51
|
Ping W, Hong S, Xun Y, Li C. Comprehensive Bioinformatics Analysis of Toll-Like Receptors (TLRs) in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4436646. [PMID: 35937402 PMCID: PMC9352480 DOI: 10.1155/2022/4436646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background To conduct a comprehensive bioinformatics analysis on the transcriptome signatures of Toll-like receptors (TLRs) in pan-cancer. Materials and methods. A total of 11,057 tissues consisting of 33 types of carcinoma in The Cancer Genome Atlas (TCGA) were retrieved, and then we further explored the correlation between TLRs' expression with tumorigenesis, immune infiltration, and drug sensitivity. We conducted a comprehensive bioinformatics analysis on TLR1 to 10 in pan-cancer, including differential expression analysis between normal and tumor tissues, differential immune subtype correlation, survival analysis, tumor immune infiltration estimating, stemness indices correlation, and drug responses correlation. Results TLR2 was highly expressed in most types of tumors. TLR9 was hardly expressed compared to other TLR genes, which lead to TLR9 showing less correlation with both immune-estimate scores and stromal-estimate scores. All the TLRs were related with immune subtype of tumor samples that all of them were differentially expressed in differential immune subtype samples. The expression of TLRs was positively related with immune-estimate scores and stromal-estimate scores in almost all types of tumor. The expression of TLRs was negatively correlated with mRNA expression-based stemness scores (RNAss) in nearly almost type of tumors except kidney renal clear cell carcinoma (KIRC) and also negatively correlated with DNA methylation-based stemness scores (DNAss) in many types of tumors except adrenocortical carcinoma (ACC), cholangiocarcinoma (CHOL), KIRC, acute myeloid leukemia (LAML), low-grade glioma (LGG), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), and uveal melanoma (UVM). The expression of TLR9 was significantly positively correlated with the drug sensitivity of fluphenazine, alectinib, carmustine, and 7-hydroxystaurosporine. TLR7 was significantly positively correlated with the drug sensitivity of alectinib. Conclusions Our study reveals the significant role of TLRs family in pan-cancer and provides potential therapeutic strategies of cancer.
Collapse
Affiliation(s)
- Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Senyuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| |
Collapse
|
52
|
Li Y, Liu Y, Yu H, Liu F, Han W, Zeng Q, Zhang Y, Zhang L, Hu J, Bao Z, Wang S. Adaptive Bird-like Genome Miniaturization During the Evolution of Scallop Swimming Lifestyle. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1066-1077. [PMID: 35905893 DOI: 10.1016/j.gpb.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Genome miniaturization drives key evolutionary innovations of adaptive traits in vertebrates, such as the flight evolution of birds. However, whether similar evolutionary processes exist in invertebrates remains poorly understood. Derived from the second-largest animal phylum, scallops are a special group of bivalve molluscs and acquire the evolutionary novelty of the swimming lifestyle, providing excellent models for investigating the coordinated genome and lifestyle evolution. Here, we show for the first time that genome sizes of scallops exhibit a generally negative correlation with locomotion activity. To elucidate the co-evolution of genome size and swimming lifestyle, we focus on the Asian moon scallop (Amusium pleuronectes) that possesses the smallest known scallop genome while being among scallops with the highest swimming activity. Whole-genome sequencing of A. pleuronectes reveals highly conserved chromosomal macrosynteny and microsynteny, suggestive of a highly contracted but not degenerated genome. Genome reduction of A. pleuronectes is facilitated by significant inactivation of transposable elements, leading to reduced gene length, elevated expression of genes involved in energy-producing pathways, and decreased copy numbers and expression levels of biomineralization-related genes. Similar evolutionary changes of relevant pathways are also observed for bird genome reduction with flight evolution. The striking mimicry of genome miniaturization underlying the evolution of bird flight and scallop swimming unveils the potentially common, pivotal role of genome size fluctuation in the evolution of novel lifestyles in the animal kingdom.
Collapse
Affiliation(s)
- Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yaran Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongwei Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fuyun Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
53
|
Li M, Wang Y, Tang Z, Wang H, Hu J, Bao Z, Hu X. Expression Plasticity of Peroxisomal Acyl-Coenzyme A Oxidase Genes Implies Their Involvement in Redox Regulation in Scallops Exposed to PST-Producing Alexandrium. Mar Drugs 2022; 20:md20080472. [PMID: 35892940 PMCID: PMC9332717 DOI: 10.3390/md20080472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Filter-feeding bivalves can accumulate paralytic shellfish toxins (PST) produced by toxic microalgae, which may induce oxidative stress and lipid peroxidation. Peroxisomal acyl-coenzyme A oxidases (ACOXs) are key enzymes functioning in maintaining redox and lipid homeostasis, but their roles in PST response in bivalves are less understood. Herein, a total of six and six ACOXs were identified in the Chlamys farreri and Patinopecten yessoensis genome, respectively, and the expansion of ACOX1s was observed. Gene expression analysis revealed an organ/tissue-specific expression pattern in both scallops, with all ACOXs being predominantly expressed in the two most toxic organs, digestive glands and kidneys. The regulation patterns of scallop ACOXs after exposure to different PST-producing algaes Alexandrium catenella (ACDH) and A. minutum (AM-1) were revealed. After ACDH exposure, more differentially expressed genes (DEGs) were identified in C. farreri digestive glands (three) and kidneys (five) than that in P. yessoensis (two), but the up-regulated DEGs showed similar expression patterns in both species. In C. farreri, three DEGs were found in both digestive glands and kidneys after AM-1 exposure, with two same CfACOX1s being acutely and chronically induced, respectively. Notably, these two CfACOX1s also showed different expression patterns in kidneys between ACDH (acute response) and AM-1 (chronic response) exposure. Moreover, inductive expression of CfACOXs after AM-1 exposure was observed in gills and mantles, and all DEGs in both tissues were up-regulated and their common DEGs exhibited both acute and chronic induction. These results indicate the involvement of scallop ACOXs in PST response, and their plasticity expression patterns between scallop species, among tissues, and between the exposure of different PST analogs.
Collapse
Affiliation(s)
- Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Yangrui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Zhihong Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-8203-1970
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
54
|
Transcriptome and Network Analyses Reveal the Gene Set Involved in PST Accumulation and Responses to Toxic Alexandrium minutum Exposure in the Gills of Chlamys farreri. Int J Mol Sci 2022; 23:ijms23147912. [PMID: 35887262 PMCID: PMC9324277 DOI: 10.3390/ijms23147912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Bivalve molluscs are filter-feeding organisms that can accumulate paralytic shellfish toxins (PST) through ingesting toxic marine dinoflagellates. While the effects of PST accumulation upon the physiology of bivalves have been documented, the underlying molecular mechanism remains poorly understood. In this study, transcriptomic analysis was performed in the gills of Zhikong scallop (Chlamys farreri) after 1, 3, 5, 10, and 15 day(s) exposure of PST-producing dinoflagellate Alexandrium minutum. Higher numbers of differentially expressed genes (DEGs) were detected at day 1 (1538) and day 15 (989) than that at day 3 (77), day 5 (82), and day 10 (80) after exposure, and most of the DEGs were only regulated at day 1 or day 15, highlighting different response mechanisms of scallop to PST-producing dinoflagellate at different stages of exposure. Functional enrichment results suggested that PST exposure induced the alterations of nervous system development processes and the activation of xenobiotic metabolism and substance transport processes at the acute and chronic stages of exposure, respectively, while the immune functions were inhibited by PST and might ultimately cause the activation of apoptosis. Furthermore, a weighted gene co-expression network was constructed, and ten responsive modules for toxic algae exposure were identified, among which the yellow module was found to be significantly correlated with PST content. Most of the hub genes in the yellow module were annotated as solute carriers (SLCs) with eight being OCTN1s, implying their dominant roles in regulating PST accumulation in scallop gills. Overall, our results reveal the gene set responding to and involved in PST accumulation in scallop gills, which will deepen our understanding of the molecular mechanism of bivalve resistance to PST.
Collapse
|
55
|
Xu R, Pan L, Zhou Y, Gao Z, Miao J, Yang Y, Li D. Reproductive toxicity induced by benzo[a]pyrene exposure: first exploration highlighting the multi-stage molecular mechanism in female scallop Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48675-48693. [PMID: 35195870 DOI: 10.1007/s11356-022-19235-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Reproductive toxicity induced by benzo[a]pyrene (B[a]P) exposure has received great ecotoxicological concerns. However, huge gaps on the molecular mechanism still exist in bivalves. In this study, reproduction-related indicators were investigated in female scallops Chlamys farreri during life cycle of proliferative, growth, mature, and spawn stages, under gradient concentrations of B[a]P at 0, 0.04, 0.4, and 4 μg/L. Meanwhile, a multi-stage ovarian transcriptome analysis under 4 μg/L B[a]P exposure was also conducted to elucidate the potential molecular mechanisms. The results indicated that life-cycle exposure to 0.4 and 4 μg/L B[a]P significantly decreased GSI and sex steroid levels. Even 0.04 μg/L B[a]P could play the adverse role in DNA integrity at the mature and spawn stages. Ovarian histological sections showed that B[a]P inhibited the maturation and release of oocytes. Through the functional enrichment analysis of differentially expressed genes (DEGs) from transcriptome data, 18 genes involved in endocrine disruption effects, DNA damage and repair, and oogenesis were selected and further determined by qRT-PCR. The downregulation of genes involved in steroidogenic and estrogen signaling pathways indicated that B[a]P could cause endocrine disruption through both receptor-dependent and receptor-independent pathways. The variations of gene expressions involved in DNA single-strand break and repair implied the presence of toxic mechanisms similar with vertebrates. Additionally, the changes of gene expressions of cell cycle, apoptosis, and cell adhesion suggested that exposure to B[a]P possibly caused the reproductive toxicity effects by affecting oogenesis. Taken together, this study was a pioneer in combining genome-wide transcriptomic analysis with its corresponding reproductive indicators (GSI, sex steroid levels, DNA single-strand break, and histological sections) to explore the bivalves' toxic mechanisms under B[a]P exposure. Meanwhile, some genes involved in estrogen signaling pathway and DNA damage were firstly analyzed in bivalves, and the expression data might be useful in establishing new hypotheses and discovering new biomarkers for marine biomonitoring.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| |
Collapse
|
56
|
Sun X, Zhang T, Li L, Tu K, Yu T, Wu B, Zhou L, Tian J, Liu Z. MicroRNA expression signature in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Genomics 2022; 114:110409. [PMID: 35714827 DOI: 10.1016/j.ygeno.2022.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Increasing evidences point to the potential role of microRNAs (miRNAs) in muscle growth and development in animals. However, knowledge on the identity of miRNAs and their targets in molluscs remains largely unknown. Scallops have one large adductor muscle, composed of fast (striated) and slow (smooth) muscle types, which display great differences in muscle fibers, meat quality, cell types and molecular components. In the present study, we performed a comprehensive investigation of miRNA transcriptomes in fast and slow adductor muscles of Yesso scallop Patinopecten yessoensis. As a result, 47 differentially expressed miRNAs representing ten miRNA families were identified between the striated and smooth adductor muscles. The KEGG enrichment analysis of their target genes were mainly associated with amino acid metabolism, energy metabolism and glycan biosynthesis. The target genes of miR-133 and miR-71 were validated by the dual-luciferase reporter assays and miRNA antagomir treatment in vivo. The identification and functional validation of these different miRNAs in scallops will greatly help our understanding of miRNA regulatory mechanism that achieves the unique muscle phenotypes in scallops. The present findings provide the direct evidences for muscle-specific miRNAs involved in muscle growth and differentiation in molluscs.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Tianshi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Li Li
- National Oceanographic Center, Qingdao 266104, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian 351100, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China.
| |
Collapse
|
57
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
58
|
Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nat Commun 2022; 13:2731. [PMID: 35585058 PMCID: PMC9117251 DOI: 10.1038/s41467-022-30415-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Biologically derived and biologically inspired fibers with outstanding mechanical properties have found attractive technical applications across diverse fields. Despite recent advances, few fibers can simultaneously possess high-extensibility and self-recovery properties especially under wet conditions. Here, we report protein-based fibers made from recombinant scallop byssal proteins with outstanding extensibility and self-recovery properties. We initially investigated the mechanical properties of the native byssal thread taken from scallop Chlamys farreri and reveal its high extensibility (327 ± 32%) that outperforms most natural biological fibers. Combining transcriptome and proteomics, we select the most abundant scallop byssal protein type 5-2 (Sbp5-2) in the thread region, and produce a recombinant protein consisting of 7 tandem repeat motifs (rTRM7) of the Sbp5-2 protein. Applying an organic solvent-enabled drawing process, we produce bio-inspired extensible rTRM7 fiber with high-extensibility (234 ± 35%) and self-recovery capability in wet condition, recapitulating the hierarchical structure and mechanical properties of the native scallop byssal thread. We further show that the mechanical properties of rTRM7 fiber are highly regulated by hydrogen bonding and intermolecular crosslinking formed through disulfide bond and metal-carboxyl coordination. With its outstanding mechanical properties, rTRM7 fiber can also be seamlessly integrated with graphene to create motion sensors and electrophysiological signal transmission electrode. Bio-inspired materials are an intense area of study as researchers try to adapt biomaterials for other applications. Here, the authors report on the processing of protein materials derived from the byssal thread of scallops to create high-extensibility materials with self-recovery under wet conditions.
Collapse
|
59
|
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot. Comput Struct Biotechnol J 2022; 20:2713-2722. [PMID: 35685371 PMCID: PMC9168380 DOI: 10.1016/j.csbj.2022.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
The first secretome about scallop byssal adhesion is profiled based on a new computational strategy. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives. The EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins are the main components of scallop byssus. A novel “nearby secretion” model of scallop byssus secretion and adhesion is proposed.
Secretome is involved in almost all physiological, developmental, and pathological processes, but to date there is still a lack of highly-efficient research strategy to comprehensively study the secretome of invertebrates. Adhesive secretion is a ubiquitous and essential physiological process in aquatic invertebrates with complicated protein components and unresolved adhesion mechanisms, making it a good subject for secretome profiling studies. Here we proposed a computational pipeline for systematic profiling of byssal secretome based on spatiotemporal transcriptomes of scallop. A total of 186 byssus-related proteins (BRPs) were identified, which represented the first characterized secretome of scallop byssal adhesion. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives, which suggested this secretome-profiling strategy had both high efficiency and accuracy. We revealed the main components of scallop byssus (including EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins) and the related modification enzymes primarily contributing to the rapid byssus assembly and adhesion. Spatiotemporal expression and co-expression network analyses of BRPs suggested a simultaneous secretion pattern of scallop byssal proteins across the entire region of foot and revealed their diverse functions on byssus secretion. In contrast to the previously proposed “root-initiated secretion and extension-based assembly” model, our findings supported a novel “foot-wide simultaneous secretion and in situ assembly” model of scallop byssus secretion and adhesion. Systematic analysis of scallop byssal secretome provides important clues for understanding the aquatic adhesive secretion process, as well as a common framework for studying the secretome of non-model invertebrates.
Collapse
|
60
|
Li L, Liu W, Fan N, Li F, Huang B, Liu Q, Wang X, Zheng Y, Sang X, Dong J, Wang X, Wei L, Liu Y, Zhang M, Ma J, Chen J, Qi Y, Wang X. Scallop IKK1 Responds to Bacterial and Virus-Related Pathogen Stimulation and Interacts With MyD88 Adaptor of Toll-Like Receptor Pathway Signaling. Front Immunol 2022; 13:869845. [PMID: 35422814 PMCID: PMC9002017 DOI: 10.3389/fimmu.2022.869845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
IKK proteins are key signaling molecules in the innate immune system of animals, and act downstream of pattern recognition receptors. However, research on IKKs in invertebrates, especially marine mollusks, remains scarce. In this study, we cloned CfIKK1 gene from the Zhikong scallop (Chlamys farreri) and studied its function and the signaling it mediates. The open reading frame of CfIKK1 was 2190 bp and encoded 729 amino acids. Phylogenetic analysis showed that CfIKK1 belonged to the invertebrate IKKα/IKKβ family. Quantitative real-time PCR analysis revealed the ubiquitous expression of CfIKK1 mRNA in all scallop tissues and challenge with lipopolysaccharide, peptidoglycan, or poly(I:C) significantly upregulated the expression of CfIKK1. Co-immunoprecipitation assays confirmed the interaction of CfIKK1 with scallop MyD88 (Myeloid differentiation actor 88, the key adaptor of the TLR signaling pathway) via its N-terminal kinase domain. Additionally, CfIKK1 protein could form homodimers and even oligomers, with N-terminal kinase domain and C-terminal scaffold dimerization domain playing key roles in this process. Finally, the results of RNAi experiments showed that when the scallop IKK1 gene was suppressed, the expression of IRF genes also decreased significantly. In conclusion, CfIKK1 could respond to PAMPs challenge and interact with MyD88 protein of scallop TLR signaling, with the formation of CfIKK1 dimers or oligomers. At the same time, the results of RNAi experiments revealed the close regulatory relationship between IKK1 and IRF genes of scallop. Therefore, as a key signal transduction molecule and immune activity regulator, CfIKK1 plays important roles in the innate immune system of scallops.
Collapse
Affiliation(s)
- Lingling Li
- School of Agriculture, Ludong University, Yantai, China.,Ocean School, Yantai University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Qian Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaomei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xiuxiu Sang
- School of Agriculture, Ludong University, Yantai, China
| | - Juan Dong
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
61
|
Liu Q, Li F, Liu W, Huang B, Li L, Wang X, Sang X, Dong J, Ma J, Chen J, Wei L, Liu Y, Zhang M, Han Y, Wang X. Transcriptional expression analysis reveals multiple effects of nonylphenol exposure on scallop immune system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:290-297. [PMID: 35306177 DOI: 10.1016/j.fsi.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nonylphenol (NP) is an endocrine disruptor and environmental hormone representing alkylphenol compounds. Marine mollusks are an important source of protein for people worldwide. Many researchers have begun to study the effect of NP on marine mollusks immune system in view of its toxicity; however, the underlying molecular mechanisms require in-depth analysis. In this study, we focused on the transcriptional expression change of immune-related genes and antioxidant enzymes activities variation after NP exposure in a marine bivalve mollusk, Chlamys farreri, to explore the immunomodulatory capacity of NP in marine mollusks. We identified MAVS (Mitochondrial antiviral signaling protein), a key adaptor molecule in the RLR (RIG-I like receptor) pathway, and studied the expression of multiple immune-related genes in response to different concentrations of NP. The key genes involved in RLR/TLR (Toll like receptor) innate immune pathway, apoptosis, and cellular antioxidation mechanism were investigated. Changes in the enzymatic activities of scallop antioxidant enzymes after NP exposure were also examined. The results revealed that the genes expression and the antioxidant enzymes activities show significant changes, thus proving that NP stimulation affects the scallop immune system. Our research results demonstrate the immunomodulatory capacity of NP in marine bivalve mollusks and lay the foundation for further in-depth analysis of the molecular mechanism of NP toxicity.
Collapse
Affiliation(s)
- Qian Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Ocean School, Yantai University, Yantai, 264005, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiuxiu Sang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Juan Dong
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
62
|
Identification and characterization of phosphoproteins in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Food Chem 2022; 372:131242. [PMID: 34818726 DOI: 10.1016/j.foodchem.2021.131242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Many proteins are known to be phosphorylated, affecting important regulatory factors of muscle quality in the aquatic animals. The striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis were used to investigate muscle texture and identify phosphoproteins by histological methods and phosphoproteomic analysis. Our present study reveals that muscle fiber density is in relation to meat texture of the striated and smooth adductor muscles. The phosphoproteomic analysis has identified 764 down-regulated and 569 up-regulated phosphosites on 743 phosphoproteins in the smooth muscle compared to the striated part. The identification of unique phosphorylation sites in glycolytic enzymes may increase the activity of glycolytic enzymes and the rate of glycolysis in the striated adductor muscle. The present findings will provide new evidences on the role of muscle structure and protein phosphorylation in scallop muscle quality and thus help to develop strategies for improving meat quality of scallop products.
Collapse
|
63
|
Zhang J, Liao H, Xun X, Hou X, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Identification, characterization and expression analyses of PC4 genes in Yesso scallop (Patinopecten yessoensis) reveal functional differentiations in response to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106099. [PMID: 35114458 DOI: 10.1016/j.aquatox.2022.106099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/15/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Transcriptional coactivator p15 (PC4), considered a multifunctional chromosome associated protein, is actively involved in transcription regulation, DNA replication, damage repair and chromosome formation. Although studies have reported significant effects of PC4 in most vertebrates and some invertebrates, the complete PC4 gene members are less systematically identified and characterized in scallops. In this study, seven PC4 genes (PyPC4s) were identified in the Yesso scallop Patinopecten yessoensis using whole-genome scanning via bioinformatic analyses. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the seven genes. Expression profiles of PyPC4s were further investigated in embryos/larvae at all developmental stages, healthy adult tissues, and mantles that were exposed to low pH stress (pH 6.5 and 7.5) with different time durations (3, 6, 12 and 24 h). Spatiotemporal expression patterns indicated the functional roles of PyPC4s at all development stages and in healthy adult tissues, with PY-3235.33 demonstrating remarkably high constitutive expressions. Expression regulations (up- and down-regulation) of PyPC4s under low pH stress levels demonstrated a time-dependent pattern with functional complementation and/or enhancement, revealing that PyPC4s exhibited differentiated functions in response to ocean acidification (OA). Collectively, our data offer a novel perspective stating that low pH is a potential inducer leading to functional differentiation of PyPC4s in scallops. The results provide preliminary information on the versatile roles of PC4(s) in bivalves in response to OA.
Collapse
Affiliation(s)
- Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Qilu University of Technology (Shandong Academy of Sciences), China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
64
|
Zhao A, Miao J, Liu L, Pan L. Potencies of organotin compounds in scallop RXRa responsive activity with a GAL4-based reconstituted yeast assay in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19890-19897. [PMID: 35084679 DOI: 10.1007/s11356-022-18620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Retinoid X receptor (RXR) has been found to be a major target in various processes of endocrine disruption from the exposure to organotin compounds (OTCs), including imposex in gastropod mollusks. It was also reported in bivalves that OTCs caused intersex and skewed sex ratio. In order to evaluate the effect of these ligand-like OTCs, we constructed a reconstituted yeast system (CfRE system) based on GAL4 yeast two-hybrid principle using scallop Chlamys farreri retinoid X receptor (CfRXRa) and retinoid X response element (RXRE) to investigate the ligand-induced transactivation of CfRXRa. Responses of CfRXRa to 9-cis retinoic acid (9cRA) and tested four OTCs showed concentration-dependent response which is comparable with reported RXRa in vitro assay of human and gastropods. The detective limits of the CfRE system were found to be 100 nM for 9cRA and 10-1000 nM for the tested OTCs. While the tested non-Sn endocrine disrupting chemicals, including Benzo[a]pyrene, 2,4-Dichlorophenol, Nonylphenol, and Tetrabromobisphenol A, showed no effect on CfRXRa response. The present assay system may provide a valuable tool for screening assessments of unidentified environmental ligand chemicals on bivalve mollusks. It is also useful for comparison of sensitivity differences among species exposed to EDCs.
Collapse
Affiliation(s)
- Anran Zhao
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China.
| | - Liru Liu
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| |
Collapse
|
65
|
McCartney MA, Auch B, Kono T, Mallez S, Zhang Y, Obille A, Becker A, Abrahante JE, Garbe J, Badalamenti JP, Herman A, Mangelson H, Liachko I, Sullivan S, Sone ED, Koren S, Silverstein KAT, Beckman KB, Gohl DM. The genome of the zebra mussel, Dreissena polymorpha: a resource for comparative genomics, invasion genetics, and biocontrol. G3 (BETHESDA, MD.) 2022; 12:6460334. [PMID: 34897429 PMCID: PMC9210306 DOI: 10.1093/g3journal/jkab423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate a high-quality chromosome-scale genome assembly. Through comparative analysis and transcriptomics experiments, we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact steamer-like elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.
Collapse
Affiliation(s)
- Michael A McCartney
- Department of Fisheries, Wildlife and Conservation Biology, Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Thomas Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophie Mallez
- Department of Fisheries, Wildlife and Conservation Biology, Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angelico Obille
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Aaron Becker
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - John Garbe
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | | | - Adam Herman
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | - Eli D Sone
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4 Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kevin A T Silverstein
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology, and Developmental Biology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
66
|
Comparative proteomics for an in-depth understanding of bioadhesion mechanisms and evolution across metazoans. J Proteomics 2022; 256:104506. [PMID: 35123052 DOI: 10.1016/j.jprot.2022.104506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Bioadhesion is a critical process for many marine and freshwater invertebrate animals. Bioadhesives mainly made of proteins have remarkable adhesive ability underwater. Unraveling the molecular composition of bioadhesives is fundamental to understanding their physiological roles as well as their potential for biotechnology applications and antibiofouling strategies. With the development of high-throughput methods such as proteomics, bioadhesive protein data in diverse taxa are rapidly accumulating, but the common mechanism across species is elusive due to the vast variety of bioadhesives. In this review, bioadhesive proteins from various taxa are reviewed, with the aim of facilitating researchers to appreciate the diversity of bioadhesive proteins (mostly 20-40) across species. By comparing proteomes across species, it was found that glycine-rich, epidermal growth factor, peroxidase, and DOPA together with typical extracellular domains are the most commonly used domains. Additionally, permanent and temporary adhesion show obvious differences in terms of domains or proteins. A basic recipe for bioadhesives composed of six components is proposed: structural elements, extracellular domains, modification enzymes, proteinase inhibitors, cytoskeletal proteins, and others. The extracellular domains are mostly related to interactions with other macromolecules (proteins, carbohydrates, and lipids), suggesting that domain shuffling and macromolecule interaction might be fundamental for bioadhesive evolution.
Collapse
|
67
|
Wei Z, Ding W, Li M, Shi J, Wang H, Wang Y, Li Y, Xu Y, Hu J, Bao Z, Hu X. The Caspase Homologues in Scallop Chlamys farreri and Their Expression Responses to Toxic Dinoflagellates Exposure. Toxins (Basel) 2022; 14:toxins14020108. [PMID: 35202135 PMCID: PMC8878197 DOI: 10.3390/toxins14020108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (Chlamys farreri) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different Alexandrium PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in C. farreri. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs.
Collapse
Affiliation(s)
- Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (H.W.); (X.H.); Tel.: +86-0532-8203-1970 (X.H.)
| | - Yangrui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Yubo Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Yiqiang Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (H.W.); (X.H.); Tel.: +86-0532-8203-1970 (X.H.)
| |
Collapse
|
68
|
Zhang Y, Mao F, Xiao S, Yu H, Xiang Z, Xu F, Li J, Wang L, Xiong Y, Chen M, Bao Y, Deng Y, Huo Q, Zhang L, Liu W, Li X, Ma H, Zhang Y, Mu X, Liu M, Zheng H, Wong NK, Yu Z. Comparative Genomics Reveals Evolutionary Drivers of Sessile Life and Left-right Shell Asymmetry in Bivalves. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1078-1091. [PMID: 35091095 DOI: 10.1016/j.gpb.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems. Across these ancient lineages, colony-founding larvae anchor themselves either by byssus production or by cemented attachment. The latter mode of sessile life is strongly molded by left-right shell asymmetry during larval development of Ostreoida oysters such as Crassostrea hongkongensis. Here, we sequenced the genome of C. hongkongensis in high resolution and compared it to reference bivalve genomes to unveil genomic determinants driving cemented attachment and shell asymmetry. Importantly, loss of the homeobox gene Antennapedia (Antp) and broad expansion of lineage-specific extracellular gene families are implicated in a shift from byssal to cemented attachment in bivalves. Comparative transcriptomic analysis shows a conspicuous divergence between left-right asymmetrical C. hongkongensis and symmetrical Pinctada fucata in their expression profiles. Especially, a couple of orthologous transcription factor genes and lineage-specific shell-related gene families including that encoding tyrosinases are elevated, and may cooperatively govern asymmetrical shell formation in Ostreoida oysters.
Collapse
Affiliation(s)
- Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fei Xu
- CAS Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Yuanyan Xiong
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengqiu Chen
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yuewen Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Quan Huo
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066044, China
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiyu Mu
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101301, China.
| | - Nai-Kei Wong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
69
|
Xu P, Wang L, Zhang X, Yan J, Liu W. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:214-224. [PMID: 34935338 DOI: 10.1021/acsami.1c18610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.
Collapse
Affiliation(s)
- Pingping Xu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lulu Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaokang Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jicheng Yan
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Weizhi Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
70
|
Fan S, Li X, Lin S, Li Y, Ma H, Zhang Z, Qin Z. Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. BIOLOGY 2022; 11:biology11010113. [PMID: 35053111 PMCID: PMC8772818 DOI: 10.3390/biology11010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 04/09/2023]
Abstract
Foxl2 is an evolutionarily conserved female sex gene, which is specifically expressed in the ovary and mainly involved in oogenesis and ovarian function maintenance. However, little is known about the mechanism that regulates Foxl2 specific expression during the ovary development. In the present study, we constructed the gonadal yeast one-hybrid (Y1H) library of Chlamysfarreri with ovaries and testes at different developmental stages using the Gateway technology. The library capacity was more than 1.36 × 107 CFU, and the length of the inserted fragment was 0.75 Kb~2 Kb, which fully met the demand of yeast library screening. The highly transcriptional activity promoter sequence of C. farreri Foxl2 (Cf-Foxl2) was determined at -1000~-616 bp by dual-luciferase reporter (DLR) assay and was used as bait to screen possible transcription factors from the Y1H library. Eleven candidate factors, including five unannotated factors, were selected based on Y1H as well as their expressional differences between ovaries and testes and were verified for the first time to be involved in the transcriptional regulation of Cf-Foxl2 by RT-qPCR and DLR. Our findings provided valuable data for further studying the specific regulation mechanism of Foxl2 in the ovary.
Collapse
Affiliation(s)
- Shutong Fan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Yunpeng Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Huixin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (Z.Z.); (Z.Q.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Correspondence: (Z.Z.); (Z.Q.)
| |
Collapse
|
71
|
Huang Z, Huang W, Liu X, Han Z, Liu G, Boamah GA, Wang Y, Yu F, Gan Y, Xiao Q, Luo X, Chen N, Liu M, You W, Ke C. Genomic insights into the adaptation and evolution of the nautilus, an ancient but evolving "living fossil". Mol Ecol Resour 2022; 22:15-27. [PMID: 34085392 DOI: 10.1111/1755-0998.13439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The nautilus, commonly known as a "living fossil," is endangered and may be at risk of extinction. The lack of genomic information hinders a thorough understanding of its biology and evolution, which can shed light on the conservation of this endangered species. Here, we report the first high-quality chromosome-level genome assembly of Nautilus pompilius. The assembled genome size comprised 785.15 Mb. Comparative genomic analyses indicated that transposable elements (TEs) and large-scale genome reorganizations may have driven lineage-specific evolution in the cephalopods. Remarkably, evolving conserved genes and recent TE insertion activities were identified in N. pompilius, and we speculate that these findings reflect the strong adaptability and long-term survival of the nautilus. We also identified gene families that are potentially responsible for specific adaptation and evolution events. Our study provides unprecedented insights into the specialized biology and evolution of N. pompilius, and the results serve as an important resource for future conservation genomics of the nautilus and closely related species.
Collapse
Affiliation(s)
- Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | | | - Xiaolin Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhaofang Han
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | | | - Grace Afumwaa Boamah
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Feng Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Xuan Luo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Nan Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
- College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| |
Collapse
|
72
|
Marine Neurotoxins' Effects on Environmental and Human Health: An OMICS Overview. Mar Drugs 2021; 20:md20010018. [PMID: 35049872 PMCID: PMC8778346 DOI: 10.3390/md20010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin (BTX), tetrodotoxin (TTX), and β-N-methylamino-L-alanine (BMAA), cause severe neurological symptoms in humans. Considerable information is missing, however, notably the consequences of toxin exposures on changes in gene expression, protein profile, and metabolic pathways. This information could lead to understanding the consequence of marine neurotoxin exposure in aquatic organisms and humans. Nevertheless, recent contributions to the knowledge of neurotoxins arise from OMICS-based research, such as genomics, transcriptomics, proteomics, and metabolomics. This review presents a comprehensive overview of the most recent research and of the available solutions to explore OMICS datasets in order to identify new features in terms of ecotoxicology, food safety, and human health. In addition, future perspectives in OMICS studies are discussed.
Collapse
|
73
|
Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact Mater 2021; 10:504-514. [PMID: 34901563 PMCID: PMC8637015 DOI: 10.1016/j.bioactmat.2021.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant biomaterials have attracted much attention in various biomedical fields because of their effective inhibition and elimination of reactive oxygen species (ROS) in pathological tissues. However, the difficulty in ensuring biocompatibility, biodegradability and bioavailability of antioxidant materials has limited their further development. Novel bioavailable antioxidant materials that are derived from natural resources are urgently needed. Here, an integrated multi-omics method was applied to fabricate antioxidant biomaterials. A key cysteine-rich thrombospondin-1 type I repeat-like (TSRL) protein was efficiently discovered from among 1262 adhesive components and then used to create a recombinant protein with a yield of 500 mg L-1. The biocompatible TSRL protein was able to self-assemble into either a water-resistant coating through Ca2+-mediated coordination or redox-responsive hydrogels with tunable physical properties. The TSRL-based hydrogels showed stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rates than glutathione (GSH) and ascorbic acid (Aa) and protected cells against external oxidative stress significantly more effectively. When topically applied to mice skin, TSRL alleviated epidermal hyperplasia and suppressed the degradation of collagen and elastic fibers caused by ultraviolet radiation B (UVB) irradiation, confirming that it enhanced antioxidant activity in vivo. This is the first study to successfully characterize natural antioxidant biomaterials created from marine invertebrate adhesives, and the findings indicate the excellent prospects of these biomaterials for great applications in tissue regeneration and cosmeceuticals.
Collapse
|
74
|
Rodrigues ET, Nascimento SF, Pires CL, Godinho LP, Churro C, Moreno MJ, Pardal MA. Determination of intestinal absorption of the paralytic shellfish toxin GTX-5 using the Caco-2 human cell model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67256-67266. [PMID: 34247356 DOI: 10.1007/s11356-021-15342-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Contributing to the human health risk assessment, the present study aims to evaluate the ability of paralytic shellfish toxins (PSTs) to cross the human intestinal epithelium by using the Caco-2 permeability assay. A crude extract prepared from the PST producer dinoflagellate Gymnodinium catenatum strain, GCAT1_L2_16, and the PST analogue gonyautoxin-5 (GTX-5) prepared from a certified reference material (CRM) were tested. In the conditions of the assay, none of the compounds altered Caco-2 viability, or the integrity of cell monolayers. The GTX-5 apparent permeability coefficients are 0.9×10-7 and 0.6×10-7 cm s-1 for the crude extract and CRM, respectively, thus, <10-6 cm s-1, which indicates that humans absorb this PST analogue poorly. The present study also reveals that, during a 90-min exposure, GTX-5 is not metabolised to a high extent by Caco-2 or retained in the Caco-2 cytoplasm. Since it is known that GTX-5 can be found in the spleen, liver or kidney of the victims, as well as in the urine samples of patients who consumed contaminated seafood, further research is needed to clarify the transport mechanisms involved, permeation time and dose-dependence, and the possible role of intestinal microflora.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Susana F Nascimento
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Cristiana L Pires
- Coimbra Chemistry Center (CQC), Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Lia P Godinho
- Phytoplankton Laboratory, Division of Oceanography and Marine Environment, Department of the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisbon, Portugal
| | - Catarina Churro
- Phytoplankton Laboratory, Division of Oceanography and Marine Environment, Department of the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisbon, Portugal
- Blue Biotechnology and Ecotoxicology (BBE), Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208, Matosinhos, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center (CQC), Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Miguel A Pardal
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
75
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
76
|
Peng C, Yang Z, Liu Z, Wang S, Yu H, Cui C, Hu Y, Xing Q, Hu J, Huang X, Bao Z. A Systematical Survey on the TRP Channels Provides New Insight into Its Functional Diversity in Zhikong Scallop ( Chlamys farreri). Int J Mol Sci 2021; 22:ijms222011075. [PMID: 34681735 PMCID: PMC8539334 DOI: 10.3390/ijms222011075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential (TRP) channel plays a significant role in mediating various sensory physiological functions. It is widely present in the vertebrate and invertebrate genomes and can be activated by multiple compounds, messenger molecules, temperature, and mechanical stimulation. Mollusks are the second largest phylum of the animal kingdom and are sensitive to environmental factors. However, the molecular underpinnings through which mollusks sense and respond to environmental stimulus are unknown. In this study, we systematically identified and characterized 17 TRP channels (C.FA TRPs, seven subfamilies) in the genome of the Zhikong scallop (Chlamys farreri). All C.FA TRPs had six transmembrane structures (TM1–TM6). The sequences and structural features of C.FA TRPs are highly conserved with TRP channels of other species. Spatiotemporal expression profiling suggested that some C.FA TRPs participated in the early embryonic development of scallops and the sensory process of adult tissues. Notably, the expression of C.FA TRPM3 continuously increased during developmental stages and was highest among all C.FA TRPs. C.FA TRPC-α was specifically expressed in eyes, which may be involved in light transmission of scallop eyes. Under high temperature stress, C.FA TRPA1 and C.FA TRPA1-homolog upregulated significantly, which indicated that the TRPA subfamily is the thermoTRPs channel of scallops. Our results provided the first systematic study of TRP channels in scallops, and the findings will provide a valuable resource for a better understanding of TRP evolution and function in mollusks.
Collapse
Affiliation(s)
- Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence:
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| |
Collapse
|
77
|
Yu H, Yang Z, Sui M, Cui C, Hu Y, Hou X, Xing Q, Huang X, Bao Z. Identification and Characterization of HSP90 Gene Family Reveals Involvement of HSP90, GRP94 and Not TRAP1 in Heat Stress Response in Chlamys farreri. Genes (Basel) 2021; 12:1592. [PMID: 34680986 PMCID: PMC8535295 DOI: 10.3390/genes12101592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
Heat shock proteins 90 (HSP90s) are a class of ubiquitous, highly conserved, and multi-functional molecular chaperones present in all living organisms. They assist protein folding processes to form functional proteins. In the present study, three HSP90 genes, CfHSP90, CfGRP94 and CfTRAP1, were successfully identified in the genome of Chlamys farreri. The length of CfHSP90, CfGRP94 and CfTRAP1 were 7211 bp, 26,457 bp, and 28,699 bp, each containing an open reading frame (ORF) of 2181 bp, 2397 bp, and 2181 bp, and encoding proteins of 726, 798, and 726 amino acids, respectively. A transcriptomic database demonstrated that CfHSP90 and CfGRP94 were the primary functional executors with high expression during larval development and in adult tissues, while CfTRAP1 expression was low. Furthermore, all of the three CfHSP90s showed higher expression in gonads and ganglia as compared with other tissues, which indicated their probable involvement in gametogenesis and nerve signal transmission in C. farreri. In addition, under heat stress, the expressions of CfHSP90 and CfGRP94 were significantly up-regulated in the mantle, gill, and blood, but not in the heart. Nevertheless, the expression of CfTRAP1 did not change significantly in the four tested tissues. Taken together, in coping with heat stress, CfHSP90 and CfGRP94 could help correct protein folding or salvage damaged proteins for cell homeostasis in C. farreri. Collectively, a comprehensive analysis of CfHSP90s in C. farreri was conducted. The study indicates the functional diversity of CfHSP90s in growth, development, and environmental response, and our findings may have implications for the subsequent in-depth exploration of HSP90s in invertebrates.
Collapse
Affiliation(s)
- Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| |
Collapse
|
78
|
Vlasenko AE, Kuznetsov VG, Malykin GV, Pereverzeva AO, Velansky PV, Yakovlev KV, Magarlamov TY. Tetrodotoxins Secretion and Voltage-Gated Sodium Channel Adaptation in the Ribbon Worm Kulikovia alborostrata (Takakura, 1898) (Nemertea). Toxins (Basel) 2021; 13:toxins13090606. [PMID: 34564610 PMCID: PMC8472881 DOI: 10.3390/toxins13090606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023] Open
Abstract
Nemertea is a phylum of marine worms whose members bear various toxins, including tetrodotoxin (TTX) and its analogues. Despite the more than 30 years of studying TTXs in nemerteans, many questions regarding their functions and the mechanisms ensuring their accumulation and usage remain unclear. In the nemertean Kulikovia alborostrata, we studied TTX and 5,6,11-trideoxyTTX concentrations in body extracts and in released mucus, as well as various aspects of the TTX-positive-cell excretion system and voltage-gated sodium (Nav1) channel subtype 1 mutations contributing to the toxins' accumulation. For TTX detection, an immunohistological study with an anti-TTX antibody and HPLC-MS/MS were conducted. For Nav1 mutation searching, PCR amplification with specific primers, followed by Sanger sequencing, was used. The investigation revealed that, in response to an external stimulus, subepidermal TTX-positive cells released secretions actively to the body surface. The post-release toxin recovery in these cells was low for TTX and high for 5,6,11-trideoxyTTX in captivity. According to the data obtained, there is low probability of the targeted usage of TTX as a repellent, and targeted 5,6,11-trideoxyTTX secretion by TTX-bearing nemerteans was suggested as a possibility. The Sanger sequencing revealed identical sequences of the P-loop regions of Nav1 domains I-IV in all 17 studied individuals. Mutations comprising amino acid substitutions, probably contributing to nemertean channel resistance to TTX, were shown.
Collapse
|
79
|
Liu Z, Huang X, Yang Z, Peng C, Yu H, Cui C, Hu Y, Wang X, Xing Q, Hu J, Bao Z. Identification, Characterization, and Expression Analysis Reveal Diverse Regulated Roles of Three MAPK Genes in Chlamys farreri Under Heat Stress. Front Physiol 2021; 12:688626. [PMID: 34393814 PMCID: PMC8356821 DOI: 10.3389/fphys.2021.688626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in all eukaryotic organisms, participating growth and development, as well as stress response. In the present study, three MAPK genes were successfully identified from the genome of Chlamys farreri, respectively, named CfERK1/2, CfJNK, and Cfp38, and only one copy of ERK, JNK, and p38 were detected. Domain analysis indicated that CfMAPKs possessed the typical domains, including S_TKc, Pkinase, and PKc_like domain. Phylogenetic analysis showed that three CfMAPKs of MAPK subfamilies exists in the common ancestor of vertebrates and invertebrates. All CfMAPKs specifically expressed during larval development and in adult tissues, and the expression level of CfERK1/2 and Cfp38 was apparently higher than that of CfJNK. Under heat stress, the expression of CfERK1/2 and Cfp38 were significantly downregulated and then upregulated in four tissues, while the expression of CfJNK increased in all tissues; these different expression patterns suggested a different molecular mechanism of CfMAPKs for bivalves to adapt to temperature changes. The diversity of CfMAPKs and their specific expression patterns provide valuable information for better understanding of the functions of MAPK cascades in bivalves.
Collapse
Affiliation(s)
- Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA, Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA, Sanya, China
| |
Collapse
|
80
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
81
|
He X, Wu F, Zhang L, Li L, Zhang G. Comparative and evolutionary analyses reveal conservation and divergence of the notch pathway in lophotrochozoa. Sci Rep 2021; 11:11378. [PMID: 34059772 PMCID: PMC8166818 DOI: 10.1038/s41598-021-90800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Lophotrochozoan species exhibit wide morphological diversity; however, the molecular basis underlying this diversity remains unclear. Here, we explored the evolution of Notch pathway genes across 37 metazoan species via phylogenetic and molecular evolutionary studies with emphasis on the lophotrochozoans. We displayed the components of Notch pathway in metazoans and found that Delta and Hes/Hey-related genes, as well as their functional domains, are duplicated in lophotrochozoans. Comparative transcriptomics analyses allow us to pinpoint sequence divergence of multigene families in the Notch signalling pathway. We identified the duplication mechanism of a mollusc-specific gene, Delta2, and found it displayed complementary expression throughout development. Furthermore, we found the functional diversification not only in expanded genes in the Notch pathway (Delta and Hes/Hey-related genes), but also in evolutionary conservative genes (Notch, Presenilin, and Su(H)). Together, this comprehensive study demonstrates conservation and divergence within the Notch pathway, reveals evolutionary relationships among metazoans, and provides evidence for the occurrence of developmental diversity in lophotrochozoans, as well as a basis for future gene function studies.
Collapse
Affiliation(s)
- Xin He
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
82
|
Davison A, Neiman M. Mobilizing molluscan models and genomes in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200163. [PMID: 33813892 PMCID: PMC8059959 DOI: 10.1098/rstb.2020.0163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
83
|
Ventoso P, Pazos AJ, Blanco J, Pérez-Parallé ML, Triviño JC, Sánchez JL. Transcriptional Response in the Digestive Gland of the King Scallop ( Pecten maximus) After the Injection of Domoic Acid. Toxins (Basel) 2021; 13:toxins13050339. [PMID: 34067146 PMCID: PMC8150855 DOI: 10.3390/toxins13050339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.
Collapse
Affiliation(s)
- Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Antonio J. Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
- Correspondence:
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo. 13, 36620 Vilanova de Arousa, Spain;
| | - M. Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Juan C. Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, 46980 Valencia, Spain;
| | - José L. Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| |
Collapse
|
84
|
Yuan J, Zhang X, Li F, Xiang J. Genome Sequencing and Assembly Strategies and a Comparative Analysis of the Genomic Characteristics in Penaeid Shrimp Species. Front Genet 2021; 12:658619. [PMID: 34012463 PMCID: PMC8126689 DOI: 10.3389/fgene.2021.658619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 01/27/2023] Open
Abstract
Penaeid shrimp (family Penaeidae) represents one of the most economically and ecologically important groups of crustaceans. However, their genome sequencing and assembly have encountered extreme difficulties during the last 20 years. In this study, based on our previous genomic data, we investigated the genomic characteristics of four penaeid shrimp species and identified potential factors that result in their poor genome assembly, including heterozygosity, polyploidization, and repeats. Genome sequencing and comparison of somatic cells (diploid) of the four shrimp species and a single sperm cell (haploid) of Litopenaeus vannamei identified a common bimodal distribution of K-mer depths, suggesting either high heterozygosity or abundant homo-duplicated sequences present in their genomes. However, penaeids have not undergone whole-genome duplication as indicated by a series of approaches. Besides, the remarkable expansion of simple sequence repeats was another outstanding character of penaeid genomes, which also made the genome assembly highly fragmented. Due to this situation, we tried to assemble the genome of penaeid shrimp using various genome sequencing and assembly strategies and compared the quality. Therefore, this study provides new insights about the genomic characteristics of penaeid shrimps while improving their genome assemblies.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
85
|
Gomes-Dos-Santos A, Lopes-Lima M, Machado AM, Marcos Ramos A, Usié A, Bolotov IN, Vikhrev IV, Breton S, Castro LFC, da Fonseca RR, Geist J, Österling ME, Prié V, Teixeira A, Gan HM, Simakov O, Froufe E. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Res 2021; 28:6182681. [PMID: 33755103 PMCID: PMC8088596 DOI: 10.1093/dnares/dsab002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species’ unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel Lopes-Lima
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.,IUCN SSC Mollusc Specialist Group, c/o IUCN, Cambridge, England
| | - André M Machado
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL-Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908 Beja, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL-Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908 Beja, Portugal
| | - Ivan N Bolotov
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Ilya V Vikhrev
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - L Filipe C Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Juergen Geist
- Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, D-85354 Freising, Germany
| | - Martin E Österling
- Department of Environmental and Life Sciences-Biology, Karlstad University, 651 88 Karlstad, Sweden
| | - Vincent Prié
- Research Associate, Institute of Systematics, Evolution, Biodiversity (ISYEB), National Museum of Natural History (MNHN), CNRS, SU, EPHE, 75005 Paris, France
| | - Amílcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Han Ming Gan
- GeneSEQ Sdn Bhd, Bandar Bukit Beruntung, Rawang 48300, Selangor, Malaysia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1010 Vienna, Austria
| | - Elsa Froufe
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| |
Collapse
|
86
|
Yang JL, Feng DD, Liu J, Xu JK, Chen K, Li YF, Zhu YT, Liang X, Lu Y. Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. Gigascience 2021; 10:giab024. [PMID: 33891010 PMCID: PMC8063583 DOI: 10.1093/gigascience/giab024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The hard-shelled mussel (Mytilus coruscus) is widely distributed in the temperate seas of East Asia and is an important commercial bivalve in China. Chromosome-level genome information of this species will contribute not only to the development of hard-shelled mussel genetic breeding but also to studies on larval ecology, climate change biology, marine biology, aquaculture, biofouling, and antifouling. FINDINGS We applied a combination of Illumina sequencing, Oxford Nanopore Technologies sequencing, and high-throughput chromosome conformation capture technologies to construct a chromosome-level genome of the hard-shelled mussel, with a total length of 1.57 Gb and a median contig length of 1.49 Mb. Approximately 90.9% of the assemblies were anchored to 14 linkage groups. We assayed the genome completeness using BUSCO. In the metazoan dataset, the present assemblies have 89.4% complete, 1.9% incomplete, and 8.7% missing BUSCOs. Gene modeling enabled the annotation of 37,478 protein-coding genes and 26,917 non-coding RNA loci. Phylogenetic analysis showed that M. coruscus is the sister taxon to the clade including Modiolus philippinarum and Bathymodiolus platifrons. Conserved chromosome synteny was observed between hard-shelled mussel and king scallop, suggesting that this is shared ancestrally. Transcriptomic profiling indicated that the pathways of catecholamine biosynthesis and adrenergic signaling in cardiomyocytes might be involved in metamorphosis. CONCLUSIONS The chromosome-level assembly of the hard-shelled mussel genome will provide novel insights into mussel genome evolution and serve as a fundamental platform for studies regarding the planktonic-sessile transition, genetic diversity, and genomic breeding of this bivalve.
Collapse
Affiliation(s)
- Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Dan-Dan Feng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jie Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jia-Kang Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Ke Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Ying Lu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| |
Collapse
|
87
|
Cui Z, Liu Y, Yuan J, Zhang X, Ventura T, Ma KY, Sun S, Song C, Zhan D, Yang Y, Liu H, Fan G, Cai Q, Du J, Qin J, Shi C, Hao S, Fitzgibbon QP, Smith GG, Xiang J, Chan TY, Hui M, Bao C, Li F, Chu KH. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat Commun 2021; 12:2395. [PMID: 33888695 PMCID: PMC8062507 DOI: 10.1038/s41467-021-22604-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
The infraorder Brachyura (true or short-tailed crabs) represents a successful group of marine invertebrates yet with limited genomic resources. Here we report a chromosome-anchored reference genome and transcriptomes of the Chinese mitten crab Eriocheir sinensis, a catadromous crab and invasive species with wide environmental tolerance, strong osmoregulatory capacity and high fertility. We show the expansion of specific gene families in the crab, including F-ATPase, which enhances our knowledge on the adaptive plasticity of this successful invasive species. Our analysis of spatio-temporal transcriptomes and the genome of E. sinensis and other decapods shows that brachyurization development is associated with down-regulation of Hox genes at the megalopa stage when tail shortening occurs. A better understanding of the molecular mechanism regulating sexual development is achieved by integrated analysis of multiple omics. These genomic resources significantly expand the gene repertoire of Brachyura, and provide insights into the biology of this group, and Crustacea in general.
Collapse
Affiliation(s)
- Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tomer Ventura
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Ka Yan Ma
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hourong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | - Jing Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jing Qin
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | | | - Shijie Hao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Min Hui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
88
|
Smith CH. A High-Quality Reference Genome for a Parasitic Bivalve with Doubly Uniparental Inheritance (Bivalvia: Unionida). Genome Biol Evol 2021; 13:evab029. [PMID: 33570560 PMCID: PMC7937423 DOI: 10.1093/gbe/evab029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
From a genomics perspective, bivalves (Mollusca: Bivalvia) have been poorly explored with the exception for those of high economic value. The bivalve order Unionida, or freshwater mussels, has been of interest in recent genomic studies due to their unique mitochondrial biology and peculiar life cycle. However, genomic studies have been hindered by the lack of a high-quality reference genome. Here, I present a genome assembly of Potamilus streckersoni using Pacific Bioscience single-molecule real-time long reads and 10X Genomics-linked read sequencing. Further, I use RNA sequencing from multiple tissue types and life stages to annotate the reference genome. The final assembly was far superior to any previously published freshwater mussel genome and was represented by 2,368 scaffolds (2,472 contigs) and 1,776,755,624 bp, with a scaffold N50 of 2,051,244 bp. A high proportion of the assembly was comprised of repetitive elements (51.03%), aligning with genomic characteristics of other bivalves. The functional annotation returned 52,407 gene models (41,065 protein, 11,342 tRNAs), which was concordant with the estimated number of genes in other freshwater mussel species. This genetic resource, along with future studies developing high-quality genome assemblies and annotations, will be integral toward unraveling the genomic bases of ecologically and evolutionarily important traits in this hyper-diverse group.
Collapse
Affiliation(s)
- Chase H Smith
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
- Biology Department, Baylor University, Waco, Texas, USA
| |
Collapse
|
89
|
Zhu X, Zhang F, Lian S, Wang Y, Hu N, Chen X, Dai X, Hu X, Wang S, Bao Z. IAPs Gene Expansion in the Scallop Patinopecten yessoensis and Their Expression Profiles After Exposure to the Toxic Dinoflagellate. Front Physiol 2021; 12:633301. [PMID: 33613325 PMCID: PMC7893105 DOI: 10.3389/fphys.2021.633301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) are conserved regulators involved in cell cycle, cell migration, cell death, immunity and inflammation, should be due to the fact that they can assist with the ability to cope with different kinds of extrinsic or intrinsic stresses. Bivalve molluscs are well adapted to highly complex marine environments. As free-living filter feeders that may take toxic dinoflagellates as food, bivalves can accumulate and put up with significant levels of paralytic shellfish toxins (PSTs). PSTs absorption and accumulation could have a deleterious effect on bivalves, causing negative impact on their feeding and digestion capabilities. In the present study, we analyzed IAP genes (PyIAPs) in Yesso scallop (Patinopecten yessoensis), a major fishery and aquaculture species in China. Forty-seven PyIAPs from five sub-families were identified, and almost half of the PyIAP genes were localized in clusters on two chromosomes. Several sites under positive selection was revealed in the significantly expanded sub-families BIRC4 and BIRC5. After exposure to PST-producing dinoflagellates, Alexandrium catenella, fourteen PyIAPs showed significant responses in hepatopancreas and kidney, and more than eighty-five percent of them were from the expanded sub-families BIRC4 and BIRC5. The regulation pattern of PyIAPs was similar between the two tissues, with more than half exhibited expression suppression within three days after exposure. In contrast to hepatopancreas, more acute changes of PyIAPs expression could be detected in kidney, suggesting the possible involvement of these PyIAPs in tissue-specific PST tolerance. These findings also imply the adaptive expansion of bivalve IAP genes in response to algae derived biotoxins.
Collapse
Affiliation(s)
- Xiaomei Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Fengmei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yinghui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaomei Chen
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
90
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
91
|
Liu F, Li Y, Yu H, Zhang L, Hu J, Bao Z, Wang S. MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res 2021; 49:D988-D997. [PMID: 33219670 PMCID: PMC7779068 DOI: 10.1093/nar/gkaa918] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mollusca represents the second largest animal phylum but remains poorly explored from a genomic perspective. While the recent increase in genomic resources holds great promise for a deep understanding of molluscan biology and evolution, access and utilization of these resources still pose a challenge. Here, we present the first comprehensive molluscan genomics database, MolluscDB (http://mgbase.qnlm.ac), which compiles and integrates current molluscan genomic/transcriptomic resources and provides convenient tools for multi-level integrative and comparative genomic analyses. MolluscDB enables a systematic view of genomic information from various aspects, such as genome assembly statistics, genome phylogenies, fossil records, gene information, expression profiles, gene families, transcription factors, transposable elements and mitogenome organization information. Moreover, MolluscDB offers valuable customized datasets or resources, such as gene coexpression networks across various developmental stages and adult tissues/organs, core gene repertoires inferred for major molluscan lineages, and macrosynteny analysis for chromosomal evolution. MolluscDB presents an integrative and comprehensive genomics platform that will allow the molluscan community to cope with ever-growing genomic resources and will expedite new scientific discoveries for understanding molluscan biology and evolution.
Collapse
Affiliation(s)
- Fuyun Liu
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China
| | - Yuli Li
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongwei Yu
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
92
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
93
|
Song H, Guo X, Sun L, Wang Q, Han F, Wang H, Wray GA, Davidson P, Wang Q, Hu Z, Zhou C, Yu Z, Yang M, Feng J, Shi P, Zhou Y, Zhang L, Zhang T. The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biol 2021; 19:15. [PMID: 33487168 PMCID: PMC7831173 DOI: 10.1186/s12915-020-00943-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. RESULTS Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. CONCLUSIONS Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.
Collapse
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, USA
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianghui Wang
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Fengming Han
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Haiyan Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | - Qing Wang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenglin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Meijie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
94
|
Varney RM, Brenzinger B, Malaquias MAE, Meyer CP, Schrödl M, Kocot KM. Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics. BMC Ecol Evol 2021; 21:6. [PMID: 33514315 PMCID: PMC7853304 DOI: 10.1186/s12862-020-01728-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023] Open
Abstract
Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs”. Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs”. Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference with the CAT + GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy with a clade including all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades. Conclusions Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT + GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.
Collapse
Affiliation(s)
- Rebecca M Varney
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL, 35487, USA
| | - Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, München, Germany
| | | | - Christopher P Meyer
- National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, D.C., 20560, USA
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, München, Germany.,BioGeoCenter LMU (Ludwig Maximillion University Munich), University of Munich, Biozentrum, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL, 35487, USA. .,Alabama Museum of Natural History, Campus Box 870344, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
95
|
Huang S, Yoshitake K, Asaduzzaman M, Kinoshita S, Watabe S, Asakawa S. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. RNA Biol 2021; 18:1702-1715. [PMID: 33356816 DOI: 10.1080/15476286.2020.1867798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small non-coding RNAs play a pivotal role in gene regulation, repression of transposable element and viral activity in various organisms. Among the various categories of these small non-coding RNAs, microRNAs (miRNAs) guide post-translational gene regulation in cellular development, proliferation, apoptosis, oncogenesis, and differentiation. Here, we performed a genome-wide computational prediction of miRNAs to improve the understanding of miRNA observation and function in molluscs. As an initial step, hundreds of conserved miRNAs were predicted in 35 species of molluscs through genome scanning. Afterwards, the miRNAs' population, isoforms, organization, and function were characterized in detail. Furthermore, the key miRNA biogenesis factors, including AGO2, DGCR8, DICER, DROSHA, TRABP2, RAN, and XPO5, were elucidated based on homologue sequence searching. We also summarized the miRNAs' function in biomineralization, immune and stress response, as well as growth and development in molluscs. Because miRNAs play a vital role in various lifeforms, this study will provide insight into miRNA biogenesis and function in molluscs, as well as other invertebrates.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Md Asaduzzaman
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
96
|
Wang H, Liu S, Xun X, Li M, Lou J, Zhang Y, Shi J, Hu J, Bao Z, Hu X. Toxin- and species-dependent regulation of ATP-binding cassette (ABC) transporters in scallops after exposure to paralytic shellfish toxin-producing dinoflagellates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105697. [PMID: 33254068 DOI: 10.1016/j.aquatox.2020.105697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
ATP-binding cassette (ABC) transporters are membrane-bound proteins involved in exporting various xenobiotic compounds from living cells. Bivalve mollusks can accumulate large amounts of paralytic shellfish toxins (PSTs) from marine dinoflagellates. For aquatic invertebrates, the importance of ABC proteins in multi-xenobiotic resistance has been demonstrated, however, the systematic identification of ABC transporters is very limited. In this study, 64 and 67 ABC genes containing all eight described subfamilies (A to H) were identified in Yesso scallop (Patinopecten yessoensis) and Zhikong scallop (Chlamys farreri), respectively, with massive gene expansion being observed in the ABCC and ABCG subfamilies. The kidney harbored more specifically expressed ABC genes than other organs/tissues, most of which belonged to ABCB, ABCC, and ABCG subfamilies. After feeding the scallops with PST-producing dinoflagellates, the expression of scallop ABC genes in the kidney was regulated in toxin- and species-dependent manners. In total, 20 and 24 ABC genes in Zhikong scallop (CfABCs) were induced after exposure to Alexandrium minutum and A. catenella, with the up-regulated members from both ABCC and ABCG subfamilies mainly showing acute and chronic induction by A. minutum and A. catenella, respectively, while the up-regulated CfABCBs mainly showing chronic induction by both dinoflagellates. In Yesso scallop, only eight ABC genes (PyABCs) were regulated after A. catenella exposure, and all the five up-regulated PyABCs were acutely induced. Our findings imply the functional diversity of scallop ABC genes in coping with PST accumulation, which may contribute to the lineage-specific adaptation of scallops for dealing with algal toxins challenge.
Collapse
Affiliation(s)
- Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shiqi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiarun Lou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yihan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
97
|
Hlaing SMM, Lou J, Cheng J, Xun X, Li M, Lu W, Hu X, Bao Z. Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase ( GPx) Genes in Scallops Exposed to Toxic Dinoflagellates. Toxins (Basel) 2020; 13:toxins13010021. [PMID: 33396547 PMCID: PMC7824116 DOI: 10.3390/toxins13010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Marine bivalves could accumulate paralytic shellfish toxins (PSTs) produced by toxic microalgae, which might induce oxidative stress. Glutathione peroxidases (GPxs) are key enzymes functioning in the antioxidant defense, whereas our understanding of their roles in PST challenge in bivalves is limited. Herein, through genome-wide screening, we identified nine (CfGPx) and eight (PyGPx) GPx genes in Zhikong scallop (Chlamys farreri) and Yesso scallop (Patinopecten yessoensis), respectively, and revealed the expansion of GPx3 sub-family in both species. RNA-Seq analysis revealed high expression of scallop GPx3s after D stage larva during early development, and in adult hepatopancreas. However, in scallops exposed to PST-producing dinoflagellates, no GPx was significantly induced in the hepatopancreas. In scallop kidneys where PSTs were transformed to higher toxic analogs, most CfGPxs were up-regulated, with CfGPx3s being acutely and chronically induced by Alexandrium minutum and A. catenella exposure, respectively, but only one PyGPx from GPx3 subfamily was up-regulated by A. catenella exposure. Our results suggest the function of scallop GPxs in protecting kidneys against the oxidative stresses by PST accumulation or transformation. The tissue-, species-, and toxin-dependent expression pattern of scallop GPxs also implied their functional diversity in response to toxin exposure.
Collapse
Affiliation(s)
- Sein Moh Moh Hlaing
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Moli Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Correspondence: (W.L.); (X.H.); Tel.: +86-532-82031802 (W.L.); +86-532-82031970 (X.H.)
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (W.L.); (X.H.); Tel.: +86-532-82031802 (W.L.); +86-532-82031970 (X.H.)
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.M.M.H.); (J.L.); (J.C.); (X.X.); (M.L.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
98
|
Zou S. Comparative Transcriptome Analysis of Toxic and Non-Toxic Nassarius Communities and Identification of Genes Involved in TTX-Adaptation. Toxins (Basel) 2020; 12:toxins12120761. [PMID: 33276679 PMCID: PMC7761612 DOI: 10.3390/toxins12120761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
Nassarius has caused serious people poisoning and death incident as a popular food due to tetrodotoxin (TTX) accumulation in their body. Understanding the genetic basis of tetrodotoxin (TTX) transformation and resistance in animals could lead to significant insights into adaptive evolution to toxins and toxin poisoning cures in medicine. Here we performed comparative transcriptome analysis for toxic and non-toxic communities in Nassarius succinctus and Nassarius variciferus to reveal their genetic expression and mutation patterns. For both species, the cellular and metabolic process, and binding and catalytic activity accounted for the top classification categories, and the toxic communities generally produced more up-regulated genes than non-toxic communities. Most unigenes and different expression genes were related to disease, e.g., heat shock protein and tissue factor pathway inhibitors, which involve detoxification and coagulation. In mutation levels, the sodium channel gene of N. succinctus had one amino acid mutation "L", which is different from that of other animals. In conclusion, the comparative transcriptome analysis of different species and populations provided an important genetic basis for adaptive evolution to toxins, health and toxin poisoning cure research for TTX in marine gastropoda mollusk. Future studies will focus on the action mechanism of the important functional gene for TTX accumulation and resistance.
Collapse
Affiliation(s)
- Shanmei Zou
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
99
|
Xu R, Pan L, Yang Y, Zhou Y, Li D. Temporal transcriptome analysis in female scallop Chlamys farreri: First molecular insights into the disturbing mechanism on lipid metabolism of reproductive-stage dependence under benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:142032. [PMID: 33027874 DOI: 10.1016/j.scitotenv.2020.142032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widespread persistent organic pollutants (POPs) in marine environment. Benzo[a]pyrene (B[a]P), the most toxic carcinogen of PAHs, is widely studied as a representative that interferes with lipid metabolism. However, the underlying molecular mechanisms of lipid metabolism by B[a]P interference towards bivalve, one of the marine-pollution bio-indicators have not been elucidated yet, especially during gonadal development which is closely associated with lipids. In this study, female scallops Chlamys farreri were cultured with natural and 4 μg/L B[a]P exposed seawater, respectively, and a multi-stage (proliferative, growth, mature, and spawn stage) ovarian transcriptome profiling was performed to decipher the reproductive stage-dependence disturbing mechanisms on lipid metabolism caused by B[a]P in bivalves. The results revealed the potential molecular mechanism of B[a]P-induced triglycerides (TGs) accumulation, which probably resulted from the collaboration of promoting synthesis and inhibiting metabolization of TGs, notably, this mechanism also occurred at spawn stage. Correspondingly, B[a]P and TGs contents measured in ovary offered direct biochemical evidences for the interference effects and stage-dependent accumulation patterns of B[a]P. Moreover, the gene expressions of fatty acids synthesis related enzymes were down-regulated cooperatively, illustrating the molecular compensatory mechanism that reduced susceptibility from oxidative damage. And these results further emphasized the important role of prostaglandins (PGs) in immune response mediated by arachidonic acid metabolism. In addition, this study explored the underlying molecular mechanism affected by B[a]P on sterol metabolism, which possibly posed a threat to normal reproductive functions in bivalves. Taken together, our findings filled the gap of the stage-dependent interference molecular mechanisms on lipid metabolism behind bivalves, and provided a new perspective for investigating the adaptive mechanisms of bivalves under POPs stress.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
100
|
Liu Y, Kong FZ, Xun XG, Dai L, Geng HX, Hu XL, Yu RC, Bao ZM, Zhou MJ. Biokinetics and biotransformation of paralytic shellfish toxins in different tissues of Yesso scallops, Patinopecten yessoensis. CHEMOSPHERE 2020; 261:128063. [PMID: 33113659 DOI: 10.1016/j.chemosphere.2020.128063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Paralytic shellfish toxins (PSTs) are a group of natural toxic substances often found in marine bivalves. Accumulation, anatomical distribution, biotransformation and depuration of PSTs in different tissues of bivalves, however, are still not very well understood. In this study, we investigated biokinetics and biotransformation of PSTs in six different tissues, namely gill, mantle, gonad, adductor muscle, kidney, and digestive gland, in Yesso scallops Patinopecten yessoensis exposed to a toxic strain of dinoflagellate Alexandrium pacificum. High daily accumulation rate (DAR) was recorded at the beginning stage of the experiment. Most of the PSTs in toxic algae ingested by scallops were retained and the toxicity level of PSTs in scallops exceeded the regulatory limit within 5 days. At the late stage of the experiment, however, DAR decreased obviously due to the removal of PSTs. Fitting results of the biokinetics model indicated that the amount of PSTs transferred from digestive gland to mantle, adductor muscle, gonad, kidney, and gill in a decreasing order, and adductor muscle, kidney, and gonad had higher removal rate than gill and mantle. Toxin profile in digestive gland was dominated by N-sulfocarbamoyl toxins 1/2 (C1/2), closely resembled that of the toxic algae. In contrast, toxin components in kidney were dominated by high-potency neosaxitoxin (NEO) and saxitoxin (STX), suggesting that the kidney be a major organ for transformation of PSTs.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory for Marine Ecology and Environmental Science, Qingdao National Key Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiao-Gang Xun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266071, China
| | - Li Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Xia Geng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiao-Li Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory for Marine Ecology and Environmental Science, Qingdao National Key Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhen-Min Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ming-Jiang Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|