51
|
Zhao Y, Huang S, Tan X, Long L, He Q, Liang X, Bai J, Li Q, Lin J, Li Y, Liu N, Ma J, Chen Y. N 6 -Methyladenosine-Modified CBX1 Regulates Nasopharyngeal Carcinoma Progression Through Heterochromatin Formation and STAT1 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205091. [PMID: 36310139 PMCID: PMC9798977 DOI: 10.1002/advs.202205091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 05/16/2023]
Abstract
Epitranscriptomic remodeling such as N6 -methyladenosine (m6 A) modification plays a critical role in tumor development. However, little is known about the underlying mechanisms connecting m6 A modification and nasopharyngeal carcinoma (NPC) progression. Here, CBX1 is identified, a histone methylation regulator, to be significantly upregulated with m6 A hypomethylation in metastatic NPC tissues. The m6 A-modified CBX1 mRNA transcript is recognized and destabilized by the m6 A reader YTHDF3. Furthermore, it is revealed that CBX1 promotes NPC cell migration, invasion, and proliferation through transcriptional repression of MAP7 via H3K9me3-mediated heterochromatin formation. In addition to its oncogenic effect, CBX1 can facilitate immune evasion through IFN-γ-STAT1 signaling-mediated PD-L1 upregulation. Clinically, CBX1 serves as an independent predictor for unfavorable prognosis in NPC patients. The results reveal a crosstalk between epitranscriptomic and epigenetic regulation in NPC progression, and shed light on the functions of CBX1 in tumorigenesis and immunomodulation, which may provide an appealing therapeutic target in NPC.
Collapse
Affiliation(s)
- Yin Zhao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Shengyan Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xirong Tan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Liufen Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Qingmei He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xiaoyu Liang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jiewen Bai
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Qingjie Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jiayi Lin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yingqin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Na Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jun Ma
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yupei Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| |
Collapse
|
52
|
Rizvi MS. Effect of detachment of motor protein from track on its transport. J Biol Phys 2022; 48:369-381. [PMID: 36190620 PMCID: PMC9727045 DOI: 10.1007/s10867-022-09613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023] Open
Abstract
The transportation of the cargoes in biological cells is primarily driven by the motor proteins on filamentous protein tracks. The stochastic nature of the motion of motor protein often leads to its spontaneous detachment from the track. We formulate a mathematical model to study the effect of the detachment of motor protein on its track bound transport. We calculate two quantities: the distance traveled by the motor protein in given time, and the average time taken by a single motor protein to reach a target distance. Expectedly, both of these quantities decrease with the increasing detachment rate if the motor velocity is kept fixed. However, the existing experimental data suggest that a change in the detachment rate also affects the velocity of the motor protein. This relation between motor protein speed and its detachment rate results in a non-monotonic dependence on the distance traveled in fixed time and transport rate to a fixed distance. Therefore, we demonstrate that optimal motor speeds can be identified for the time and distance controlled conditions.
Collapse
Affiliation(s)
- Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
53
|
Abstract
The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.
Collapse
Affiliation(s)
- Marlieke L. M. Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands,Author for correspondence ()
| |
Collapse
|
54
|
Balabanian L, Lessard DV, Swaminathan K, Yaninska P, Sébastien M, Wang S, Stevens PW, Wiseman PW, Berger CL, Hendricks AG. Tau differentially regulates the transport of early endosomes and lysosomes. Mol Biol Cell 2022; 33:ar128. [PMID: 36129768 PMCID: PMC9634973 DOI: 10.1091/mbc.e22-01-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microtubule-associated proteins (MAPs) modulate the motility of kinesin and dynein along microtubules to control the transport of vesicles and organelles. The neuronal MAP tau inhibits kinesin-dependent transport. Phosphorylation of tau at Tyr-18 by fyn kinase results in weakened inhibition of kinesin-1. We examined the motility of early endosomes and lysosomes in cells expressing wild-type (WT) tau and phosphomimetic Y18E tau. We quantified the effects on motility as a function of the tau expression level. Lysosome motility is strongly inhibited by tau. Y18E tau preferentially inhibits lysosomes in the cell periphery, while centrally located lysosomes are less affected. Early endosomes are more sensitive to tau than lysosomes and are inhibited by both WT and Y18E tau. Our results show that different cargoes have disparate responses to tau, likely governed by the types of kinesin motors driving their transport. In support of this model, kinesin-1 and -3 are strongly inhibited by tau while kinesin-2 and dynein are less affected. In contrast to kinesin-1, we find that kinesin-3 is strongly inhibited by phosphorylated tau.
Collapse
Affiliation(s)
- Linda Balabanian
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Dominique V. Lessard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | | | - Pamela Yaninska
- Chemistry and Physics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Muriel Sébastien
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Samuel Wang
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Piper W. Stevens
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Paul W. Wiseman
- Chemistry and Physics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Adam G. Hendricks
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada,*Address correspondence to: Adam G. Hendricks ()
| |
Collapse
|
55
|
Weijman JF, Yadav SKN, Surridge KJ, Cross JA, Borucu U, Mantell J, Woolfson DN, Schaffitzel C, Dodding MP. Molecular architecture of the autoinhibited kinesin-1 lambda particle. SCIENCE ADVANCES 2022; 8:eabp9660. [PMID: 36112680 PMCID: PMC9481135 DOI: 10.1126/sciadv.abp9660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.
Collapse
Affiliation(s)
- Johannes F. Weijman
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Katherine J. Surridge
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jessica A. Cross
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark P. Dodding
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
56
|
Fernandez Bessone I, Navarro J, Martinez E, Karmirian K, Holubiec M, Alloatti M, Goto-Silva L, Arnaiz Yepez C, Martins-de-Souza D, Minardi Nascimento J, Bruno L, Saez TM, Rehen SK, Falzone TL. DYRK1A Regulates the Bidirectional Axonal Transport of APP in Human-Derived Neurons. J Neurosci 2022; 42:6344-6358. [PMID: 35803734 PMCID: PMC9398544 DOI: 10.1523/jneurosci.2551-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Dyrk1a triplication in Down's syndrome and its overexpression in Alzheimer's disease suggest a role for increased DYRK1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of Alzheimer's disease, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speed transitions, suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in Down's syndrome and Alzheimer's disease.SIGNIFICANCE STATEMENT Axonal transport defects are early events in the progression of neurodegenerative diseases, such as Alzheimer's disease. However, the molecular mechanisms underlying transport defects remain elusive. Dyrk1a kinase is triplicated in Down's syndrome and overexpressed in Alzheimer's disease, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of APP. Further, single-particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism, supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in Alzheimer's disease.
Collapse
Affiliation(s)
- Iván Fernandez Bessone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Jordi Navarro
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Emanuel Martinez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Karina Karmirian
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Mariana Holubiec
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Matias Alloatti
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Livia Goto-Silva
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
| | - Cayetana Arnaiz Yepez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Daniel Martins-de-Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Laboratory of Neuroproteomics, University of Campinas Campinas, Brasil, SP, 13083-970
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brasil, SP, 13083-970
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brasil, SP, 13083-970
| | | | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina C1428EGA
| | - Trinidad M Saez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Stevens K Rehen
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
- Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina C1425FQD
| |
Collapse
|
57
|
Villari G, Gioelli N, Valdembri D, Serini G. Vesicle choreographies keep up cell-to-extracellular matrix adhesion dynamics in polarized epithelial and endothelial cells. Matrix Biol 2022; 112:62-71. [PMID: 35961423 DOI: 10.1016/j.matbio.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022]
Abstract
In metazoans, cell adhesion to the extracellular matrix (ECM) drives the development, functioning, and repair of different tissues, organs, and systems. Disruption or dysregulation of cell-to-ECM adhesion promote the initiation and progression of several diseases, such as bleeding, immune disorders and cancer. Integrins are major ECM transmembrane receptors, whose function depends on both allosteric changes and exo-endocytic traffic, which carries them to and from the plasma membrane. In apico-basally polarized cells, asymmetric adhesion to the ECM is maintained by continuous targeting of the plasma membrane by vesicles coming from the trans Golgi network and carrying ECM proteins. Active integrin-bound ECM is indeed endocytosed and replaced by the exocytosis of fresh ECM. Such vesicular traffic is finely driven by the teamwork of microtubules (MTs) and their associated kinesin and dynein motors. Here, we review the main cytoskeletal actors involved in the control of the spatiotemporal distribution of active integrins and their ECM ligands, highlighting the key role of the synchronous (ant)agonistic cooperation between MT motors transporting vesicular cargoes, in the same or in opposite direction, in the regulation of traffic logistics, and the establishment of epithelial and endothelial cell polarity.
Collapse
Affiliation(s)
- Giulia Villari
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
58
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
59
|
Wang X, Cao X, Wu Y, Chen T. MAP7 promotes proliferation and migration of breast cancer cells and reduces the sensitivity of breast cancer cells to paclitaxel. J Chemother 2022:1-9. [PMID: 35657774 DOI: 10.1080/1120009x.2022.2082349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Breast cancer is a common malignancy that severely threatens women's mental health and lives. The paclitaxel-resistant breast cancer cells were established through a continuous stimulation with paclitaxel in a stepwise escalating concentration manner. The expression of MAP7 was detected by RT-P CR and western blot. The annexin V staining assay was used to measure the cell apoptosis ratio. The expression of cell invasive ability and apoptosis-related proteins was detected by western blot assay. The cellular motility was tested via transwell and wound healing assays. This study indicated that the MAP7 expression was upregulated in breast cancer cells and paclitaxel-resistant breast cancer cells. Moreover, downregulating MAP7 not only suppressed cell viability, motility and invasion, but also enhanced cellular apoptosis in paclitaxel-resistant breast cancer cells. In summary, this study investigated the effect of MAP7 protein on cell critical physiological function, which provided a novel potential target for treating paclitaxel-resistant breast cancer.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Radiation Oncology, Rui'an People's Hospital and The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Xuezhen Cao
- Department of Radiation Oncology, Rui'an People's Hospital and The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Youyi Wu
- Department of Radiation Oncology, Rui'an People's Hospital and The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Tingting Chen
- Department of Radiation Oncology, Rui'an People's Hospital and The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| |
Collapse
|
60
|
Chiba K, Ori-McKenney KM, Niwa S, McKenney RJ. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity. Cell Rep 2022; 39:110900. [PMID: 35649356 PMCID: PMC9365671 DOI: 10.1016/j.celrep.2022.110900] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022] Open
Abstract
Kinesin-1 activity is regulated by autoinhibition. Intramolecular interactions within the kinesin heavy chain (KHC) are proposed to be one facet of motor regulation. The KHC also binds to the kinesin light chain (KLC), which has been implicated in both autoinhibition and activation of the motor. We show that the KLC inhibits the kinesin-microtubule interaction independently from the proposed intramolecular interaction within KHC. Cargo-adaptor proteins that bind the KLC stimulated processive movement, but the landing rate of activated kinesin complexes remained low. Mitogen-activated protein 7 (MAP7) enhanced motility by increasing the landing rate and run length of the activated kinesin motors. Our results support a model whereby the motor activity of the kinesin is regulated by synergistic inhibition mechanisms and that cargo-adaptor binding to the KLC releases both mechanisms. However, a non-motor MAP is required for robust microtubule association of the activated motor. Thus, human kinesin is regulated by synergistic autoinhibition and activation mechanisms.
Collapse
Affiliation(s)
- Kyoko Chiba
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA.
| |
Collapse
|
61
|
Seo D, Gammon DB. Manipulation of Host Microtubule Networks by Viral Microtubule-Associated Proteins. Viruses 2022; 14:v14050979. [PMID: 35632720 PMCID: PMC9147350 DOI: 10.3390/v14050979] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022] Open
Abstract
Diverse DNA and RNA viruses utilize cytoskeletal networks to efficiently enter, replicate, and exit the host cell, while evading host immune responses. It is well established that the microtubule (MT) network is commonly hijacked by viruses to traffic to sites of replication after entry and to promote egress from the cell. However, mounting evidence suggests that the MT network is also a key regulator of host immune responses to infection. At the same time, viruses have acquired mechanisms to manipulate and/or usurp MT networks to evade these immune responses. Central to most interactions of viruses with the MT network are virally encoded microtubule-associated proteins (MAPs) that bind to MTs directly or indirectly. These MAPs associate with MTs and other viral or cellular MAPs to regulate various aspects of the MT network, including MT dynamics, MT-dependent transport via motor proteins such as kinesins and dyneins, and MT-dependent regulation of innate immune responses. In this review, we examine how viral MAP interactions with the MT network facilitate viral replication and immune evasion.
Collapse
|
62
|
Kikuchi K, Sakamoto Y, Uezu A, Yamamoto H, Ishiguro KI, Shimamura K, Saito T, Hisanaga SI, Nakanishi H. Map7D2 and Map7D1 facilitate microtubule stabilization through distinct mechanisms in neuronal cells. Life Sci Alliance 2022; 5:5/8/e202201390. [PMID: 35470240 PMCID: PMC9039348 DOI: 10.26508/lsa.202201390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/05/2022] Open
Abstract
The microtubule-associated proteins Map7D2 and Map7D1, which belong to the MAP7 family, stabilize microtubules through distinct mechanisms for the control of cell motility and neurite outgrowth. Microtubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. We show that the MAP7 family protein Map7D2 stabilizes MTs to control cell motility and neurite outgrowth. Map7D2 directly bound to MTs through its N-terminal half and stabilized MTs in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in mouse N1-E115 neuronal cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the resistance to the MT-destabilizing agent nocodazole without affecting acetylated/detyrosinated stable MTs, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. Map7D1 exhibited similar subcellular localization and gene knockdown phenotypes to Map7D2. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated stable MTs. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms in cell motility and neurite outgrowth.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhisa Sakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
63
|
Tymanskyj SR, Curran BM, Ma L. Selective axonal transport through branch junctions is directed by growth cone signaling and mediated by KIF1/kinesin-3 motors. Cell Rep 2022; 39:110748. [PMID: 35476993 PMCID: PMC9097860 DOI: 10.1016/j.celrep.2022.110748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Development and function of nerve cells rely on the orchestration of microtubule-based transport from the cell body into distal axonal terminals. Neurons often have highly elaborate branches innervating multiple targets, but how protein or membrane cargos navigate through branch junctions to specific branch targets is unknown. Here, we demonstrate that anterograde transport of membrane vesicles through axonal branch junctions is highly selective, which is influenced by branch length and more strongly by growth cone motility. Using an optogenetic tool, we demonstrate that signaling from the growth cone can rapidly direct transport through branch junctions. We further demonstrate that such transport selectivity is differentially regulated for different vesicles and mediated by the KIF1/kinesin-3 family motors. We propose that this transport regulation through branch junctions could broadly impact neuronal development, function, and regeneration.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bridget M Curran
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Le Ma
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
64
|
Anazawa Y, Niwa S. Analyzing the Impact of Gene Mutations on Axonal Transport in Caenorhabditis Elegans. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2431:465-479. [PMID: 35412293 DOI: 10.1007/978-1-0716-1990-2_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development and functions of neurons are supported by axonal transport. Axonal transport is a complex process whose regulation involves multiple molecules, such as microtubules, microtubule-associated proteins, kinases, molecular motors, and motor binding proteins. Gain of function and loss of function mutations of genes that encode these proteins often lead to human axonal neuropathy. Caenorhabditis elegans provides a powerful genetic system to study the consequences of gene mutations for axonal transport. Here, we discuss advantages and limitations of using C. elegans, propose standard criteria, and describe methods to analyze the impact of gene mutations on axonal transport in C. elegans. To obtain solid conclusions, it is necessary to image single neurons in vivo labeled by a specific promoter and to confirm that a mutation changes the localization of a cargo. The motility parameters of the transported cargo should then be analyzed in the mutant. This method enables the axonal transport of proteins and organelles, such as synaptic vesicle precursors and mitochondria, to be analyzed.
Collapse
Affiliation(s)
- Yuzu Anazawa
- Department of Biology, Faculty of Sciences, Tohoku University, Tohoku, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Tohoku, Japan.
| |
Collapse
|
65
|
Zadeh-Haghighi H, Simon C. Radical pairs may play a role in microtubule reorganization. Sci Rep 2022; 12:6109. [PMID: 35414166 PMCID: PMC9005667 DOI: 10.1038/s41598-022-10068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
The exact mechanism behind general anesthesia remains an open question in neuroscience. It has been proposed that anesthetics selectively prevent consciousness and memory via acting on microtubules (MTs). It is known that the magnetic field modulates MT organization. A recent study shows that a radical pair model can explain the isotope effect in xenon-induced anesthesia and predicts magnetic field effects on anesthetic potency. Further, reactive oxygen species are also implicated in MT stability and anesthesia. Based on a simple radical pair mechanism model and a simple mathematical model of MT organization, we show that magnetic fields can modulate spin dynamics of naturally occurring radical pairs in MT. We propose that the spin dynamics influence a rate in the reaction cycle, which translates into a change in the MT density. We can reproduce magnetic field effects on the MT concentration that have been observed. Our model also predicts additional effects at slightly higher fields. Our model further predicts that the effect of zinc on the MT density exhibits isotopic dependence. The findings of this work make a connection between microtubule-based and radical pair-based quantum theories of consciousness.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
66
|
Wu CI, Vinton EA, Pearse RV, Heo K, Aylward AJ, Hsieh YC, Bi Y, Adeleye S, Fancher S, Duong DM, Seyfried NT, Schwarz TL, Young-Pearse TL. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. Mol Psychiatry 2022; 27:1970-1989. [PMID: 35194165 PMCID: PMC9133025 DOI: 10.1038/s41380-022-01454-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
Trisomy 21 (T21) causes Down syndrome and an early-onset form of Alzheimer's disease (AD). Here, we used human induced pluripotent stem cells (hiPSCs) along with CRISPR-Cas9 gene editing to investigate the contribution of chromosome 21 candidate genes to AD-relevant neuronal phenotypes. We utilized a direct neuronal differentiation protocol to bypass neurodevelopmental cell fate phenotypes caused by T21 followed by unbiased proteomics and western blotting to define the proteins dysregulated in T21 postmitotic neurons. We show that normalization of copy number of APP and DYRK1A each rescue elevated tau phosphorylation in T21 neurons, while reductions of RCAN1 and SYNJ1 do not. To determine the T21 alterations relevant to early-onset AD, we identified common pathways altered in familial Alzheimer's disease neurons and determined which of these were rescued by normalization of APP and DYRK1A copy number in T21 neurons. These studies identified disruptions in T21 neurons in both the axonal cytoskeletal network and presynaptic proteins that play critical roles in axonal transport and synaptic vesicle cycling. These alterations in the proteomic profiles have functional consequences: fAD and T21 neurons exhibit dysregulated axonal trafficking and T21 neurons display enhanced synaptic vesicle release. Taken together, our findings provide insights into the initial molecular alterations within neurons that ultimately lead to synaptic loss and axonal degeneration in Down syndrome and early-onset AD.
Collapse
Affiliation(s)
- Chun-I Wu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Vinton
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keunjung Heo
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Bi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sopefoluwa Adeleye
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Seeley Fancher
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Thomas L Schwarz
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
67
|
The pathogenic R5L mutation disrupts formation of Tau complexes on the microtubule by altering local N-terminal structure. Proc Natl Acad Sci U S A 2022; 119:2114215119. [PMID: 35135879 PMCID: PMC8851524 DOI: 10.1073/pnas.2114215119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein (MAP) Tau is an intrinsically disordered protein (IDP) primarily expressed in axons, where it functions to regulate microtubule dynamics, modulate motor protein motility, and participate in signaling cascades. Tau misregulation and point mutations are linked to neurodegenerative diseases, including progressive supranuclear palsy (PSP), Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau occur in the C-terminal microtubule-binding domain of the protein. Effects of C-terminal mutations in Tau have led to the widely accepted disease-state theory that missense mutations in Tau reduce microtubule-binding affinity or increase Tau propensity to aggregate. Here, we investigate the effect of an N-terminal arginine to leucine mutation at position 5 in Tau (R5L), associated with PSP, on Tau-microtubule interactions using an in vitro reconstituted system. Contrary to the canonical disease-state theory, we determine that the R5L mutation does not reduce Tau affinity for the microtubule using total internal reflection fluorescence microscopy. Rather, the R5L mutation decreases the ability of Tau to form larger-order complexes, or Tau patches, at high concentrations of Tau. Using NMR, we show that the R5L mutation results in a local structural change that reduces interactions of the projection domain in the presence of microtubules. Altogether, these results challenge both the current paradigm of how mutations in Tau lead to disease and the role of the projection domain in modulating Tau behavior on the microtubule surface.
Collapse
|
68
|
Jijumon AS, Bodakuntla S, Genova M, Bangera M, Sackett V, Besse L, Maksut F, Henriot V, Magiera MM, Sirajuddin M, Janke C. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat Cell Biol 2022; 24:253-267. [PMID: 35102268 DOI: 10.1038/s41556-021-00825-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The microtubule cytoskeleton forms complex macromolecular assemblies with a range of microtubule-associated proteins (MAPs) that have fundamental roles in cell architecture, division and motility. Determining how an individual MAP modulates microtubule behaviour is an important step in understanding the physiological roles of various microtubule assemblies. To characterize how MAPs control microtubule properties and functions, we developed an approach allowing for medium-throughput analyses of MAPs in cell-free conditions using lysates of mammalian cells. Our pipeline allows for quantitative as well as ultrastructural analyses of microtubule-MAP assemblies. Analysing 45 bona fide and potential mammalian MAPs, we uncovered previously unknown activities that lead to distinct and unique microtubule behaviours such as microtubule coiling or hook formation, or liquid-liquid phase separation along the microtubule lattice that initiates microtubule branching. We have thus established a powerful tool for a thorough characterization of a wide range of MAPs and MAP variants, thus opening avenues for the determination of mechanisms underlying their physiological roles and pathological implications.
Collapse
Affiliation(s)
- A S Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mamata Bangera
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Violet Sackett
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Laetitia Besse
- Institut Curie, Université Paris-Saclay, Centre d'Imagerie Multimodale INSERM US43, CNRS UMS2016, Orsay, France
| | - Fatlinda Maksut
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Veronique Henriot
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
69
|
Lu W, Gelfand VI. Tissue architecture: Two kinesins collaborate in building basement membrane. Curr Biol 2022; 32:R162-R165. [PMID: 35231409 PMCID: PMC10132488 DOI: 10.1016/j.cub.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Basement membranes are essential for tissue architecture and development. A new study reveals that two microtubule motors, kinesin-3 and kinesin-1, work collaboratively to direct basement membrane protein secretion in the Drosophila follicular epithelium for correct tissue movement.
Collapse
|
70
|
Ferro LS, Fang Q, Eshun-Wilson L, Fernandes J, Jack A, Farrell DP, Golcuk M, Huijben T, Costa K, Gur M, DiMaio F, Nogales E, Yildiz A. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science 2022; 375:326-331. [PMID: 35050657 PMCID: PMC8985661 DOI: 10.1126/science.abf6154] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubule (MT)-associated protein 7 (MAP7) is a required cofactor for kinesin-1-driven transport of intracellular cargoes. Using cryo-electron microscopy and single-molecule imaging, we investigated how MAP7 binds MTs and facilitates kinesin-1 motility. The MT-binding domain (MTBD) of MAP7 bound MTs as an extended α helix between the protofilament ridge and the site of lateral contact. Unexpectedly, the MTBD partially overlapped with the binding site of kinesin-1 and inhibited its motility. However, by tethering kinesin-1 to the MT, the projection domain of MAP7 prevented dissociation of the motor and facilitated its binding to available neighboring sites. The inhibitory effect of the MTBD dominated as MTs became saturated with MAP7. Our results reveal biphasic regulation of kinesin-1 by MAP7 in the context of their competitive binding to MTs.
Collapse
Affiliation(s)
- Luke S Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Qianglin Fang
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Lisa Eshun-Wilson
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | | | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mert Golcuk
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Teun Huijben
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | | | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Eva Nogales
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Howard Hughes Medical Institute, Chevy Chase MD, USA
| | - Ahmet Yildiz
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Physics Department, University of California, Berkeley CA, USA
| |
Collapse
|
71
|
Ashkarran AA, Hosseini A, Loloee R, Perry G, Lee KB, Lund M, Ejtehadi MR, Mahmoudi M. Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides. J Colloid Interface Sci 2022; 606:2038-2050. [PMID: 34749450 DOI: 10.1016/j.jcis.2021.09.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
We report on charge transport across self-assembled monolayers (SAMs) of short tau peptides by probing the electron tunneling rates and quantum mechanical simulation. We measured the electron tunneling rates across SAMs of carboxyl-terminated linker molecules (C6H12O2S) and short cis-tau (CT) and trans-tau (TT) peptides, supported on template-stripped gold (AuTS) bottom electrode, with Eutectic Gallium-Indium (EGaIn)(EGaIn) top electrode. Measurements of the current density across thousands of AuTS/linker/tau//Ga2O3/EGaIn single-molecule junctions show that the tunneling current across CT peptide is one order of magnitude lower than that of TT peptide. Quantum mechanical simulation demonstrated a wider energy bandgap of the CT peptide, as compared to the TT peptide, which causes a reduction in its electron tunneling current. Our findings also revealed the critical role of phosphorylation in altering the charge transport characteristics of short peptides; more specifically, we found that the presence of phosphate groups can reduce the energy band gap in tau peptides and alter their electrical properties. Our results suggest that conformational and phosphorylation of short peptides (e.g., tau) can significantly change their charge transport characteristics and energy levels.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Atiyeh Hosseini
- Division of Theoretical Chemistry, Lund University, Lund, Sweden; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Reza Loloee
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | | | - Morteza Mahmoudi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
72
|
Di Meo D, Ravindran P, Sadhanasatish T, Dhumale P, Püschel AW. The balance of mitochondrial fission and fusion in cortical axons depends on the kinases SadA and SadB. Cell Rep 2021; 37:110141. [PMID: 34936879 DOI: 10.1016/j.celrep.2021.110141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neurons are highly polarized cells that display characteristic differences in the organization of their organelles in axons and dendrites. The kinases SadA and SadB (SadA/B) promote the formation of distinct axonal and dendritic extensions during the development of cortical and hippocampal neurons. Here, we show that SadA/B are required for the specific dynamics of axonal mitochondria. Ankyrin B (AnkB) stimulates the activity of SadA/B that function as regulators of mitochondrial dynamics through the phosphorylation of tau. Suppression of SadA/B or AnkB in cortical neurons induces the elongation of mitochondria by disrupting the balance of fission and fusion. SadA/B-deficient neurons show an accumulation of hyper-fused mitochondria and activation of the integrated stress response (ISR). The normal dynamics of axonal mitochondria could be restored by mild actin destabilization. Thus, the elongation after loss of SadA/B results from an excessive stabilization of actin filaments and reduction of Drp1 recruitment to mitochondria.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany
| | - Tanmay Sadhanasatish
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Pratibha Dhumale
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
73
|
Ecklund KH, Bailey ME, Kossen KA, Dietvorst CK, Asbury CL, Markus SM. The microtubule-associated protein She1 coordinates directional spindle positioning by spatially restricting dynein activity. J Cell Sci 2021; 134:273583. [PMID: 34854468 DOI: 10.1242/jcs.258510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Dynein motors move the mitotic spindle to the cell division plane in many cell types, including in budding yeast, in which dynein is assisted by numerous factors including the microtubule-associated protein (MAP) She1. Evidence suggests that She1 plays a role in polarizing dynein-mediated spindle movements toward the daughter cell; however, how She1 performs this function is unknown. We find that She1 assists dynein in maintaining the spindle in close proximity to the bud neck, such that, at anaphase onset, the chromosomes are segregated to mother and daughter cells. She1 does so by attenuating the initiation of dynein-mediated spindle movements within the mother cell, thus ensuring such movements are polarized toward the daughter cell. Our data indicate that this activity relies on She1 binding to the microtubule-bound conformation of the dynein microtubule-binding domain, and to astral microtubules within mother cells. Our findings reveal how an asymmetrically localized MAP directionally tunes dynein activity by attenuating motor activity in a spatially confined manner.
Collapse
Affiliation(s)
- Kari H Ecklund
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Megan E Bailey
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Kelly A Kossen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Carsten K Dietvorst
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
74
|
Perfilov MM, Gavrikov AS, Lukyanov KA, Mishin AS. Transient Fluorescence Labeling: Low Affinity-High Benefits. Int J Mol Sci 2021; 22:11799. [PMID: 34769228 PMCID: PMC8583718 DOI: 10.3390/ijms222111799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent labeling is an established method for visualizing cellular structures and dynamics. The fundamental diffraction limit in image resolution was recently bypassed with the development of super-resolution microscopy. Notably, both localization microscopy and stimulated emission depletion (STED) microscopy impose tight restrictions on the physico-chemical properties of labels. One of them-the requirement for high photostability-can be satisfied by transiently interacting labels: a constant supply of transient labels from a medium replenishes the loss in the signal caused by photobleaching. Moreover, exchangeable tags are less likely to hinder the intrinsic dynamics and cellular functions of labeled molecules. Low-affinity labels may be used both for fixed and living cells in a range of nanoscopy modalities. Nevertheless, the design of optimal labeling and imaging protocols with these novel tags remains tricky. In this review, we highlight the pros and cons of a wide variety of transiently interacting labels. We further discuss the state of the art and future perspectives of low-affinity labeling methods.
Collapse
Affiliation(s)
| | | | | | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.P.); (A.S.G.); (K.A.L.)
| |
Collapse
|
75
|
Bujak Ł, Holanová K, García Marín A, Henrichs V, Barvík I, Braun M, Lánský Z, Piliarik M. Fast Leaps between Millisecond Confinements Govern Ase1 Diffusion along Microtubules. SMALL METHODS 2021; 5:e2100370. [PMID: 34927934 DOI: 10.1002/smtd.202100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/24/2021] [Indexed: 06/14/2023]
Abstract
Diffusion is the most fundamental mode of protein translocation within cells. Confined diffusion of proteins along the electrostatic potential constituted by the surface of microtubules, although modeled meticulously in molecular dynamics simulations, has not been experimentally observed in real-time. Here, interferometric scattering microscopy is used to directly visualize the movement of the microtubule-associated protein Ase1 along the microtubule surface at nanometer and microsecond resolution. Millisecond confinements of Ase1 and fast leaps between these positions of dwelling preferentially occurring along the microtubule protofilaments are resolved, revealing Ase1's mode of diffusive translocation along the microtubule's periodic surface. The derived interaction potential closely matches the tubulin-dimer periodicity and the distribution of the electrostatic potential on the microtubule lattice. It is anticipated that mapping the interaction landscapes for different proteins on microtubules, finding plausible energetic barriers of different positioning and heights, can provide valuable insights into regulating the dynamics of essential cytoskeletal processes, such as intracellular cargo trafficking, cell division, and morphogenesis, all of which rely on diffusive translocation of proteins along microtubules.
Collapse
Affiliation(s)
- Łukasz Bujak
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, Prague, 18251, Czech Republic
| | - Kristýna Holanová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, Prague, 18251, Czech Republic
| | - Antonio García Marín
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, Prague, 18251, Czech Republic
| | - Verena Henrichs
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, 25250, Czech Republic
| | - Ivan Barvík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 2026/5, Prague, 12116, Czech Republic
| | - Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, 25250, Czech Republic
| | - Zdeněk Lánský
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, 25250, Czech Republic
| | - Marek Piliarik
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, Prague, 18251, Czech Republic
| |
Collapse
|
76
|
Bodakuntla S, Yuan X, Genova M, Gadadhar S, Leboucher S, Birling M, Klein D, Martini R, Janke C, Magiera MM. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J 2021; 40:e108498. [PMID: 34309047 PMCID: PMC8408597 DOI: 10.15252/embj.2021108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The "tubulin code" hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies β-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
- Present address:
National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Xidi Yuan
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Mariya Genova
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Sudarshan Gadadhar
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Sophie Leboucher
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Marie‐Christine Birling
- CELPHEDIA, PHENOMINInstitut Clinique de la Souris (ICS), CNRS, INSERMUniversity of StrasbourgIllkirchFrance
| | - Dennis Klein
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Rudolf Martini
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Carsten Janke
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Maria M Magiera
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| |
Collapse
|
77
|
Agulto RL, Rogers MM, Tan TC, Ramkumar A, Downing AM, Bodin H, Castro J, Nowakowski DW, Ori-McKenney KM. Autoregulatory control of microtubule binding in doublecortin-like kinase 1. eLife 2021; 10:e60126. [PMID: 34310279 PMCID: PMC8352597 DOI: 10.7554/elife.60126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
The microtubule-associated protein, doublecortin-like kinase 1 (DCLK1), is highly expressed in a range of cancers and is a prominent therapeutic target for kinase inhibitors. The physiological roles of DCLK1 kinase activity and how it is regulated remain elusive. Here, we analyze the role of mammalian DCLK1 kinase activity in regulating microtubule binding. We found that DCLK1 autophosphorylates a residue within its C-terminal tail to restrict its kinase activity and prevent aberrant hyperphosphorylation within its microtubule-binding domain. Removal of the C-terminal tail or mutation of this residue causes an increase in phosphorylation within the doublecortin domains, which abolishes microtubule binding. Therefore, autophosphorylation at specific sites within DCLK1 has diametric effects on the molecule's association with microtubules. Our results suggest a mechanism by which DCLK1 modulates its kinase activity to tune its microtubule-binding affinity. These results provide molecular insights for future therapeutic efforts related to DCLK1's role in cancer development and progression.
Collapse
Affiliation(s)
- Regina L Agulto
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Melissa M Rogers
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Tracy C Tan
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Ashlyn M Downing
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Hannah Bodin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Julia Castro
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | | |
Collapse
|
78
|
Spiliotis ET, Kesisova IA. Spatial regulation of microtubule-dependent transport by septin GTPases. Trends Cell Biol 2021; 31:979-993. [PMID: 34253430 DOI: 10.1016/j.tcb.2021.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
The intracellular long-range transport of membrane vesicles and organelles is mediated by microtubule motors (kinesins, dynein) which move cargo with spatiotemporal accuracy and efficiency. How motors navigate the microtubule network and coordinate their activity on membrane cargo are fundamental but poorly understood questions. New studies show that microtubule-dependent membrane traffic is spatially controlled by septins - a unique family of multimerizing GTPases that associate with microtubules and membrane organelles. We review how septins selectively regulate motor interactions with microtubules and membrane cargo. We posit that septins provide a novel traffic code that specifies the movement and directionality of select motor-cargo complexes on distinct microtubule tracks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | - Ilona A Kesisova
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
79
|
Hahn I, Voelzmann A, Parkin J, Fülle JB, Slater PG, Lowery LA, Sanchez-Soriano N, Prokop A. Tau, XMAP215/Msps and Eb1 co-operate interdependently to regulate microtubule polymerisation and bundle formation in axons. PLoS Genet 2021; 17:e1009647. [PMID: 34228717 PMCID: PMC8284659 DOI: 10.1371/journal.pgen.1009647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other's localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.
Collapse
Affiliation(s)
- Ines Hahn
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Andre Voelzmann
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Jill Parkin
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Judith B. Fülle
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Paula G. Slater
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| |
Collapse
|
80
|
Multiple layers of spatial regulation coordinate axonal cargo transport. Curr Opin Neurobiol 2021; 69:241-246. [PMID: 34171618 DOI: 10.1016/j.conb.2021.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
Nerve axons are shaped similar to long electric wires to quickly transmit information from one end of the body to the other. To remain healthy and functional, axons depend on a wide range of cellular cargos to be transported from the neuronal cell body to its distal processes. Because of the extended distance, a sophisticated and well-organized trafficking network is required to move cargos up and down the axon. Besides motor proteins driving cargo transport, recent data revealed that subcellular membrane specializations, including the axon initial segment at the beginning of the axon and the membrane-associated periodic skeleton, which extends throughout the axonal length, are important spatial regulators of cargo traffic. In addition, tubulin modifications and microtubule-associated proteins present along the axonal cytoskeleton have been proposed to bias cargo movements. Here, we discuss the recent advances in understanding these multiple layers of regulatory mechanisms controlling axonal transport.
Collapse
|
81
|
Rodrigues EC, Grawenhoff J, Baumann SJ, Lorenzon N, Maurer SP. Mammalian Neuronal mRNA Transport Complexes: The Few Knowns and the Many Unknowns. Front Integr Neurosci 2021; 15:692948. [PMID: 34211375 PMCID: PMC8239176 DOI: 10.3389/fnint.2021.692948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of messenger RNAs (mRNAs) are transported into neurites to provide templates for the assembly of local protein networks. These networks enable a neuron to configure different cellular domains for specialized functions. According to current evidence, mRNAs are mostly transported in rather small packages of one to three copies, rarely containing different transcripts. This opens up fascinating logistic problems: how are hundreds of different mRNA cargoes sorted into distinct packages and how are they coupled to and released from motor proteins to produce the observed mRNA distributions? Are all mRNAs transported by the same transport machinery, or are there different adaptors or motors for different transcripts or classes of mRNAs? A variety of often indirect evidence exists for the involvement of proteins in mRNA localization, but relatively little is known about the essential activities required for the actual transport process. Here, we summarize the different types of available evidence for interactions that connect mammalian mRNAs to motor proteins to highlight at which point further research is needed to uncover critical missing links. We further argue that a combination of discovery approaches reporting direct interactions, in vitro reconstitution, and fast perturbations in cells is an ideal future strategy to unravel essential interactions and specific functions of proteins in mRNA transport processes.
Collapse
Affiliation(s)
- Elsa C. Rodrigues
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julia Grawenhoff
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian J. Baumann
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Nicola Lorenzon
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian P. Maurer
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
82
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
83
|
Wilson JO, Zaragoza AD, Xu J. Tuning ensemble-averaged cargo run length via fractional change in mean kinesin number. Phys Biol 2021; 18. [PMID: 33827070 DOI: 10.1088/1478-3975/abf5b3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 11/12/2022]
Abstract
The number of motors carrying cargos in biological cells is not well-defined, instead varying from cargo to cargo about a statistical mean. Predictive understanding of motility in cells therefore requires quantitative insights into mixed ensembles of cargos. Toward this goal, here we employed Monte Carlo simulations to investigate statistical ensembles of cargos carried by a Poisson-distributed number of motors. Focusing on the key microtubule-based motor kinesin-1, our simulations utilized experimentally determined single-kinesin characteristics and alterations in kinesin's on- and off-rates caused by cellular factors and/or physical load. We found that a fractional increase in mean kinesin number enhances the ensemble-averaged cargo run length and amplifies run-length sensitivity to changes in single-kinesin on-rate and off-rate. These tuning effects can be further enhanced as solution viscosity increases over the range reported for cells. Together, our data indicate that the physiological range of kinesin number sensitively tunes the motility of mixed cargo populations. These effects have rich implications for quantitative and predictive understanding of cellular motility and its regulation.
Collapse
Affiliation(s)
- John O Wilson
- Physics, University of California, Merced, CA, United States of America
| | - Arturo D Zaragoza
- Mechanical Engineering, University of California, Merced, CA, United States of America
| | - Jing Xu
- Physics, University of California, Merced, CA, United States of America
| |
Collapse
|
84
|
Aiken J, Holzbaur ELF. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr Biol 2021; 31:R633-R650. [PMID: 34033795 DOI: 10.1016/j.cub.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development and proper function of the brain requires the formation of highly complex neuronal circuitry. These circuits are shaped from synaptic connections between neurons and must be maintained over a lifetime. The formation and continued maintenance of synapses requires accurate trafficking of presynaptic and postsynaptic components along the axon and dendrite, respectively, necessitating deliberate and specialized delivery strategies to replenish essential synaptic components. Maintenance of synaptic transmission also requires readily accessible energy stores, produced in part by localized mitochondria, that are tightly regulated with activity level. In this review, we focus on recent developments in our understanding of the cytoskeletal environment of axons and dendrites, examining how local regulation of cytoskeletal dynamics and organelle trafficking promotes synapse-specific delivery and plasticity. These new insights shed light on the complex and coordinated role that cytoskeletal elements play in establishing and maintaining neuronal circuitry.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
85
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
86
|
Bovyn M, Janakaloti Narayanareddy BR, Gross S, Allard J. Diffusion of kinesin motors on cargo can enhance binding and run lengths during intracellular transport. Mol Biol Cell 2021; 32:984-994. [PMID: 33439674 PMCID: PMC8108528 DOI: 10.1091/mbc.e20-10-0658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Cellular cargoes, including lipid droplets and mitochondria, are transported along microtubules using molecular motors such as kinesins. Many experimental and computational studies focused on cargoes with rigidly attached motors, in contrast to many biological cargoes that have lipid surfaces that may allow surface mobility of motors. We extend a mechanochemical three-dimensional computational model by adding coupled-viscosity effects to compare different motor arrangements and mobilities. We show that organizational changes can optimize for different objectives: Cargoes with clustered motors are transported efficiently but are slow to bind to microtubules, whereas those with motors dispersed rigidly on their surface bind microtubules quickly but are transported inefficiently. Finally, cargoes with freely diffusing motors have both fast binding and efficient transport, although less efficient than clustered motors. These results suggest that experimentally observed changes in motor organization may be a control point for transport.
Collapse
Affiliation(s)
- Matthew Bovyn
- Department of Physics and Astronomy
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | | | - Steven Gross
- Department of Physics and Astronomy
- Department of Developmental and Cell Biology
- Department of Biomedical Engineering
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | - Jun Allard
- Department of Physics and Astronomy
- Department of Mathematics, and
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
87
|
Boyle L, Rao L, Kaur S, Fan X, Mebane C, Hamm L, Thornton A, Ahrendsen JT, Anderson MP, Christodoulou J, Gennerich A, Shen Y, Chung WK. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. HGG ADVANCES 2021; 2:100026. [PMID: 33880452 PMCID: PMC8054982 DOI: 10.1016/j.xhgg.2021.100026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
KIF1A-associated neurological disorder (KAND) encompasses a group of rare neurodegenerative conditions caused by variants in KIF1A,a gene that encodes an anterograde neuronal microtubule (MT) motor protein. Here we characterize the natural history of KAND in 117 individuals using a combination of caregiver or self-reported medical history, a standardized measure of adaptive behavior, clinical records, and neuropathology. We developed a heuristic severity score using a weighted sum of common symptoms to assess disease severity. Focusing on 100 individuals, we compared the average clinical severity score for each variant with in silico predictions of deleteriousness and location in the protein. We found increased severity is strongly associated with variants occurring in protein regions involved with ATP and MT binding: the P loop, switch I, and switch II. For a subset of variants, we generated recombinant proteins, which we used to assess transport in vivo by assessing neurite tip accumulation and to assess MT binding, motor velocity, and processivity using total internal reflection fluorescence microscopy. We find all modeled variants result in defects in protein transport, and we describe three classes of protein dysfunction: reduced MT binding, reduced velocity and processivity, and increased non-motile rigor MT binding. The rigor phenotype is consistently associated with the most severe clinical phenotype, while reduced MT binding is associated with milder clinical phenotypes. Our findings suggest the clinical phenotypic heterogeneity in KAND likely reflects and parallels diverse molecular phenotypes. We propose a different way to describe KAND subtypes to better capture the breadth of disease severity.
Collapse
Affiliation(s)
- Lia Boyle
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Xiao Fan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Caroline Mebane
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laura Hamm
- Genetic & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Thornton
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared T. Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew P. Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John Christodoulou
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
88
|
Budaitis BG, Jariwala S, Rao L, Yue Y, Sept D, Verhey KJ, Gennerich A. Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms. J Cell Biol 2021; 220:e202004227. [PMID: 33496723 PMCID: PMC7844421 DOI: 10.1083/jcb.202004227] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/27/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
The kinesin-3 motor KIF1A functions in neurons, where its fast and superprocessive motility facilitates long-distance transport, but little is known about its force-generating properties. Using optical tweezers, we demonstrate that KIF1A stalls at an opposing load of ~3 pN but more frequently detaches at lower forces. KIF1A rapidly reattaches to the microtubule to resume motion due to its class-specific K-loop, resulting in a unique clustering of force generation events. To test the importance of neck linker docking in KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders. Molecular dynamics simulations predict that V8M and Y89D mutations impair neck linker docking. Indeed, both mutations dramatically reduce the force generation of KIF1A but not the motor's ability to rapidly reattach to the microtubule. Although both mutations relieve autoinhibition of the full-length motor, the mutant motors display decreased velocities, run lengths, and landing rates and delayed cargo transport in cells. These results advance our understanding of how mutations in KIF1A can manifest in disease.
Collapse
Affiliation(s)
- Breane G. Budaitis
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kristen J. Verhey
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY
| |
Collapse
|
89
|
Koppers M, Farías GG. Organelle distribution in neurons: Logistics behind polarized transport. Curr Opin Cell Biol 2021; 71:46-54. [PMID: 33706233 DOI: 10.1016/j.ceb.2021.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Highly polarized neurons need to carefully regulate the distribution of organelles and other cargoes into their two morphologically and functionally distinct domains, the somatodendritic and axonal compartments, to maintain proper neuron homeostasis. An outstanding question in the field is how organelles reach their correct destination. Long-range transport along microtubules, driven by motors, ensures a fast and controlled availability of organelles in axons and dendrites, but it remains largely unclear what rules govern their transport into the correct compartment. Here, we review the emerging concepts of polarized cargo trafficking in neurons, highlighting the role of microtubule organization, microtubule-associated proteins, and motor proteins and discuss compartment-specific inclusion and exclusion mechanisms as well as the regulation of correct coupling of cargoes to motor proteins.
Collapse
Affiliation(s)
- Max Koppers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
90
|
The 'a, b, c's of pretangle tau and their relation to aging and the risk of Alzheimer's Disease. Semin Cell Dev Biol 2021; 116:125-134. [PMID: 33674223 DOI: 10.1016/j.semcdb.2020.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Braak has described the beginnings of Alzheimer's Disease as occurring in the locus coeruleus. Here we review these pretangle stages and relate their expression to recently described normal features of tau biology. We suggest pretangle tau depends on characteristics of locus coeruleus operation that promote tau condensates. We examine the timeline of pretangle and tangle appearance in locus coeruleus. We find catastrophic loss of locus coeruleus neurons is a late event. The strong relationship between locus coeruleus neuron number and human cognition underscores the utility of a focus on locus coeruleus. Promoting locus coeruleus health will benefit normal aging as well as aid in the prevention of dementia. Two animal models offering experimental approaches to understanding the functional change initiated by pretangles in locus coeruleus neurons are discussed.
Collapse
|
91
|
Seifert A, Drechsler H, Japtok J, Korten T, Diez S, Hermann A. The ALS-Associated FUS (P525L) Variant Does Not Directly Interfere with Microtubule-Dependent Kinesin-1 Motility. Int J Mol Sci 2021; 22:2422. [PMID: 33670886 PMCID: PMC7957795 DOI: 10.3390/ijms22052422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Deficient intracellular transport is a common pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the fused-in-sarcoma (FUS) gene are one of the most common genetic causes for familial ALS. Motor neurons carrying a mutation in the nuclear localization sequence of FUS (P525L) show impaired axonal transport of several organelles, suggesting that mislocalized cytoplasmic FUS might directly interfere with the transport machinery. To test this hypothesis, we studied the effect of FUS on kinesin-1 motility in vitro. Using a modified microtubule gliding motility assay on surfaces coated with kinesin-1 motor proteins, we showed that neither recombinant wildtype and P525L FUS variants nor lysates from isogenic ALS-patient-specific iPSC-derived spinal motor neurons expressing those FUS variants significantly affected gliding velocities. We hence conclude that during ALS pathogenesis the initial negative effect of FUS (P525L) on axonal transport is an indirect nature and requires additional factors or mechanisms.
Collapse
Affiliation(s)
- Anne Seifert
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Hauke Drechsler
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
| | - Till Korten
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Stefan Diez
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
92
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
93
|
Monzon GA, Scharrel L, DSouza A, Henrichs V, Santen L, Diez S. Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations. J Cell Sci 2020; 133:133/22/jcs249938. [PMID: 33257498 DOI: 10.1242/jcs.249938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/18/2020] [Indexed: 11/20/2022] Open
Abstract
The maintenance of intracellular processes, like organelle transport and cell division, depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins, which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameters using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors only have a small effect.
Collapse
Affiliation(s)
- Gina A Monzon
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Lara Scharrel
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Ashwin DSouza
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Verena Henrichs
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany.,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-25250 Prague West, Czech Republic
| | - Ludger Santen
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Stefan Diez
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany .,Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| |
Collapse
|
94
|
Théry M, Blanchoin L. Microtubule self-repair. Curr Opin Cell Biol 2020; 68:144-154. [PMID: 33217636 DOI: 10.1016/j.ceb.2020.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
The stochastic switching between microtubule growth and shrinkage is a fascinating and unique process in the regulation of the cytoskeleton. To understand it, almost all attention has been focused on the microtubule ends. However, recent research has revived the idea that tubulin dimers can also be exchanged in protofilaments along the microtubule shaft, thus repairing the microtubule and protecting it from disassembly. Here, we review the research describing this phenomenon, the mechanisms regulating the removal and insertion of tubulin dimers, as well as the potential implications for key functions of the microtubule network, such as intracellular transport and cell polarization.
Collapse
Affiliation(s)
- Manuel Théry
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, 38054, France; University of Paris, INSERM, CEA, Institut de Recherche Saint Louis, U976, HIPI, CytoMorpho Lab, Paris, 75010, France.
| | - Laurent Blanchoin
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, 38054, France; University of Paris, INSERM, CEA, Institut de Recherche Saint Louis, U976, HIPI, CytoMorpho Lab, Paris, 75010, France.
| |
Collapse
|
95
|
Serra-Marques A, Martin M, Katrukha EA, Grigoriev I, Peeters CAE, Liu Q, Hooikaas PJ, Yao Y, Solianova V, Smal I, Pedersen LB, Meijering E, Kapitein LC, Akhmanova A. Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. eLife 2020; 9:e61302. [PMID: 33174839 PMCID: PMC7710357 DOI: 10.7554/elife.61302] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.
Collapse
Affiliation(s)
- Andrea Serra-Marques
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Maud Martin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Cathelijn AE Peeters
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Qingyang Liu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Peter Jan Hooikaas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Yao Yao
- Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical CenterRotterdamNetherlands
| | - Veronika Solianova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Ihor Smal
- Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical CenterRotterdamNetherlands
| | - Lotte B Pedersen
- Department of Biology, Section of Cell Biology and Physiology, the August Krogh Building, University of CopenhagenCopenhagenDenmark
| | - Erik Meijering
- Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical CenterRotterdamNetherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
96
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
97
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
98
|
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front Mol Neurosci 2020; 13:556175. [PMID: 33071754 PMCID: PMC7531239 DOI: 10.3389/fnmol.2020.556175] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons are highly polarized cells with an elongated axon that extends far away from the cell body. To maintain their homeostasis, neurons rely extensively on axonal transport of membranous organelles and other molecular complexes. Axonal transport allows for spatio-temporal activation and modulation of numerous molecular cascades, thus playing a central role in the establishment of neuronal polarity, axonal growth and stabilization, and synapses formation. Anterograde and retrograde axonal transport are supported by various molecular motors, such as kinesins and dynein, and a complex microtubule network. In this review article, we will primarily discuss the molecular mechanisms underlying anterograde axonal transport and its role in neuronal development and maturation, including the establishment of functional synaptic connections. We will then provide an overview of the molecular and cellular perturbations that affect axonal transport and are often associated with axonal degeneration. Lastly, we will relate our current understanding of the role of axonal trafficking concerning anterograde trafficking of mRNA and its involvement in the maintenance of the axonal compartment and disease.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
99
|
Lopes AT, Hausrat TJ, Heisler FF, Gromova KV, Lombino FL, Fischer T, Ruschkies L, Breiden P, Thies E, Hermans-Borgmeyer I, Schweizer M, Schwarz JR, Lohr C, Kneussel M. Spastin depletion increases tubulin polyglutamylation and impairs kinesin-mediated neuronal transport, leading to working and associative memory deficits. PLoS Biol 2020; 18:e3000820. [PMID: 32866173 PMCID: PMC7485986 DOI: 10.1371/journal.pbio.3000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/11/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition. This study identifies deficits in working and associative memory in spastin knockout mice, resembling the cognitive deficits described in humans with severe forms of SPG4-type hereditary spastic paraplegia. Mechanistically, the findings suggest that impaired microtubule growth, kinesin motility and cargo delivery of synaptic AMPA receptors may contribute to the etiology of the disease.
Collapse
Affiliation(s)
- André T. Lopes
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torben J. Hausrat
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank F. Heisler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira V. Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco L. Lombino
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Fischer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Laura Ruschkies
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Breiden
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edda Thies
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology Unit, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R. Schwarz
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
100
|
Zhernov I, Diez S, Braun M, Lansky Z. Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity. Curr Biol 2020; 30:3342-3351.e5. [PMID: 32649913 DOI: 10.1016/j.cub.2020.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
Collapse
Affiliation(s)
- Ilia Zhernov
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany
| | - Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic.
| |
Collapse
|