: PMC6456213 DOI: 10.1371/journal.pone.0214960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
The central carbon/lactate utilization pathway in the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough, is encoded by the highly conserved operon DVU3025-3033. Our earlier in vitro genome-wide study had suggested a network of four two-component system regulators that target this large operon; however, how these four regulators control this operon was not known. Here, we probe the regulation of the lactate utilization operon with mutant strains and DNA-protein binding assays. We show that the LurR response regulator is required for optimal growth and complete lactate utilization, and that it activates the DVU3025-3033 lactate oxidation operon as well as DVU2451, a lactate permease gene, in the presence of lactate. We show by electrophoretic mobility shift assays that LurR binds to three sites in the upstream region of DVU3025, the first gene of the operon. NrfR, a response regulator that is activated under nitrite stress, and LurR share similar binding site motifs and bind the same sites upstream of DVU3025. The DVU3025 promoter also has a binding site motif (Pho box) that is bound by PhoB, a two-component response regulator activated under phosphate limitation. The lactate utilization operon, the regulator LurR, and LurR binding sites are conserved across the order Desulfovibrionales whereas possible modulation of the lactate utilization genes by additional regulators such as NrfR and PhoB appears to be limited to D. vulgaris.
Collapse
Affiliation(s)
- Lara Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Eric G. Luning
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas R. Juba
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Alexey E. Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
67
|
Liang Z, Siegert M, Fang W, Sun Y, Jiang F, Lu H, Chen GH, Wang S. Blackening and odorization of urban rivers: a bio-geochemical process. FEMS Microbiol Ecol 2019; 94:4780270. [PMID: 29293959 DOI: 10.1093/femsec/fix180] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/23/2017] [Indexed: 11/14/2022] Open
Abstract
Urban rivers constitute a major part of urban drainage systems, and play critical roles in connecting other surface waters in urban areas. Black-odorous urban rivers are widely found in developing countries experiencing rapid urbanization, and the mismatch between urbanization and sewage treatment is thought to be the reason. The phenomena of blackening and odorization are likely complex bio-geochemical processes of which the microbial interactions with the environment are not fully understood. Here, we provide an overview of the major chemical compounds, such as iron and sulfur, and their bio-geochemical conversions during blackening and odorization of urban rivers. Scenarios explaining the formation of black-odorous urban rivers are proposed. Finally, we point out knowledge gaps in mechanisms and microbial ecology that need to be addressed to better understand the development of black-odorous urban rivers.
Collapse
Affiliation(s)
- Zhiwei Liang
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Michael Siegert
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Department of Geoscience, University of Calgary, Calgary, Canada
| | - Wenwen Fang
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Yu Sun
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Feng Jiang
- School of Chemistry and Environment, South China Normal University, Guangzhou, China
| | - Hui Lu
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shanquan Wang
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| |
Collapse
|
68
|
Zhang Y, Hua ZS, Lu H, Oehmen A, Guo J. Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics. WATER RESEARCH 2019; 148:219-230. [PMID: 30388523 DOI: 10.1016/j.watres.2018.10.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Denitrifying sulfur conversion-associated enhanced biological phosphorous removal (DS-EBPR) system is not only a novel wastewater treatment process, but also an ideal model for microbial ecology in a community context. However, it exists the knowledge gap on the roles and interactions of functional microorganisms in the DS-EBPR system for carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) bioconversions. We use genome-resolved metagenomics to build up an ecological model of microbial communities in a lab-scale DS-EBPR system with stable operation for more than 400 days. Our results yield 11 near-complete draft genomes that represent a substantial portion of the microbial community (39.4%). Sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) promote complex metabolic processes and interactions for C, N, P and S conversions. Bins 1-4 and 10 are considered as new potential polyphosphate-accumulating organisms (PAOs), in which Bins 1-4 can be considered as S-related PAOs (S-PAOs) with no previously cultivated or reported members. Our findings give an insight into a new ecological system with C, N, P and S simultaneous bioconversions and improve the understanding of interactions among SRB, SOB, denitrifiers and PAOs within a community context.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Zheng-Shuang Hua
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
69
|
Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. MICROBIOLOGY-SGM 2018; 165:254-269. [PMID: 30556806 DOI: 10.1099/mic.0.000750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | - John D Coates
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
70
|
Zhang G, Li B, Liu J, Luan M, Yue L, Jiang XT, Yu K, Guan Y. The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. MICROBIOME 2018; 6:222. [PMID: 30545419 PMCID: PMC6292113 DOI: 10.1186/s40168-018-0610-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Currently, the effect of the bacterial community on cast iron corrosion process does not reach consensus. Moreover, some studies have produced contrasting results, suggesting that bacteria can either accelerate or inhibit corrosion. RESULTS The long-term effects of the bacterial community on cast iron corrosion in reclaimed wastewater distribution systems were investigated from both spatial (yellow layer vs. black layer) and temporal (1-year dynamic process) dimensions of the iron coupon-reclaimed wastewater microcosm using high-throughput sequencing and flow cytometry approaches. Cast iron coupons in the NONdisinfection and UVdisinfection reactors suffered more severe corrosion than did those in the NaClOdisinfection reactor. The bacterial community significantly promoted cast iron corrosion, which was quantified for the first time in the practical reclaimed wastewater and found to account for at least 30.5% ± 9.7% of the total weight loss. The partition of yellow and black layers of cast iron corrosion provided more accurate information on morphology and crystal structures for corrosion scales. The black layer was dense, and the particles looked fusiform, while the yellow layer was loose, and the particles were ellipse or spherical. Goethite was the predominant crystalline phase in black layers, while corrosion products mainly existed as an amorphous phase in yellow layers. The bacterial community compositions of black layers were distinctly separated from yellow layers regardless of disinfection methods. The NONdisinfection and UVdisinfection reactors had a more similar microbial composition and variation tendency for the same layer type than did the NaClOdisinfection reactor. Biofilm development can be divided into the initial start-up stage, mid-term development stage, and terminal stable stage. In total, 12 potential functional genera were selected to establish a cycle model for Fe, N, and S metabolism. Desulfovibrio was considered to accelerate the transfer of Fe0 to Fe2+ and speed up weight loss. CONCLUSION The long-term effect of disinfection processes on corrosion behaviors of cast iron in reclaimed wastewater distribution systems and the hidden mechanisms were deciphered for the first time. This study established a cycle model for Fe, N, and S metabolism that involved 12 functional genera and discovered the significant contribution of Desulfovibrio in promoting corrosion.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Mingqiang Luan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Long Yue
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiao-Tao Jiang
- Microbiome Research Centre, St George and Sutherland Clinical School, Department of Medicine, University of New South Wales, Sydney, Australia
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
71
|
Ayangbenro AS, Olanrewaju OS, Babalola OO. Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation. Front Microbiol 2018; 9:1986. [PMID: 30186280 PMCID: PMC6113391 DOI: 10.3389/fmicb.2018.01986] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
Mining industries produce vast waste streams that pose severe environmental pollution challenge. Conventional techniques of treatment are usually inefficient and unsustainable. Biological technique employing the use of microorganisms is a competitive alternative to treat mine wastes and recover toxic heavy metals. Microorganisms are used to detoxify, extract or sequester pollutants from mine waste. Sulfate-reducing microorganisms play a vital role in the control and treatment of mine waste, generating alkalinity and neutralizing the acidic waste. The design of engineered sulfate-reducing bacteria (SRB) consortia will be an effective tool in optimizing degradation of acid mine tailings waste in industrial processes. The understanding of the complex functions of SRB consortia vis-à-vis the metabolic and physiological properties in industrial applications and their roles in interspecies interactions are discussed.
Collapse
Affiliation(s)
| | | | - Olubukola O. Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
72
|
Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis. Appl Environ Microbiol 2018; 84:AEM.00458-18. [PMID: 29728389 DOI: 10.1128/aem.00458-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/28/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxydothermus species are some of the most studied thermophilic carboxydotrophs. Their varied carboxydotrophic growth properties suggest distinct strategies for energy conservation via carbon monoxide (CO) metabolism. In this study, we used comparative genome analysis of the genus Carboxydothermus to show variations in the CO dehydrogenase-energy-converting hydrogenase gene cluster, which is responsible for CO metabolism with H2 production (hydrogenogenic CO metabolism). Indeed, the ability or inability to produce H2 with CO oxidation is explained by the presence or absence of this gene cluster in Carboxydothermus hydrogenoformans, Carboxydothermus islandicus, and Carboxydothermus ferrireducens Interestingly, despite its hydrogenogenic CO metabolism, Carboxydothermus pertinax lacks the Ni-CO dehydrogenase catalytic subunit (CooS-I) and its transcriptional regulator-encoding genes in this gene cluster, probably due to inversion. Transcriptional analysis in C. pertinax showed that the Ni-CO dehydrogenase gene (cooS-II) and distantly encoded energy-converting-hydrogenase-related genes were remarkably upregulated with 100% CO. In addition, when thiosulfate was available as a terminal electron acceptor in 100% CO, the maximum cell density and maximum specific growth rate of C. pertinax were 3.1-fold and 1.5-fold higher, respectively, than when thiosulfate was absent. The amount of H2 produced was only 62% of the amount of CO consumed, less than expected according to hydrogenogenic CO oxidation (CO + H2O → CO2 + H2). Accordingly, C. pertinax would couple CO oxidation by Ni-CO dehydrogenase II with simultaneous reduction of not only H2O but also thiosulfate when grown in 100% CO.IMPORTANCE Anaerobic hydrogenogenic carboxydotrophs are thought to fill a vital niche by scavenging potentially toxic CO and producing H2 as an available energy source for thermophilic microbes. This hydrogenogenic carboxydotrophy relies on a Ni-CO dehydrogenase-energy-converting hydrogenase gene cluster. This feature is thought to be common to these organisms. However, the hydrogenogenic carboxydotroph Carboxydothermus pertinax lacks the gene for the Ni-CO dehydrogenase catalytic subunit encoded in the gene cluster. Here, we performed a comparative genome analysis of the genus Carboxydothermus, a transcriptional analysis, and a cultivation study in 100% CO to prove the hydrogenogenic CO metabolism. Results revealed that C. pertinax could couple Ni-CO dehydrogenase II alternatively to the distal energy-converting hydrogenase. Furthermore, C. pertinax represents an example of the functioning of Ni-CO dehydrogenase that does not always correspond to its genomic context, owing to the versatility of CO metabolism and the low redox potential of CO.
Collapse
|
73
|
Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol 2018; 9:1132. [PMID: 29915565 PMCID: PMC5994547 DOI: 10.3389/fmicb.2018.01132] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches.
Collapse
Affiliation(s)
- Muneer A Malla
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
74
|
Chen M, Chen Y, Dong S, Lan S, Zhou H, Tan Z, Li X. Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification performance, activity, and community. CHEMOSPHERE 2018; 195:800-809. [PMID: 29289907 DOI: 10.1016/j.chemosphere.2017.12.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the nitrification performance, metabolic activity, antioxidant enzyme activity as well as bacterial community of mixed nitrifying bacteria culture under different temperature dropping strategies [(#1) growth temperature kept at 20 °C; (#2) sharp1 decreased from 20 °C to 10 °C; (#3) growth at 20 °C for 6 days followed by sharp decrease to 10 °C; and (#4) gradual decreased from 20 °C to 10 °C] were evaluated. It was shown that acclimation at 20 °C for 6 days allowed to maintain better nitrification activity at 10 °C. The nitrite oxidation capacity of nitrifiers was significantly correlated with the relative light unit (RLU) (p < .05) and the fluctuation of superoxide dismutase (SOD) enzyme activity (p < .01). With serial #3 showed the highest RLU levels and the least SOD enzyme fluctuation as compared to serials #2 and #4. Throughout the experimental period, Nitrosospira and Nitrosomonas as well as Nitrospira were identified as the predominant ammonia-oxidizing bacteria (AOB) and nitrate-oxidizing bacteria (NOB). The dynamic change of AOB/NOB ratios and nitrification activity in serials #2-#4 demonstrated that AOB recovered better than NOB with long-term 10 °C exposure, and the nitrification performance was mainly limited by the nitrite oxidation capacity of NOB. Applying 6 days acclimation at 20 °C was beneficial for the mixed nitrifying bacteria culture to cope with low temperature (10 °C) stress, possibly due to the maintenance of metabolic activity, antioxidant enzyme activity stability as well as appropriate AOB/NOB ratio.
Collapse
Affiliation(s)
- Maoxia Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
75
|
Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. THE ISME JOURNAL 2018; 12:495-507. [PMID: 29087380 PMCID: PMC5776465 DOI: 10.1038/ismej.2017.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/26/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023]
Abstract
Dissimilatory sulfate reduction (DSR) has been a key process influencing the global carbon cycle, atmospheric composition and climate for much of Earth's history, yet the energy metabolism of sulfate-reducing microbes remains poorly understood. Many organisms, particularly sulfate reducers, live in low-energy environments and metabolize at very low rates, requiring specific physiological adaptations. We identify one such potential adaptation-the electron carriers selected for survival under energy-limited conditions. Employing a quantitative biochemical-isotopic model, we find that the large S isotope fractionations (>55‰) observed in a wide range of natural environments and culture experiments at low respiration rates are only possible when the standard-state Gibbs free energy (ΔG'°) of all steps during DSR is more positive than -10 kJ mol-1. This implies that at low respiration rates, only electron carriers with modestly negative reduction potentials are involved, such as menaquinone, rubredoxin, rubrerythrin or some flavodoxins. Furthermore, the constraints from S isotope fractionation imply that ferredoxins with a strongly negative reduction potential cannot be the direct electron donor to S intermediates at low respiration rates. Although most sulfate reducers have the genetic potential to express a variety of electron carriers, our results suggest that a key physiological adaptation of sulfate reducers to low-energy environments is to use electron carriers with modestly negative reduction potentials.
Collapse
Affiliation(s)
- Christine B Wenk
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
76
|
Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment. Appl Environ Microbiol 2017; 84:AEM.01443-17. [PMID: 29054869 DOI: 10.1128/aem.01443-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022] Open
Abstract
The difficulty involved in quantifying biogeochemically significant microbes in marine sediments limits our ability to assess interspecific interactions, population turnover times, and niches of uncultured taxa. We incubated surface sediments from Cape Lookout Bight, North Carolina, USA, anoxically at 21°C for 122 days. Sulfate decreased until day 68, after which methane increased, with hydrogen concentrations consistent with the predicted values of an electron donor exerting thermodynamic control. We measured turnover times using two relative quantification methods, quantitative PCR (qPCR) and the product of 16S gene read abundance and total cell abundance (FRAxC, which stands for "fraction of read abundance times cells"), to estimate the population turnover rates of uncultured clades. Most 16S rRNA reads were from deeply branching uncultured groups, and ∼98% of 16S rRNA genes did not abruptly shift in relative abundance when sulfate reduction gave way to methanogenesis. Uncultured Methanomicrobiales and Methanosarcinales increased at the onset of methanogenesis with population turnover times estimated from qPCR at 9.7 ± 3.9 and 12.6 ± 4.1 days, respectively. These were consistent with FRAxC turnover times of 9.4 ± 5.8 and 9.2 ± 3.5 days, respectively. Uncultured Syntrophaceae, which are possibly fermentative syntrophs of methanogens, and uncultured Kazan-3A-21 archaea also increased at the onset of methanogenesis, with FRAxC turnover times of 14.7 ± 6.9 and 10.6 ± 3.6 days. Kazan-3A-21 may therefore either perform methanogenesis or form a fermentative syntrophy with methanogens. Three genera of sulfate-reducing bacteria, Desulfovibrio, Desulfobacter, and Desulfobacterium, increased in the first 19 days before declining rapidly during sulfate reduction. We conclude that population turnover times on the order of days can be measured robustly in organic-rich marine sediment, and the transition from sulfate-reducing to methanogenic conditions stimulates growth only in a few clades directly involved in methanogenesis, rather than in the whole microbial community.IMPORTANCE Many microbes cannot be isolated in pure culture to determine their preferential growth conditions and predict their response to changing environmental conditions. We created a microcosm of marine sediments that allowed us to simulate a diagenetic profile using a temporal analog for depth. This allowed for the observation of the microbial community population dynamics caused by the natural shift from sulfate reduction to methanogenesis. Our research provides evidence for the population dynamics of uncultured microbes as well as the application of a novel method of turnover rate analysis for individual taxa within a mixed incubation, FRAxC, which stands for "fraction of read abundance times cells," which was verified by quantitative PCR. This allows for the calculation of population turnover times for microbes in a natural setting and the identification of uncultured clades involved in geochemical processes.
Collapse
|
77
|
Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris. mBio 2017; 8:mBio.01780-17. [PMID: 29138306 PMCID: PMC5686539 DOI: 10.1128/mbio.01780-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection.IMPORTANCE High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies. Desulfovibrio vulgaris Hildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation of D. vulgaris Hildenborough with experimental evolution. Here, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.
Collapse
|
78
|
Wang HL, Zhang J, Sun QL, Lian C, Sun L. A comparative study revealed first insights into the diversity and metabolisms of the microbial communities in the sediments of Pacmanus and Desmos hydrothermal fields. PLoS One 2017; 12:e0181048. [PMID: 28704556 PMCID: PMC5507547 DOI: 10.1371/journal.pone.0181048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 06/26/2017] [Indexed: 12/02/2022] Open
Abstract
Currently, little is known about the microbial diversity in the sediments of Pacmanus and Desmos hydrothermal fields in Manus Basin. In this study, Illumina-based sequencing of 16S rRNA gene amplicons and metagenomic analysis were conducted to investigate the microbial populations and metabolic profiles in the sediments from four different regions in Pacmanus and Desmos hydrothermal fields. It was found that Gammaproteobacteria and Thaumarchaeota were the most abundant bacterial and archaeal populations, respectively. The autotrophic prokaryotes in the four communities probably fixed CO2 via four major pathways, i.e. Calvin-Benson-Bassham cycle, reductive acetyl-CoA cycle, rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate cycle. Ammonia-oxidizing Thaumarchaeota, nitrifiers, denitrifiers, and sulfur oxidizers belonging to the subgroups of Proteobacteria (e.g., alpha, beta, gamma, and epsilon), Nitrospira, and Nitrospina, and sulfate-reducing Desulfobacterales likely played critical roles in nitrogen and sulfur cycling, in which ammonia, sulfur compounds, and hydrogen could be utilized as potential energy sources. These findings revealed new insights into the operational mechanism of the microbial communities associated with Pacmanus and Desmos hydrothermal fields.
Collapse
Affiliation(s)
- Hai-liang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Lian
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
79
|
Coldren GA, Barreto CR, Wykoff DD, Morrissey EM, Langley JA, Feller IC, Chapman SK. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 2017; 97:3167-3175. [PMID: 27870028 DOI: 10.1002/ecy.1539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022]
Abstract
Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones.
Collapse
Affiliation(s)
- G A Coldren
- Villanova University, Villanova, Pennsylvania, 19085, USA
| | - C R Barreto
- Villanova University, Villanova, Pennsylvania, 19085, USA
| | - D D Wykoff
- Villanova University, Villanova, Pennsylvania, 19085, USA
| | - E M Morrissey
- West Virginia University, Morgantown, Virginia, 26506, USA
| | - J A Langley
- Villanova University, Villanova, Pennsylvania, 19085, USA
| | - I C Feller
- Smithsonian Environmental Research Center, Edgewater, Maryland, 21037, USA
| | - S K Chapman
- Villanova University, Villanova, Pennsylvania, 19085, USA
| |
Collapse
|
80
|
Zhang P, He Z, Van Nostrand JD, Qin Y, Deng Y, Wu L, Tu Q, Wang J, Schadt CW, W Fields M, Hazen TC, Arkin AP, Stahl DA, Zhou J. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3609-3620. [PMID: 28300407 DOI: 10.1021/acs.est.6b02980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ye Deng
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Department of Marine Sciences, Ocean College, Zhejiang University , Zhejiang, China
| | - Jianjun Wang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008, China
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98105, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
81
|
Kovaliova A, Kadnikov VV, Antsiferov DV, Beletsky AV, Danilova EV, Avakyan MR, Mardanov AV, Karnachuk OV. Genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia. GENOMICS DATA 2017; 11:125-127. [PMID: 28217441 PMCID: PMC5300300 DOI: 10.1016/j.gdata.2017.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 11/29/2022]
Abstract
Here we report the draft genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia. The draft genome has a size of 4.9 Mb and encodes multiple K+-transporters and proton-consuming decarboxylases. The phylogenetic analysis based on concatenated ribosomal proteins revealed that strain DV clusters together with the acid-tolerant Desulfovibrio sp. TomC and Desulfovibrio magneticus. The draft genome sequence and annotation have been deposited at GenBank under the accession number MLBG00000000.
Collapse
Affiliation(s)
- Anastasiia Kovaliova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Dmitrii V Antsiferov
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ehrzena V Danilova
- Institute of General and Experimental Biology, Siberian Branch Russian Academy of Sciences, 670047 Ulan-Ude, Buryatia, Russia
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
82
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
83
|
Vikram A, Lipus D, Bibby K. Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale. MICROBIAL ECOLOGY 2016; 72:571-581. [PMID: 27457653 DOI: 10.1007/s00248-016-0811-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Controlling microbial activity is a primary concern during the management of the large volumes of wastewater (produced water) generated during high-volume hydraulic fracturing. In this study we analyzed the transcriptional activity (metatranscriptomes) of three produced water samples from the Marcellus Shale. The goal of this study was to describe active metabolic pathways of industrial concern for produced water management and reuse, and to improve understanding of produced water microbial activity. Metatranscriptome analysis revealed active biofilm formation, sulfide production, and stress management mechanisms of the produced water microbial communities. Biofilm-formation and sulfate-reduction pathways were identified in all samples. Genes related to a diverse array of stress response mechanisms were also identified with implications for biocide efficacy. Additionally, active expression of a methanogenesis pathway was identified in a sample of produced water collected prior to holding pond storage. The active microbial community identified by metatranscriptome analysis was markedly different than the community composition as identified by 16S rRNA sequencing, highlighting the value of evaluating the active microbial fraction during assessments of produced water biofouling potential and evaluation of biocide application strategies. These results indicate biofouling and corrosive microbial processes are active in produced water and should be taken into consideration while designing produced water reuse strategies.
Collapse
Affiliation(s)
- Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Daniel Lipus
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
84
|
Adaptation of Akkermansia muciniphila to the Oxic-Anoxic Interface of the Mucus Layer. Appl Environ Microbiol 2016; 82:6983-6993. [PMID: 27663027 DOI: 10.1128/aem.01641-16] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Akkermansia muciniphila colonizes the mucus layer of the gastrointestinal tract, where the organism can be exposed to the oxygen that diffuses from epithelial cells. To understand how A. muciniphila is able to survive and grow at this oxic-anoxic interface, its oxygen tolerance and response and reduction capacities were studied. A. muciniphila was found to be oxygen tolerant. On top of this, under aerated conditions, A. muciniphila showed significant oxygen reduction capacities and its growth rate and yield were increased compared to those seen under strict anaerobic conditions. Transcriptome analysis revealed an initial oxygen stress response upon exposure to oxygen. Thereafter, genes related to respiration were expressed, including those coding for the cytochrome bd complex, which can function as a terminal oxidase. The functionality of A. muciniphila cytochrome bd genes was proven by successfully complementing cytochrome-deficient Escherichia coli strain ECOM4. We conclude that A. muciniphila can use oxygen when it is present at nanomolar concentrations.IMPORTANCE This article explains how Akkermansia muciniphila, previously described as a strictly anaerobic bacterium, is able to tolerate and even benefit from low levels of oxygen. Interestingly, we measured growth enhancement of A. muciniphila and changes in metabolism as a result of the oxygen exposure. In this article, we discuss similarities and differences of this oxygen-responsive mechanism with respect to those of other intestinal anaerobic isolates. Taken together, we think that these are valuable data that indicate how anaerobic intestinal colonizing bacteria can exploit low levels of oxygen present in the mucus layer and that our results have direct relevance for applicability, as addition of low oxygen concentrations could benefit the in vitro growth of certain anaerobic organisms.
Collapse
|
85
|
Cleary DFR, Polónia ARM, Sousa AI, Lillebø AI, Queiroga H, Gomes NCM. Temporal dynamics of sediment bacterial communities in monospecific stands of Juncus maritimus and Spartina maritima. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:824-834. [PMID: 27061465 DOI: 10.1111/plb.12459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1-j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA-20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment-associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation.
Collapse
Affiliation(s)
- D F R Cleary
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - A R M Polónia
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - A I Sousa
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - A I Lillebø
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - H Queiroga
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - N C M Gomes
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
86
|
Zhou H, Dang H, Klotz MG. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas. Front Microbiol 2016; 7:1111. [PMID: 27489551 PMCID: PMC4951488 DOI: 10.3389/fmicb.2016.01111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon respiration in sediments play an important role in marine nitrogen fixation. However, fundamental knowledge about the identities, abundance, diversity, biogeography, and controlling environmental factors of nitrogen-fixing communities in open ocean sediments is still elusive. Surprisingly, little is known also about nitrogen-fixing communities in sediments of the more research-accessible marginal seas. Here we report on an investigation of the environmental geochemistry and putative diazotrophic microbiota in the sediments of Bohai Sea, an eutrophic marginal sea of the western Pacific Ocean. Diverse and abundant nifH gene sequences were identified and sulfate-reducing bacteria (SRB) were found to be the dominant putative nitrogen-fixing microbes. Community statistical analyses suggested bottom water temperature, bottom water chlorophyll a content (or the covarying turbidity) and sediment porewater Eh (or the covarying pH) as the most significant environmental factors controlling the structure and spatial distribution of the putative diazotrophic communities, while sediment Hg content, sulfide content, and porewater SiO32−-Si content were identified as the key environmental factors correlated positively with the nifH gene abundance in Bohai Sea sediments. Comparative analyses between the Bohai Sea and the northern South China Sea (nSCS) identified a significant composition difference of the putative diazotrophic communities in sediments between the shallow-water (estuarine and nearshore) and deep-water (offshore and deep-sea) environments, and sediment porewater dissolved oxygen content, water depth and in situ temperature as the key environmental factors tentatively controlling the species composition, community structure, and spatial distribution of the marginal sea sediment nifH-harboring microbiota. This confirms the ecophysiological specialization and niche differentiation between the shallow-water and deep-water sediment diazotrophic communities and suggests that the in situ physical and geochemical conditions play a more important role than geographical contiguity in determining the community similarity of the diazotrophic microbiota in marginal sea sediments.
Collapse
Affiliation(s)
- Haixia Zhou
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China; Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China)Qingdao, China; Department of Food Quality and Safety, College of Life Science, Dezhou UniversityDezhou, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, and College of Ocean and Earth Sciences, Xiamen University Xiamen, China
| | - Martin G Klotz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China; Department of Biology and School of Earth and Environmental Sciences, Queens College, City University of New YorkQueens, NY, USA
| |
Collapse
|
87
|
Medeiros JD, Cantão ME, Cesar DE, Nicolás MF, Diniz CG, Silva VL, Vasconcelos ATRD, Coelho CM. Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz J Microbiol 2016; 47:835-845. [PMID: 27522532 PMCID: PMC5052392 DOI: 10.1016/j.bjm.2016.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance) and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.
Collapse
Affiliation(s)
- Julliane Dutra Medeiros
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil.
| | | | | | | | - Cláudio Galuppo Diniz
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Juiz de Fora, MG, Brazil
| | - Vânia Lúcia Silva
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Juiz de Fora, MG, Brazil
| | | | - Cíntia Marques Coelho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil
| |
Collapse
|
88
|
Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing "Stress-on-Stress" Responses. Int J Mol Sci 2016; 17:ijms17060933. [PMID: 27314330 PMCID: PMC4926466 DOI: 10.3390/ijms17060933] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.
Collapse
|
89
|
Banik GD, De A, Som S, Jana S, Daschakraborty SB, Chaudhuri S, Pradhan M. Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J Breath Res 2016; 10:026010. [PMID: 27163246 DOI: 10.1088/1752-7155/10/2/026010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a pressing need to develop a novel early-detection strategy for the precise evolution of small intestinal bacterial overgrowth (SIBO) in irritable bowel syndrome (IBS) patients. The current method based on a hydrogen breath test (HBT) for the detection of SIBO is highly controversial. HBT has many limitations and drawbacks. It often fails to indentify SIBO when IBS individuals have 'non-hydrogen-producing' colonic bacteria. Here, we show that hydrogen sulphide (H2S) in exhaled breath is distinctly altered for diarrhea-predominant IBS individuals with positive and negative SIBO by the activity of intestinal sulphate-reducing bacteria. Subsequently, by analyzing the excretion kinetics of breath H2S, we found a missing link between breath H2S and SIBO when HBT often fails to diagnose SIBO. Moreover, breath H2S can track the precise evolution of SIBO, even after the eradication of bacterial overgrowth. Our findings suggest that the changes in H2S in the bacterial environment may contribute to the pathogenesis of SIBO and the breath H2S as a potential biomarker for non-invasive, rapid and precise assessment of SIBO without the endoscopy-based microbial culture of jejunal aspirates, and thus may open new perspectives into the pathophysiology of SIBO in IBS subjects.
Collapse
Affiliation(s)
- Gourab Dutta Banik
- Department of Chemical, Biological and Macromolecular Sciences, S N Bose National Centre for Basic Sciences, Salt Lake, JD Block, Sector III, Kolkata 700098, India
| | | | | | | | | | | | | |
Collapse
|
90
|
Shatsky M, Allen S, Gold BL, Liu NL, Juba TR, Reveco SA, Elias DA, Prathapam R, He J, Yang W, Szakal ED, Liu H, Singer ME, Geller JT, Lam BR, Saini A, Trotter VV, Hall SC, Fisher SJ, Brenner SE, Chhabra SR, Hazen TC, Wall JD, Witkowska HE, Biggin MD, Chandonia JM, Butland G. Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported. Mol Cell Proteomics 2016; 15:1539-55. [PMID: 26873250 DOI: 10.1074/mcp.m115.054692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 01/31/2023] Open
Abstract
Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.
Collapse
Affiliation(s)
- Maxim Shatsky
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Simon Allen
- the Department of Obstetrics, Gynecology and Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, California, 94143
| | - Barbara L Gold
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Nancy L Liu
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Thomas R Juba
- the Departments of Biochemistry and of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, 65211
| | - Sonia A Reveco
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Dwayne A Elias
- the Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
| | - Ramadevi Prathapam
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Jennifer He
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Wenhong Yang
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Evelin D Szakal
- the Department of Obstetrics, Gynecology and Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, California, 94143
| | - Haichuan Liu
- the Department of Obstetrics, Gynecology and Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, California, 94143
| | - Mary E Singer
- the Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Jil T Geller
- the Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Bonita R Lam
- the Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Avneesh Saini
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Valentine V Trotter
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Steven C Hall
- the Department of Obstetrics, Gynecology and Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, California, 94143
| | - Susan J Fisher
- the Department of Obstetrics, Gynecology and Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, California, 94143
| | - Steven E Brenner
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720; the Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, 94720
| | - Swapnil R Chhabra
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Terry C Hazen
- the Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, 37996; and
| | - Judy D Wall
- the Departments of Biochemistry and of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, 65211
| | - H Ewa Witkowska
- the Department of Obstetrics, Gynecology and Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, California, 94143
| | - Mark D Biggin
- the Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - John-Marc Chandonia
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720;
| | - Gareth Butland
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720; From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720;
| |
Collapse
|
91
|
Ritz NL, Burnett BJ, Setty P, Reinhart KM, Wilson MR, Alcock J, Singh SB, Barton LL, Lin HC. Sulfate-reducing bacteria impairs working memory in mice. Physiol Behav 2016; 157:281-7. [PMID: 26861176 DOI: 10.1016/j.physbeh.2016.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 01/05/2016] [Accepted: 01/21/2016] [Indexed: 11/26/2022]
Abstract
The ability of gut microbes to bi-directionally communicate with the brain and vice versa form the basis of the gut microbiome-central nervous system axis. It has been shown that inoculation with pathogenic gut bacteria alters the behavior of mice; however, it is not known whether or not non-pathogenic resident microbes have similar effects. In this study, we tested the hypothesis that the administration of sulfate-reducing bacteria (SRB), a specific group of resident gut bacteria that generate hydrogen sulfide (H2S), impair learning and memory performance in mice tested in an 8-arm radial maze and Morris water maze. We found that mice spent more time in the center of the maze when they were gavaged with live SRB as compared to mice given saline (control), lactulose+mannitol (L/M), or killed SRB. SRB-gavaged mice were also tested using the Morris water maze and were found to take longer to complete the test, spend more time further from the platform, and have a longer path length to reach the platform. This effect of SRB on maze performance was associated with a higher concentration of H2S in the small intestine and cecum. We conclude that SRB, a specific resident gut bacterial species, could impair cognitive function in mice.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA; Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Benjamin J Burnett
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Prashanth Setty
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Katelyn M Reinhart
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Melissa R Wilson
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sudha B Singh
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA; Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Larry L Barton
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Henry C Lin
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, USA; Department of Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
92
|
|
93
|
Bryce CC, Le Bihan T, Martin SF, Harrison JP, Bush T, Spears B, Moore A, Leys N, Byloos B, Cockell CS. Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environ Microbiol 2015; 18:1110-21. [DOI: 10.1111/1462-2920.13093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Casey C. Bryce
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
| | - Thierry Le Bihan
- Centre for Synthetic and Systems Biology; Institute of Structural and Molecular Biology; University of Edinburgh; Edinburgh UK
| | - Sarah F. Martin
- Centre for Synthetic and Systems Biology; Institute of Structural and Molecular Biology; University of Edinburgh; Edinburgh UK
| | - Jesse P. Harrison
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
- Division of Microbial Ecology; Department of Microbiology and Ecosystem Science; University of Vienna; Austria
| | - Timothy Bush
- Institute for Condensed Matter and Complex Systems; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
- Institute for Biodiversity and Ecosystem Dynamics (IBED); University of Amsterdam; The Netherlands
| | - Bryan Spears
- Centre for Ecology and Hydrology, Bush Estate; Penicuik Edinburgh UK
| | - Alanna Moore
- Centre for Ecology and Hydrology, Bush Estate; Penicuik Edinburgh UK
| | - Natalie Leys
- Microbiology Unit; Belgian Nuclear Research Centre; SCK●CEN Mol Belgium
| | - Bo Byloos
- Microbiology Unit; Belgian Nuclear Research Centre; SCK●CEN Mol Belgium
- Laboratory of Microbial Ecology and Technology; University of Ghent; Ghent Belgium
| | - Charles S. Cockell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
| |
Collapse
|
94
|
Fievet A, Ducret A, Mignot T, Valette O, Robert L, Pardoux R, Dolla AR, Aubert C. Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough. Front Microbiol 2015; 6:1378. [PMID: 26696987 PMCID: PMC4672049 DOI: 10.3389/fmicb.2015.01378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well-documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle. In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH). This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.
Collapse
Affiliation(s)
- Anouchka Fievet
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| | - Adrien Ducret
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| | - Tâm Mignot
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| | - Odile Valette
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| | - Lydia Robert
- INRA, UMR1319 Micalis Jouy-en-Josas, France ; AgroParisTech, UMR Micalis Jouy-en-Josas, France
| | - Romain Pardoux
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| | - Alain R Dolla
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| | - Corinne Aubert
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne UMR 7283, Aix Marseille Université Marseille, France
| |
Collapse
|
95
|
Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance. Comput Biol Chem 2015; 59 Pt A:177-84. [PMID: 26551237 DOI: 10.1016/j.compbiolchem.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/27/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022]
Abstract
Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio-hydrogen.
Collapse
|
96
|
Morrissey EM, Franklin RB. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. Front Microbiol 2015; 6:1013. [PMID: 26483764 PMCID: PMC4591843 DOI: 10.3389/fmicb.2015.01013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetland soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (CO2 and CH4 production, and extracellular enzyme activity). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of α- and γ-proteobacteria in these wetland soils preferred saltwater, while many β-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences.
Collapse
Affiliation(s)
- Ember M Morrissey
- Laboratory of Microbial Ecology, Department of Biology, Virginia Commonwealth University Richmond, VA, USA
| | - Rima B Franklin
- Laboratory of Microbial Ecology, Department of Biology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
97
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2015; 18:21-37. [PMID: 26060021 DOI: 10.1111/1462-2920.12907] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Frank-Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany.,Department of Life Sciences & Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Andreas Brachmann
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Dirk Schüler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany.,Department of Microbiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
98
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
99
|
Coelho FJRC, Cleary DFR, Rocha RJM, Calado R, Castanheira JM, Rocha SM, Silva AMS, Simões MMQ, Oliveira V, Lillebø AI, Almeida A, Cunha Â, Lopes I, Ribeiro R, Moreira-Santos M, Marques CR, Costa R, Pereira R, Gomes NCM. Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. GLOBAL CHANGE BIOLOGY 2015; 21:1871-1886. [PMID: 25382269 DOI: 10.1111/gcb.12801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
There is growing concern that modifications to the global environment such as ocean acidification and increased ultraviolet radiation may interact with anthropogenic pollutants to adversely affect the future marine environment. Despite this, little is known about the nature of the potential risks posed by such interactions. Here, we performed a multifactorial microcosm experiment to assess the impact of ocean acidification, ultraviolet B (UV-B) radiation and oil hydrocarbon contamination on sediment chemistry, the microbial community (composition and function) and biochemical marker response of selected indicator species. We found that increased ocean acidification and oil contamination in the absence of UV-B will significantly alter bacterial composition by, among other things, greatly reducing the relative abundance of Desulfobacterales, known to be important oil hydrocarbon degraders. Along with changes in bacterial composition, we identified concomitant shifts in the composition of oil hydrocarbons in the sediment and an increase in oxidative stress effects on our indicator species. Interestingly, our study identifies UV-B as a critical component in the interaction between these factors, as its presence alleviates harmful effects caused by the combination of reduced pH and oil pollution. The model system used here shows that the interactive effect of reduced pH and oil contamination can adversely affect the structure and functioning of sediment benthic communities, with the potential to exacerbate the toxicity of oil hydrocarbons in marine ecosystems.
Collapse
Affiliation(s)
- Francisco J R C Coelho
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Kanaujia PK, Bajaj P, Kumar S, Singhal N, Virdi JS. Proteomic analysis of Yersinia enterocolitica biovar 1A under iron-rich and iron-poor conditions indicate existence of efficiently regulated mechanisms of iron homeostasis. J Proteomics 2015; 124:39-49. [PMID: 25913300 DOI: 10.1016/j.jprot.2015.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 01/30/2023]
Abstract
UNLABELLED The pathogenicity of Yersinia enterocolitica biovar 1A strains is controversial as these lack most of the known virulence factors. Acquisition of iron and presence of well-regulated iron homeostasis in bacteria represents an important virulence trait. Differential abundance of proteins was examined under iron-rich and iron-poor conditions in a clinical Y. enterocolitica biovar 1A strain IP27407. Whole cell protein profiles were analysed by 2D gel electrophoresis (2D-GE). Following statistical and MALDI-TOF MS analyses, 28 differentially abundant proteins were identified. Significant iron-responsive changes were observed in the proteins involved in iron acquisition or storage namely, hemin receptor (HemR), periplasmic Fe(2+) transport protein (Tpd), periplasmic chelated iron-binding protein (YfeA) and bacterioferritin (Bfr). Quantitative real-time PCR (qRT-PCR) of eight mRNA transcripts revalidated the differential protein abundance. In silico analysis of iron homeostasis mediated by the bacterioferritin and bacterioferritin-associated ferredoxin (Bfr-Bfd) complex suggested two pathways for the release of reserve iron which might be operating under conditions of different iron availability. The study, for the first time, showed the existence of highly competent iron homeostasis mechanisms in Y. enterocolitica biovar 1A and identified the key proteins involved thereof. Such mechanisms might have implications for the pathogenicity of Y. enterocolitica biovar 1A strains. BIOLOGICAL SIGNIFICANCE Although, a few studies have identified the differentially abundant bacterial proteins in response to iron starvation, little information is available in this regard for Y. enterocolitica (especially, the biovar 1A strains). In the present study, differential abundance of several proteins was identified under iron-rich and iron-poor conditions by 2D-GE and MALDI-TOF/MS analysis. These included proteins which may not only be directly implicated in iron acquisition or storage but also play crucial role in cellular metabolism. Given the absence of most known virulence factors in Y. enterocolitica biovar 1A strains, demonstration of well-regulated mechanisms for efficient iron homeostasis constitutes an important observation. The proteins, as identified in the present study, provide useful insights to further unravel the potential pathogenicity of the biovar 1A strains.
Collapse
Affiliation(s)
- Pawan Kumar Kanaujia
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| | - Priyanka Bajaj
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| | - Shakti Kumar
- Parasitology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Neelja Singhal
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| | - Jugsharan Singh Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|