51
|
Liu Y, Liu W, Yang Y, Liu H, Liu J, Liu Y. The association between dietary dark green vegetable intake and cognitive function in US older adults. NUTR BULL 2025; 50:69-81. [PMID: 39572249 DOI: 10.1111/nbu.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 02/13/2025]
Abstract
Dark green vegetables include dark green leafy vegetables and broccoli. They are sources of many essential nutrients, including vitamins A, B and C, folate, fibre, carotenoids and flavonoids. This study aimed to explore the association between dietary dark green vegetable intake and cognitive function in US older adults. We included 2344 older adults (≥60 years old) from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 cycles. Dark green vegetable consumption was assessed using a continuous variable (cups/day) and two categorical variables. The first categorical variable classified participants into non-consumers and consumers based on whether they consumed dark green vegetables. The second categorical variable grouped participants into four levels of dark green vegetable consumption (non-consumers, consumers with low intakes, consumers with moderate intakes and consumers with high intakes). We used five continuous variables with non-normal distribution to assess cognitive function, including a composite z-score and the standardised scores of four individual cognitive tests. The four cognitive tests included the Immediate Recall Test (IRT), the Delayed Recall Test (DRT), the Animal Mobility Test (AFT) and the Digit Symbol Substitution Test (DSST). The standardised scores of the four cognitive tests were calculated using the mean and standard deviation of each cognitive test score. The composite z-score was calculated by averaging the standardised scores of four cognitive tests to evaluate global cognition. We used multiple linear regression models to examine the association between dietary dark green vegetable intake and cognitive function. Our findings indicated that dark green vegetable intake was positively associated with global cognition (β [95% CI]: 0.17 [0.04, 0.30]; p = 0.016) and IRT (β [95% CI]: 0.26 [0.08, 0.43]; p = 0.009) and DRT (β [95% CI]: 0.21 [0.05, 0.36]; p = 0.012) standardised scores. Individuals with high intake of dark green vegetables showed notably better global cognition (β [95% CI]: 0.16 [0.05, 0.28]; p = 0.010) and showed higher IRT (β [95% CI]: 0.22 [0.07, 0.38]; p = 0.010) and DRT standardised scores (β [95% CI]: 0.21 [0.07, 0.36]; p = 0.007) compared with the non-consumers. Blood neutrophil counts mediated the cognitive benefits of dark green vegetables (Proportion: 9.5%, p = 0.006). In conclusion, our findings suggest that dark green vegetable consumption may have favourable effects on cognitive function in US older adults, especially on immediate and delayed learning abilities. The underlying mechanisms include the ability of dark green vegetables to reduce blood neutrophil levels, an indicator of decreased systemic inflammation. Increasing dietary intake of dark green vegetables may be a beneficial intervention to improve cognitive health in the older US population.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Wen Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Yang Yang
- Qilu Hospital of Shandong University, Jinan, China
| | - Heyin Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Jinde Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
52
|
You YL, Byun HJ, Chang YB, Kim H, Lee H, Suh HJ, Jeon JY, Kim BR, Hwang JE, Lee JH, Choi HS. Euglena gracilis-derived β-glucan ameliorates particulate matter (PM 2.5)-induced airway inflammation by modulating nuclear factor kappa B, mitogen-activated protein kinase, and nuclear factor erythroid 2-related factor 2 signaling pathways in A549 cells and BALB/c mice. Int J Biol Macromol 2025; 296:139671. [PMID: 39798741 DOI: 10.1016/j.ijbiomac.2025.139671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
This study aimed to investigate the effects of β-glucan derived from Euglena gracilis (EGB), an edible microalga, on particulate matter (PM2.5)-induced airway inflammation in A549 cells and BALB/c mice. EGB effectively suppressed the mRNA and protein levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-8) and mediators (iNOS, COX-2), while inhibiting the NF-κB and MAPK signaling pathways triggered by PM2.5 exposure and reducing nuclear NF-κB levels. Additionally, EGB decreased PM2.5-induced ROS production and increased the protein levels of NRF2 and HO-1, along with genes encoding antioxidant enzymes (catalase, GPx, SOD1), associated with elevated nuclear NRF2 levels. EGB reduced immune cell infiltration and inflammatory cytokine levels in BALF and serum, both of which increased by PM2.5 exposure. EGB also significantly increased alveolar numbers while decreasing the gene expression of MMP1/9/13. Furthermore, EGB suppressed PM2.5-induced bronchial thickening and collagen-1 deposition by downregulating TGF-β1 expression, and alleviated goblet cell hyperplasia and mucin production in lung tissues. These results suggest that EGB effectively reduces PM2.5-induced airway inflammation by suppressing NF-κB and MAPK signaling pathways, lowering pro-inflammatory cytokines, and activating the NRF2-HO-1 signaling pathway to enhance antioxidant enzyme expression. This study highlights the potential of EGB as an edible functional agent for controlling PM-related airway inflammation.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ha-Jun Byun
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyowon Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Jeon
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Bo-Ra Kim
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Eun Hwang
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Jun Hee Lee
- Health R&D Institute, Daesang Corp., Seoul 07789, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
53
|
Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J, Liu Y. Neutrophils in colorectal cancer: mechanisms, prognostic value, and therapeutic implications. Front Immunol 2025; 16:1538635. [PMID: 40092983 PMCID: PMC11906667 DOI: 10.3389/fimmu.2025.1538635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve as the first defense line against infection and are also significantly involved in the initiation and progression of cancer. In colorectal cancer (CRC), neutrophils exhibit a dual function by promoting tumor events and exerting antitumor activity, which is related to the heterogeneity of neutrophils. The neutrophil extracellular traps (NETs), gut microbiota, and various cells within the tumor microenvironment (TME) are involved in shaping the heterogeneous function of neutrophils. This article provides an updated overview of the complex functions and underlying mechanisms of neutrophils in CRC and their pivotal role in guiding prognosis assessment and therapeutic strategies, aiming to offer novel insights into neutrophil-associated treatment approaches for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
Živković E, Mitrović-Ajtić O, Subotički T, Ivanović J, Otašević V, Đikić D, Diklić M, Vukotić M, Dragojević T, Stanisavljević D, Antić D, Čokić VP. Thromboinflammatory Biomarkers in Lymphomas: Linking Inflammation to Thrombosis Risk. Int J Mol Sci 2025; 26:2058. [PMID: 40076681 PMCID: PMC11900196 DOI: 10.3390/ijms26052058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Thrombosis is a critical complication in lymphomas, driven by chronic inflammation. To observe this systemic mechanism, we evaluated inflammatory cytokines, neutrophil and monocyte activation, and platelet function in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Hodgkin lymphoma (HL), with and without thrombosis using ELISA and flow cytometry according to laboratory and clinical data. Interleukin-1β was elevated across lymphomas and inversely correlated with the Khorana score for venous thromboembolism, while increased tumor necrosis factor-alpha (TNF-α) was inversely associated with the International Prognostic Index (IPI) in thrombosis-associated lymphomas. Neutrophil activation was increased in DLBCL, while elevated neutrophil extracellular traps (NETs) biomarkers were inversely consistent with thrombosis and the ThroLy score. NETs were elevated in HL. Classical monocytes were increased in all lymphoma subtypes, with intermediate and tissue factor (TF)-carrying monocytes elevated in DLBCL and HL. Platelet activation was pronounced, with platelet-monocyte aggregates and platelet-associated TF elevated in DLBCL and FL but not HL. P-selectin was increased in lymphomas with thrombosis, aligned with Khorana and ThroLy scores, and reflected clinical stage while inversely correlating with IPI in non-thrombotic lymphomas. These findings highlight distinct thromboinflammatory mechanisms across lymphoma subtypes, providing insights into biomarkers for thrombosis risk and therapeutic targets in lymphoma management.
Collapse
Affiliation(s)
- Emilija Živković
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Olivera Mitrović-Ajtić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Tijana Subotički
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Jelena Ivanović
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (J.I.); (D.A.)
| | | | - Dragoslava Đikić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Miloš Diklić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Milica Vukotić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Teodora Dragojević
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Dejana Stanisavljević
- Institute for Medical Statistics and Informatics, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Darko Antić
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (J.I.); (D.A.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladan P. Čokić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| |
Collapse
|
55
|
Mao J, Gan Y, Tan X, He Y, Jing Q, Shi Q. A Two-Sample Mendelian Randomization Study of Basophil Count and Risk of Gestational Diabetes Mellitus. Int J Womens Health 2025; 17:517-527. [PMID: 40028461 PMCID: PMC11872098 DOI: 10.2147/ijwh.s500632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Objective High basophil count levels are associated with an increased risk of gestational diabetes mellitus (GDM). We used two-sample Mendelian randomisation (MR) to explore a potential causal relationship. It also aims to offer genetic evidence supporting the link between basophil count and the development of gestational diabetes mellitus while addressing the potential issues of confounding and reverse causality commonly encountered in observational studies. Methods We utilized publically accessible summary information obtained from genome-wide association studies (GWAS) for conducting a two-sample Mendelian randomization (TSMR) study. The major analysis method employed was inverse variance weighted (IVW), whereas the other four methods, namely weighted median method, MR-Egger regression, simple model and weighted model, were used as supplemental analyses. We also investigated the relationship between GDM and basophil count in the opposite direction using directional validation of MR analysis. Furthermore, the R package "ClusterProfiler" to conduct an analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms was used. Additionally, with the help of the STRING database, we have constructed a network of protein-protein interactions (PPIs). Results The Inverse Variance Weighted (IVW) method revealed a significant causal association between basophil count and gestational diabetes mellitus (OR, 0.84; 95% CI; 0.74-0.96; P, 0.01). A sensitivity analysis was performed to assess the reliability of the results, indicating no indication of pleiotropy or heterogeneity, hence strengthening the validity of the findings. The reverse causation of GDM predisposition on basophil counts was not supported by the results of the directional validation of the MR analysis. Conclusion The results of this study showed a causal relationship between high basophil counts and increased risk of GDM but did not support a causal relationship between genetic susceptibility to GDM and basophil counts.
Collapse
Affiliation(s)
- Jing Mao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yanqiong Gan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Xinlin Tan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yuhan He
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Qiao Jing
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Qi Shi
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| |
Collapse
|
56
|
Ciurus S, Elewa MAF, Palmer MA, Wolf A, Hector M, Fuhrmann DC, Thomas D, Gurke R, Schwalm MP, Berger L, Zech TJ, Burgers LD, Marschalek R, Geisslinger G, Knapp S, Langmann T, Bracher F, Weigert A, Fürst R. Inhibition of DYRK1B BY C81 impedes inflammatory processes in leukocytes by reducing STAT3 activity. Cell Mol Life Sci 2025; 82:85. [PMID: 39985685 PMCID: PMC11846820 DOI: 10.1007/s00018-025-05579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 01/05/2025] [Indexed: 02/24/2025]
Abstract
Chronic inflammatory diseases are a significant global burden and are associated with dysregulated resolution of inflammation. Therefore, promoting the process of resolution is a promising therapeutic approach. This study presents the potent anti-inflammatory and pro-resolving effects of a natural product-derived compound called C81. Administration of C81 in a therapeutic window resolved inflammation in the murine imiquimod-induced psoriasis model, and reduced microglial infiltration in a laser-induced choroidal neovascularisation model. Investigations into the underlying mechanisms of C81 identified the DYRK1B/STAT3 axis as a new regulator of inflammatory processes in leukocytes. The inhibition of DYRK1B by C81 resulted in attenuated STAT3 phosphorylation. The depletion of STAT3-regulated gene expression led to the inhibition of leukocyte adhesion and migration due to reduced integrin activation, and in addition to the inhibition of the release of pro-inflammatory mediators such as cytokines and eicosanoids. Importantly, the pro-resolving effects of C81 included the cell type-specific induction of apoptosis in neutrophils and a subsequent increase in efferocytosis. In conclusion, we report the DYRK1B/STAT3 axis as a novel and promising therapeutic target for activating the resolution of inflammation.
Collapse
Affiliation(s)
- Sarah Ciurus
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Mohammed A F Elewa
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Department of Biochemistry, Faculty of Pharmacy, Kafr El-Sheikh University, Karf El-Sheikh, Egypt
| | - Megan A Palmer
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lena Berger
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas J Zech
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Luisa D Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franz Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany.
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
57
|
Yang S, Song J, Deng M, Cheng S. Comprehensive analysis of aging-related gene expression patterns and identification of potential intervention targets. Postgrad Med J 2025; 101:219-231. [PMID: 39357883 DOI: 10.1093/postmj/qgae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE This study aims to understand the molecular mechanisms underlying the aging process and identify potential interventions to mitigate age-related decline and diseases. METHODS This study utilized the GSE168753 dataset to conduct comprehensive differential gene expression analysis and co-expression module analysis. Machine learning and Mendelian randomization analyses were employed to identify core aging-associated genes and potential drug targets. Molecular docking simulations and mediation analysis were also performed to explore potential compounds and mediators involved in the aging process. RESULTS The analysis identified 4164 differentially expressed genes, with 1893 upregulated and 2271 downregulated genes. Co-expression analysis revealed 21 modules, including both positively and negatively correlated modules between older age and younger age groups. Further exploration identified 509 aging-related genes with distinct biological functions. Machine learning and Mendelian randomization analyses identified eight core genes associated with aging, including DPP9, GNAZ, and RELL2. Molecular docking simulations suggested resveratrol, folic acid, and ethinyl estradiol as potential compounds capable of attenuating aging through modulation of RELL2 expression. Mediation analysis indicated that eosinophil counts and neutrophil count might act as mediators in the causal relationship between genes and aging-related indicators. CONCLUSION This comprehensive study provides valuable insights into the molecular mechanisms of aging and offers important implications for the development of anti-aging therapeutics. Key Messages What is already known on this topic - Prior research outlines aging's complexity, necessitating precise molecular targets for intervention. What this study adds - This study identifies novel aging-related genes, potential drug targets, and therapeutic compounds, advancing our understanding of aging mechanisms. How this study might affect research, practice, or policy - Findings may inform targeted therapies for age-related conditions, influencing future research and clinical practices.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Jianning Song
- Interventional Department, GuiQian International General Hospital, Guiyang, China
| | - Min Deng
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400000, China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
58
|
Wei H, Xu D, Chen J, Yu H, Zhang X, Liu Z, Liu C, Guo Y. Age Difference in the Connection Between Systemic Inflammatory Response and Metabolic Syndrome. J Clin Endocrinol Metab 2025; 110:634-648. [PMID: 39319403 PMCID: PMC11834715 DOI: 10.1210/clinem/dgae669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND This research aims to investigate the connection between systemic inflammatory response and metabolic syndrome (MetS) across different age groups, with the aim of proposing more targeted recommendations. METHODS This study enrolled 15 959 adults from the 2001-2018 National Health and Nutrition Examination Survey of whom 6739 were diagnosed with MetS. After dividing the systemic immune-inflammation index (SII) into 4 quartiles, the Kruskal-Wallis test and weighted chi-square test were employed to assess statistical differences. Weighted multivariable logistic regression analysis, subgroup analysis, sensitivity analysis, and restricted cubic spline were employed to examine the relationship between SII and MetS. RESULTS Our study revealed that SII exhibits a quantitative association with MetS [odds ratio (OR) = 1.56; 95% confidence interval (CI): 1.37-1.79; P < .001]. Elevated SII is an independent risk factor for the 5 components of MetS. Different age groups and alcohol consumption status could modify the connection between SII and MetS. This connection was statistically significant in the 18 to 65 age group but not in the elderly subgroup (OR = 1.08; 95% CI, .95-1.23; P = .248). Multiple imputation confirmed the robustness of our results. Moreover, the connection exhibits an inverted U-shaped curve. CONCLUSION Our research highlights the predictive significance of SII in forecasting the incidence of MetS in young and middle-aged populations. The differences in inflammatory mechanisms across various age groups necessitate further research for exploration.
Collapse
Affiliation(s)
- Haishan Wei
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dan Xu
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jiying Chen
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Haiyan Yu
- School of General Practice and Continuing Education, Capital Medical University, Beijing, 100000, China
| | - Xiaodong Zhang
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhiyun Liu
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chen Liu
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yuan Guo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, 250012, China
| |
Collapse
|
59
|
Baker ZR, Zhang Y, Zhang H, Franklin HC, Serpa PBS, Southard T, Li L, Hsu BB. Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage. Nat Biotechnol 2025:10.1038/s41587-025-02570-7. [PMID: 39966654 DOI: 10.1038/s41587-025-02570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.
Collapse
Affiliation(s)
- Zachary R Baker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Haiyan Zhang
- Metabolism Core, Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Hollyn C Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Priscila B S Serpa
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Bryan B Hsu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
60
|
Zhu C, Cheng Y, Yang L, Lyu Y, Li J, Zhao P, Zhu Y, Xin X, Yin L. Notch1 siRNA and AMD3100 Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:486. [PMID: 40002899 PMCID: PMC11853639 DOI: 10.3390/biomedicines13020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, and cancer in the liver. The complexity of MASLD, including crosstalk between multiple organs and the liver, makes developing a new drug for MASLD challenging, especially in single-drug therapy. It was reported that upregulation of Notch1 is closely associated with the function of pro-inflammatory macrophages. To leverage this signaling pathway in treating MASLD, we developed a combination therapy. Materials and Methods: We chose Notch1 siRNA (siNotch1) to block the Notch pathway so that phenotypic regulation and functional recovery can be achieved in macrophages, combining with small molecule drug AMD3100. AMD3100 can cut off the migration of inflammatory cells to the liver to impede the development of inflammation and inhibit the CXCL12/CXCR4 biological axis in liver fibrosis to protect against the activation of HSCs. Then, we investigated the efficacy of the combination therapy on resolving inflammation and MASLD. Results: We demonstrated that in liver cells, siNotch1 combined with AMD3100 not only directly modulated macrophages by downregulating multiple pathways downstream of Notch, exerting anti-inflammatory, anti-migration, and switch of macrophage phenotype, but also modulated macrophage phenotypes through inhibiting NET release. The restored macrophages further regulate HSC and neutrophils. In in vivo pharmacodynamic studies, combination therapy exhibits a superior therapeutical effect over monotherapy in MASLD models. Conclusions: These results constitute an siRNA therapeutical approach combined with a small molecule drug against inflammation and liver injury in MASLD, offering a promising therapeutic intervention for MASLD.
Collapse
Affiliation(s)
- Chunli Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
61
|
Deng H, Sun M, Zhao Z, Fan K, Zhao Z, Chi Y, Sheng W. Association of neutrophil-to-lymphocyte ratio with severe abdominal aortic calcification: new evidence from the United States. Front Cardiovasc Med 2025; 12:1496552. [PMID: 40007869 PMCID: PMC11850369 DOI: 10.3389/fcvm.2025.1496552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background Abdominal aortic calcification (AAC), an early indicator of abdominal aortic wall atherosclerosis, is a marker of subclinical atherosclerosis and a predictive factor for vascular-associated morbidity and mortality. These outcomes are driven by inflammatory processes. Given the pivotal role of inflammatory mediators in the pathogenesis of aortic calcification, inflammation has attracted interest as a peripheral biomarker for early mortality prediction in patients with aortic calcification. The neutrophil-to-lymphocyte ratio (NLR) measured in the peripheral blood typically reflects the body's inflammatory response by combining laboratory markers of innate and adaptive immunity. The NLR is associated with the prognosis of a range of diseases, including circulatory, infectious, psychiatric, and neoplastic conditions. However, the precise relationship between the NLR and vascular calcification remains unclear. Therefore, the present study investigated the correlation between the NLR and AAC in a nationally representative sample from the US. Methods This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Multivariable logistic regression, stratified analysis with interaction, and restricted cubic spline analysis were used to examine the relationship between the NLR and AAC. Results This study enrolled 3,047 participants [1,469 men (48.2%) and 1,578 women (51.8%)]. After adjusting for all covariates in the multivariate logistic regression, an independent association was identified between augmented NLR and the incidence of severe AAC (SAAC). The risk of SAAC increased by 8% with every 1% increase in NLR. Compared with the lowest NLR group [quartile 1 (Q1), <1.64], the adjusted odds ratio values for NLR and SAAC in Q3 (>2.34) were 1.42 (95% confidence interval: 1.02-1.96, p = 0.037), respectively. The results of subgroup analyses revealed no significant interaction effects. Conclusions The NLR was positively correlated with SAAC prevalence among adults in the US. These findings have significant clinical relevance and may inform clinicians regarding the management of SAAC. However, further research is required to confirm this association.
Collapse
Affiliation(s)
- Hao Deng
- Department of Heart Center, QingDao Hiser Hospital Affiliated of Qingdao University, QingDao, ShangDong, China
| | - Mengmeng Sun
- Department of Thyroid Surgery, QingDao Municipal Hospital, QingDao, ShangDong, China
| | - Zhentong Zhao
- Department of Heart Center, QingDao Hiser Hospital Affiliated of Qingdao University, QingDao, ShangDong, China
| | - Kun Fan
- Department of Heart Center, QingDao Hiser Hospital Affiliated of Qingdao University, QingDao, ShangDong, China
| | - Zizhang Zhao
- Department of Heart Center, QingDao Hiser Hospital Affiliated of Qingdao University, QingDao, ShangDong, China
| | - Yifan Chi
- Department of Heart Center, QingDao Hiser Hospital Affiliated of Qingdao University, QingDao, ShangDong, China
| | - Wei Sheng
- Department of Heart Center, QingDao Hiser Hospital Affiliated of Qingdao University, QingDao, ShangDong, China
| |
Collapse
|
62
|
Ma R, Ren J, Chen X, Li X, Zhao Y, Ding Y. Association between pan-immune-inflammation value and coronary heart disease in elderly population: a cross-sectional study. Front Cardiovasc Med 2025; 12:1538643. [PMID: 39995965 PMCID: PMC11847815 DOI: 10.3389/fcvm.2025.1538643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background Systemic inflammation, immune and nutrition status are closely linked to the occurrence and development of coronary heart disease (CHD). Pan-immune-inflammation value (PIV) is a new method for evaluating systemic inflammation and immune status. Our objective is to explore the connection between PIV and CHD especially in elderly people, as well as the diagnostic value of PIV combined with controlling nutritional status (COUNT) score for CHD. Methods Participants eligible for the study were sourced from NHANES data from 1999 to 2018. Logistic regression models were employed to evaluate the link between PIV and CHD. Additionally, restricted cubic spline was utilized to explore the correlations. Subgroup analysis was adopted in order to ensure the credibility of the results. The receiver operator characteristic (ROC) curve was used to explore the predictive value of PIV combined with COUNT score for CHD. Results 41,713 individuals qualified for analysis. The individuals with CHD had higher levels of PIV. In the logistic regression model, PIV was positively related to CHD [Q4 vs. Q1, OR = 1.23 (1.03-1.48, P < 0.001)]. Restricted cubic spline indicated a positive non-linear relationship (P for overall <0.001, P for non-linear = 0.009). However, restricted cubic spline shows that this positive correlation is only significant in the elderly population aged 60 and above. Subgroup analysis shows that the relationship between PIV and CHD is more significant in the elderly population (P < 0.001). The ROC curve shows that PIV has better diagnostic value for CHD than other common inflammatory indicators. Furthermore, the combination of PIV and COUNT score is superior to PIV or COUNT score. Conclusions A positive link between PIV and CHD, especially in the elderly. The combination of PIV and COUNT score has better diagnostic value for CHD.
Collapse
Affiliation(s)
- Ruicong Ma
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinyi Ren
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xianmei Chen
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhao
- Molecular Medical Laboratory, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yanchun Ding
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
63
|
Baek IW, Rhim JW, Park KS, Kim KJ. Blood molecular subtypes to guide precision treatment strategies in systemic juvenile idiopathic arthritis. Arthritis Res Ther 2025; 27:27. [PMID: 39923112 PMCID: PMC11806610 DOI: 10.1186/s13075-025-03498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Systemic juvenile idiopathic arthritis (sJIA) is the most severe subtype of JIA, with a combination of diverse clinical manifestations and a variable clinical course. A comprehensive understanding of molecular signatures at the systems level and the discovery of molecular subtypes are the initial steps toward personalized medicine in sJIA. METHODS A blood transcriptomic dataset was collected from patients with systemic JIA (sJIA) (n = 168), polyarticular JIA (n = 254), oligoarticular JIA (n = 96), enthesitis-related arthritis (n = 40), and healthy controls (n = 220). Gene expression profiles were filtered for differentially expressed genes and unsupervised clustering, gene set enrichment, and network-based centrality analyses. The molecular signatures of three novel sJIA subgroups (designated as C1, C2, and C3) were investigated, focusing on their distinct features and treatment responses. RESULTS Neutrophil degranulation and the IL-1 signaling pathway were the shared key processes for the three subgroups. Proinflammatory signals, including TNF, IL-6, TLR, and G-CSF signaling pathways, were identified with variation across the subgroups. C1 was the most inflammatory subset with a high-risk profile for macrophage activation syndrome. The C2 subset had the most activated IL-1 and IL-18 signaling pathways. C2 and C3 have higher levels of interferon-stimulated signatures. In a canakinumab-treated dataset, treatment response was correlated with IL1B expression and NF-κB signaling pathway, and neutrophil activation-associated processes were effectively suppressed in a good responder group. GSK3B and p38 MAPK inhibitors showed a significant counteracting effect on the perturbed gene expression of sJIA. CONCLUSIONS Neutrophil activation was the key feature in active sJIA. The three molecular subtype scheme enables the formulation of precision medicine strategies in sJIA.
Collapse
Affiliation(s)
- In-Woon Baek
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jung Woo Rhim
- Department of Pediatrics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- St. Vincent's Hospital, 93 Jungbu-daero, Paldal-gu, Suwon, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
64
|
Just J, Ridder LOR, Johannsen EB, Jensen JMB, Petersen MS, Christensen HV, Kjærgaard K, Redder J, Chang S, Stochholm K, Skakkebæk A, Gravholt CH. Elevated levels of neutrophils with a pro-inflammatory profile in Turner syndrome across karyotypes. NPJ Genom Med 2025; 10:9. [PMID: 39915521 PMCID: PMC11803089 DOI: 10.1038/s41525-025-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Turner syndrome (TS) presents with multiple karyotypes, including 45,X monosomy and variants such as isochromosomes and mosaicism, and is characterized by several co-morbidities, including metabolic conditions and autoimmunity. Here, we investigated the genomic landscapes across a range of karyotypes. We show that TS have a common autosomal methylome and transcriptome, despite distinct karyotypic variations. All TS individuals lacked the X chromosome p-arm, and XIST expression from the q-arm did not affect the autosomal transcriptome or methylome, highlighting the critical role of the missing p-arm with its pseudoautosomal region 1. Furthermore, we show increased levels of neutrophils and increased neutrophil activation. The increase in neutrophils was linked to TS clinical traits and to increased expression of the X-Y homologous gene TBL1X, suggesting a genetic basis, which may lead to neutrophil-driven inflammatory stress in TS. Identifying TS individuals with increased neutrophil activation could potentially mitigate the progression towards more severe metabolic issues.
Collapse
Affiliation(s)
- Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Lukas Ochsner Reynaud Ridder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| | - Emma Bruun Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Kenneth Kjærgaard
- Department of Data and Data Utilization, Central Denmark Region, Denmark
| | - Jacob Redder
- Department of Data and Data Utilization, Central Denmark Region, Denmark
| | - Simon Chang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Kirstine Stochholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
65
|
Bezerra MLR, Gouveia-Nhanca M, da Veiga Dutra ML, Batista KS, de Araújo ANV, dos Santos Lima M, Ribeiro MD, Silva AS, Alves AF, Pimentel TC, Magnani M, de Souza Aquino J. Malícia honey ( Mimosa quadrivalvis L.) produced by the jandaíra bee ( Melipona subnitida D.) shows antioxidant activity via phenolic compound action in obese rats. Front Nutr 2025; 12:1524642. [PMID: 39980683 PMCID: PMC11839446 DOI: 10.3389/fnut.2025.1524642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/03/2025] [Indexed: 02/22/2025] Open
Abstract
Background and aims Obesity is a disease associated with increased oxidative stress in humans and animals, and consumption of antioxidant compounds such as polyphenols can minimise it. These compounds are abundant in malícia (Mimosa quadrivalvis L.) honey produced by stingless bees. This study aimed to evaluate whether administration of Mimosa quadrivalvis L. honey to obese rats could reduce oxidative stress in vital organs through phenolic compound action. Methods Wistar rats (228 ± 14.69 g) were randomly divided into two groups: a healthy group (HG, n = 20) fed a control diet and an obese group (OG, n = 20) fed a cafeteria diet for the initial 8 weeks. After this period, these groups were again randomised into four subgroups: healthy (HG, n = 10), obese (OG, n = 10), healthy with malícia honey administration (1,000 mg/kg; HGH, n = 10), and obese with malícia honey administration (1,000 mg/kg; OGH, n = 10) for the final 8 weeks fed the previously mentioned diets. The rats were euthanised at the end of the experiment to collect brain, gut, kidney, and liver tissues to evaluate parameters related to oxidative stress and phenolic profile. Results The administration of malícia honey reduced energy intake and weight gain in the OGH in comparison to the OG. Total antioxidant capacity increased in the brain, liver, and gut in both groups treated with honey compared to respective controls. Lipid peroxidation decreased in the brain, gut, and kidney of the OGH. Both treated groups showed elevated phenolic compound deposition, including catechin, procyanidins, and flavonoids, across all organs. Specifically, the brain in the OGH showed greater procyanidin B2 and gallic acid deposition; the liver showed increased procyanidin B1 and B2, epicatechin, and myricetin concentrations; the gut showed higher procyanidin B2 and kaempferol 3-glucoside concentrations; and the kidneys had increased catechin, procyanidin B1 and B2, and gallic acid deposition compared to the OG. Conclusion Histologically, the OGH displayed reduced neuronal damage and prevention of hepatic steatosis induced by the cafeteria diet. Malícia honey effectively reduced oxidative stress via modulation of phenolic compounds in the brain, gut, kidney, and liver of cafeteria diet-induced obese rats.
Collapse
Affiliation(s)
- Maria Luiza Rolim Bezerra
- Experimental Nutrition Laboratory—LANEX, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Mirela Gouveia-Nhanca
- Experimental Nutrition Laboratory—LANEX, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Maria Letícia da Veiga Dutra
- Experimental Nutrition Laboratory—LANEX, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | | | - Alana Natalícia Vasconcelos de Araújo
- Experimental Nutrition Laboratory—LANEX, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Marcos dos Santos Lima
- Department of Food Technology, Instituto Federal do Sertão Pernambucano (IFSertãoPE), Petrolina, Brazil
- Post Graduate Program in Food Sciences and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Mateus Duarte Ribeiro
- Laboratory of Applied Studies in Physical Training to Performance and Health (LETFADS), Department of Physical Education, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Associate Post Graduate Program in Physical Education (UPE/UFPB), Department of Physical Education, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Alexandre Sergio Silva
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Laboratory of Applied Studies in Physical Training to Performance and Health (LETFADS), Department of Physical Education, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Associate Post Graduate Program in Physical Education (UPE/UFPB), Department of Physical Education, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | | | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Food Sciences and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory—LANEX, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Brazil
- Post Graduate Program in Food Sciences and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| |
Collapse
|
66
|
Cao Y, Gu J, Chen Z, Gao J, Yang J, Wu W, Fang M, Li Q, Liu B, Li Z. HClO-Activated Near-Infrared Chemiluminescent Probes with a Malononitrile Group for In-Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408941. [PMID: 39713927 DOI: 10.1002/adma.202408941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Chemiluminescence (CL) imaging has emerged as a powerful approach to molecular imaging that allows exceptional sensitivity with virtually no background interference because of its unique capacity to emit photons without an external excitation source. Despite its high potential, the application of this nascent technique faces challenges because the current chemiluminescent agents have limited reactive sites, require complex synthesis, are insufficiently bright, and lack near-infrared emission. Herein, a series of HClO-activated chemiluminescent probes that exhibit robust near-infrared emission are studied. Specifically engineered to respond to HClO, a known biomarker of acute inflammation, these probes achieve high-contrast in vivo imaging by eliminating the need for constant external excitation. Comprehensive experimental and theoretical investigations demonstrate that the CL of the probes depends on the reactivity of the vinylene bonds, following a concerted decomposition of the oxidized chemiluminescent molecule. The application of these chemiluminescent nanoparticles in vivo facilitates high-contrast imaging of acute inflammation, providing real-time, high-contrast visualization of inflammatory conditions. This advancement signifies a leap forward for chemiluminescent nanoplatforms in biomedical imaging and expands the available methodologies in this field.
Collapse
Affiliation(s)
- Yalei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhijian Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jucai Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
67
|
Verma N, Perie L, Silvestro M, Verma A, Cronstein BN, Ramkhelawon B, Mueller E. Metabolic dysfunction in mice with adipocyte-specific ablation of the adenosine A2A receptor. J Biol Chem 2025; 301:108206. [PMID: 39828097 PMCID: PMC11850162 DOI: 10.1016/j.jbc.2025.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
It has been well established that adenosine plays a key role in the control of inflammation through G protein coupled receptors and recently shown that it can regulate thermogenesis. Here we investigated the specific requirements of the adenosine A2A receptor (A2AR) in mature adipocytes for thermogenic functionality and metabolic homeostasis. We generated fat tissue-specific adenosine A2AR KO mice to assess the influence of signaling through this receptor on brown and beige fat functionality, obesity, insulin sensitivity, inflammation, and liver function. Fat-specific A2AR KO and WT littermate mice were compared for potential differences in cold tolerance and energy metabolism. In addition, we measured glucose metabolism, AT inflammation, and liver phenotypes in mice of the two genotypes after exposure to a diet rich in fat. Our results provide novel evidence indicating that loss of the adenosine A2AR specifically in adipocytes is associated with cold intolerance and decreased oxygen consumption. Furthermore, mice with fat specific ablation of the A2AR exposed to a diet rich in fat showed increased propensity to obesity, decreased insulin sensitivity, elevated adipose tissue inflammation, and hepato-steatosis and hepato-steatitis. Overall, our data provide novel evidence that A2AR in mature adipocytes safeguards metabolic homeostasis, suggesting the possibility of targeting this receptor selectively in fat for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Narendra Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Department of Systems Biology, Center of Biomedical Research, SGPGI campus, Lucknow, India
| | - Luce Perie
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Anupama Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Elisabetta Mueller
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
68
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
69
|
Khan N, Tran KA, Chevre R, Locher V, Richter M, Sun S, Sadeghi M, Pernet E, Herrero-Cervera A, Grant A, Saif A, Downey J, Kaufmann E, Khader SA, Joubert P, Barreiro LB, Yipp BG, Soehnlein O, Divangahi M. β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus. Nat Immunol 2025; 26:174-187. [PMID: 39779870 PMCID: PMC11785525 DOI: 10.1038/s41590-024-02041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection. β-Glucan treatment reduces the morbidity and mortality against IAV infection, independent of host resistance. The enhanced survival is the result of increased recruitment of neutrophils via RoRγt+ T cells in the lung tissue. β-Glucan treatment promotes granulopoiesis in a type 1 interferon-dependent manner that leads to the generation of a unique subset of immature neutrophils utilizing a mitochondrial oxidative metabolism and producing interleukin-10. Collectively, our data indicate that β-glucan reprograms hematopoietic stem cells to generate neutrophils with a new 'regulatory' function, which is required for promoting disease tolerance and maintaining lung tissue integrity against viral infection.
Collapse
Affiliation(s)
- Nargis Khan
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Kim A Tran
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Raphael Chevre
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Mathis Richter
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Sarah Sun
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Mina Sadeghi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Andrea Herrero-Cervera
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Alexandre Grant
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Ahmed Saif
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Philippe Joubert
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec, Canada
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
70
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
71
|
Khanzadeh M, Babadi S, Ghaedi A, Meidani FZ, Rahmati R, Aminizadeh S, Bazrafshan Drissi H, Yaghoobpoor S, Ghanbari Boroujeni MR, Khanzadeh S. A Systematic Review on the Role of Neutrophil to Lymphocyte Ratio in Limb Ischemia. Ann Vasc Surg 2025; 111:1-12. [PMID: 39426674 DOI: 10.1016/j.avsg.2024.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Limb ischemia is a severe vascular condition that can lead to critical complications, endangering both limbs and lives. The goal of this research was to explore the role of neutrophil to lymphocyte ratio (NLR) in limb ischemia. METHODS From inception to June 8, 2022, PubMed/MEDLINE, Institute for Scientific Information Web of Science, and Scopus were searched for articles comparing NLR in limb ischemia to healthy individuals. RESULTS Finally, a total of 23 studies were included in the review. There was a direct link between NLR and critical limb ischemia (CLI) development in peripheral arterial disease patients. Elevated NLR levels predict a higher risk of CLI among peripheral arterial disease patients. Also, it was concluded that NLR is a dependable predictor of survival in patients with limb ischemia, and higher NLR readings are linked to decreased survival rates. Moreover, the risk of amputation is related to the level of NLR in CLI patients. However, based on the data, NLR is not a reliable indicator of sarcopenia in CLI patients. More research is needed to determine the relationship between NLR and response to treatment in CLI patients. Also, we recommend investigating the effect of each treatment on NLR level in these patients. CONCLUSIONS Our results provide evidence that NLR level is associated with risk of amputation and mortality in patients with limb ischemia. It is a promising biomarker that can be easily incorporated into clinical practice to assist in the prediction and prevention of CLI.
Collapse
Affiliation(s)
- Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Saghar Babadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Arshin Ghaedi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zari Meidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
72
|
Karmakar R, Dixit M, Eswar K, Bhattacharjee B, Apoorva B, Gubige M, Sengottaiyan A, Pati F, Rengan AK. Enhanced wound healing properties by sodium alginate-carboxymethyl cellulose hydrogel enriched with decellularized amniotic membrane. Eur J Pharm Biopharm 2025; 207:114621. [PMID: 39725277 DOI: 10.1016/j.ejpb.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings. Here, we developed and evaluated a novel hydrogel composed of sodium alginate (SA) and carboxymethyl cellulose (CMC), enriched with decellularized extracellular matrix of amniotic membrane (dAM), using calcium chloride (CaCl2) as a crosslinker. An incorporation of dAM imparted biomimetic qualities, as evidenced by SEM, showing a fibrous extracellular matrix-like structure. Rheological studies demonstrated the optimal viscosity of SA-CMC-dAM for cell proliferation and adhesion, overcoming limitations of SA and CMC alone. The hydrogel exhibited the highest moisture absorption (12.27±0.59 %) and enhanced hydrophilicity, as confirmed by the contact angle assay, ensuring suitability for wound applications. Biological assessments revealed superior fibroblast migration in scratch assays and significant anti-biofilm activity (∼70 % reduction in E. coli biofilms) alongside antimicrobial efficacy, supported by FDA/PI assays. The zebrafish embryo studies validated its biocompatibility (20 μg/ml) and demonstrated potent anti-inflammatory effects, with a marked reduction in neutrophil recruitment (∼25 %) in tail transection models compared to controls. These findings suggest that the SA-CMC-dAM hydrogel synergises structural, antibacterial, and anti-inflammatory properties, making it a promising candidate for wound healing applications. The biomimetic and multifunctional design provides a strong basis for further translational studies in mammalian systems.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Mansi Dixit
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Basa Apoorva
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | | | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
73
|
Ghadah Abdulrahman AQ, Endytiastuti E, Ardhani R, Sutardjo Rus Sudarso I, Pidhatika B, Fauzi MB, Susilowati H, Kristanti Y, Handajani J. Evaluating the Efficacy of Gelatin-Chitosan-Tetraethyl Orthosilicate Calcium Hydroxide Composite as a Dental Pulp Medicament on COX-2, PGP 9.5, TNF-α Expression and Neutrophil number. F1000Res 2025; 13:1258. [PMID: 40012745 PMCID: PMC11862375 DOI: 10.12688/f1000research.156336.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Calcium hydroxide (Ca(OH) 2) is the material of choice for pulp therapy. However, Ca(OH) 2 has drawbacks such as toxicity, poor sealing, and tunnel defect formation. Alternative materials have been developed to provide more biocompatible materials with better dentin formation ability. The objective of this study was to evaluate the effect of composites containing gelatin (G), chitosan (CH), tetraethyl orthosilicate (TEOS), and Ca(OH) 2, namely G-CH-TEOS-Ca (OH) 2 (Extended data) on inflammation of the dental pulp (expression of COX-2, PGP 9.5, TNF-α, and neutrophil number). Materials and methods A total of 16 Wistar rat models of acute pulp injury were prepared and divided into two groups, treatment and control, 8 with each. In the treatment group, we applied a pulp-capping material using G-CH-TEOS-Ca (OH) 2 and Ca(OH) 2. On the 1 st and 3 rd days, rats were sacrificed. Tissue samples from 4 rats in each group were processed for histological preparation. COX-2, PGP 9.5, and TNF-α were observed using immunohistochemical (IHC) staining, and neutrophil numbers were observed using hematoxylin-eosin staining. Image analysis of COX-2, PGP 9.5, and TNF-α expression was performed using ImageJ software. Results The results showed a decrease in COX-2 expression, but not significantly while PGP 9.5 and TNF-α expression were significantly higher than those in the control group. Neutrophil numbers were lower in the treatment group than in the control group, but the difference was not statistically significant. Conclusion The G-CH-TEOS-Ca (OH) 2 composite material may have potential as an exposed pulp medicament by reducing inflammation (COX-2 expression and number of neutrophils) and increasing the regeneration factor (TNF-α expression) and nerve (PGP 9.5 expression).
Collapse
Affiliation(s)
- Al-qatta Ghadah Abdulrahman
- Student of Magister Dental Science Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Endytiastuti Endytiastuti
- Student of Magister Clinical Dental Science Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
- Magister of Clinical Dental Science Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Iwa Sutardjo Rus Sudarso
- Magister of Clinical Dental Science Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency of the Republic of Indonesia, Jakarta, Indonesia
| | - Mh Busra Fauzi
- Center of Tissue Engineering and Regenerative Medicine, Faculty of Medicine,, Universiti Kebangsaan Malaysia, Kuala Lumpur, 55281, Malaysia
| | - Heni Susilowati
- Magister of Dental Science Study Program, Faculty of Dentistry,, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Yulita Kristanti
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, 55281, Indonesia
| | - Juni Handajani
- Magister of Dental Science Study Program, Faculty of Dentistry,, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| |
Collapse
|
74
|
Hromić-Jahjefendić A, Aljabali AAA. Analysis of the immune response in COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:31-71. [PMID: 40246347 DOI: 10.1016/bs.pmbts.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The COVID-19 pandemic, instigated by the novel coronavirus SARS-CoV-2, has emerged as a significant global health challenge, demanding a profound grasp of the immune response. The innate immune system, a multifaceted network encompassing pattern recognition receptors (PRRs) and effector cells, assumes a pivotal function in detecting and countering this viral assailant. Toll-like receptors (TLRs), situated on immune cell surfaces and within endosomes, play a central role in recognizing SARS-CoV-2. TLR-2 and TLR-4 discern specific viral constituents, such as the spike (S) protein, setting off inflammatory signaling cascades and catalyzing the generation of type I interferons. Intracellular PRRs, including the RIG-I-like receptors (RLRs), RIG-I and MDA5, detect viral RNA within the cytoplasm of infected cells, provoking antiviral responses by initiating the synthesis of type I interferons. The equilibrium between interferons and pro-inflammatory cytokines dictates the outcomes of the disease. Interferons play an indispensable role in governing viral replication, while unregulated cytokine production can result in tissue harm and inflammation. This intricate dynamic underpins therapeutic strategies aimed at regulating immune responses in individuals grappling with COVID-19. Natural killer (NK) cells, with their capacity to recognize infected cells through the "missing self" phenomenon and activating receptors, make significant contributions to the defense against SARS-CoV-2. NK cells play a pivotal role in eliminating infected cells and boosting immune responses through antibody-dependent cell-mediated cytotoxicity (ADCC). In conclusion, comprehending the interplay among PRRs, interferons, and NK cells within innate immunity is paramount for discerning and combatting SARS-CoV-2. This comprehension illuminates therapeutic interventions and vaccine development, casting light on our endeavors to confront this worldwide health crisis.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
75
|
Zhou T, Zhu C, Zhang W, Wu Q, Deng M, Jiang Z, Peng L, Geng H, Tuo Z, Zou C. Identification and validation of immune and diagnostic biomarkers for interstitial cystitis/painful bladder syndrome by integrating bioinformatics and machine-learning. Front Immunol 2025; 16:1511529. [PMID: 39917301 PMCID: PMC11799275 DOI: 10.3389/fimmu.2025.1511529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
Background The etiology of interstitial cystitis/painful bladder syndrome (IC/BPS) remains elusive, presenting significant challenges in both diagnosis and treatment. To address these challenges, we employed a comprehensive approach aimed at identifying diagnostic biomarkers that could facilitate the assessment of immune status in individuals with IC/BPS. Methods Transcriptome data from IC/BPS patients were sourced from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) crucial for gene set enrichment analysis. Key genes within the module were revealed using weighted gene co-expression network analysis (WGCNA). Hub genes in IC/BPS patients were identified through the application of three distinct machine-learning algorithms. Additionally, the inflammatory status and immune landscape of IC/BPS patients were evaluated using the ssGSEA algorithm. The expression and biological functions of key genes in IC/BPS were further validated through in vitro experiments. Results A total of 87 DEGs were identified, comprising 43 up-regulated and 44 down-regulated genes. The integration of predictions from the three machine-learning algorithms highlighted three pivotal genes: PLAC8 (AUC: 0.887), S100A8 (AUC: 0.818), and PPBP (AUC: 0.871). Analysis of IC/BPS tissue samples confirmed elevated PLAC8 expression and the presence of immune cell markers in the validation cohorts. Moreover, PLAC8 overexpression was found to promote the proliferation of urothelial cells without affecting their migratory ability by inhibiting the Akt/mTOR/PI3K signaling pathway. Conclusions Our study identifies potential diagnostic candidate genes and reveals the complex immune landscape associated with IC/BPS. Among them, PLAC8 is a promising diagnostic biomarker that modulates the immune response in patients with IC/BPS, which provides new insights into the future diagnosis of IC/BPS.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Can Zhu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiongfang Wu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China
| | - Mingqiang Deng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China
| | - Zhiwei Jiang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Ci Zou
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
76
|
Magiera A, Kołodziejczyk-Czepas J, Olszewska MA. Antioxidant and Anti-Inflammatory Effects of Vanillic Acid in Human Plasma, Human Neutrophils, and Non-Cellular Models In Vitro. Molecules 2025; 30:467. [PMID: 39942571 PMCID: PMC11820348 DOI: 10.3390/molecules30030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Vanillic acid (VA) is a dietary benzoic acid derivative, flavoring agent, and food stabilizer. In this study, the antioxidant and anti-inflammatory potential of VA was explored in vitro and ex vivo in human immune cells and non-cellular models. In neutrophils, VA significantly downregulated the fMLP-induced oxidative burst and the generation of reactive oxygen species (ROS); it also suppressed the release of pro-inflammatory cytokines (TNF-α, IL-8) and the tissue-remodeling enzyme elastase-2 (ELA-2) in cells stimulated with LPS and fMLP+cytochalasin B. Additionally, VA showed good biocompatibility with human neutrophils and peripheral blood mononuclear cells (PBMCs) across the tested concentrations of 1-50 µg/mL. Furthermore, VA at 1-5 μg/mL enhanced the non-enzymatic antioxidant capacity of human plasma (NEAC) and prevented oxidative and nitrative damage to plasma proteins by protecting tyrosine moieties and thiols from peroxynitrite. VA also inhibited lipid peroxidation and the formation of thiobarbituric acid-reactive substances (at 50 μg/mL) and protein-bound carbonyls (at 5-50 μg/mL) in peroxynitrite-treated plasma. In non-cellular tests, VA acted as a hypochlorous acid and hydrogen peroxide scavenger and inhibited non-enzymatic protein glycation, outperforming the references Trolox and aminoguanidine. Along with existing data from animal models and studies on polyphenol intake, these results might support the synergic role of VA in dietary protection against chronic diseases related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Anna Magiera
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland;
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland;
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland;
| |
Collapse
|
77
|
Liu H, Han J, Ni W, Lu Y, Hu X, Wang J, Zhou Y, Wang Z, Cao J, Liu H. The Diagnostic Value of Plasma NETs Levels and iCEB in Silent Myocardial Ischemia in Maintenance Hemodialysis Patients. J Inflamm Res 2025; 18:847-862. [PMID: 39867948 PMCID: PMC11760756 DOI: 10.2147/jir.s488836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
Objective This study evaluated the diagnostic value of plasma Neutrophil extracellular traps (NETs) levels and the index of cardiac electrophysiological balance (iCEB) in identifying silent myocardial ischemia (SMI) in maintenance hemodialysis (MHD) patients. Methods This cross-sectional observational study involved patients receiving MHD treatment. Data were collected on coronary angiography performed in our hospital from February 2023 to February 2024. Patients diagnosed with myocardial ischemia via coronary angiography but without obvious symptoms were grouped as the SMI group, while those without SMI were grouped as the control group. Plasma NETs levels were assessed using markers indicative of NETs components including double-stranded DNA (dsDNA), circulating free DNA (cfDNA) and myeloperoxidase, while iCEB (QT/QRS) and electrocardiographic findings were obtained. Additionally, echocardiographic parameters, inflammatory markers, and cardiac biomarkers were analyzed. Receiver operating characteristic (ROC) analysis were employed to evaluate the diagnostic accuracy of plasma NETs levels and iCEB in identifying SMI. Results A total of 114 patients were included, with 79 participants in the control group and 35 participants in the SMI group. The SMI group exhibited significantly elevated levels of NETs associated components (dsDNA(37.89±4.55 vs 31.64±5.32, P<0.001), cfDNA(11.27±2.03 vs 8.91±1.84, P<0.001), MPO-DNA(23.69±4.01 vs 17.52±3.41, P<0.001)), as well as higher iCEB compared to the control group(56.45±7.67 vs 45.89±6.23, P<0.001). Furthermore, electrocardiography findings, echocardiographic parameters, inflammatory markers, and cardiac biomarkers showed significant differences between the two groups. The ROC analysis demonstrated the potential diagnostic accuracies of NETs levels and iCEB, with an area under the curve (AUC) of 0.908, sensitivity of 0.987, and specificity of 0.829 for identifying SMI. Conclusion The study highlights the combined diagnostic value of plasma NETs levels and iCEB in identifying SMI in MHD patients, providing valuable insights into potential early detection and risk stratification strategies for this population.
Collapse
Affiliation(s)
- Haifei Liu
- Department of Nephrology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, People’s Republic of China
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Junling Han
- Clinical Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Weijie Ni
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Yuan Lu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Xinhui Hu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Jing Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Ze Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jingyuan Cao
- Department of Nephrology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, People’s Republic of China
| |
Collapse
|
78
|
Freitas BFA, Verchere CB, Levings MK. Advances in Engineering Myeloid Cells for Cell Therapy Applications. ACS Synth Biol 2025; 14:10-20. [PMID: 39722478 DOI: 10.1021/acssynbio.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Myeloid cells, including macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, play crucial roles in the innate immune system, contributing to immune defense, tissue homeostasis, and organ development. They have tremendous potential as therapeutic tools for diseases such as cancer and autoimmune disorders, but harnessing cell engineering strategies to enhance potency and expand applications is challenging. Recent advancements in stem cell research have made it possible to differentiate human embryonic stem cells and induce pluripotent stem cells into various cell types, including myeloid cells, offering a promising new approach to generate myeloid cells for cell therapy. In this review, we explore the latest techniques for the genetic engineering of myeloid cells, discussing both established and emerging methodologies. We examine the challenges faced in this field and the therapeutic potential of engineered myeloid cells. We also describe examples of engineered macrophages, neutrophils, and dendritic cells in various disease contexts. By providing a detailed overview of the current state and future directions, we aim to highlight progress and ongoing efforts toward harnessing the full therapeutic potential of genetically engineered myeloid cells.
Collapse
Affiliation(s)
- Bruno F A Freitas
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| |
Collapse
|
79
|
Bratseth V, Nendl A, Raju SC, Holm K, Broch K, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Gut dysbiosis and neutrophil extracellular traps in chronic heart failure. Int J Cardiol 2025; 419:132689. [PMID: 39489348 DOI: 10.1016/j.ijcard.2024.132689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chronic heart failure (HF) patients have reduced microbiota diversity. Leakage of microbes and their metabolites into the bloodstream may activate neutrophils. Neutrophil extracellular traps (NETs) consist of chromatin and proteases, and may contribute to HF pathogenesis. We assessed associations between circulating NETs and 1) cardiac function, 2) the degree of gut microbiota diversity and 3) gut leakage and microbial metabolites in HF patients. METHODS A cross-sectional study including 124 patients with chronic HF and left ventricular ejection fraction ≤40 %. Severe HF was defined as N-terminal pro-B-type natriuretic peptide concentrations above median. We measured citrullinated histone H3 (CitH3), myeloperoxidase- and double-stranded-DNA in the blood. Gut leakage markers included bacterial lipopolysaccharides and soluble cluster of differentiation 14. The microbial metabolites included circulating trimethylamine N-oxide and butyrate producing capacity. We used the Shannon diversity-index and a dysbiosis-index based on bacteria with altered relative abundance to characterize the gut microbiota profile. RESULTS Quartile 4 of CitH3 was associated with more severe HF compared to quartiles 1-3, after adjustments for age, gender and hypertension (adjusted odds ratio [95 %CI] 3.21[1.18-8.69], p = 0.022). CitH3 was moderately associated with hypertension (p = 0.04), higher CRP levels (p = 0.016) and lower Shannon diversity index, (p = 0.039). No other NET marker associated with severe HF. CONCLUSIONS In chronic HF patients with reduced LVEF, high levels of CitH3 were associated with disease severity, inflammation and reduced gut microbiota diversity. Our results suggest that enhanced release of NETs could be involved in progressive HF, although the contribution of the gut microbiota seems limited in this context.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway.
| | - Andraz Nendl
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sajan C Raju
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Johannes R Hov
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology, and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway; Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
80
|
Zhu N, Li Y, Lin Y, Cui X, Li X. Association between neutrophil-to-high-density lipoprotein cholesterol ratio and non-alcoholic fatty liver disease or metabolic dysfunction-associated steatotic liver disease: evidence from NHANES 2017-2020. Front Med (Lausanne) 2025; 11:1491858. [PMID: 39882525 PMCID: PMC11774988 DOI: 10.3389/fmed.2024.1491858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with chronic inflammation and lipid metabolism disorders. The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) is an integrative marker reflecting inflammatory responses and lipid metabolism disorders and is associated with various diseases. This cross-sectional study aimed to determine the association between NHR and NAFLD, MASLD, and liver fibrosis. Methods Data for this study were obtained from the 2017-2020 National Health and Nutrition Examination Survey (NHANES), we employed weighted multiple regression and restricted cubic spline (RCS) analysis to assess the relationship between NHR and NAFLD, MASLD, and liver fibrosis. Additionally, we performed stratified analyses based on gender, age, body mass index, diabetes, hypertension, smoking status, and history of cardiovascular disease to evaluate the consistency of these associations across different subgroups. Results A total of 6,526 participants were included in the study. 2,839 (weighted 44.1%) participants were diagnosed with NAFLD and 2,813 (weighted 43.7%) participants were diagnosed with MASLD. After adjusting for confounders, NHR was positively associated with the risk of NAFLD/MASLD, and the correlation was particularly significant in the subgroups of females, those without hypertension, and those without diabetes (p < 0.05). By the NHR quartile, the risk of NAFLD/MASLD increased progressively with higher NHR levels (P for trend <0.001). In addition, RCS analysis showed a nonlinear association between NHR and NAFLD/MASLD and liver fibrosis (P-non-linear <0.05). Conclusion NHR may serve as a potential marker for NAFLD/MASLD and liver fibrosis, and lowering NHR levels could help reduce the incidence of these conditions.
Collapse
Affiliation(s)
- Na Zhu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Lin
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - XinYu Cui
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
81
|
Heo Y, Kim J, Hong SH, Kim WJ. Single cell transcriptomics in blood of patients with chronic obstructive pulmonary disease. BMC Pulm Med 2025; 25:19. [PMID: 39810158 PMCID: PMC11734329 DOI: 10.1186/s12890-024-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD. METHODS Peripheral blood samples from seven healthy controls and eight patients with COPD were obtained in this study. The 10X Genomics Chromium Instrument and cDNA synthesis kit were utilized to generate a barcoded cDNA library for single cell RNA-sequencing. We compared the scRNA-seq data between the COPD and control groups using computational analysis. Functional analyses were performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. RESULTS scRNA-seq was used to analyze the transcriptome of peripheral blood mononuclear cells from seven normal controls and eight patients with COPD. We found an increased number of monocyte/macrophages in the COPD group compared to the normal control group. Among the differentially expressed genes (DEGs) in monocyte/macrophages, we identified 15 upregulated genes (EGR1, NR4A1, CCL3, CXCL8, PTGS2, CD83, BCL2A1, SGK1, IL1B, BTG2, NFKBIZ, DUSP2, MAFB, PLAUR and CCL3L1) and 7 downregulated genes (FOLR3, RPS4Y1, HLA-DRB5, NAMPT, CD52, TMEM176A and TMEM176B) in the COPD group compared to the normal control group. CONCLUSIONS Using scRNA-seq, we found differences in cell type distribution, especially in monocyte/ macrophages. Several upregulated and downregulated genes were found in the monocyte/macrophages of the COPD group.
Collapse
Affiliation(s)
- Yeonjeong Heo
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Jeeyoung Kim
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea.
| |
Collapse
|
82
|
Dragoni G, Ke BJ, Picariello L, Abdurahiman S, Ceni E, Biscu F, Mello T, Polvani S, Innocenti T, Spalart V, Milani S, D'Hoore A, Bislenghi G, Scaringi S, Verstockt B, De Hertogh G, Martinod K, Galli A, Matteoli G, Vermeire S. The Impact of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation on the Early Development of Intestinal Fibrosis in Crohn's Disease. J Crohns Colitis 2025; 19:jjae121. [PMID: 39126198 DOI: 10.1093/ecco-jcc/jjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS During early phases of inflammation, activated neutrophils extrude neutrophil extracellular traps (NETs) in a peptidyl arginine deiminase 4 (PAD4)-dependent manner, aggravating tissue injury and remodeling. In this study, we investigated the potential pro-fibrotic properties and signaling of NETs in Crohn's disease (CD). METHODS NETs and activated fibroblasts were labeled on resected ileum from CD patients by multiplex immunofluorescence staining. NETs-treated human primary intestinal fibroblasts were analyzed by bulk RNA sequencing to uncover cell signaling pathways, and by high-throughput imaging to assess collagen production and migratory activity. Consequentially, TLR2/NF-κB pathway was evaluated by transfection of CCD-18Co fibroblasts with an NF-κB-luciferase reporter plasmid, incorporating C29 to block TLR2 signaling. A chronic dextran sulfate sodium (DSS) mouse model was used to define the specific role of PAD4 deletion in neutrophils (MRP8-Cre, Pad4fl/fl). RESULTS Immunofluorescence showed spatial colocalization of NETs and activated fibroblasts in ileal ulcerations of CD patients. Transcriptomic analysis revealed upregulation of pro-fibrotic genes and activation of Toll-like receptor signaling pathways in NETs-treated fibroblasts. NETs treatment induced fibroblast proliferation, diminished migratory capability, and increased collagen release. Transfection experiments indicated a substantial increase in an NF-κB expression with NETs, whereas C29 led to decreased expression and release of collagen. In line, a significant reduction in collagen content was observed in the colon of MRP8-Cre, Pad4fl/fl mice subjected to chronic DSS colitis. CONCLUSIONS NETs potentially serve as an initial stimulus for pathological activation of fibroblasts within the intestine via the TLR2/NF-κB pathway. Given their early involvement in inflammation, inhibition of PAD4 might offer a strategy to modulate both inflammation and fibrogenesis in CD.
Collapse
Affiliation(s)
- Gabriele Dragoni
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - Bo-Jun Ke
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Lucia Picariello
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Saeed Abdurahiman
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Elisabetta Ceni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Biscu
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Tommaso Mello
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Simone Polvani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tommaso Innocenti
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - Valérie Spalart
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Stefano Milani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Gabriele Bislenghi
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
83
|
Li M, Liu Y, Wang J, Wang Y, Yang Y, Yang A. Neutrophil extracellular DNA traps activate the TLR9 signaling pathway of pancreatic ductal epithelial cells in patients with type 2 autoimmune pancreatitis. Int Immunopharmacol 2025; 144:113673. [PMID: 39616853 DOI: 10.1016/j.intimp.2024.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
The presence of neutrophil infiltration around the pancreatic ducts has been found to be associated with type 2 autoimmune pancreatitis (AIP). However, the functional role and clinical significance of neutrophil migration in the progression of pancreatitis is not fully understood. Here, we found that neutrophil extracellular traps (NETs) are abundant around the pancreatic duct in patients with type 2 AIP. We also observed an increased expression of toll-like receptor 9 (TLR9) in pancreatic ductal epithelial cells (HPDEC) in type 2 AIP patients compared to other pancreatic diseases. TLR9 acts as the DNA component of NETs (NET-DNA) receptor in HPDEC, which senses extracellular DNA and subsequently activates the NF-κB pathway to promote neutrophil recruitment and induce NET formation. In addition, our results indicated that the hydroxychloroquine (HCQ), acting as a TLR9 antagonist, could effectively inhibit the activation of inflammatory pathways, reduce neutrophil migration and block the positive feedback loop. The intervention positions HCQ acts as a potential target drug for the clinical treatment of type 2 AIP.
Collapse
Affiliation(s)
- Meizi Li
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yixiao Liu
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Junmin Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
84
|
Huang LZ, Ni ZB, Yao QR, Huang WF, Li J, Wang YQ, Zhang JY. Association of pan-immune-inflammatory value with metabolic dysfunction-associated steatotic liver disease: findings from NHANES 2017-2020. BMC Gastroenterol 2025; 25:4. [PMID: 39754093 PMCID: PMC11697488 DOI: 10.1186/s12876-024-03584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease worldwide. The pan-immune-inflammation value (PIV) has been proposed as a biomarker for assessing immune status and inflammation. There is currently no evidence regarding the effect of PIV on the risk of MASLD. This study aimed to investigate the association between PIV and MASLD. METHODS The cross-sectional study included 6462 adults aged ≥ 20 years from the National Health and Nutrition Examination Survey 2017-2020. PIV was calculated based on blood count data. Weighted multivariable logistic regression was employed to calculate the odds ratio (OR) and 95% confidence interval (CI) to investigate the association of PIV and MASLD. Restricted cubic spline (RCS) analysis was conducted to explore the dose-response relationship between PIV and MASLD. Stratified and sensitivity analyses were performed to confirm the robustness of our findings. RESULTS Among 6462 participants, 2458 were diagnosed with MASLD. Positive associations between LnPIV and MASLD were observed in all three models (Model 1: OR = 1.46, 95% CI: 1.28-1.66, P < 0.001; Model 2: OR = 1.41, 95% CI: 1.24-1.60, P < 0.001; Model 3: OR = 1.39, 95% CI: 1.16-1.65, P = 0.004). When PIV was classified into quartiles, both Q3 and Q4 exhibited significantly increased risks of MASLD compared with the reference Q1 in full adjusted Model 3 (Q3: OR = 1.63, 95% CI: 1.20-2.22, P = 0.012; Q4: OR = 1.76, 95% CI: 1.28-2.41, P = 0.008; P for trend = 0.002). RCS analysis did not show a nonlinear relationship between LnPIV and MASLD (P = 0.093 for nonlinearity). Stratified analysis showed a consistent positive association between LnPIV and MASLD in all subgroups, and sensitivity analyses supported the reliability of these results. CONCLUSIONS Higher PIV levels are significantly associated with an increased prevalence of MASLD, indicating that PIV is a potentially effective inflammatory marker for assessing MASLD in participants.
Collapse
Affiliation(s)
- Lian-Zhen Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Ze-Bin Ni
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qi-Rong Yao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Wei-Feng Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Ji Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Yan-Qing Wang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China.
| | - Jin-Yan Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
85
|
Chen Y, Song S, Wang Y, Wu L, Wu J, Jiang Z, Li X. Topical application of magnolol ameliorates psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism. Bioorg Chem 2025; 154:108059. [PMID: 39693920 DOI: 10.1016/j.bioorg.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Psoriasis (PSO) is a common inflammatory skin disease caused by multiple factors. Magnolia officinalis is an important medicinal plant in China, with various values such as ecology, medicine, food, and daily chemicals. However, its diverse application potential has not been fully explored. Magnolol (MGO) is the main active compound of Magnolia officinalis with significant anti-inflammatory effect. To investigate the application potential of MGO in inflammatory skin disease, the effects and underlying mechanisms of topical MGO treating psoriasis were explored in this study. Network pharmacology and molecular docking firstly predicted that topical MGO may treat psoriasis by regulating pyroptosis pathway and acting on caspase-1 (CASP1). In vitro experiments then demonstrated that MGO could inhibit the level of inflammatory cytokines and the key protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway in lipopolysaccharide (LPS)-stimulated phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. Meanwhile, MGO could inhibit CuSO4-induced neutrophils migration in Tg (mpx:EGFP) zebrafish by suppressing inflammation and pyroptosis. This study further indicated that topical application of MGO ameliorated imiquimod (IMQ)-induced psoriasis-like dermatitis by reducing the release of inflammatory factors and decreasing the key protein expression of pyroptosis-related NLRP3/Caspase-1 pathway. Metabolomics analysis revealed that topical application of MGO could significantly regulate tryptophan metabolism and affect the level of tryptophan in skin lesions. Tryptophan could also regulate inflammation-related genes and inhibit pyroptosis-related NLRP3/Caspase-1 pathway in LPS-stimulated PMA-differentiated THP-1 cells. In conclusion, this study suggested that topical MGO may ameliorate psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zhengmeng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
86
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
87
|
Li KJ, Zhang ZY, Sulayman S, Shu Y, Wang K, Ababaike S, Zeng XY, Zhao ZL. Prognostic value of combined systemic inflammation response index and prognostic nutritional index in colorectal cancer patients. World J Gastrointest Surg 2024; 16:3794-3805. [PMID: 39734462 PMCID: PMC11650238 DOI: 10.4240/wjgs.v16.i12.3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The prognosis of colorectal cancer (CRC) patients is notably influenced by both inflammation and nutritional status. The prognostic nutritional index (PNI) and systemic inflammatory response index (SIRI) have been reported in prognostic studies of various tumors. However, the efficacy of the combination of the two in predicting the prognosis of CRC patients has not been studied. AIM To evaluate the effectiveness of PNI and SIRI in predicting the prognosis of patients with CRC. METHODS We retrospectively gathered data from 470 CRC patients who underwent feasible radical surgery at Xinjiang Cancer Hospital. The optimal cut-off values for SIRI and PNI, along with their predictive power for survival, were determined through area under the receiver operating characteristic curve using time-dependent receiver operating characteristic analysis. The Kaplan-Meier method and log-rank test were applied to assess prognostic impact, and a multifactorial Cox proportional hazards model was employed for analysis. Additionally, a new model, PSIRI, was developed and assessed for its survival prediction capability. RESULTS The optimal cutoff values for PNI and SIRI were determined to be 47.80 and 1.38, respectively. Based on these values, patients were categorized into high PNI and low PNI groups, as well as high SIRI and low SIRI groups. Significant differences in age, T stage, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) subgroups were observed between the PNI groups in the baseline profile. In the SIRI group, notable differences were found in gender, T stage, nerve invasion, intravascular tumor emboli, NLR, MLR, and PLR subgroups. Both low PNI and high SIRI were identified as independent risk factors for poor prognosis in CRC patients. When combined into the PSIRI model, it was shown that patients with a PSIRI ≤ 1 had a higher risk of death compared to those with a PSIRI of 2. CONCLUSION We assessed the impact of PNI and SIRI on the prognostic survival of CRC patients and developed a new model, PSIRI. This model demonstrated superior predictive accuracy, with a concordance index of 0.767.
Collapse
Affiliation(s)
- Ke-Jin Li
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Zi-Yi Zhang
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Subinur Sulayman
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Yin Shu
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Kuan Wang
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Saibihutula Ababaike
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiang-Yue Zeng
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Ze-Liang Zhao
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
88
|
Perumalsamy H, Xiao X, Han HY, Oh JH, Yoon S, Heo MB, Lee TG, Kim HY, Yoon TH. Single-cell RNA sequencing uncovers heterogenous immune cell responses upon exposure to food additive (E171) titanium dioxide. J Nanobiotechnology 2024; 22:765. [PMID: 39696498 DOI: 10.1186/s12951-024-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
The prospective use of food additive titanium dioxide (E171 TiO2) in a variety of fields (food, pharmaceutics, and cosmetics) prompts proper cellular cytotoxicity and transcriptomic assessment. Interestingly, smaller-sized E171 TiO2 can translocate in bloodstream and induce a diverse immunological response by activating the immune system, which can be either pro-inflammatory or immune-suppressive. Nevertheless, their cellular or immunologic responses in a heterogeneous population of the immune system following exposure of food additive E171 TiO2 is yet to be elucidated. For this purpose, we have used male Sprague-Dawley rats to deliver E171 TiO2 (5 mg/kg bw per day) via non-invasive intratracheal instillation for 13 weeks. After the 4 weeks recovery period, 3 mL of blood samples from both treated and untreated groups were collected for scRNAseq analysis. Firstly, granulocyte G1 activated innate immune response through the upregulation of genes involved in pro-inflammatory cytokine mediated cytotoxicity. Whereas NK cells resulted in heterogeneity role depending on the subsets where NK1 significantly inhibited cytotoxicity, whereas NK2 and NK3 subsets activated pro-B cell population & inhibited T cell mediated cytotoxicity respectively. While NKT_1 activated innate inflammatory responses which was confirmed by cytotoxic CD8+ T killer cell suppression. Similarly, NKT_2 cells promote inflammatory response by releasing lytic granules and MHC-I complex inhibition to arrest cytotoxic T killer cell responses. Conversely, NKT_3 suppressed inflammatory response by release of anti-inflammatory cytokines suggesting the functional heterogeneity of NKT subset. The formation of MHC-I or MHC-II complexes with T-cell subsets resulted in neither B and T cell dysfunction nor cytotoxic T killer cell inhibition suppressing adaptive immune response. Overall, our research offers an innovative high-dimensional approach to reveal immunological and transcriptomic responses of each cell types at the single cell level in a complex heterogeneous cellular environment by reassuring a precise assessment of immunological response of E171 TiO2.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, South Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Xiao Xiao
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Min Beom Heo
- Nanosafety Metrology Center, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Tae Geol Lee
- Nanosafety Metrology Center, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Hyun-Yi Kim
- Institute for Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- NGeneS Inc., Gyeonggi-do, 15495, Republic of Korea
| | - Tae-Hyun Yoon
- Institute for Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, South Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Yoon Idea Lab. Co. Ltd, Seoul, 04763, Republic of Korea.
| |
Collapse
|
89
|
Saitoh S, Takeda Y, Araki A, Nouchi Y, Yamaguchi R, Nakajima O, Asao H. 5-Aminolevulinic Acid (5-ALA) Plays an Important Role in the Function of Innate Immune Cells. Inflammation 2024:10.1007/s10753-024-02212-1. [PMID: 39702622 DOI: 10.1007/s10753-024-02212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
5-aminolevulinic acid (5-ALA) is an amino acid essential for the synthesis of heme, which is important for various cellular functions, including the mitochondrial electron transport chain. We previously established heterozygous knockout mice (Alas1+/-) for 5-ALA synthase 1 (ALAS1), the rate-limiting enzyme for 5-ALA synthesis, and reported that the mice developed non-obese insulin-resistant diabetes. In the present study, we used these mice to analyze the role of 5-ALA in the immune system. Using a lipopolysaccharide (LPS)-induced septic shock model, Alas1+/- mice showed reduced mortality compared to wild-type (WT) mice. In this model experiment, the plasma concentration of inflammatory cytokines such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and the chemokine monocyte chemoattractant protein-1 (MCP1) decreased in Alas1+/- mice compared that in WT mice, and inflammatory cell infiltration into the peritoneal cavity was also decreased. In ex vivo experiments, exogenous 5-ALA pretreatment enhanced LPS-induced TNFα and IL-6 production from peripheral blood leukocytes of Alas1+/- mice. Additionally, 5-ALA pretreatment enhanced LPS-induced activation of inflammatory cytokine genes in innate immune cells. Interestingly, the phagocytosis and reactive oxygen species (ROS) producing abilities of neutrophils were clearly hampered in Alas1+/- mice compared to WT mice, but after 2 weeks of 5-ALA administration to Alas1+/- mice, both abilities were significantly recovered up to the level in WT mice. These results reveal that 5-ALA is essential for the function of innate immune cells. Because 5-ALA can be supplemented orally, it has the potential to be used as a drug to restore innate immune function.
Collapse
Affiliation(s)
- Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yusuke Nouchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Risako Yamaguchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University, Yamagata, 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan.
| |
Collapse
|
90
|
Salvo N, Charles AM, Mohr AM. The Intersection of Trauma and Immunity: Immune Dysfunction Following Hemorrhage. Biomedicines 2024; 12:2889. [PMID: 39767795 PMCID: PMC11673815 DOI: 10.3390/biomedicines12122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hemorrhagic shock is caused by rapid loss of a significant blood volume, which leads to insufficient blood flow and oxygen delivery to organs and tissues, resulting in severe physiological derangements, organ failure, and death. Physiologic derangements after hemorrhage are due in a large part to the body's strong inflammatory response, which leads to severe immune dysfunction, and secondary complications such as chronic immunosuppression, increased susceptibility to infection, coagulopathy, multiple organ failure, and unregulated inflammation. Immediate management of hemorrhagic shock includes timely control of the source of bleeding, restoring intravascular volume, preferably with whole blood, and prevention of ischemia and organ failure by optimizing tissue oxygenation. However, currently, there are no clinically effective treatments available that can stabilize the immune response to hemorrhage and reinstate homeostatic conditions. In this review, we will discuss what is known about immunologic dysfunction following hemorrhage and potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Alicia M. Mohr
- Department of Surgery, Sepsis and Critical Illness Research Center, College of Medicine, University of Florida, 1600 SW Archer Road Box 100108, Gainesville, FL 32610, USA; (N.S.); (A.M.C.)
| |
Collapse
|
91
|
Deng K, Lu G. Immune dysregulation as a driver of bronchiolitis obliterans. Front Immunol 2024; 15:1455009. [PMID: 39742269 PMCID: PMC11685133 DOI: 10.3389/fimmu.2024.1455009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Bronchiolitis obliterans (BO) is a disease characterized by airway obstruction and fibrosis that can occur in all age groups. Bronchiolitis obliterans syndrome (BOS) is a clinical manifestation of BO in patients who have undergone lung transplantation or hematopoietic stem cell transplantation. Persistent inflammation and fibrosis of small airways make the disease irreversible, eventually leading to lung failure. The pathogenesis of BO is not entirely clear, but immune disorders are commonly involved, with various immune cells playing complex roles in different BO subtypes. Accordingly, the US Food and Drug Administration (FDA) has recently approved several new drugs that can alleviate chronic graft-versus-host disease (cGVHD) by regulating the function of immune cells, some of which have efficacy specifically with cGVHD-BOS. In this review, we will discuss the roles of different immune cells in BO/BOS, and introduce the latest drugs targeting various immune cells as the main target. This study emphasizes that immune dysfunction is an important driving factor in its pathophysiology. A better understanding of the role of the immune system in BO will enable the development of targeted immunotherapies to effectively delay or even reverse this condition.
Collapse
Affiliation(s)
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
92
|
Qiao X, Cao X, Xu S, Wang C, Guo R, Yao X, Zhang Q. Menisoxoisoaporphine A, a novel oxoisoaporphine alkaloid from Menispermi Rhizoma, inhibits inflammation by targeting PDE4B. Front Pharmacol 2024; 15:1505116. [PMID: 39691395 PMCID: PMC11649434 DOI: 10.3389/fphar.2024.1505116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Background Dysregulated and excessive inflammatory reactions can lead to tissue damage, which is the underlying cause of most human diseases. Menisoxoisoaporphine A (MA), a novel oxoisoaporphine alkaloid, was obtained from Menispermi Rhizoma, a traditional Chinese medicinal herb used in the treatment of inflammatory conditions in clinical practice. This suggests that MA has very promising potential for the development of anti-inflammatory therapeutics. Hence, this study aims to investigate the anti-inflammatory effects and underlying mechanisms of MA. Method The anti-inflammatory effects of MA were evaluated in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells. Its underlying mechanisms were explored through RNA sequencing and Western blotting. The binding modes and interactions sites between MA and phosphodiesterase 4B (PDE4B) were predicted using molecular docking and validated by molecular dynamics simulation. Results MA treatment significantly reduced LPS-induced morphological changes, inflammatory cytokine relesae, and proinflammatory genes expression in RAW264.7 cells compared to the LPS-induced controls. Transcriptome sequencing analysis suggested that PDE4B might be a key target for MA to exert its therapeutic effect. Mechanismly, MA directly acted on Tyr405 site of PDE4B, thus leading to a sustained elevation of the cyclic adenosine monophosphate (cAMP) levels, which subsequently inactivated NF-κB signaling pathway by phosphorylating protein kinase A (PKA). MA inhibited the NF-κB-mediated inflammatory response depending on PDE4B. Conclusion MA, a natural and novel compound, exerted anti-inflammatory effects in LPS-induced RAW264.7 macrophage cells. It demonstrated a strong binding ability to the Tyr405 sites of PDE4B, thereby inhibiting NF-κB signaling pathway by regulating the cAMP-PKA axis. Elucidating the interaction between MA and PDE4B holds significant potential for the advancement of innovative therapeutic strategies aimed at inflammatory diseases. By strategically modulating this interaction, it may be feasible to achieve more precise regulation of inflammatory responses, thereby offering promising therapeutic benefits for conditions such as rheumatoid arthritis, asthma, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Xin Qiao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Cao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Shuang Xu
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Cunlin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Yao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Qiong Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
93
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024; 67:21-39. [PMID: 39294505 PMCID: PMC11638293 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
94
|
Shao R, Chen R, Zheng Q, Yao M, Li K, Cao Y, Jiang L. Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis. Cell Biol Int 2024; 48:1781-1801. [PMID: 39370593 DOI: 10.1002/cbin.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
Collapse
Affiliation(s)
- Ruifei Shao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Rui Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qiang Zheng
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Mengyu Yao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kunlin Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lihong Jiang
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
95
|
Li SY, Kumar S, Gu X, DeFalco T. Testicular immunity. Mol Aspects Med 2024; 100:101323. [PMID: 39591799 PMCID: PMC11624985 DOI: 10.1016/j.mam.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sudeep Kumar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
96
|
Abdel-Halim M, El-Gamil DS, Hammam MA, El-Shazly M, Wang YH, Kung PH, Chen YC, Korinek M, Abadi AH, Engel M, Hwang TL. Discovery of 1,3-disubstituted prop-2-en-1-one derivatives as inhibitors of neutrophilic inflammation via modulation of MAPK and Akt pathways. J Enzyme Inhib Med Chem 2024; 39:2402988. [PMID: 39297697 PMCID: PMC11413964 DOI: 10.1080/14756366.2024.2402988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Targeting neutrophil function has gained attention as a propitious therapeutic strategy for diverse inflammatory diseases. Accordingly, a series of enone-based derivatives were developed to inhibit neutrophil-mediated inflammation, showing promise for treating inflammatory diseases. These compounds fall into two clusters with distinct effects: one inhibits neutrophilic superoxide (SO) anion production and elastase release triggered by N-formyl-Met-Leu-Phe (fMLF), with compound 6a being most effective (IC50 values of 1.23 and 1.37 μM, respectively), affecting c-Jun N-terminal kinase (JNK) and Akt phosphorylation. The second cluster suppresses formation of SO anion without affecting elastase levels, surpassed by compound 26a (IC50 of 1.56 μM), which attenuates various mitogen-activated protein kinases (MAPKs) with minimal Akt impact. Notably, none of the tested compounds showed cytotoxicity in human neutrophils, underscoring their potential as therapeutic agents against inflammatory diseases.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S. El-Gamil
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mennatallah A. Hammam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiung Kung
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yu-Cheng Chen
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
97
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
98
|
Giugliano G, Pirone D, Behal J, Wang Z, Cerbone V, Mugnano M, Licitra F, Montella A, Scalia G, Capasso M, Iolascon A, Mari S, Ferranti F, Bianco V, Maffettone PL, Memmolo P, Miccio L, Ferraro P. On the label-free analysis of white blood cells by holographic quantitative phase imaging flow cytometry. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:2421-2429. [PMID: 39889107 DOI: 10.1364/josaa.536841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/10/2024] [Indexed: 02/02/2025]
Abstract
This study presents an innovative methodology to analyze a blood sample from a healthy donor, providing a quantitative characterization of white blood cells (WBCs). It aims to evaluate the effectiveness of holographic quantitative phase imaging (QPI) flow cytometry (FC) in examining phase-contrast maps at the cellular level, thereby enabling the identification and classification of granulocyte types. Additionally, we demonstrate that an unsupervised method can differentiate granulocyte sub-types, i.e., neutrophils and eosinophils. The results instill strong confidence in the potential future use of QPI FC for liquid biopsies and/or for assessing the heterogeneity of WBCs and, more broadly, to facilitate label-free blood tests.
Collapse
|
99
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
100
|
Han NR, Park HJ, Ko SG, Moon PD. Tryptanthrin Down-Regulates Oncostatin M by Targeting GM-CSF-Mediated PI3K-AKT-NF-κB Axis. Nutrients 2024; 16:4109. [PMID: 39683503 DOI: 10.3390/nu16234109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Oncostatin M (OSM) is involved in several inflammatory responses. Tryptanthrin (TRYP), as a natural alkaloid, is a bioactive compound derived from indigo plants. Objectives/ Methods: The purpose of this study is to investigate the potential inhibitory activity of TRYP on OSM release from neutrophils using neutrophils-like differentiated (d)HL-60 cells and neutrophils from mouse bone marrow. RESULTS The results showed that TRYP reduced the production and mRNA expression levels of OSM in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated neutrophils-like dHL-60 cells. In addition, TRYP decreased the OSM production levels in the GM-CSF-stimulated neutrophils from mouse bone marrow. TRYP inhibited the phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT, and nuclear factor (NF)-κB in the GM-CSF-stimulated neutrophils-like dHL-60 cells. CONCLUSIONS Therefore, these results reveal for the first time that TRYP inhibits OSM release via the down-regulation of PI3K-AKT-NF-κB axis from neutrophils, presenting its potential as a therapeutic agent for inflammatory responses.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|