51
|
A common deletion at BAK1 reduces enhancer activity and confers risk of intracranial germ cell tumors. Nat Commun 2022; 13:4478. [PMID: 35918310 PMCID: PMC9346128 DOI: 10.1038/s41467-022-32005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial germ cell tumors (IGCTs) are rare brain neoplasms that mainly occur in children and adolescents with a particularly high incidence in East Asian populations. Here, we conduct a genome-wide association study (GWAS) of 133 patients with IGCTs and 762 controls of Japanese ancestry. A common 4-bp deletion polymorphism in an enhancer adjacent to BAK1 is significantly associated with the disease risk (rs3831846; P = 2.4 × 10−9, odds ratio = 2.46 [95% CI: 1.83–3.31], minor allele frequency = 0.43). Rs3831846 is in strong linkage disequilibrium with a testicular GCTs susceptibility variant rs210138. In-vitro reporter assays reveal rs3831846 to be a functional variant attenuating the enhancer activity, suggesting its contribution to IGCTs predisposition through altering BAK1 expression. Risk alleles of testicular GCTs derived from the European GWAS show significant positive correlations in the effect sizes with the Japanese IGCTs GWAS (P = 1.3 × 10−4, Spearman’s ρ = 0.48). These results suggest the shared genetic susceptibility of GCTs beyond ethnicity and primary sites. Intracranial germ cell tumors (IGCTs) are rare brain tumors mainly diagnosed in children and young adults. Here, the authors conduct a genome-wide association study for IGCTs, identify a risk locus at BAK1, and characterize its functional consequences.
Collapse
|
52
|
Dofuku S, Sonehara K, Miyawaki S, Sakaue S, Imai H, Shimizu M, Hongo H, Shinya Y, Ohara K, Teranishi Y, Okano A, Ono H, Nakatomi H, Teraoka A, Yamamoto K, Maeda Y, Nii T, Kishikawa T, Suzuki K, Hirata J, Takahashi M, Matsuda K, Kumanogoh A, Matsuda F, Okada Y, Saito N. Genome-Wide Association Study of Intracranial Artery Stenosis Followed by Phenome-Wide Association Study. Transl Stroke Res 2022; 14:322-333. [PMID: 35701560 DOI: 10.1007/s12975-022-01049-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
The genetic background of intracranial artery stenosis (ICAS), a major cause of ischemic stroke, remains elusive. We performed the world's first genome-wide association study (GWAS) of ICAS using DNA samples from Japanese subjects, to identify the genetic factors associated with ICAS and their correlation with clinical features. We also conducted a phenome-wide association study (PheWAS) of the top variant identified via GWAS to determine its association with systemic disease. The GWAS involved 408 patients with ICAS and 349 healthy controls and utilized an Asian Screening Array of venous blood samples. The PheWAS was performed using genotypic and phenotypic data of the Biobank Japan Project, which contained information on 46 diseases and 60 quantitative trait data from > 150,000 Japanese individuals. The GWAS revealed that the East Asian-specific functional variant of RNF213, rs112735431 (c.14429G > A, p.Arg4810Lys), was associated with ICAS (odds ratio, 12.3; 95% CI 5.5 to 27.5; P = 7.8 × 10-10). Stratified analysis within ICAS cases demonstrated that clinical features of those with and without the risk allele were different. PheWAS indicated that high blood pressure and angina were significantly associated with RNF213 rs112735431. The first GWAS of ICAS, which stratifies subpopulations within the ICAS cases with distinct clinical features, revealed that RNF213 rs112735431 was the most significant variant associated with ICAS. Thus, RNF213 rs112735431 shows potential as an important clinical biomarker that characterizes pleiotropic risk in various vascular diseases, such as blood pressure and angina, thereby facilitating personalized medicine for systemic vascular diseases in East Asian populations.
Collapse
Affiliation(s)
- Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hideaki Imai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Neurosurgery, Tokyo Shinjuku Medical Center, Tokyo, 162-8543, Japan
| | - Masahiro Shimizu
- Department of Neurosurgery, Kanto Neurosurgical Hospital, Kumagaya, 360-0804, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yuki Shinya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hideaki Ono
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Neurosurgery, Fuji Brain Institute and Hospital, Fujinomiya, 418-0021, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Teraoka
- Department of Neurosurgery, Teraoka Memorial Hospital, Fukuyama, 729-3103, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
- Laboratory of Statistical Immunology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
53
|
Gu J, Zhao H, Guo X, Sun H, Xu J, Wei Y. A high‐performance SNP panel developed by machine‐learning approaches for characterizing genetic differences of Southern and Northern Han Chinese, Korean, and Japanese individuals. Electrophoresis 2022; 43:1183-1192. [DOI: 10.1002/elps.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/21/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jia‐Qi Gu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu P. R. China
| | - Hui Zhao
- National Engineering Laboratory for Forensic Science Key Laboratory of Forensic Genetics of Ministry of Public Security Beijing Engineering Research Center of Crime Scene Evidence Examination Institute of Forensic Science Beijing P. R. China
| | - Xiao‐Yuan Guo
- Department of Forensic Genetics School of Forensic Science Shanxi Medical University Taiyuan Shanxi P. R. China
| | - Hao‐Yun Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu P. R. China
| | - Jing‐Yi Xu
- Department of Biochemistry and Molecular Biology Tianjin Key Laboratory of Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin P. R. China
| | - Yi‐Liang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu P. R. China
| |
Collapse
|
54
|
Abstract
The ALDH2*2 missense variant that commonly causes alcohol flushing reactions is the single genetic polymorphism associated with the largest number of traits in humans. The dysfunctional ALDH2 variant affects nearly 8% of the world population and is highly concentrated among East Asians. Carriers of the ALDH2*2 variant commonly present alterations in a number of blood biomarkers, clinical measurements, biometrics, drug prescriptions, dietary habits and lifestyle behaviors, and they are also more susceptible to aldehyde-associated diseases, such as cancer and cardiovascular disease. However, the interaction between alcohol and ALDH2-related pathology is not clearly delineated. Furthermore, genetic evidence indicates that the ALDH2*2 variant has been favorably selected for in the past 2000-3000 years. It is therefore necessary to consider the disease risk and mechanism associated with ALDH2 deficiency, and to understand the possible beneficial or protective effect conferred by ALDH2 deficiency and whether the pleiotropic effects of ALDH2 variance are all mediated by alcohol use.
Collapse
Affiliation(s)
- Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
55
|
Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, Li N, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Zhu XW, Zhao PP, Xia JW, Guan PL, Qian Y, Tao JG, Xu L, Tian G, Wang PY, Xie SY, Qiu MC, Liu KQ, Tang BS, Zheng HF. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat Commun 2022; 13:2939. [PMID: 35618720 PMCID: PMC9135724 DOI: 10.1038/s41467-022-30526-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.
Collapse
Affiliation(s)
- Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng-Yuan Yang
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Ping-Yu Wang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Ke-Qi Liu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
56
|
Kakuta Y, Iwaki H, Umeno J, Kawai Y, Kawahara M, Takagawa T, Shimoyama Y, Naito T, Moroi R, Kuroha M, Shiga H, Watanabe K, Nakamura S, Nakase H, Sasaki M, Hanai H, Fuyuno Y, Hirano A, Matsumoto T, Kudo H, Minegishi N, Nakamura M, Hisamatsu T, Andoh A, Nagasaki M, Tokunaga K, Kinouchi Y, Masamune A. Crohn's Disease and Early Exposure to Thiopurines are Independent Risk Factors for Mosaic Chromosomal Alterations in Patients with Inflammatory Bowel Diseases. J Crohns Colitis 2022; 16:643-655. [PMID: 34751398 DOI: 10.1093/ecco-jcc/jjab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Mosaic chromosomal alterations [mCAs] increase the risk for haematopoietic malignancies and may be risk factors for several other diseases. Inflammatory bowel diseases [IBDs], including Crohn's disease [CD] and ulcerative colitis [UC], are associated with mCAs, and patients may be at risk for haematopoietic malignancy development and/or modification of IBD phenotypes. In the present study, we screened patients with IBD for the presence of mCAs and explored the possible pathophysiological and genetic risk factors for mCAs. METHODS We analysed mCAs in peripheral blood from 3339 patients with IBD and investigated the clinical and genetic risk factors for mCAs. RESULTS CD and exposure to thiopurines before the age of 20 years were identified as novel independent risk factors for mCAs [odds ratio = 2.15 and 5.68, p = 1.17e-2 and 1.60e-3, respectively]. In contrast, there were no significant associations of disease duration, anti-tumour necrosis factor alpha antibodies, or other clinical factors with mCAs. Gene ontology enrichment analysis revealed that genes specifically located in the mCAs in patients with CD were significantly associated with factors related to mucosal immune responses. A genome-wide association study revealed that ERBIN, CD96, and AC068672.2 were significantly associated with mCAs in patients with CD [p = 1.56e-8, 1.65e-8, and 4.92e-8, respectively]. CONCLUSIONS The difference in mCAs between patients with CD and UC supports the higher incidence of haematopoietic malignancies in CD. Caution should be exercised when using thiopurines in young patients with IBD, particularly CD, in light of possible chromosomal alterations.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Iwaki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Masahiro Kawahara
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tetsuya Takagawa
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Watanabe
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shiro Nakamura
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Sasaki
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Matsumoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Hisaaki Kudo
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization [NHO] Nagasaki Medical Center, Omura, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | | | - Yoshitaka Kinouchi
- Student Healthcare Center, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
57
|
Maeda K, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Ishikawa H, Ohashi K, Tsuboi Y, Hattori Y, Ishihara Y, Hashimoto S, Hamajima N, Suzuki K. Association of drinking behaviors with TXNIP DNA methylation levels in leukocytes among the general Japanese population. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:302-310. [PMID: 35416731 DOI: 10.1080/00952990.2022.2037137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Background: Thioredoxin-interacting protein (TXNIP) controls the cellular redox balance by binding to and inhibiting the expression and function of thioredoxin. DNA methylation of the TXNIP gene is involved in the regulation of TXNIP mRNA expression. Changes in TXNIP DNA methylation levels are associated with the development of various diseases such as type 2 diabetes mellitus (T2DM). However, few studies have focused on the influence of lifestyle factors such as alcohol intake on TXNIP DNA methylation.Objectives: This research examines the association of drinking behaviors with TXNIP DNA methylation levels in the general Japanese population.Methods: We conducted a cross-sectional study of 404 subjects (176 males and 228 females) who were divided into non-, moderate and heavy drinkers based on self-reported drinking behaviors. TXNIP DNA methylation levels in leukocytes were determined using a pyrosequencing assay.Results: The mean TXNIP DNA methylation level in heavy drinkers (74.2%) was significantly lower than that in non- and moderate drinkers (non: 77.7%, p < .001; moderate: 76.6%, p = .011). Multivariable linear regression analysis showed that log-transformed values of daily (b = -1.34; p < .001) and cumulative (b = -1.06; p = .001) alcohol consumption were associated with decreased TXNIP DNA methylation levels.Conclusion: TXNIP DNA methylation levels in heavy drinkers was lower than in non- and- moderate drinkers. Decreased TXNIP DNA methylation level increases the expression of TXNIP and elevates the risk of developing of diseases such as T2DM. Therefore, decreasing alcohol use in heavy drinkers may lessen the likelihood of some alcohol-related illnesses moderated through TXNIP DNA methylation.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuya Ishihara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
58
|
Schaschl H, Göllner T, Morris DL. Positive selection acts on regulatory genetic variants in populations of European ancestry that affect ALDH2 gene expression. Sci Rep 2022; 12:4563. [PMID: 35296751 PMCID: PMC8927298 DOI: 10.1038/s41598-022-08588-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
ALDH2 is a key enzyme in alcohol metabolism that protects cells from acetaldehyde toxicity. Using iHS, iSAFE and FST statistics, we identified regulatory acting variants affecting ALDH2 gene expression under positive selection in populations of European ancestry. Several SNPs (rs3184504, rs4766578, rs10774625, rs597808, rs653178, rs847892, rs2013002) that function as eQTLs for ALDH2 in various tissues showed evidence of strong positive selection. Very large pairwise FST values indicated high genetic differentiation at these loci between populations of European ancestry and populations of other global ancestries. Estimating the timing of positive selection on the beneficial alleles suggests that these variants were recently adapted approximately 3000-3700 years ago. The derived beneficial alleles are in complete linkage disequilibrium with the derived ALDH2 promoter variant rs886205, which is associated with higher transcriptional activity. The SNPs rs4766578 and rs847892 are located in binding sequences for the transcription factor HNF4A, which is an important regulatory element of ALDH2 gene expression. In contrast to the missense variant ALDH2 rs671 (ALDH2*2), which is common only in East Asian populations and is associated with greatly reduced enzyme activity and alcohol intolerance, the beneficial alleles of the regulatory variants identified in this study are associated with increased expression of ALDH2. This suggests adaptation of Europeans to higher alcohol consumption.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Tobias Göllner
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
59
|
Sakaue S, Hosomichi K, Hirata J, Nakaoka H, Yamazaki K, Yawata M, Yawata N, Naito T, Umeno J, Kawaguchi T, Matsui T, Motoya S, Suzuki Y, Inoko H, Tajima A, Morisaki T, Matsuda K, Kamatani Y, Yamamoto K, Inoue I, Okada Y. Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. CELL GENOMICS 2022; 2:100101. [PMID: 36777335 PMCID: PMC9903714 DOI: 10.1016/j.xgen.2022.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/07/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
The killer cell immunoglobulin-like receptor (KIR) recognizes human leukocyte antigen (HLA) class I molecules and modulates the function of natural killer cells. Despite its role in immunity, the complex genomic structure has limited a deep understanding of the KIR genomic landscape. Here we conduct deep sequencing of 16 KIR genes in 1,173 individuals. We devise a bioinformatics pipeline incorporating copy number estimation and insertion or deletion (indel) calling for high-resolution KIR genotyping. We define 118 alleles in 13 genes and demonstrate a linkage disequilibrium structure within and across KIR centromeric and telomeric regions. We construct a KIR imputation reference panel (nreference = 689, imputation accuracy = 99.7%), apply it to biobank genotype (ntotal = 169,907), and perform phenome-wide association studies of 85 traits. We observe a dearth of genome-wide significant associations, even in immune traits implicated previously to be associated with KIR (the smallest p = 1.5 × 10-4). Our pipeline presents a broadly applicable framework to evaluate innate immunity in large-scale datasets.
Collapse
Affiliation(s)
- Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Corresponding author
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Keiko Yamazaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Makoto Yawata
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore 119228, Singapore
- NUSMed Immunology Translational Research Programme, and Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, 812-8582, Japan
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takaaki Kawaguchi
- Division of Gastroenterology, Department of Medicine, Tokyo Yamate Medical Center, Tokyo 169-0073, Japan
| | - Toshiyuki Matsui
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka 818-0067, Japan
| | - Satoshi Motoya
- Department of Gastroenterology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Faculty of Medicine, Toho University, Chiba 274-8510, Japan
| | | | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Takayuki Morisaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
- Corresponding author
| |
Collapse
|
60
|
Mutai H, Momozawa Y, Kamatani Y, Nakano A, Sakamoto H, Takiguchi T, Nara K, Kubo M, Matsunaga T. Whole exome analysis of patients in Japan with hearing loss reveals high heterogeneity among responsible and novel candidate genes. Orphanet J Rare Dis 2022; 17:114. [PMID: 35248088 PMCID: PMC8898489 DOI: 10.1186/s13023-022-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Heterogeneous genetic loci contribute to hereditary hearing loss; more than 100 deafness genes have been identified, and the number is increasing. To detect pathogenic variants in multiple deafness genes, in addition to novel candidate genes associated with hearing loss, whole exome sequencing (WES), followed by analysis prioritizing genes categorized in four tiers, were applied.
Results Trios from families with non-syndromic or syndromic hearing loss (n = 72) were subjected to WES. After segregation analysis and interpretation according to American College of Medical Genetics and Genomics guidelines, candidate pathogenic variants in 11 previously reported deafness genes (STRC, MYO15A, CDH23, PDZD7, PTPN11, SOX10, EYA1, MYO6, OTOF, OTOG, and ZNF335) were identified in 21 families. Discrepancy between pedigree inheritance and genetic inheritance was present in one family. In addition, eight genes (SLC12A2, BAIAP2L2, HKDC1, SVEP1, CACNG1, GTPBP4, PCNX2, and TBC1D8) were screened as single candidate genes in 10 families. Conclusions Our findings demonstrate that four-tier assessment of WES data is efficient and can detect novel candidate genes associated with hearing loss, in addition to pathogenic variants of known deafness genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02262-4.
Collapse
|
61
|
Mbarek H, Devadoss Gandhi G, Selvaraj S, Al-Muftah W, Badji R, Al-Sarraj Y, Saad C, Darwish D, Alvi M, Fadl T, Yasin H, Alkuwari F, Razali R, Aamer W, Abbaszadeh F, Ahmed I, Mokrab Y, Suhre K, Albagha O, Fakhro K, Badii R, Ismail SI, Althani A. Qatar Genome: Insights on Genomics from the Middle East. Hum Mutat 2022; 43:499-510. [PMID: 35112413 DOI: 10.1002/humu.24336] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is under-represented in the human genome variation databases. Here we describe insights from phase 1 of the Qatar Genome Program with whole genome sequenced 6,047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighbouring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history and genetic contributions to health and diseases in diverse populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Geethanjali Devadoss Gandhi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University.,College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Senthil Selvaraj
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Wadha Al-Muftah
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Radja Badji
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Dima Darwish
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Muhammad Alvi
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Tasnim Fadl
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Heba Yasin
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Fatima Alkuwari
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rozaimi Razali
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Waleed Aamer
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Ikhlak Ahmed
- Sidra Medicine, Biomedical Informatics - Research Branch, Doha, Qatar
| | - Younes Mokrab
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Omar Albagha
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.,Center of Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Khalid Fakhro
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Ramin Badii
- Molecular Genetics Laboratory, Hamad Medical Corporation, Doha, Qatar
| | | | - Asma Althani
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
62
|
Suzuki K, Kakuta Y, Naito T, Takagawa T, Hanai H, Araki H, Sasaki Y, Sakuraba H, Sasaki M, Hisamatsu T, Motoya S, Matsumoto T, Onodera M, Ishiguro Y, Nakase H, Andoh A, Hiraoka S, Shinozaki M, Fujii T, Katsurada T, Kobayashi T, Fujiya M, Otsuka T, Oshima N, Suzuki Y, Sato Y, Hokari R, Noguchi M, Ohta Y, Matsuura M, Kawai Y, Tokunaga K, Nagasaki M, Kudo H, Minegishi N, Okamoto D, Shimoyama Y, Moroi R, Kuroha M, Shiga H, Li D, McGovern DPB, Kinouchi Y, Masamune A. Genetic Background of Mesalamine-induced Fever and Diarrhea in Japanese Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:21-31. [PMID: 33501934 DOI: 10.1093/ibd/izab004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Some patients with inflammatory bowel disease (IBD) who were under mesalamine treatment develop adverse reactions called "mesalamine allergy," which includes high fever and worsening diarrhea. Currently, there is no method to predict mesalamine allergy. Pharmacogenomic approaches may help identify these patients. Here we analyzed the genetic background of mesalamine intolerance in the first genome-wide association study of Japanese patients with IBD. METHODS Two independent pharmacogenetic IBD cohorts were analyzed: the MENDEL (n = 1523; as a discovery set) and the Tohoku (n = 788; as a replication set) cohorts. Genome-wide association studies were performed in each population, followed by a meta-analysis. In addition, we constructed a polygenic risk score model and combined genetic and clinical factors to model mesalamine intolerance. RESULTS In the combined cohort, mesalamine-induced fever and/or diarrhea was significantly more frequent in ulcerative colitis vs Crohn's disease. The genome-wide association studies and meta-analysis identified one significant association between rs144384547 (upstream of RGS17) and mesalamine-induced fever and diarrhea (P = 7.21e-09; odds ratio = 11.2). The estimated heritability of mesalamine allergy was 25.4%, suggesting a significant correlation with the genetic background. Furthermore, a polygenic risk score model was built to predict mesalamine allergy (P = 2.95e-2). The combined genetic/clinical prediction model yielded a higher area under the curve than did the polygenic risk score or clinical model alone (area under the curve, 0.89; sensitivity, 71.4%; specificity, 90.8%). CONCLUSIONS Mesalamine allergy was more common in ulcerative colitis than in Crohn's disease. We identified a novel genetic association with and developed a combined clinical/genetic model for this adverse event.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.,F. Widjaja Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tetsuya Takagawa
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Hiroshi Araki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yu Sasaki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Makoto Sasaki
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Japan
| | - Satoshi Motoya
- IBD Center, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Motoyuki Onodera
- Department of Gastroenterology, Iwate Prefectural Isawa Hospital, Iwate, Japan
| | - Yoh Ishiguro
- Department of Gastroenterology and Hematology, Hirosaki National Hospital, Hirosaki, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Andoh
- Department of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaru Shinozaki
- Department of Surgery, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshimitsu Fujii
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Mikihiro Fujiya
- Department of Medicine, Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan
| | - Takafumi Otsuka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Naoki Oshima
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Yuichirou Sato
- Department of Gastroenterology, Osaki Citizen Hospital, Osaki, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Yuki Ohta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hisaaki Kudo
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Daisuke Okamoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Gastroenterology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
63
|
Hwang MY, Choi NH, Won HH, Kim BJ, Kim YJ. Analyzing the Korean reference genome with meta-imputation increased the imputation accuracy and spectrum of rare variants in the Korean population. Front Genet 2022; 13:1008646. [PMID: 36506321 PMCID: PMC9731225 DOI: 10.3389/fgene.2022.1008646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Genotype imputation is essential for enhancing the power of association-mapping and discovering rare and indels that are missed by most genotyping arrays. Imputation analysis can be more accurate with a population-specific reference panel or a multi-ethnic reference panel with numerous samples. The National Institute of Health, Republic of Korea, initiated the Korean Reference Genome (KRG) project to identify variants in whole-genome sequences of ∼20,000 Korean participants. In the pilot phase, we analyzed the data from 1,490 participants. The genetic characteristics and imputation performance of the KRG were compared with those of the 1,000 Genomes Project Phase 3, GenomeAsia 100K Project, ChinaMAP, NARD, and TOPMed reference panels. For comparison analysis, genotype panels were artificially generated using whole-genome sequencing data from combinations of four different ancestries (Korean, Japanese, Chinese, and European) and two population-specific optimized microarrays (Korea Biobank Array and UK Biobank Array). The KRG reference panel performed best for the Korean population (R 2 = 0.78-0.84, percentage of well-imputed is 91.9% for allele frequency >5%), although the other reference panels comprised a larger number of samples with genetically different background. By comparing multiple reference panels and multi-ethnic genotype panels, optimal imputation was obtained using reference panels from genetically related populations and a population-optimized microarray. Indeed, the reference panels of KRG and TOPMed showed the best performance when applied to the genotype panels of KBA (R 2 = 0.84) and UKB (R 2 = 0.87), respectively. Using a meta-imputation approach to merge imputation results from different reference panels increased the imputation accuracy for rare variants (∼7%) and provided additional well-imputed variants (∼20%) with comparable imputation accuracy to that of the KRG. Our results demonstrate the importance of using a population-specific reference panel and meta-imputation to assess a substantial number of accurately imputed rare variants.
Collapse
Affiliation(s)
- Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea.,Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Nak-Hyeon Choi
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Hong Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| |
Collapse
|
64
|
Kawakami K, Miyasaka T, Nakamura Y, Metoki H, Miyata S, Sato M, Sora I, Yamauchi K, Kawakami K, Blendy JA, Kawano T, Shimokawa H, Takayanagi M, Ohno I, Takahashi T. The A118G single-nucleotide polymorphism in OPRM1 is a risk factor for asthma severity. Allergol Int 2022; 71:55-65. [PMID: 34688555 DOI: 10.1016/j.alit.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although population studies have implicated emotional burden in asthma severity, the underlying genetic risk factors are not completely understood. We aimed to evaluate the genetic influence of a functional single-nucleotide polymorphism (SNP) in the stress-related μ-opioid receptor gene (OPRM1; A118G SNP, rs1799971) on asthma severity. METHODS We initially assessed disease severity in asthmatic outpatients carrying A118G. Using an ovalbumin-induced experimental asthma rodent model harboring the functionally equivalent SNP, we investigated the mechanism by which this SNP influences the allergic immune response. RESULTS Among 292 outpatients, 168 underwent airway hyperresponsiveness (AHR) to methacholine testing. Compared with patients carrying the AA and AG genotypes, those carrying the GG genotype exhibited enhanced AHR. The stress levels were presumed to be moderate among patients and were comparable among genotypes. Compared with Oprm1 AA mice, GG mice demonstrated aggravated asthma-related features and increased pulmonary interleukin-4+CD4+ effector and effector memory T cells under everyday life stress conditions. Intraperitoneal naloxone methiodide injection reduced effector CD4+ T cell elevation associated with increased eosinophil numbers in bronchoalveolar lavage fluid of GG mice to the levels in AA mice, suggesting that elevated Th2 cell generation in the bronchial lymph node (BLN) of GG mice induces enhanced eosinophilic inflammation. CONCLUSIONS Without forced stress exposure, patients with asthma carrying the OPRM1 GG genotype exhibit enhanced AHR, attributable to enhanced Th2 cell differentiation in the regional lymph node. Further research is necessary to elucidate the role of the OPRM1 A118G genotype in the Th2 cell differentiation pathway in the BLN.
Collapse
Affiliation(s)
- Kaori Kawakami
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Yutaka Nakamura
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hirohito Metoki
- Division of Public Health, Hygiene and Epidemiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Satoshi Miyata
- Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Miki Sato
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohei Yamauchi
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
65
|
Sonehara K, Sakaue S, Maeda Y, Hirata J, Kishikawa T, Yamamoto K, Matsuoka H, Yoshimura M, Nii T, Ohshima S, Kumanogoh A, Okada Y. Genetic architecture of microRNA expression and its link to complex diseases in the Japanese population. Hum Mol Genet 2021; 31:1806-1820. [PMID: 34919704 PMCID: PMC9169454 DOI: 10.1093/hmg/ddab361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic effects on non-coding RNA (ncRNA) expression facilitates functional characterization of disease-associated genetic loci. Among several classes of ncRNAs, microRNAs (miRNAs) are key post-transcriptional gene regulators. Despite its biological importance, previous studies on the genetic architecture of miRNA expression focused mostly on the European individuals, underrepresented in other populations. Here, we mapped miRNA expression quantitative trait loci (miRNA-eQTL) for 343 miRNAs in 141 Japanese using small RNA sequencing (sRNA-seq) and whole-genome sequencing (WGS), identifying 1275 cis-miRNA-eQTL variants for 40 miRNAs (false discovery rate < 0.2). Of these, 25 miRNAs having eQTL were unreported in the European studies, including 5 miRNAs with their lead variant monomorphic in the European populations, which demonstrates the value of miRNA-eQTL analysis in diverse ancestral populations. MiRNAs with eQTL effect showed allele-specific expression (ASE) (e.g. miR-146a-3p), and ASE analysis further detected cis-regulatory variants not captured by the conventional miRNA-eQTL mapping (e.g. miR-933). We identified a copy number variation (CNV) associated with miRNA expression (e.g. miR-570-3p, P = 7.2 × 10-6), which contributes to a more comprehensive landscape of miRNA-eQTLs. To elucidate a post-transcriptional modification in miRNAs, we created a catalog of miRNA-editing sites, including ten canonical and six non-canonical sites. Finally, by integrating the miRNA-eQTLs and Japanese genome-wide association studies of 25 complex traits (mean n = 192 833), we conducted a transcriptome-wide association study (TWAS), identifying miR-1908-5p as a potential mediator for adult height, colorectal cancer, and type 2 diabetes (P < 9.1 × 10-5). Our study broadens the population diversity in ncRNA-eQTL studies and contributes to functional annotation of disease-associated loci found in non-European populations.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Center for Data Sciences, Harvard Medical School, Boston, MA, 02114, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Hino, 191-8512, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Hidetoshi Matsuoka
- Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, 586-8521, Japan
| | - Maiko Yoshimura
- Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, 586-8521, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shiro Ohshima
- Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, 586-8521, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan.,The Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871, Japan.,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| |
Collapse
|
66
|
Abstract
Summary: We provide an Editorial perspective on approaches to improve ethnic representation in the human genome reference sequence, enabling its widespread use in genomic studies and precision medicine to benefit all peoples.
Collapse
Affiliation(s)
- Monkol Lek
- The Anlyan Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Elaine R. Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
67
|
Breton G, Johansson ACV, Sjödin P, Schlebusch CM, Jakobsson M. Comparison of sequencing data processing pipelines and application to underrepresented African human populations. BMC Bioinformatics 2021; 22:488. [PMID: 34627144 PMCID: PMC8502359 DOI: 10.1186/s12859-021-04407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Population genetic studies of humans make increasing use of high-throughput sequencing in order to capture diversity in an unbiased way. There is an abundance of sequencing technologies, bioinformatic tools and the available genomes are increasing in number. Studies have evaluated and compared some of these technologies and tools, such as the Genome Analysis Toolkit (GATK) and its “Best Practices” bioinformatic pipelines. However, studies often focus on a few genomes of Eurasian origin in order to detect technical issues. We instead surveyed the use of the GATK tools and established a pipeline for processing high coverage full genomes from a diverse set of populations, including Sub-Saharan African groups, in order to reveal challenges from human diversity and stratification. Results We surveyed 29 studies using high-throughput sequencing data, and compared their strategies for data pre-processing and variant calling. We found that processing of data is very variable across studies and that the GATK “Best Practices” are seldom followed strictly. We then compared three versions of a GATK pipeline, differing in the inclusion of an indel realignment step and with a modification of the base quality score recalibration step. We applied the pipelines on a diverse set of 28 individuals. We compared the pipelines in terms of count of called variants and overlap of the callsets. We found that the pipelines resulted in similar callsets, in particular after callset filtering. We also ran one of the pipelines on a larger dataset of 179 individuals. We noted that including more individuals at the joint genotyping step resulted in different counts of variants. At the individual level, we observed that the average genome coverage was correlated to the number of variants called. Conclusions We conclude that applying the GATK “Best Practices” pipeline, including their recommended reference datasets, to underrepresented populations does not lead to a decrease in the number of called variants compared to alternative pipelines. We recommend to aim for coverage of > 30X if identifying most variants is important, and to work with large sample sizes at the variant calling stage, also for underrepresented individuals and populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04407-x.
Collapse
Affiliation(s)
- Gwenna Breton
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden.
| | - Anna C V Johansson
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.,Science for Life Laboratory, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
68
|
Luo Y, Kanai M, Choi W, Li X, Sakaue S, Yamamoto K, Ogawa K, Gutierrez-Arcelus M, Gregersen PK, Stuart PE, Elder JT, Forer L, Schönherr S, Fuchsberger C, Smith AV, Fellay J, Carrington M, Haas DW, Guo X, Palmer ND, Chen YDI, Rotter JI, Taylor KD, Rich SS, Correa A, Wilson JG, Kathiresan S, Cho MH, Metspalu A, Esko T, Okada Y, Han B, McLaren PJ, Raychaudhuri S. A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat Genet 2021; 53:1504-1516. [PMID: 34611364 PMCID: PMC8959399 DOI: 10.1038/s41588-021-00935-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Fine-mapping to plausible causal variation may be more effective in multi-ancestry cohorts, particularly in the MHC, which has population-specific structure. To enable such studies, we constructed a large (n = 21,546) HLA reference panel spanning five global populations based on whole-genome sequences. Despite population-specific long-range haplotypes, we demonstrated accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT) populations). Applying HLA imputation to genome-wide association study data for HIV-1 viral load in three populations (EUR, AA and LAT), we obviated effects of previously reported associations from population-specific HIV studies and discovered a novel association at position 156 in HLA-B. We pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide-binding groove, explaining 12.9% of trait variance.
Collapse
Affiliation(s)
- Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Masahiro Kanai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Wanson Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Xinyi Li
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kotaro Ogawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maria Gutierrez-Arcelus
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter K Gregersen
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research,North Short LIJ Health System, Manhasset, NY, USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Fuchsberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Albert V Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - David W Haas
- Vanderbilt University Medical Center, Nashville, TN, USA
- Meharry Medical College, Nashville, TN, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Adolfo Correa
- Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - James G Wilson
- Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sekar Kathiresan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tonu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Paul J McLaren
- J.C. Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, UK.
| |
Collapse
|
69
|
Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, Narita A, Konuma T, Yamamoto K, Akiyama M, Ishigaki K, Suzuki A, Suzuki K, Obara W, Yamaji K, Takahashi K, Asai S, Takahashi Y, Suzuki T, Shinozaki N, Yamaguchi H, Minami S, Murayama S, Yoshimori K, Nagayama S, Obata D, Higashiyama M, Masumoto A, Koretsune Y, Ito K, Terao C, Yamauchi T, Komuro I, Kadowaki T, Tamiya G, Yamamoto M, Nakamura Y, Kubo M, Murakami Y, Yamamoto K, Kamatani Y, Palotie A, Rivas MA, Daly MJ, Matsuda K, Okada Y. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 2021; 53:1415-1424. [PMID: 34594039 DOI: 10.1038/s41588-021-00931-x] [Citation(s) in RCA: 1105] [Impact Index Per Article: 276.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Current genome-wide association studies do not yet capture sufficient diversity in populations and scope of phenotypes. To expand an atlas of genetic associations in non-European populations, we conducted 220 deep-phenotype genome-wide association studies (diseases, biomarkers and medication usage) in BioBank Japan (n = 179,000), by incorporating past medical history and text-mining of electronic medical records. Meta-analyses with the UK Biobank and FinnGen (ntotal = 628,000) identified ~5,000 new loci, which improved the resolution of the genomic map of human traits. This atlas elucidated the landscape of pleiotropy as represented by the major histocompatibility complex locus, where we conducted HLA fine-mapping. Finally, we performed statistical decomposition of matrices of phenome-wide summary statistics, and identified latent genetic components, which pinpointed responsible variants and biological mechanisms underlying current disease classifications across populations. The decomposed components enabled genetically informed subtyping of similar diseases (for example, allergic diseases). Our study suggests a potential avenue for hypothesis-free re-investigation of human diseases through genetics.
Collapse
Affiliation(s)
- Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. .,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Center for Data Sciences, Harvard Medical School, Boston, MA, USA. .,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Masahiro Kanai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| | - Juha Karjalainen
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mitja Kurki
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Sendai, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahiro Konuma
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical Science, Nihon University School of Medicine, Tokyo, Japan.,Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | - Shiro Minami
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Kozo Yoshimori
- Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Satoshi Nagayama
- The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Obata
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Masahiko Higashiyama
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | | | | | | | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Toranomon Hospital, Tokyo, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yusuke Nakamura
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. .,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan. .,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
70
|
Kokubun K, Pineda JCD, Yamakawa Y. Unhealthy lifestyles and brain condition: Examining the relations of BMI, living alone, alcohol intake, short sleep, smoking, and lack of exercise with gray matter volume. PLoS One 2021; 16:e0255285. [PMID: 34329345 PMCID: PMC8323871 DOI: 10.1371/journal.pone.0255285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Unhealthy lifestyles are damaging to the brain. Previous studies have indicated that body mass index (BMI), alcohol intake, short sleep, smoking, and lack of exercise are negatively associated with gray matter volume (GMV). Living alone has also been found to be related to GMV through lowered subjective happiness. However, to our knowledge, no GMV study has dealt with these unhealthy lifestyles simultaneously. By our analyses based on 142 healthy Japanese participants, BMI, alcohol intake, living alone, and short sleep were negatively associated with the gray-matter brain healthcare quotient (GM-BHQ), an MRI-based normalized GMV, after controlling for age, sex, and facility, not only individually but also when they were entered into a single regression model. Moreover, there were small but significant differences in the proportion of the variance for GM-BHQ explained by variables in a regression model (measured by R squared) between when these unhealthy variables were entered in an equation at the same time and when they were entered separately, with the former larger than the latter. However, smoking and lack of exercise were not significantly associated with GM-BHQ. Results indicate that some kinds of unhealthy lifestyles are somewhat harmful on their own, but may become more noxious to brain condition if practiced simultaneously, although its difference may not be large. To our knowledge, this study is the first to show that overlapping unhealthy lifestyles affects the brains of healthy adults.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | | | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan
- Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan
- Brain Impact, Kyoto, Japan
| |
Collapse
|
71
|
Inoue M, Arichi S, Hachiya T, Ohtera A, Kim SW, Yu E, Nishimura M, Shiosakai K, Ohira T. An exploratory assessment of the applicability of direct-to-consumer genetic testing to translational research in Japan. BMC Res Notes 2021; 14:282. [PMID: 34301328 PMCID: PMC8305957 DOI: 10.1186/s13104-021-05696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Objective In order to assess the applicability of a direct-to-consumer (DTC) genetic testing to translational research for obtaining new knowledge on relationships between drug target genes and diseases, we examined possibility of these data by associating SNPs and disease related phenotype information collected from healthy individuals. Results A total of 12,598 saliva samples were collected from the customers of commercial service for SNPs analysis and web survey were conducted to collect phenotype information. The collected dataset revealed similarity to the Japanese data but distinguished differences to other populations of all dataset of the 1000 Genomes Project. After confirmation of a well-known relationship between ALDH2 and alcohol-sensitivity, Phenome-Wide Association Study (PheWAS) was performed to find association between pre-selected drug target genes and all the phenotypes. Association was found between GRIN2B and multiple phenotypes related to depression, which is considered reliable based on previous reports on the biological function of GRIN2B protein and its relationship with depression. These results suggest possibility of using SNPs and phenotype information collected from healthy individuals as a translational research tool for drug discovery to find relationship between a gene and a disease if it is possible to extract individuals in pre-disease states by properly designed questionnaire. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05696-4.
Collapse
Affiliation(s)
- Masahiro Inoue
- HealthData Lab, Yahoo! Japan Corporation, Kioi Tower, Tokyo Garden Terrace Kioicho, 1-3, Kioi-cho, Chiyoda-ku, Tokyo, 102-8282, Japan
| | - Shota Arichi
- HealthData Lab, Yahoo! Japan Corporation, Kioi Tower, Tokyo Garden Terrace Kioicho, 1-3, Kioi-cho, Chiyoda-ku, Tokyo, 102-8282, Japan
| | - Tsuyoshi Hachiya
- HealthData Lab, Yahoo! Japan Corporation, Kioi Tower, Tokyo Garden Terrace Kioicho, 1-3, Kioi-cho, Chiyoda-ku, Tokyo, 102-8282, Japan
| | - Anna Ohtera
- Real World Evidence Solutions, IQVIA Solutions Japan K.K, Takanawa 4-10-18, Minato-ku, Tokyo, 108-0074, Japan
| | - Seok-Won Kim
- Real World Evidence Solutions, IQVIA Solutions Japan K.K, Takanawa 4-10-18, Minato-ku, Tokyo, 108-0074, Japan
| | - Eric Yu
- Real World Evidence Solutions, IQVIA Solutions Japan K.K, Takanawa 4-10-18, Minato-ku, Tokyo, 108-0074, Japan
| | | | | | | |
Collapse
|
72
|
Matsunami M, Koganebuchi K, Imamura M, Ishida H, Kimura R, Maeda S. Fine-Scale Genetic Structure and Demographic History in the Miyako Islands of the Ryukyu Archipelago. Mol Biol Evol 2021; 38:2045-2056. [PMID: 33432348 PMCID: PMC8097307 DOI: 10.1093/molbev/msab005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Ryukyu Archipelago is located in the southwest of the Japanese islands and is composed of dozens of islands, grouped into the Miyako Islands, Yaeyama Islands, and Okinawa Islands. Based on the results of principal component analysis on genome-wide single-nucleotide polymorphisms, genetic differentiation was observed among the island groups of the Ryukyu Archipelago. However, a detailed population structure analysis of the Ryukyu Archipelago has not yet been completed. We obtained genomic DNA samples from 1,240 individuals living in the Miyako Islands, and we genotyped 665,326 single-nucleotide polymorphisms to infer population history within the Miyako Islands, including Miyakojima, Irabu, and Ikema islands. The haplotype-based analysis showed that populations in the Miyako Islands were divided into three subpopulations located on Miyakojima northeast, Miyakojima southwest, and Irabu/Ikema. The results of haplotype sharing and the D statistics analyses showed that the Irabu/Ikema subpopulation received gene flows different from those of the Miyakojima subpopulations, which may be related with the historically attested immigration during the Gusuku period (900 − 500 BP). A coalescent-based demographic inference suggests that the Irabu/Ikema population firstly split away from the ancestral Ryukyu population about 41 generations ago, followed by a split of the Miyako southwest population from the ancestral Ryukyu population (about 16 generations ago), and the differentiation of the ancestral Ryukyu population into two populations (Miyako northeast and Okinawajima populations) about seven generations ago. Such genetic information is useful for explaining the population history of modern Miyako people and must be taken into account when performing disease association studies.
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Kae Koganebuchi
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan.,Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan.,Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Japan
| |
Collapse
|
73
|
Xu H, Zhen Q, Bai M, Fang L, Zhang Y, Li B, Ge H, Moon S, Chen W, Fu W, Xu Q, Zhou Y, Yu Y, Lin L, Yong L, Zhang T, Chen S, Liu S, Zhang H, Chen R, Cao L, Zhang Y, Zhang R, Yang H, Hu X, Akey JM, Jin X, Sun L. Deep sequencing of 1320 genes reveals the landscape of protein-truncating variants and their contribution to psoriasis in 19,973 Chinese individuals. Genome Res 2021; 31:1150-1158. [PMID: 34155038 PMCID: PMC8256863 DOI: 10.1101/gr.267963.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Protein-truncating variants (PTVs) have important impacts on phenotype diversity and disease. However, their population genetics characteristics in more globally diverse populations are not well defined. Here, we describe patterns of PTVs in 1320 genes sequenced in 10,539 healthy controls and 9434 patients with psoriasis, all of Han Chinese ancestry. We identify 8720 PTVs, of which 77% are novel, and estimate 88% of all PTVs are deleterious and subject to purifying selection. Furthermore, we show that individuals with psoriasis have a significantly higher burden of PTVs compared to controls (P = 0.02). Finally, we identified 18 PTVs in 14 genes with unusually high levels of population differentiation, consistent with the action of local adaptation. Our study provides insights into patterns and consequences of PTVs.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Mingzhou Bai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Lin Fang
- Guangdong Engineering Research Center of Life Sciences Bigdata, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yong Zhang
- Guangdong Engineering Research Center of Life Sciences Bigdata, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bao Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
| | - Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Sunjin Moon
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenqing Fu
- Microsoft Corporation, Redmond, Washington 98052, USA
| | - Qiongqiong Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yuwen Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Long Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Tao Zhang
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Shirui Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, Guangdong, China
| | - Hui Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ruoyan Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Lu Cao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yuanwei Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ruixue Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanjie Yang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xia Hu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
74
|
Abstract
Some of the genes responsible for the evolution of light skin pigmentation in Europeans show signals of positive selection in present-day populations. Recently, genome-wide association studies have highlighted the highly polygenic nature of skin pigmentation. It is unclear whether selection has operated on all of these genetic variants or just a subset. By studying variation in over a thousand ancient genomes from West Eurasia covering 40,000 y, we are able to study both the aggregate behavior of pigmentation-associated variants and the evolutionary history of individual variants. We find that the evolution of light skin pigmentation in Europeans was driven by frequency changes in a relatively small fraction of the genetic variants that are associated with variation in the trait today. Skin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all of the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1,158 individuals from West Eurasia covering a period of 40,000 y combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on 170 skin pigmentation-associated variants ascertained in the UK Biobank. However, we also show that this signal is driven by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Western Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.
Collapse
|
75
|
Abe‐Hatano C, Iida A, Kosugi S, Momozawa Y, Terao C, Ishikawa K, Okubo M, Hachiya Y, Nishida H, Nakamura K, Miyata R, Murakami C, Takahashi K, Hoshino K, Sakamoto H, Ohta S, Kubota M, Takeshita E, Ishiyama A, Nakagawa E, Sasaki M, Kato M, Matsumoto N, Kamatani Y, Kubo M, Takahashi Y, Natsume J, Inoue K, Goto Y. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021; 185:1468-1480. [PMID: 33624935 PMCID: PMC8247954 DOI: 10.1002/ajmg.a.62138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Intellectual disability (ID) is characterized by significant limitations in both intellectual functioning and adaptive behaviors, originating before the age of 18 years. However, the genetic etiologies of ID are still incompletely elucidated due to the wide range of clinical and genetic heterogeneity. Whole genome sequencing (WGS) has been applied as a single-step clinical diagnostic tool for ID because it detects genetic variations with a wide range of resolution from single nucleotide variants (SNVs) to structural variants (SVs). To explore the causative genes for ID, we employed WGS in 45 patients from 44 unrelated Japanese families and performed a stepwise screening approach focusing on the coding variants in the genes. Here, we report 12 pathogenic and likely pathogenic variants: seven heterozygous variants of ADNP, SATB2, ANKRD11, PTEN, TCF4, SPAST, and KCNA2, three hemizygous variants of SMS, SLC6A8, and IQSEC2, and one homozygous variant in AGTPBP1. Of these, four were considered novel. Furthermore, a novel 76 kb deletion containing exons 1 and 2 in DYRK1A was identified. We confirmed the clinical and genetic heterogeneity and high frequency of de novo causative variants (8/12, 66.7%). This is the first report of WGS analysis in Japanese patients with ID. Our results would provide insight into the correlation between novel variants and expanded phenotypes of the disease.
Collapse
Affiliation(s)
- Chihiro Abe‐Hatano
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Aritoshi Iida
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Clinical Research CenterShizuoka General HospitalShizuokaJapan
- The Department of Applied GeneticsThe School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Keiko Ishikawa
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Mariko Okubo
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yasuo Hachiya
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Hiroya Nishida
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | - Rie Miyata
- Department of PediatricsTokyo‐Kita Medical CenterTokyoJapan
| | - Chie Murakami
- Department of PediatricsKitakyusyu Children's Rehabilitation CenterFukuokaJapan
| | - Kan Takahashi
- Department of PediatricsOme Municipal General HospitalTokyoJapan
| | - Kyoko Hoshino
- Department of PediatricsMinami Wakayama Medical CenterWakayamaJapan
| | - Haruko Sakamoto
- Department of NeonatologyJapanese Red Cross Osaka HospitalOsakaJapan
| | - Sayaka Ohta
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Masaya Kubota
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Eri Takeshita
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Akihiko Ishiyama
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Eiji Nakagawa
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sasaki
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Mitsuhiro Kato
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineKanagawaJapan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
| | - Michiaki Kubo
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yoshiyuki Takahashi
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Jun Natsume
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yu‐Ichi Goto
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
76
|
Tseng CC, Wong MC, Liao WT, Chen CJ, Lee SC, Yen JH, Chang SJ. Genetic Variants in Transcription Factor Binding Sites in Humans: Triggered by Natural Selection and Triggers of Diseases. Int J Mol Sci 2021; 22:ijms22084187. [PMID: 33919522 PMCID: PMC8073710 DOI: 10.3390/ijms22084187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Variants of transcription factor binding sites (TFBSs) constitute an important part of the human genome. Current evidence demonstrates close links between nucleotides within TFBSs and gene expression. There are multiple pathways through which genomic sequences located in TFBSs regulate gene expression, and recent genome-wide association studies have shown the biological significance of TFBS variation in human phenotypes. However, numerous challenges remain in the study of TFBS polymorphisms. This article aims to cover the current state of understanding as regards the genomic features of TFBSs and TFBS variants; the mechanisms through which TFBS variants regulate gene expression; the approaches to studying the effects of nucleotide changes that create or disrupt TFBSs; the challenges faced in studies of TFBS sequence variations; the effects of natural selection on collections of TFBSs; in addition to the insights gained from the study of TFBS alleles related to gout, its associated comorbidities (increased body mass index, chronic kidney disease, diabetes, dyslipidemia, coronary artery disease, ischemic heart disease, hypertension, hyperuricemia, osteoporosis, and prostate cancer), and the treatment responses of patients.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Man-Chun Wong
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan;
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biological Science and Technology, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| |
Collapse
|
77
|
Spracklen CN, Sim X. Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry. Curr Diab Rep 2021; 21:17. [PMID: 33846905 DOI: 10.1007/s11892-021-01388-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Prevalence of type 2 diabetes (T2D) and progression of complications differ between worldwide populations. While obesity is a major contributing risk factor, variations in physiological manifestations, e.g., developing T2D at lower body mass index in some populations, suggest other contributing factors. Early T2D genetic associations were mostly discovered in European ancestry populations. This review describes the progression of genetic discoveries associated with T2D in individuals of East Asian ancestry in the last 10 years and highlights the shared genetic susceptibility between the population groups and additional insights into genetic contributions to T2D. RECENT FINDINGS Through increased sample size and power, new genetic associations with T2D were discovered in East Asian ancestry populations, often with higher allele frequencies than European ancestry populations. As we continue to generate maps of T2D-associated variants across diverse populations, there will be a critical need to expand and diversify other omics resources to enable integration for clinical translation.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, 715 North Pleasant Street, 429 Arnold House, Amherst, MA, 01002, USA.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore.
| |
Collapse
|
78
|
Yasumizu Y, Sakaue S, Konuma T, Suzuki K, Matsuda K, Murakami Y, Kubo M, Palamara PF, Kamatani Y, Okada Y. Genome-Wide Natural Selection Signatures Are Linked to Genetic Risk of Modern Phenotypes in the Japanese Population. Mol Biol Evol 2021; 37:1306-1316. [PMID: 31957793 PMCID: PMC7182208 DOI: 10.1093/molbev/msaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Elucidation of natural selection signatures and relationships with phenotype spectra is important to understand adaptive evolution of modern humans. Here, we conducted a genome-wide scan of selection signatures of the Japanese population by estimating locus-specific time to the most recent common ancestor using the ascertained sequentially Markovian coalescent (ASMC), from the biobank-based large-scale genome-wide association study data of 170,882 subjects. We identified 29 genetic loci with selection signatures satisfying the genome-wide significance. The signatures were most evident at the alcohol dehydrogenase (ADH) gene cluster locus at 4q23 (PASMC = 2.2 × 10−36), followed by relatively strong selection at the FAM96A (15q22), MYOF (10q23), 13q21, GRIA2 (4q32), and ASAP2 (2p25) loci (PASMC < 1.0 × 10−10). The additional analysis interrogating extended haplotypes (integrated haplotype score) showed robust concordance of the detected signatures, contributing to fine-mapping of the genes, and provided allelic directional insights into selection pressure (e.g., positive selection for ADH1B-Arg48His and HLA-DPB1*04:01). The phenome-wide selection enrichment analysis with the trait-associated variants identified a variety of the modern human phenotypes involved in the adaptation of Japanese. We observed population-specific evidence of enrichment with the alcohol-related phenotypes, anthropometric and biochemical clinical measurements, and immune-related diseases, differently from the findings in Europeans using the UK Biobank resource. Our study demonstrated population-specific features of the selection signatures in Japanese, highlighting a value of the natural selection study using the nation-wide biobank-scale genome and phenotype data.
Collapse
Affiliation(s)
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takahiro Konuma
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Science, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
79
|
A genome-wide association study on confection consumption in a Japanese population: the Japan Multi-Institutional Collaborative Cohort Study. Br J Nutr 2021; 126:1843-1851. [PMID: 33632354 DOI: 10.1017/s0007114521000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differences in individual eating habits may be influenced by genetic factors, in addition to cultural, social or environmental factors. Previous studies suggested that genetic variants within sweet taste receptor genes family were associated with sweet taste perception and the intake of sweet foods. The aim of this study was to conduct a genome-wide association study (GWAS) to find genetic variations that affect confection consumption in a Japanese population. We analysed GWAS data on confection consumption using 14 073 participants from the Japan Multi-Institutional Collaborative Cohort study. We used a semi-quantitative FFQ to estimate food intake that was validated previously. Association of the imputed variants with confection consumption was performed by linear regression analysis with adjustments for age, sex, total energy intake and principal component analysis components 1-3. Furthermore, the analysis was repeated adjusting for alcohol intake (g/d) in addition to the above-described variables. We found 418 SNP located in 12q24 that were associated with confection consumption. SNP with the ten lowest P-values were located on nine genes including at the BRAP, ACAD10 and aldehyde dehydrogenase 2 regions on 12q24.12-13. After adjustment for alcohol intake, no variant was associated with confections intake with genome-wide significance. In conclusion, we found a significant number of SNP located on 12q24 genes that were associated with confections intake before adjustment for alcohol intake. However, all of them lost statistical significance after adjustment for alcohol intake.
Collapse
|
80
|
Li Z, Wang Z, Lee MC, Zenkel M, Peh E, Ozaki M, Topouzis F, Nakano S, Chan A, Chen S, Williams SEI, Orr A, Nakano M, Kobakhidze N, Zarnowski T, Popa-Cherecheanu A, Mizoguchi T, Manabe SI, Hayashi K, Kazama S, Inoue K, Mori Y, Miyata K, Sugiyama K, Higashide T, Chihara E, Ideta R, Ishiko S, Yoshida A, Tokumo K, Kiuchi Y, Ohashi T, Sakurai T, Sugimoto T, Chuman H, Aihara M, Inatani M, Mori K, Ikeda Y, Ueno M, Gaston D, Rafuse P, Shuba L, Saunders J, Nicolela M, Chichua G, Tabagari S, Founti P, Sim KS, Meah WY, Soo HM, Chen XY, Chatzikyriakidou A, Keskini C, Pappas T, Anastasopoulos E, Lambropoulos A, Panagiotou ES, Mikropoulos DG, Kosior-Jarecka E, Cheong A, Li Y, Lukasik U, Nongpiur ME, Husain R, Perera SA, Álvarez L, García M, González-Iglesias H, Fernández-Vega Cueto A, Fernández-Vega Cueto L, Martinón-Torres F, Salas A, Oguz Ç, Tamcelik N, Atalay E, Batu B, Irkec M, Aktas D, Kasim B, Astakhov YS, Astakhov SY, Akopov EL, Giessl A, Mardin C, Hellerbrand C, Cooke Bailey JN, Igo RP, Haines JL, Edward DP, Heegaard S, Davila S, Tan P, Kang JH, Pasquale LR, Kruse FE, Reis A, Carmichael TR, Hauser M, et alLi Z, Wang Z, Lee MC, Zenkel M, Peh E, Ozaki M, Topouzis F, Nakano S, Chan A, Chen S, Williams SEI, Orr A, Nakano M, Kobakhidze N, Zarnowski T, Popa-Cherecheanu A, Mizoguchi T, Manabe SI, Hayashi K, Kazama S, Inoue K, Mori Y, Miyata K, Sugiyama K, Higashide T, Chihara E, Ideta R, Ishiko S, Yoshida A, Tokumo K, Kiuchi Y, Ohashi T, Sakurai T, Sugimoto T, Chuman H, Aihara M, Inatani M, Mori K, Ikeda Y, Ueno M, Gaston D, Rafuse P, Shuba L, Saunders J, Nicolela M, Chichua G, Tabagari S, Founti P, Sim KS, Meah WY, Soo HM, Chen XY, Chatzikyriakidou A, Keskini C, Pappas T, Anastasopoulos E, Lambropoulos A, Panagiotou ES, Mikropoulos DG, Kosior-Jarecka E, Cheong A, Li Y, Lukasik U, Nongpiur ME, Husain R, Perera SA, Álvarez L, García M, González-Iglesias H, Fernández-Vega Cueto A, Fernández-Vega Cueto L, Martinón-Torres F, Salas A, Oguz Ç, Tamcelik N, Atalay E, Batu B, Irkec M, Aktas D, Kasim B, Astakhov YS, Astakhov SY, Akopov EL, Giessl A, Mardin C, Hellerbrand C, Cooke Bailey JN, Igo RP, Haines JL, Edward DP, Heegaard S, Davila S, Tan P, Kang JH, Pasquale LR, Kruse FE, Reis A, Carmichael TR, Hauser M, Ramsay M, Mossböck G, Yildirim N, Tashiro K, Konstas AGP, Coca-Prados M, Foo JN, Kinoshita S, Sotozono C, Kubota T, Dubina M, Ritch R, Wiggs JL, Pasutto F, Schlötzer-Schrehardt U, Ho YS, Aung T, Tam WL, Khor CC. Association of Rare CYP39A1 Variants With Exfoliation Syndrome Involving the Anterior Chamber of the Eye. JAMA 2021; 325:753-764. [PMID: 33620406 PMCID: PMC7903258 DOI: 10.1001/jama.2021.0507] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Exfoliation syndrome is a systemic disorder characterized by progressive accumulation of abnormal fibrillar protein aggregates manifesting clinically in the anterior chamber of the eye. This disorder is the most commonly known cause of glaucoma and a major cause of irreversible blindness. OBJECTIVE To determine if exfoliation syndrome is associated with rare, protein-changing variants predicted to impair protein function. DESIGN, SETTING, AND PARTICIPANTS A 2-stage, case-control, whole-exome sequencing association study with a discovery cohort and 2 independently ascertained validation cohorts. Study participants from 14 countries were enrolled between February 1999 and December 2019. The date of last clinical follow-up was December 2019. Affected individuals had exfoliation material on anterior segment structures of at least 1 eye as visualized by slit lamp examination. Unaffected individuals had no signs of exfoliation syndrome. EXPOSURES Rare, coding-sequence genetic variants predicted to be damaging by bioinformatic algorithms trained to recognize alterations that impair protein function. MAIN OUTCOMES AND MEASURES The primary outcome was the presence of exfoliation syndrome. Exome-wide significance for detected variants was defined as P < 2.5 × 10-6. The secondary outcomes included biochemical enzymatic assays and gene expression analyses. RESULTS The discovery cohort included 4028 participants with exfoliation syndrome (median age, 78 years [interquartile range, 73-83 years]; 2377 [59.0%] women) and 5638 participants without exfoliation syndrome (median age, 72 years [interquartile range, 65-78 years]; 3159 [56.0%] women). In the discovery cohort, persons with exfoliation syndrome, compared with those without exfoliation syndrome, were significantly more likely to carry damaging CYP39A1 variants (1.3% vs 0.30%, respectively; odds ratio, 3.55 [95% CI, 2.07-6.10]; P = 6.1 × 10-7). This outcome was validated in 2 independent cohorts. The first validation cohort included 2337 individuals with exfoliation syndrome (median age, 74 years; 1132 women; n = 1934 with demographic data) and 2813 individuals without exfoliation syndrome (median age, 72 years; 1287 women; n = 2421 with demographic data). The second validation cohort included 1663 individuals with exfoliation syndrome (median age, 75 years; 587 women; n = 1064 with demographic data) and 3962 individuals without exfoliation syndrome (median age, 74 years; 951 women; n = 1555 with demographic data). Of the individuals from both validation cohorts, 5.2% with exfoliation syndrome carried CYP39A1 damaging alleles vs 3.1% without exfoliation syndrome (odds ratio, 1.82 [95% CI, 1.47-2.26]; P < .001). Biochemical assays classified 34 of 42 damaging CYP39A1 alleles as functionally deficient (median reduction in enzymatic activity compared with wild-type CYP39A1, 94.4% [interquartile range, 78.7%-98.2%] for the 34 deficient variants). CYP39A1 transcript expression was 47% lower (95% CI, 30%-64% lower; P < .001) in ciliary body tissues from individuals with exfoliation syndrome compared with individuals without exfoliation syndrome. CONCLUSIONS AND RELEVANCE In this whole-exome sequencing case-control study, presence of exfoliation syndrome was significantly associated with carriage of functionally deficient CYP39A1 sequence variants. Further research is needed to understand the clinical implications of these findings.
Collapse
Affiliation(s)
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Mei Chin Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Matthias Zenkel
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Esther Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | | | - Fotis Topouzis
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- iScreen Research Team, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Satoko Nakano
- Department of Ophthalmology, Faculty of Medicine, Oita University, Oita, Japan
| | - Anita Chan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Susan E I Williams
- Division of Ophthalmology, Department of Neurosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Andrew Orr
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Tomasz Zarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | - Alina Popa-Cherecheanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, Bucharest, Romania
| | | | | | | | | | | | | | | | - Kazuhisa Sugiyama
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tomomi Higashide
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | - Satoshi Ishiko
- Department of Medicine and Engineering Combined Research Institute, Asahikawa Medical University, Asahikawa, Japan
| | - Akitoshi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Kana Tokumo
- Department of Ophthalmology and Visual Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | - Takako Sugimoto
- Department of Ophthalmology, Miyazaki Medical College Hospital, Miyazaki, Japan
| | - Hideki Chuman
- Department of Ophthalmology, Miyazaki Medical College Hospital, Miyazaki, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Kazuhiko Mori
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Ikeda
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Rafuse
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lesya Shuba
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Saunders
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marcelo Nicolela
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Panayiota Founti
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Glaucoma Unit, Moorfields Eye Hospital NHS Foundation Trust, London, England
| | - Kar Seng Sim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wee Yang Meah
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Hui Meng Soo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Anthi Chatzikyriakidou
- Laboratory of Medical Biology-Genetics, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Christina Keskini
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Theofanis Pappas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Eleftherios Anastasopoulos
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Alexandros Lambropoulos
- Laboratory of Medical Biology-Genetics, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Evangelia S Panagiotou
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Dimitrios G Mikropoulos
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | - Augustine Cheong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Yuanhan Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Urszula Lukasik
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | - Monisha E Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Rahat Husain
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Shamira A Perera
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Lydia Álvarez
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain
- Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Montserrat García
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain
- Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Héctor González-Iglesias
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain
- Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Andrés Fernández-Vega Cueto
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain
- Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Luis Fernández-Vega Cueto
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain
- Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago and GENVIP Research Group, Instituto de Investigación Sanitaria, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria, Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Çilingir Oguz
- Department of Genetics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nevbahar Tamcelik
- Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eray Atalay
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Bilge Batu
- Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Murat Irkec
- Department of Ophthalmology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Dilek Aktas
- DAMAGEN Genetic Diagnostic Center, Ankara, Turkey
| | - Burcu Kasim
- Department of Ophthalmology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yury S Astakhov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia
| | - Sergei Y Astakhov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia
| | - Eugeny L Akopov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia
| | - Andreas Giessl
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Mardin
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica N Cooke Bailey
- Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert P Igo
- Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jonathan L Haines
- Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Deepak P Edward
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Eye Pathology Section, Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sonia Davila
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Friedrich E Kruse
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Trevor R Carmichael
- Division of Ophthalmology, Department of Neurosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Michael Hauser
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Georg Mossböck
- Department of Ophthalmology, Medical University Graz, Graz, Austria
| | - Nilgun Yildirim
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anastasios G P Konstas
- First and Third Departments of Ophthalmology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Miguel Coca-Prados
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain
- Fernández-Vega Ophthalmological Institute, Oviedo, Spain
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Jia Nee Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiaki Kubota
- Department of Ophthalmology, Faculty of Medicine, Oita University, Oita, Japan
| | - Michael Dubina
- State Research Institute of Highly Pure Biopreparations FMBA Russia, St Petersburg, Russia
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Janey L Wiggs
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| | - Francesca Pasutto
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Nanyang Technological University School of Biological Sciences, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
81
|
Sakaue S, Yamaguchi E, Inoue Y, Takahashi M, Hirata J, Suzuki K, Ito S, Arai T, Hirose M, Tanino Y, Nikaido T, Ichiwata T, Ohkouchi S, Hirano T, Takada T, Miyawaki S, Dofuku S, Maeda Y, Nii T, Kishikawa T, Ogawa K, Masuda T, Yamamoto K, Sonehara K, Tazawa R, Morimoto K, Takaki M, Konno S, Suzuki M, Tomii K, Nakagawa A, Handa T, Tanizawa K, Ishii H, Ishida M, Kato T, Takeda N, Yokomura K, Matsui T, Watanabe M, Inoue H, Imaizumi K, Goto Y, Kida H, Fujisawa T, Suda T, Yamada T, Satake Y, Ibata H, Hizawa N, Mochizuki H, Kumanogoh A, Matsuda F, Nakata K, Hirota T, Tamari M, Okada Y. Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis. Nat Commun 2021; 12:1032. [PMID: 33589587 PMCID: PMC7884840 DOI: 10.1038/s41467-021-21011-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a devastating lung disease caused by abnormal surfactant homeostasis, with a prevalence of 6-7 cases per million population worldwide. While mutations causing hereditary PAP have been reported, the genetic basis contributing to autoimmune PAP (aPAP) has not been thoroughly investigated. Here, we conducted a genome-wide association study of aPAP in 198 patients and 395 control participants of Japanese ancestry. The common genetic variant, rs138024423 at 6p21, in the major-histocompatibility-complex (MHC) region was significantly associated with disease risk (Odds ratio [OR] = 5.2; P = 2.4 × 10-12). HLA fine-mapping revealed that the common HLA class II allele, HLA-DRB1*08:03, strongly drove this signal (OR = 4.8; P = 4.8 × 10-12), followed by an additional independent risk allele at HLA-DPβ1 amino acid position 8 (OR = 0.28; P = 3.4 × 10-7). HLA-DRB1*08:03 was also associated with an increased level of anti-GM-CSF antibody, a key driver of the disease (β = 0.32; P = 0.035). Our study demonstrated a heritable component of aPAP, suggesting an underlying genetic predisposition toward an abnormal antibody production.
Collapse
Affiliation(s)
- Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Center for Data Sciences, Harvard Medical School, Boston, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Etsuro Yamaguchi
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Pharmaceutical Discovery Research Laboratories, TEIJIN PHARMA LIMITED, Hino, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Ito
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takefumi Nikaido
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Toshio Ichiwata
- Department Respiratory Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shinya Ohkouchi
- Occupational Health, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Taizou Hirano
- Respiratory Medicine, School of Medicine, Tohoku University, Miyagi, Japan
| | - Toshinori Takada
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Ogawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Masuda
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryushi Tazawa
- Student Support and Health Administration Organization, Tokyo Medical and Dental University, Tokyo, Japan
| | - Konosuke Morimoto
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masahiro Takaki
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki University, Nagasaki, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Atsushi Nakagawa
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University, Mitaka, Japan
| | - Manabu Ishida
- Department of Respiratory Medicine, Kyorin University, Mitaka, Japan
| | - Toshiyuki Kato
- Department of Respiratory Medicine and Allergology, Kariya Toyota General Hospital, Kariya, Japan
| | - Naoya Takeda
- Department of Respiratory Medicine and Allergology, Kariya Toyota General Hospital, Kariya, Japan
| | - Koshi Yokomura
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takashi Matsui
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masaki Watanabe
- Department of Pulmonary Medicine, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Yamada
- Department of Respiratory Medicine, Shizuoka City Shizuoka Hospital, Shizuoka, Japan
| | - Yasuomi Satake
- Department of Respiratory Medicine, Shizuoka City Shizuoka Hospital, Shizuoka, Japan
| | - Hidenori Ibata
- Department of Respiratory Medicine, National Hospital Organization Mie Chuo Medical Center, Tsu, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koh Nakata
- Division of Advanced Medical Development, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, the Jikei University School of Medicine, Research Center for Medical Science, Tokyo, Japan
| | - Mayumi Tamari
- Division of Molecular Genetics, the Jikei University School of Medicine, Research Center for Medical Science, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Laboratory of Statistical Immunology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
| |
Collapse
|
82
|
Karimi K, Farid AH, Myles S, Miar Y. Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Sci Rep 2021; 11:2944. [PMID: 33536540 PMCID: PMC7859209 DOI: 10.1038/s41598-021-82522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Aleutian disease (AD) is the most significant health issue for farmed American mink. The objective of this study was to identify the genomic regions subjected to selection for response to infection with Aleutian mink disease virus (AMDV) in American mink using genotyping by sequencing (GBS) data. A total of 225 black mink were inoculated with AMDV and genotyped using a GBS assay based on the sequencing of ApeKI-digested libraries. Five AD-characterized phenotypes were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (FST) and nucleotide diversity (θπ), that were validated by haplotype-based (hap-FLK) test. The total of 99 putatively selected regions harbouring 63 genes were detected in different groups. The gene ontology revealed numerous genes related to immune response (e.g. TRAF3IP2, WDR7, SWAP70, CBFB, and GPR65), liver development (e.g. SULF2, SRSF5) and reproduction process (e.g. FBXO5, CatSperβ, CATSPER4, and IGF2R). The hapFLK test supported two strongly selected regions that contained five candidate genes related to immune response, virus–host interaction, reproduction and liver regeneration. This study provided the first map of putative selection signals of response to AMDV infection in American mink, bringing new insights into genomic regions controlling the AD phenotypes.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
83
|
Genome-wide SNP data of Izumo and Makurazaki populations support inner-dual structure model for origin of Yamato people. J Hum Genet 2021; 66:681-687. [PMID: 33495571 PMCID: PMC8225512 DOI: 10.1038/s10038-020-00898-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
The “Dual Structure” model on the formation of the modern Japanese population assumes that the indigenous hunter-gathering population (symbolized as Jomon people) admixed with rice-farming population (symbolized as Yayoi people) who migrated from the Asian continent after the Yayoi period started. The Jomon component remained high both in Ainu and Okinawa people who mainly reside in northern and southern Japan, respectively, while the Yayoi component is higher in the mainland Japanese (Yamato people). The model has been well supported by genetic data, but the Yamato population was mostly represented by people from Tokyo area. We generated new genome-wide SNP data using Japonica Array for 45 individuals in Izumo City of Shimane Prefecture and for 72 individuals in Makurazaki City of Kagoshima Prefecture in Southern Kyushu, and compared these data with those of other human populations in East Asia, including BioBank Japan data. Using principal component analysis, phylogenetic network, and f4 tests, we found that Izumo, Makurazaki, and Tohoku populations are slightly differentiated from Kanto (including Tokyo), Tokai, and Kinki regions. These results suggest the substructure within Mainland Japanese maybe caused by multiple migration events from the Asian continent following the Jomon period, and we propose a modified version of “Dual Structure” model called the “Inner-Dual Structure” model.
Collapse
|
84
|
Novel candidates of pathogenic variants of the BRCA1 and BRCA2 genes from a dataset of 3,552 Japanese whole genomes (3.5KJPNv2). PLoS One 2021; 16:e0236907. [PMID: 33428613 PMCID: PMC7799847 DOI: 10.1371/journal.pone.0236907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Identification of the population frequencies of definitely pathogenic germline variants in two major hereditary breast and ovarian cancer syndrome (HBOC) genes, BRCA1/2, is essential to estimate the number of HBOC patients. In addition, the identification of moderately penetrant HBOC gene variants that contribute to increasing the risk of breast and ovarian cancers in a population is critical to establish personalized health care. A prospective cohort subjected to genome analysis can provide both sets of information. Computational scoring and prospective cohort studies may help to identify such likely pathogenic variants in the general population. We annotated the variants in the BRCA1 and BRCA2 genes from a dataset of 3,552 whole-genome sequences obtained from members of a prospective cohorts with genome data in the Tohoku Medical Megabank Project (TMM) with InterVar software. Computational impact scores (CADD_phred and Eigen_raw) and minor allele frequencies (MAFs) of pathogenic (P) and likely pathogenic (LP) variants in ClinVar were used for filtration criteria. Familial predispositions to cancers among the 35,000 TMM genome cohort participants were analyzed to verify the identified pathogenicity. Seven potentially pathogenic variants were newly identified. The sisters of carriers of these moderately deleterious variants and definite P and LP variants among members of the TMM prospective cohort showed a statistically significant preponderance for cancer onset, from the self-reported cancer history. Filtering by computational scoring and MAF is useful to identify potentially pathogenic variants in BRCA genes in the Japanese population. These results should help to follow up the carriers of variants of uncertain significance in the HBOC genes in the longitudinal prospective cohort study.
Collapse
|
85
|
JINAM TIMOTHYA, KAWAI YOSUKE, SAITOU NARUYA. Modern human DNA analyses with special reference to the inner dual-structure model of Yaponesian. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.201217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- TIMOTHY A. JINAM
- Population Genetics Laboratory, National Institute of Genetics, Mishima
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima
| | - YOSUKE KAWAI
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo
| | - NARUYA SAITOU
- Population Genetics Laboratory, National Institute of Genetics, Mishima
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima
- Faculty of Medicine, University of The Ryukyus, Nishihara
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo
| |
Collapse
|
86
|
Lin BM, Grinde KE, Brody JA, Breeze CE, Raffield LM, Mychaleckyj JC, Thornton TA, Perry JA, Baier LJ, de las Fuentes L, Guo X, Heavner BD, Hanson RL, Hung YJ, Qian H, Hsiung CA, Hwang SJ, Irvin MR, Jain D, Kelly TN, Kobes S, Lange L, Lash JP, Li Y, Liu X, Mi X, Musani SK, Papanicolaou GJ, Parsa A, Reiner AP, Salimi S, Sheu WHH, Shuldiner AR, Taylor KD, Smith AV, Smith JA, Tin A, Vaidya D, Wallace RB, Yamamoto K, Sakaue S, Matsuda K, Kamatani Y, Momozawa Y, Yanek LR, Young BA, Zhao W, Okada Y, Abecasis G, Psaty BM, Arnett DK, Boerwinkle E, Cai J, Yii-Der Chen I, Correa A, Cupples LA, He J, Kardia SL, Kooperberg C, Mathias RA, Mitchell BD, Nickerson DA, Turner ST, Vasan RS, Rotter JI, Levy D, Kramer HJ, Köttgen A, Nhlbi Trans-Omics For Precision Medicine TOPMed Consortium, TOPMed Kidney Working Group, Rich SS, Lin DY, Browning SR, Franceschini N. Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium. EBioMedicine 2021; 63:103157. [PMID: 33418499 PMCID: PMC7804602 DOI: 10.1016/j.ebiom.2020.103157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Genetic factors that influence kidney traits have been understudied for low frequency and ancestry-specific variants. METHODS We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for estimated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS data and adjusted for age, sex, study, and ethnicity. FINDINGS When testing single variants, we identified three novel loci driven by low frequency variants more commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%, P = 6.1 × 10-11; METTL8, rs116951054, MAF 0.09%, P = 4.5 × 10-9; and MATK, rs539182790, MAF 0.05%, P = 3.4 × 10-9). We also replicated two known loci for common variants (rs2461702, MAF=0.49, P = 1.2 × 10-9, nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 × 10-9, CDK12). Testing aggregated variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to identify replication samples for ancestry-specific variants. INTERPRETATION This study highlights challenges in studying variants influencing kidney traits that are low frequency in populations and more common in non-European ancestry.
Collapse
Affiliation(s)
- Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Kelsey E Grinde
- Department of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, United States
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, United States; UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom; Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - James A Perry
- Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Lisa de las Fuentes
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Benjamin D Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Yi-Jen Hung
- Endocrinology and Metabolism, Tri-Service General Hospital Songshan branch, Taipei, Taiwan
| | - Huijun Qian
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, United States
| | - Chao A Hsiung
- Endocrinology and Metabolism, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, United States; National Heart, Lung and Blood Institute, Population Sciences Branch, Division of Intramural Research, Bethesda, MD, United States
| | - Margaret R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - James P Lash
- Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States; Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Xiaoming Liu
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL, United States
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George J Papanicolaou
- Epidemiology Branch, National Heart, Lung, and Blood Institute, Bethesda, MA, United States
| | - Afshin Parsa
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA, United States
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Shabnam Salimi
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wayne H-H Sheu
- Endocrinology & Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Adrienne Tin
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Wallace
- University of Iowa College of Public Health, Iowa City, IA, United States
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo 108-8639, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Betsi A Young
- Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, WA, United States
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Laboratory of Statistical Immunology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
| | - Gonzalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, An Arbor, MI, United States; Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, United States
| | - Donna K Arnett
- College of Public Health, Dean's Office, University of Kentucky, Lexington, KY, United States
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Ida Yii-Der Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, United States; Department of Biostatistics, Boston University, Boston, MA, United States
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Sharon Lr Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Steve T Turner
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ramachandran S Vasan
- Division of Preventive Medicine and Epidemiology and Cardiology, Boston University School of Medicine, Boston, MA, United States
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Daniel Levy
- National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, United States; National Heart, Lung and Blood Institute, Population Sciences Branch, Division of Intramural Research, Bethesda, MD, United States
| | - Holly J Kramer
- Department of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, IL, United States; Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, United States
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
87
|
Masuda T, Ogawa K, Kamatani Y, Murakami Y, Kimura T, Okada Y. A Mendelian randomization study identified obesity as a causal risk factor of uterine endometrial cancer in Japanese. Cancer Sci 2020; 111:4646-4651. [PMID: 32981178 PMCID: PMC7734162 DOI: 10.1111/cas.14667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
Causal inference is one of the challenges in epidemiologic studies. Gynecologic diseases have been reported to have association with obesity, however the causality remained controversial except for uterine endometrial cancer. We conducted two-sample Mendelian randomization (MR) analysis using the large-scale genome-wide association study (GWAS) results of gynecologic diseases and body mass index (BMI) in the Japanese population to assess causal effect of BMI on gynecologic diseases. We first conducted GWAS of ovarian cancer, uterine endometrial cancer, uterine cervical cancer, endometriosis, and uterine fibroid (n = 647, 909, 538, 5236, and 645 cases, respectively, and 39 556 shared female controls), and BMI (81 610 males and non-overlapping 23 924 females). We then applied two-sample MR using 74 BMI-associated variants as instrumental variables. We observed significant causal effect of increased BMI on uterine endometrial cancer (β = 0.735, P = .0010 in inverse variance-weighted analysis), which is concordant with results of European studies. Causal effect of obesity was not apparent in the other gynecologic diseases tested. Our MR analyses provided strong evidence of the causal role of obesity in gynecologic diseases etiology, and suggested a possible preventive effect of intervention for obesity.
Collapse
Affiliation(s)
- Tatsuo Masuda
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Department of Obstetrics and GynecologyOsaka University Graduate School of MedicineSuitaJapan
- Present address:
StemRIM Institute of Regeneration‐Inducing MedicineOsaka UniversitySuitaJapan
| | - Kotaro Ogawa
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Department of NeurologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical SciencesLaboratory of Complex Trait GenomicsGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tadashi Kimura
- Department of Obstetrics and GynecologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yukinori Okada
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Laboratory of Statistical ImmunologyImmunology Frontier Research Center (WPI‐IFReC)Osaka UniversitySuitaJapan
| |
Collapse
|
88
|
Ahn C, Lee S, Park SK. Causal Inference between Rheumatoid Arthritis and Breast Cancer in East Asian and European Population: A Two-Sample Mendelian Randomization. Cancers (Basel) 2020; 12:cancers12113272. [PMID: 33167385 PMCID: PMC7694331 DOI: 10.3390/cancers12113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Rheumatoid arthritis (RA) is one of the chronic autoimmune diseases that affects about 0.5 to 1.0% of the general population worldwide. The main symptom of RA is the destruction of the synovial joint, leading to a reduced quality of life and increased mortality. RA may be accompanied by several comorbidities, on which several studies have been conducted on the association between RA and breast cancer. However, the association between RA and breast cancer has shown different directions and has not been clearly established. In this study, we tried to determine whether RA had a causal effect on breast cancer using Mendelian randomization (MR) analysis, but causal evidence was not found. Therefore, additional studies are needed to determine whether RA patients are at high risk of breast cancer, based on large-scale cohorts to validate these results. Abstract Previous studies have been reported that the association between rheumatoid arthritis (RA) and breast cancer remains inconclusive. A two-sample Mendelian randomization (MR) analysis can reveal the potential causal association between exposure and outcome. A two-sample MR analysis using the penalized robust inverse variance weighted (PRIVW) method was performed to analyze the association between RA and breast cancer risk based on the summary statistics of six genome-wide association studies (GWAS) targeting RA in an East Asian population along with summary statistics of the BioBank Japan (BBJ), Breast Cancer Association Consortium (BCAC), and Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) targeting breast cancer. We found that the direction of the effect of RA on breast cancer varied among GWAS-summary data from BBJ, BCAC, and CIMBA. Significant horizontal pleiotropy based on a penalized robust MR-Egger regression was observed only for BBJ and CIMBA BRCA2 carriers. As the results of the two-sample MR analyses were inconsistent, the causal association between RA and breast cancer was inconclusive. The biological mechanisms explaining the relationship between RA and breast cancer were unclear in Asian as well as in Caucasians. Further studies using large-scale patient cohorts are required for the validation of these results.
Collapse
Affiliation(s)
- Choonghyun Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
- Tokyo University Hospital, Tokyo 1130033, Japan
| | - Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Convergence Graduate Program in Innovative Medicine Science, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8338
| |
Collapse
|
89
|
Leask MP, Sumpter NA, Lupi AS, Vazquez AI, Reynolds RJ, Mount DB, Merriman TR. The Shared Genetic Basis of Hyperuricemia, Gout, and Kidney Function. Semin Nephrol 2020; 40:586-599. [DOI: 10.1016/j.semnephrol.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
90
|
Liu X, Takata S, Ashikawa K, Aoi T, Kosugi S, Terao C, Parrish NF, Matsuda K, Nakagawa H, Kamatani Y, Kubo M, Momozawa Y. Prevalence and Spectrum of Pathogenic Germline Variants in Japanese Patients With Early-Onset Colorectal, Breast, and Prostate Cancer. JCO Precis Oncol 2020; 4:183-191. [PMID: 35050733 DOI: 10.1200/po.19.00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PUPOSE We investigated the prevalence and spectrum of pathogenic germline variants in patients with early-onset colorectal cancer (CRC), breast cancer (BC), and prostate cancer (PCA) in the Japanese population. We also identified pathogenic variants in other cancer risk genes, giving consideration to future multigene testing panels for this population. METHODS We performed whole-genome sequencing for 1,037 Japanese individuals, including patients with early-onset CRC (n = 196), BC (n = 237), and PCA (n = 215) and controls (n = 389). We screened for pathogenic variants, including single nucleotide variants and copy number variants, among well-established first-tier cancer genes for each cancer type and examined an expended second-tier panel including cancer-predisposing genes from the Cancer Gene Census. RESULTS Proportions of patients with germline pathogenic variants differed by cancer subgroup, with the highest in BC (14.8%), followed by CRC (9.2%), and PCA (3.7%). In contrast, 2 of 389 control subjects (0.5%) carried a germline pathogenic variant. In comparison with controls, the proportion of patients with pathogenic variants in the second-tier panel was increased significantly for PCA (3.7% to 11.6%, P = 2.96 × 10-4), but not for CRC or BC, after multitesting adjustment. In patients with PCA, DNA repair pathway genes in the extended panel often contained pathogenic variants (P = .011). CONCLUSION Our analyses support the clinical usefulness of established cancer gene panels in the Japanese population for 3 major cancer types. Additional genes, especially those involved in DNA repair, might be considered for developing multipanel testing in Japanese patients with early-onset PCA.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sadaaki Takata
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kyota Ashikawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomomi Aoi
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunichi Kosugi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
91
|
Pontarotti P, Abi-Rached L, Yeh JH, Paganini J. Self-Peptidome Variation Shapes Individual Immune Responses. Trends Genet 2020; 37:414-420. [PMID: 33867017 PMCID: PMC7577255 DOI: 10.1016/j.tig.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The relationship between human genetic variation and disease has not been fully elucidated. According to the present view on infectious diseases pathogen resistance is linked to human leukocyte antigen (HLA) class I/II variants and their individual capacity to present pathogen-derived peptides. Yet, T cell education in the thymus occurs through negative and positive selection, and both processes are controlled by a combination of HLA class I/II variants and peptides from the self. Therefore, the capacity of given HLA class I/II variants to bind pathogen-derived peptides is only one part of the selective process to generate effective immune responses. We thus propose that peptidome variation contributes to shaping T cell receptor (TCR) repertoires and hence individual immune responses, and that this variation represents inherent modulator epitopes. TCR repertoires emerge in the thymus in each individual as T cells undergo positive and negative selection. T cell education is controlled by the combination of HLA class I/II molecules and their peptide pools (peptidome). HLA class I/II molecules are highly plastic in human populations but the peptidome is also a source of variation. Hence combined diversity of HLA class I/II molecules and of self-peptides shapes individual immune responses. Self-peptide variants that affect T cell repertoires represent inherent modulator epitopes.
Collapse
Affiliation(s)
- Pierre Pontarotti
- Aix Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; XEGEN, 15 rue Dominique Piazza, 13420 Gemenos, France.
| | - Laurent Abi-Rached
- Aix Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jung-Hua Yeh
- Prokarium Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | | |
Collapse
|
92
|
Shirai Y, Honda S, Ikari K, Kanai M, Takeda Y, Kamatani Y, Morisaki T, Tanaka E, Kumanogoh A, Harigai M, Okada Y. Association of the RPA3-UMAD1 locus with interstitial lung diseases complicated with rheumatoid arthritis in Japanese. Ann Rheum Dis 2020; 79:1305-1309. [PMID: 32737115 PMCID: PMC7509520 DOI: 10.1136/annrheumdis-2020-217256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The genetic background of rheumatoid arthritis-interstitial lung disease (RA-ILD) has been evaluated in Europeans, but little knowledge has been obtained in non-Europeans. This study aimed to elucidate genome-wide risk of RA-ILD in non-Europeans. METHODS We performed an initial genome-wide association study (GWAS) of RA-ILD in the Japanese population. By conducting the meta-analysis of the three GWAS datasets of the RA cohorts and biobank of Japanese, our study included 358 RA-ILD cases and 4550 RA subjects without ILD. We then conducted the stratified analysis of the effect of the GWAS risk allele in each CT image pattern. RESULTS We identified one novel RA-ILD risk locus at 7p21 that satisfied the genome-wide significance threshold (rs12702634 at RPA3-UMAD1, OR=2.04, 95% CI 1.59 to 2.60, p=1.5×10-8). Subsequent stratified analysis based on the CT image patterns demonstrated that the effect size of the RA-ILD risk allele (rs12702634-C) was large with the UIP pattern (OR=1.86, 95% CI 0.97 to 3.58, p=0.062) and the probable UIP pattern (OR=2.26, 95% CI 1.36 to 3.73, p=0.0015). CONCLUSION We revealed one novel genetic association with RA-ILD in Japanese. The RA-ILD risk of the identified variant at RPA3-UMAD1 was relatively high in the CT image patterns related to fibrosis. Our study should contribute to elucidation of the complicated aetiology of RA-ILD.
Collapse
Affiliation(s)
- Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Japan
| | - Suguru Honda
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Japan
| | - Katsunori Ikari
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Japan
| | - Masahiro Kanai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Minato-ku, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takayuki Morisaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- BioBank Japan, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Eiichi Tanaka
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Masayoshi Harigai
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| |
Collapse
|
93
|
A genome-wide association study on fish consumption in a Japanese population-the Japan Multi-Institutional Collaborative Cohort study. Eur J Clin Nutr 2020; 75:480-488. [PMID: 32895509 DOI: 10.1038/s41430-020-00702-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Although benefits of fish consumption for health are well known, a significant percentage of individuals dislike eating fish. Fish consumption may be influenced by genetic factors in addition to environmental factors. We conducted a genome-wide association study (GWAS) to find genetic variations that affect fish consumption in a Japanese population. METHODS We performed a two-stage GWAS on fish consumption using 13,739 discovery samples from the Japan Multi-Institutional Collaborative Cohort study, and 2845 replication samples from the other population. We used a semi-quantitative food frequency questionnaire to estimate food intake. Association of the imputed variants with fish consumption was analyzed by separate linear regression models per variant, with adjustments for age, sex, energy intake, principal component analysis components 1-10, and alcohol intake (g/day). We also performed conditional analysis. RESULTS We found 27 single nucleotide polymorphisms (SNPs) located in 12q24 and 14q32.12 that were associated with fish consumption. The 19 SNPs were located at 11 genes including six lead SNPs at the BRAP, ACAD10, ALDH2, NAA25, and HECTD4 regions on 12q24.12-13, and CCDC197 region on 14q32.12. In replication samples, all five SNPs located on chromosome 12 were replicated successfully, but the one on chromosome 14 was not. Conditional analyses revealed that the five lead variants in chromosome 12 were in fact the same signal. CONCLUSION We found that new SNPs in the 12q24 locus were related to fish intake in two Japanese populations. The associations between SNPs on chromosome 12 and fish intake were strongly confounded by drinking status.
Collapse
|
94
|
Shimizu S, Mimura J, Hasegawa T, Shimizu E, Imoto S, Tsushima M, Kasai S, Yamazaki H, Ushida Y, Suganuma H, Tomita H, Yamamoto M, Nakaji S, Itoh K. Association of single nucleotide polymorphisms in the NRF2 promoter with vascular stiffness with aging. PLoS One 2020; 15:e0236834. [PMID: 32780748 PMCID: PMC7418968 DOI: 10.1371/journal.pone.0236834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Pulse wave velocity (PWV), an indicator of vascular stiffness, increases with age and is increasingly recognized as an independent risk factor for cardiovascular disease (CVD). Although many mechanical and chemical factors underlie the stiffness of the elastic artery, genetic risk factors related to age-dependent increases in PWV in apparently healthy people are largely unknown. The transcription factor nuclear factor E2 (NF-E2)-related factor 2 (Nrf2), which is activated by unidirectional vascular pulsatile shear stress or oxidative stress, regulates vascular redox homeostasis. Previous reports have shown that a SNP in the NRF2 gene regulatory region (−617C>A; hereafter called SNP−617) affects NRF2 gene expression such that the minor A allele confers lower gene expression compared to the C allele, and it is associated with various diseases, including CVD. We aimed to investigate whether SNP−617 affects vascular stiffness with aging in apparently healthy people. Methods Analyzing wide-ranging data obtained from a public health survey performed in Japan, we evaluated whether SNP−617 affected brachial-ankle PWV (baPWV) in never-smoking healthy subjects (n = 642). We also evaluated the effects of SNP−617 on other cardiovascular and blood test measurements. Results We have shown that not only AA carriers (n = 55) but also CA carriers (n = 247) show arterial stiffness compared to CC carriers (n = 340). Furthermore, SNP−617 also affected blood pressure indexes such as systolic blood pressure and mean arterial pressure but not the ankle brachial pressure index, an indicator of atherosclerosis. Multivariate analysis showed that SNP−617 accelerates the incremental ratio of baPWV with age. Conclusions This study is the first to show that SNP−617 affects the age-dependent increase in vascular stiffness. Our results indicate that low NRF2 activity induces premature vascular aging and could be targeted for the prevention of cardiovascular diseases associated with aging.
Collapse
Affiliation(s)
- Sunao Shimizu
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Nature & Wellness Research, Innovation Division, Kagome Co., Ltd. Nasushiobara, Tochigi, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takanori Hasegawa
- Health Intelligence Center, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Eigo Shimizu
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Seiya Imoto
- Health Intelligence Center, The University of Tokyo, Minato-ku, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Michiko Tsushima
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yusuke Ushida
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroyuki Suganuma
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
95
|
Liu X, Kosugi S, Koide R, Kawamura Y, Ito J, Miura H, Matoba N, Matsuzaki M, Fujita M, Kamada AJ, Nakagawa H, Tamiya G, Matsuda K, Murakami Y, Kubo M, Aswad A, Sato K, Momozawa Y, Ohashi J, Terao C, Yoshikawa T, Parrish NF, Kamatani Y. Endogenization and excision of human herpesvirus 6 in human genomes. PLoS Genet 2020; 16:e1008915. [PMID: 32776928 PMCID: PMC7444522 DOI: 10.1371/journal.pgen.1008915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/20/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
Sequences homologous to human herpesvirus 6 (HHV-6) are integrated within the nuclear genome of about 1% of humans, but it is not clear how this came about. It is also uncertain whether integrated HHV-6 can reactivate into an infectious virus. HHV-6 integrates into telomeres, and this has recently been associated with polymorphisms affecting MOV10L1. MOV10L1 is located on the subtelomere of chromosome 22q (chr22q) and is required to make PIWI-interacting RNAs (piRNAs). As piRNAs block germline integration of transposons, piRNA-mediated repression of HHV-6 integration has been proposed to explain this association. In vitro, recombination of the HHV-6 genome along its terminal direct repeats (DRs) leads to excision from the telomere and viral reactivation, but the expected "solo-DR scar" has not been described in vivo. Here we screened for integrated HHV-6 in 7,485 Japanese subjects using whole-genome sequencing (WGS). Integrated HHV-6 was associated with polymorphisms on chr22q. However, in contrast to prior work, we find that the reported MOV10L1 polymorphism is physically linked to an ancient endogenous HHV-6A variant integrated into the telomere of chr22q in East Asians. Unexpectedly, an HHV-6B variant has also endogenized in chr22q; two endogenous HHV-6 variants at this locus thus account for 72% of all integrated HHV-6 in Japan. We also report human genomes carrying only one portion of the HHV-6B genome, a solo-DR, supporting in vivo excision and possible viral reactivation. Together these results explain the recently-reported association between integrated HHV-6 and MOV10L1/piRNAs, suggest potential exaptation of HHV-6 in its coevolution with human chr22q, and clarify the evolution and risk of reactivation of the only intact (non-retro)viral genome known to be present in human germlines.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Rie Koide
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nana Matoba
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Motomichi Matsuzaki
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anselmo Jiro Kamada
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Gen Tamiya
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Amr Aswad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- * E-mail:
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| |
Collapse
|
96
|
Differences in local population history at the finest level: the case of the Estonian population. Eur J Hum Genet 2020; 28:1580-1591. [PMID: 32712624 PMCID: PMC7575549 DOI: 10.1038/s41431-020-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Several recent studies detected fine-scale genetic structure in human populations. Hence, groups conventionally treated as single populations harbour significant variation in terms of allele frequencies and patterns of haplotype sharing. It has been shown that these findings should be considered when performing studies of genetic associations and natural selection, especially when dealing with polygenic phenotypes. However, there is little understanding of the practical effects of such genetic structure on demography reconstructions and selection scans when focusing on recent population history. Here we tested the impact of population structure on such inferences using high-coverage (~30×) genome sequences of 2305 Estonians. We show that different regions of Estonia differ in both effective population size dynamics and signatures of natural selection. By analyzing identity-by-descent segments we also reveal that some Estonian regions exhibit evidence of a bottleneck 10-15 generations ago reflecting sequential episodes of wars, plague and famine, although this signal is virtually undetected when treating Estonia as a single population. Besides that, we provide a framework for relating effective population size estimated from genetic data to actual census size and validate it on the Estonian population. This approach may be widely used both to cross-check estimates based on historical sources as well as to get insight into times and/or regions with no other information available. Our results suggest that the history of human populations within the last few millennia can be highly region specific and cannot be properly studied without taking local genetic structure into account.
Collapse
|
97
|
Daida K, Nishioka K, Li Y, Yoshino H, Shimada T, Dougu N, Nakatsuji Y, Ohara S, Hashimoto T, Okiyama R, Yokochi F, Suzuki C, Tomiyama M, Kimura K, Ueda N, Tanaka F, Yamada H, Fujioka S, Tsuboi Y, Uozumi T, Takei T, Matsuzaki S, Shibasaki M, Kashihara K, Kurisaki R, Yamashita T, Fujita N, Hirata Y, Ii Y, Wada C, Eura N, Sugie K, Higuchi Y, Kojima F, Imai H, Noda K, Shimo Y, Funayama M, Hattori N. PLA2G6 variants associated with the number of affected alleles in Parkinson's disease in Japan. Neurobiol Aging 2020; 97:147.e1-147.e9. [PMID: 32771225 DOI: 10.1016/j.neurobiolaging.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate genotype-phenotype correlations of Parkinson's disease (PD) patients with phospholipase A2 group V (PLA2G6) variants. We analyzed the DNA of 798 patients with PD, including 78 PD patients reported previously, and 336 in-house controls. We screened the exons and exon-intron boundaries of PLA2G6 using the Ion Torrent system and Sanger method. We identified 21 patients with 18 rare variants, such that 1, 9, and 11 patients were homozygous, heterozygous, and compound heterozygous, respectively, with respect to PLA2G6 variants. The allele frequency was approximately equal between patients with familial PD and those with sporadic PD. The PLA2G6 variants detected frequently were identified in the early-onset sporadic PD group. Patients who were homozygous for a variant showed more severe symptoms than those who were heterozygous for the variant. The most common variant was p.R635Q in our cohort, which was considered a risk variant for PD. Thus, the variants of PLA2G6 may play a role in familial PD and early-onset sporadic PD.
Collapse
Affiliation(s)
- Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tomoyo Shimada
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiro Dougu
- Department of Neurology, Toyama University Hospital, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Toyama University Hospital, Toyama, Japan
| | - Shinji Ohara
- Department of Neurology, Iida Hospital, Iida, Nagano, Japan
| | | | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Chieko Suzuki
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Katsuo Kimura
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takenori Uozumi
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Takanobu Takei
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Shigeru Matsuzaki
- Shiga Prefectural Mental Health Medical Center, Kusatsu, Shiga, Japan
| | | | | | - Ryoichi Kurisaki
- Department of Neurology, National Hospital Organization Kumamoto Saishun Medical Center, Koshi, Kumamoto, Japan
| | | | - Nobuya Fujita
- Department of Neurology, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | - Yoshinori Hirata
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Chizu Wada
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Akita, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | | | - Kazuyuki Noda
- Department of Neurology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
98
|
Chen M, Sidore C, Akiyama M, Ishigaki K, Kamatani Y, Schlessinger D, Cucca F, Okada Y, Chiang CWK. Evidence of Polygenic Adaptation in Sardinia at Height-Associated Loci Ascertained from the Biobank Japan. Am J Hum Genet 2020; 107:60-71. [PMID: 32533944 PMCID: PMC7332648 DOI: 10.1016/j.ajhg.2020.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/19/2020] [Indexed: 01/31/2023] Open
Abstract
Adult height is one of the earliest putative examples of polygenic adaptation in humans. However, this conclusion was recently challenged because residual uncorrected stratification from large-scale consortium studies was considered responsible for the previously noted genetic difference. It thus remains an open question whether height loci exhibit signals of polygenic adaptation in any human population. We re-examined this question, focusing on one of the shortest European populations, the Sardinians, in addition to mainland European populations. We utilized height-associated loci from the Biobank Japan (BBJ) dataset to further alleviate concerns of biased ascertainment of GWAS loci and showed that the Sardinians remain significantly shorter than expected under neutrality (∼0.22 standard deviation shorter than Utah residents with ancestry from northern and western Europe [CEU] on the basis of polygenic height scores, p = 3.89 × 10-4). We also found the trajectory of polygenic height scores between the Sardinian and the British populations diverged over at least the last 10,000 years (p = 0.0082), consistent with a signature of polygenic adaptation driven primarily by the Sardinian population. Although the polygenic score-based analysis showed a much subtler signature in mainland European populations, we found a clear and robust adaptive signature in the UK population by using a haplotype-based statistic, the trait singleton density score (tSDS), driven by the height-increasing alleles (p = 9.1 × 10-4). In summary, by ascertaining height loci in a distant East Asian population, we further supported the evidence of polygenic adaptation at height-associated loci among the Sardinians. In mainland Europeans, the adaptive signature was detected in haplotype-based analysis but not in polygenic score-based analysis.
Collapse
Affiliation(s)
- Minhui Chen
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Cagliari, Italy
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, US National Institutes of Health, Baltimore, MD 21224, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Cagliari, Italy
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
99
|
Hayashida A, Li Y, Yoshino H, Daida K, Ikeda A, Ogaki K, Fuse A, Mori A, Takanashi M, Nakahara T, Yoritaka A, Tomizawa Y, Furukawa Y, Kanai K, Nakayama Y, Ito H, Ogino M, Hattori Y, Hattori T, Ichinose Y, Takiyama Y, Saito T, Kimura T, Aizawa H, Shoji H, Mizuno Y, Matsushita T, Sato M, Sekijima Y, Morita M, Iwasaki A, Kusaka H, Tada M, Tanaka F, Sakiyama Y, Fujimoto T, Nagara Y, Kashihara K, Todo H, Nakao K, Tsuruta K, Yoshikawa M, Hara H, Yokote H, Murase N, Nakamagoe K, Tamaoka A, Takamiya M, Morimoto N, Nokura K, Kako T, Funayama M, Nishioka K, Hattori N. The identified clinical features of Parkinson's disease in homo-, heterozygous and digenic variants of PINK1. Neurobiol Aging 2020; 97:146.e1-146.e13. [PMID: 32713623 DOI: 10.1016/j.neurobiolaging.2020.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
To investigate the prevalence and genotype-phenotype correlations of phosphatase and tensin homolog induced putative kinase 1 (PINK1) variants in Parkinson's disease (PD) patients, we analyzed 1700 patients (842 familial PD and 858 sporadic PD patients from Japanese origin). We screened the entire exon and exon-intron boundaries of PINK1 using Sanger sequencing and target sequencing by Ion torrent system. We identified 30 patients with heterozygous variants, 3 with homozygous variants, and 3 with digenic variants of PINK1-PRKN. Patients with homozygous variants presented a significantly younger age at onset than those with heterozygous variants. The allele frequency of heterozygous variants in patients with age at onset at 50 years and younger with familial PD and sporadic PD showed no differences. [123I]meta-iodobenzylguanidine (MIBG) myocardial scintigraphy indicated that half of patients harboring PINK1 heterozygous variants showed a decreased heart to mediastinum ratio (12/23). Our findings emphasize the importance of PINK1 variants for the onset of PD in patients with age at onset at 50 years and younger and the broad spectrum of clinical symptoms in patients with PINK1 variants.
Collapse
Affiliation(s)
- Arisa Hayashida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuhito Fuse
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Nakahara
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Asako Yoritaka
- Department of Neurology, Juntendo University Koshigaya Hospital, Saitama, Japan
| | - Yuji Tomizawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Kazuaki Kanai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Yoshiaki Nakayama
- Department of Neurology, Wakayama Medical University, Wakayama Prefecture, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama Prefecture, Japan
| | - Mieko Ogino
- International University of Health and Welfare, School of Medicine, Office of Medical Education, Chiba, Japan
| | | | | | - Yuta Ichinose
- Department of Neurology, University of Yamanashi, Yamanashi, Japan
| | | | - Tsukasa Saito
- Department of Neurology, National Hospital Organization Asahikawa Medical Center, Hokkaido, Japan
| | - Takashi Kimura
- Department of Neurology, National Hospital Organization Asahikawa Medical Center, Hokkaido, Japan
| | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Shoji
- Division of Neurology, St. Mary's Hospital, Fukuoka, Japan
| | - Yuri Mizuno
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuto Sato
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayo Morita
- Department of Neurology, Jikei University Katsushika Medical Center, Tokyo, Japan
| | - Akio Iwasaki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hirofumi Kusaka
- Department of Neurology, Kansai Medical University, Osaka, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takeshi Fujimoto
- Department of Neurology, Sasebo City General Hospital, Nagasaki, Japan
| | | | | | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kouichi Nakao
- Brain and Nerve Center, Junwakai Memorial Hospital, Miyazaki, Japan
| | - Kazuhito Tsuruta
- Brain and Nerve Center, Junwakai Memorial Hospital, Miyazaki, Japan
| | - Masaaki Yoshikawa
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiroaki Yokote
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Nagako Murase
- Department of Neurology, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Motonori Takamiya
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Nobutoshi Morimoto
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Kazuya Nokura
- Department of Neurology, Fujita Health University, Bantane Hospital, Aichi, Japan
| | - Tetsuharu Kako
- Department of Neurology, Fujita Health University, Bantane Hospital, Aichi, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
100
|
Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 2020; 584:130-135. [PMID: 32581364 DOI: 10.1038/s41586-020-2426-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 04/02/2020] [Indexed: 12/26/2022]
Abstract
The extent to which the biology of oncogenesis and ageing are shaped by factors that distinguish human populations is unknown. Haematopoietic clones with acquired mutations become common with advancing age and can lead to blood cancers1-10. Here we describe shared and population-specific patterns of genomic mutations and clonal selection in haematopoietic cells on the basis of 33,250 autosomal mosaic chromosomal alterations that we detected in 179,417 Japanese participants in the BioBank Japan cohort and compared with analogous data from the UK Biobank. In this long-lived Japanese population, mosaic chromosomal alterations were detected in more than 35.0% (s.e.m., 1.4%) of individuals older than 90 years, which suggests that such clones trend towards inevitability with advancing age. Japanese and European individuals exhibited key differences in the genomic locations of mutations in their respective haematopoietic clones; these differences predicted the relative rates of chronic lymphocytic leukaemia (which is more common among European individuals) and T cell leukaemia (which is more common among Japanese individuals) in these populations. Three different mutational precursors of chronic lymphocytic leukaemia (including trisomy 12, loss of chromosomes 13q and 13q, and copy-neutral loss of heterozygosity) were between two and six times less common among Japanese individuals, which suggests that the Japanese and European populations differ in selective pressures on clones long before the development of clinically apparent chronic lymphocytic leukaemia. Japanese and British populations also exhibited very different rates of clones that arose from B and T cell lineages, which predicted the relative rates of B and T cell cancers in these populations. We identified six previously undescribed loci at which inherited variants predispose to mosaic chromosomal alterations that duplicate or remove the inherited risk alleles, including large-effect rare variants at NBN, MRE11 and CTU2 (odds ratio, 28-91). We suggest that selective pressures on clones are modulated by factors that are specific to human populations. Further genomic characterization of clonal selection and cancer in populations from around the world is therefore warranted.
Collapse
|