51
|
Mao W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front Immunol 2022; 13:1056622. [PMID: 36479131 PMCID: PMC9720167 DOI: 10.3389/fimmu.2022.1056622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The antitumor potential of personalized immunotherapy, including adoptive T-cell therapy, has been shown in both preclinical and clinical studies. Combining cell therapy with targeted metabolic interventions can further enhance therapeutic outcomes in terms of magnitude and durability. The ability of a T cell receptor to recognize peptides derived from tumor neoantigens allows for a robust yet specific response against cancer cells while sparing healthy tissue. However, there exist challenges to adoptive T cell therapy such as a suppressive tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of which can be targeted to further enhance the antitumor potential of T cell receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies involving metabolic reprogramming of both the tumor microenvironment and the cell product, which can lead to increased T cell proliferation, survival, and anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways and targets which can be leveraged to improve engraftment of transferred cells and obviate the need for lymphodepletion, while minimizing off-target effects. Metabolic signaling is delicately balanced, and we demonstrate the need for thoughtful and precise interventions that are tailored for the unique characteristics of each tumor. Through improved understanding of the interplay between immunometabolism, tumor resistance, and T cell signaling, we can improve current treatment regimens and open the door to potential synergistic combinations.
Collapse
|
52
|
Tong Y, Zhang X, Zhou Y. Integrated Analysis of Multi-Omics Data to Establish a Hypoxia-Related Prognostic Model in Osteosarcoma. Evol Bioinform Online 2022; 18:11769343221128537. [PMID: 36325183 PMCID: PMC9618759 DOI: 10.1177/11769343221128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common malignant bone tumor in clinical practice, and currently, the ability to predict prognosis in the diagnosis of OS is limited. There is an urgent need to find new diagnostic methods and treatment strategies for OS. Material and methods: We downloaded the multi-omics data for OS from the TARGET database. Prognosis-associated methylation sites were used to identify clustered subtypes of OS, and OS was classified into 3 subtypes (C1, C2, C3). Survival analysis showed significant differences between the C3 subtype and the other subtypes. Subsequently, differentially expressed genes (DEGs) across subtypes were screened and subjected to pathway enrichment analysis. Results: A total of 249 DEGs were screened from C3 subtype to other subtypes. Metabolic pathway enrichment analysis showed that DEGs were significantly enriched to the hypoxic pathway. Based on univariate and multivariate COX regression analysis, 12 genes from the hypoxia pathway were further screened and used to construct hypoxia-related prognostic model (HRPM). External validation of the HRPM was performed on the GSE21257 dataset. Finally, differences in survival and immune infiltration between high and low risk score groups were compared. Conclusion: In summary, we proposed a hypoxia-associated risk model based on a 12-gene expression signature, which is potentially valuable for prognostic diagnosis of patients with OS.
Collapse
Affiliation(s)
- Ye Tong
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Xiaoqing Zhang
- Department of Laboratory, Bozhou People’s Hospital, Bozhou, Anhui, China
| | - Ye Zhou
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China,Ye Zhou, Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China.
| |
Collapse
|
53
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
54
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, Fan S. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer 2022; 13:3434-3443. [PMID: 36313041 PMCID: PMC9608206 DOI: 10.7150/jca.77619] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of immune checkpoints has been well known to provide novel clues for cancer treatments. Immunotherapy against the programmed cell death protein-1 (PD-1) /programmed death-ligand-1 (PD-L1), one of the most popular auxiliary treatments in recent years, has been applied in various tumor treatments, including non-small cell lung cancer (NSCLC). However, inevitable issues such as side effects and drug resistance emerge following the use of immune checkpoint inhibitors. The PI3K/AKT/mTOR pathway may participate in the regulation of PD-L1 expression. Abnormal PI3K/AKT/mTOR pathway activation results in increased PD-L1 protein translation, whereas PD-L1 overexpression can activate the PI3K/AKT/mTOR pathway inversely. Via downstream proteins, including 4E-BP1, STAT3, NF-κB, c-MYC, and AMPK in aberrant energy status, the PI3K/AKT/mTOR pathway can regulate PD-L1 post-transcription and translation. Besides, the regulation of the PI3K pathway by the PD-1/PD-L1 axis involves both tumor cells and the tumor immune microenvironment. Inhibitors targeting the PD-1/PD-L1 have been successfully applied in the treatment of gastrointestinal cancer and breast cancer. Meanwhile, drug resistance from alternative pathway activation also evidently affects clinical progress. To achieve a better therapeutic effect and quality of survival, the combination of multiple treatment modalities presents great research value. Here we reviewed the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in the progression and treatment of NSCLC and summarized its clinical implications. The intracellular interactions between PD-1/PD-L1 and the PI3K/AKT/mTOR pathway indicate that PD-1/PD-L1 inhibitors have a wide range of potential applications. And we presented the mechanism for combining therapy with monoclonal antibody PD-1/PD-L1 and PI3K/AKT/mTOR inhibitors in this review, to broaden the therapies for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songqing Fan
- ✉ Corresponding author: Songqing Fan, Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. E-mail address:
| |
Collapse
|
55
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
56
|
McKinney AM, Mathur R, Stevers NO, Molinaro AM, Chang SM, Phillips JJ, Costello JF. GABP couples oncogene signaling to telomere regulation in TERT promoter mutant cancer. Cell Rep 2022; 40:111344. [PMID: 36130485 PMCID: PMC9534059 DOI: 10.1016/j.celrep.2022.111344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Abstract
Telomerase activation counteracts senescence and telomere erosion caused by uncontrolled proliferation. Epidermal growth factor receptor (EGFR) amplification drives proliferation while telomerase reverse transcriptase promoter (TERTp) mutations underlie telomerase reactivation through recruitment of GA-binding protein (GABP). EGFR amplification and TERTp mutations typically co-occur in glioblastoma, the most common and aggressive primary brain tumor. To determine if these two frequent alterations driving proliferation and immortality are functionally connected, we combine analyses of copy number, mRNA, and protein data from tumor tissue with pharmacologic and genetic perturbations. We demonstrate that proliferation arrest decreases TERT expression in a GABP-dependent manner and elucidate a critical proliferation-to-immortality pathway from EGFR to TERT expression selectively from the mutant TERTp through activation of AMP-mediated kinase (AMPK) and GABP upregulation. EGFR-AMPK signaling promotes telomerase activity and maintains telomere length. These results define how the tumor cell immortality mechanism keeps pace with persistent oncogene signaling and cell cycling. TERT promoter mutations are common in human cancer and confer cellular immortality. McKinney et al. describe the interaction between TERT promoter mutations, EGFR amplification, and the cell cycle in glioblastoma. The results demonstrate how proliferation drivers cooperate with telomere maintenance mechanisms to counteract telomere shortening caused by unlimited cell division.
Collapse
Affiliation(s)
- Andrew M McKinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
57
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
58
|
The Distinct Roles of LKB1 and AMPK in p53-Dependent Apoptosis Induced by Cisplatin. Int J Mol Sci 2022; 23:ijms231710064. [PMID: 36077459 PMCID: PMC9456506 DOI: 10.3390/ijms231710064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.
Collapse
|
59
|
Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction. Antioxidants (Basel) 2022; 11:antiox11091695. [PMID: 36139771 PMCID: PMC9495674 DOI: 10.3390/antiox11091695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.
Collapse
|
60
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
61
|
Chai S, Wen Z, Zhang R, Bai Y, Liu J, Li J, Kongling W, Chen W, Wang F, Gao L. CCL25/CCR9 interaction promotes the malignant behavior of salivary adenoid cystic carcinoma via the PI3K/AKT signaling pathway. PeerJ 2022; 10:e13844. [PMID: 36003306 PMCID: PMC9394511 DOI: 10.7717/peerj.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background CC chemokine receptor 9 (CCR9), an organ-specific chemokine receptor, interacts with its exclusive ligand CCL25 to promote tumor proliferation and metastasis. However, the effect of CCR9 on salivary adenoid cystic carcinoma (SACC) malignant behavior remains unknown. This study aimed to investigate the specific molecular mechanism by which CCR9/CCL25 modulates malignant progression in SACC. Methods Immunohistochemistry staining and RT-qPCR analyses were performed to detect the correlation of CCR9 expression and tumor progression-associated markers in SACC. In vitro, SACC cell proliferation and apoptosis were evaluated using Cell Counting Kit-8 and colon formation, and cell migration and invasion were detected by wound healing and transwell assays. Vercirnon was used as an inhibitor of CCR9, and LY294002 was used as an inhibitor of the PI3K/AKT pathway in this study. Western blot and RT-qPCR assays were carried out to measure the downstream factors of the interaction of CCL25 and CCR9. The effect of CCL25 on the development of SACC in vivo was examined by a xenograft tumor model in nude mice following CCL25, Vercirnon and LY294002 treatment. Results CCR9 was highly expressed in SACC compared with adjacent salivary gland tissues, and its level was associated with tumor proliferation and metastases. CCL25 enhanced cell proliferation, migration, and invasion through its interaction with CCR9 and exerted an antiapoptotic effect on SACC cells. Targeting CCR9 via Vercirnon significantly reduced the phosphorylation level of AKT induced by CCL25. CCL25/CCR9 could activate its downstream factors through the PI3K/AKT signaling pathway, such as cyclin D1, BCL2 and SLUG, thus promoting SACC cell proliferation, antiapoptosis, invasion and metastasis. The in vivo data from the xenograft mouse models further proved that CCL25 administration promoted malignant tumor progression by activating the PI3K/AKT pathway. Conclusion The interaction of CCL25 and CCR9 promotes tumor growth and metastasis in SACC by activating the PI3K/AKT signaling pathway, offering a promising strategy for SACC treatment.
Collapse
Affiliation(s)
- Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Rongxin Zhang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
62
|
Luo JY, Cheng CK, He L, Pu Y, Zhang Y, Lin X, Xu A, Lau CW, Tian XY, Ma RCW, Jo H, Huang Y. Endothelial UCP2 Is a Mechanosensitive Suppressor of Atherosclerosis. Circ Res 2022; 131:424-441. [PMID: 35899624 PMCID: PMC9390236 DOI: 10.1161/circresaha.122.321187] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Inflamed endothelial cells (ECs) trigger atherogenesis, especially at arterial regions experiencing disturbed blood flow. UCP2 (Uncoupling protein 2), a key mitochondrial antioxidant protein, improves endothelium-dependent relaxation in obese mice. However, whether UCP2 can be regulated by shear flow is unknown, and the role of endothelial UCP2 in regulating inflammation and atherosclerosis remains unclear. This study aims to investigate the mechanoregulation of UCP2 expression in ECs and the effect of UCP2 on endothelial inflammation and atherogenesis. METHODS In vitro shear stress simulation system was used to investigate the regulation of UCP2 expression by shear flow. EC-specific Ucp2 knockout mice were used to investigate the role of UCP2 in flow-associated atherosclerosis. RESULTS Shear stress experiments showed that KLF2 (Krüppel-like factor 2) mediates fluid shear stress-dependent regulation of UCP2 expression in human aortic and human umbilical vein ECs. Unidirectional shear stress, statins, and resveratrol upregulate whereas oscillatory shear stress and proinflammatory stimuli inhibit UCP2 expression through altered KLF2 expression. KLF2 directly binds to UCP2 promoter to upregulate its transcription in human umbilical vein ECs. UCP2 knockdown induced expression of genes involved in proinflammatory and profibrotic signaling, resulting in a proatherogenic endothelial phenotype. EC-specific Ucp2 deletion promotes atherogenesis and collagen production. Additionally, we found endothelial Ucp2 deficiency aggravates whereas adeno-associated virus-mediated EC-Ucp2 overexpression inhibits carotid atherosclerotic plaque formation in disturbed flow-enhanced atherosclerosis mouse model. RNA-sequencing analysis revealed FoxO1 (forkhead box protein O1) as the major proinflammatory transcriptional regulator activated by UCP2 knockdown, and FoxO1 inhibition reduced vascular inflammation and disturbed flow-enhanced atherosclerosis. We showed further that UCP2 level is critical for phosphorylation of AMPK (AMP-activated protein kinase), which is required for UCP2-induced inhibition of FoxO1. CONCLUSIONS Altogether, our studies uncover that UCP2 is novel mechanosensitive gene under the control of fluid shear stress and KLF2 in ECs. UCP2 expression is critical for endothelial proinflammatory response and atherogenesis. Therapeutic strategies enhancing UCP2 level may have therapeutic potential against atherosclerosis.
Collapse
Affiliation(s)
- Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China (J.-Y.L.)
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| | - Lei He
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| | - Yujie Pu
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China (Y.Z.)
| | - Xiao Lin
- School of Life Sciences (X.L.), Chinese University of Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, China (A.X.)
| | - Chi Wai Lau
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
| | - Xiao Yu Tian
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics (R.C.W.M.), Chinese University of Hong Kong, China
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| |
Collapse
|
63
|
Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting Aurora-A/SKP2 shows synthetic lethality. Cell Death Dis 2022; 13:606. [PMID: 35831273 PMCID: PMC9279325 DOI: 10.1038/s41419-022-04973-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor in the world. Histologically, most of RCC is classified as clear cell renal cell carcinoma (ccRCC), which is the most prevalent subtype. The overall survival of patients with ccRCC is poor, thus it is urgent to further explore its mechanism and target. S-phase kinase-associated protein 2 (SKP2) is overexpressed in a variety of human cancers and is associated with poor prognosis by enhancing tumor progression. However, it is unclear whether or how SKP2 is involved in ccRCC progression. Here, we reported that overexpression of SKP2 enhanced cell proliferation of ccRCC, while SKP2 depletion exhibited the opposite effect. Bioinformatic analyses found that SKP2 was positively correlated with Aurora-A (Aur-A) in ccRCC. The protein and mRNA levels of SKP2 were elevated or reduced by Aur-A overexpression or silencing, respectively. It was further found that Aur-A caused an increase phosphorylation of FOXO3A, which is a negatively transcription factor for SKP2. Interestingly, SKP2 mediated ubiquitylation and degradation of FOXO3A depend on the kinase activity of Aur-A. The combination of Aur-A inhibitor MLN8237 and SKP2 inhibitor SZL P1-41 showed a synergistic tumor growth inhibition in vivo and in vitro of ccRCC models. Thus, our data reveal that Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in ccRCC, and the double inhibition of SKP2 and Aur-A shows significant synergistic effect, which indicates a potential new therapeutic strategy for ccRCC.
Collapse
|
64
|
Wang N, Zhou X, Wang X, Zhu X. Identification of Grb2-associated binding protein 3 expression to predict clinical outcomes and immunotherapeutic responses in lung adenocarcinoma. J Biochem Mol Toxicol 2022; 36:e23166. [PMID: 35822560 DOI: 10.1002/jbt.23166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
With the deepening research on tumor microenvironment (TME), immunotherapy has been deemed to be one of the major breakthroughs for cancer therapy. Nevertheless, only some patients respond well to this treatment. It is vital to explore predictive biomarkers for clinical benefit of immunotherapy. Grb2-associated binding protein 3 (GAB3) exerts essential biological functions in ovarian cancer and colorectal cancer. The potential role of GAB3 in lung adenocarcinoma (LUAD) has not been fully elucidated. RNA-sequencing data, genetic mutation data, and matched clinical data were obtained from the cancer genome atlas (TCGA) databases, then underwent gene expression, prognosis, enrichment, TME, immune checkpoint blockade (ICB) response analyses utilizing R packages. The mRNA expression level of GAB3 was dramatically decreased in LUAD, and the prognostic analysis indicated that the patients with low GAB3 expression performed unsatisfactory clinical outcomes. In addition, differentially expressed genes (DEGs) and subsequent functional enrichment analysis demonstrated that GAB3 was primarily connected with T cell activation and immune response. Finally, GAB3 expression positively correlated with immune infiltrates and immune checkpoint genes, and therapeutic effect of ICB. In summary, our study comprehensively uncovers that GAB3 may function as a promising biomarker to predict clinical outcomes and immunotherapeutic responses in LUAD patients.
Collapse
Affiliation(s)
- Ning Wang
- The Third Central Hospital of Tianjin, Tianjin, China
| | - Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Xue Wang
- Department of Respiratory Medicine, The Third Central Hospital of Tianjin, Tianjin, China
| | - Xiaowei Zhu
- The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
65
|
Che L, Du ZB, Wang WH, Wu JS, Han T, Chen YY, Han PY, Lei Z, Chen XX, He Y, Xu L, Lin X, Lin ZN, Lin YC. Intracellular antibody targeting HBx suppresses invasion and metastasis in hepatitis B virus-related hepatocarcinogenesis via protein phosphatase 2A-B56γ-mediated dephosphorylation of protein kinase B. Cell Prolif 2022; 55:e13304. [PMID: 35811356 PMCID: PMC9628248 DOI: 10.1111/cpr.13304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Hepatitis B virus X (HBx) is closely associated with HBV‐related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx‐associated hepatocarcinogenesis phenotypes and mediating anti‐HBx antibody‐mediated tumour suppression remains unknown. Materials and Methods We used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx‐Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti‐HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx‐associated hepatocarcinogenesis. Results Bioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV‐infected liver tissues and HBV‐associated HCC tissues. Our results demonstrated that HBx‐expression promotes AKT phosphorylation (p‐AKTThr308/Ser473), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV‐associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site‐directed mutagenesis (AKTT308A, AKTS473A) of p‐AKTThr308/Ser473 mimics dephosphorylation, genetics‐based B56γ overexpression, and intracellular anti‐HBx antibody inhibited cell growth, migration, and invasion in HBx‐expressing HCC cells. Conclusions Our results demonstrated that B56γ inhibited HBV/HBx‐dependent hepatocarcinogenesis by regulating the dephosphorylation of p‐AKTThr308/Ser473 in HCC cells. The intracellular anti‐HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV‐related HCC.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wei-Hua Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tun Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yuan-Yuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pei-Yu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ling Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
66
|
Zong C, Yang M, Guo X, Ji W. Chronic restraint stress promotes gastric epithelial malignant transformation by activating the Akt/p53 signaling pathway via ADRB2. Oncol Lett 2022; 24:300. [PMID: 35949623 PMCID: PMC9353258 DOI: 10.3892/ol.2022.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
The etiology of gastric cancer is associated with infectious, environmental and dietary factors, as well as genetic background. Additionally, emerging evidence has supported the vital role of chronic emotional stress on gastric carcinogenesis; however, the underlying mechanism remains unclear. The present study aimed to investigate the effects of chronic stress and a detrimental diet on gastric malignant epithelial transformation in rats. Therefore, 26 Wistar rats were randomly divided into the following four groups: i) Control; ii) detrimental diet (DD); iii) detrimental diet with chronic restraint (DR) and iv) detrimental diet with chronic restraint and propranolol treatment (DRP). ELISA was performed to detect the serum levels of epinephrine and norepinephrine. Epithelial cell apoptosis was analyzed using the TUNEL assay. The mRNA and protein expression levels of Akt and p53 were detected using reverse transcription quantitative PCR and western blotting, respectively. Pathological changes were analyzed using hematoxylin and eosin staining (H&E). The H&E staining results showed that dysplasia in the gastric mucosa occurred in two of eight rats in the DD group and in four of five rats in the DR group, whereas no dysplasia was detected in the DRP group. The apoptotic ratios of gastric epithelial cells were significantly decreased in all treatment groups compared with the control group. Adrenoceptor β2 (ADRB2) protein expression levels were increased significantly only in the DR group and this effect was significantly reduced in the DRP group. The mRNA expression levels of Akt and p53 were significantly upregulated in the DD group, and Akt mRNA expression was further elevated in the DR group. With regard to protein expression, the levels of Akt and p-Akt were significantly increased in the DR group, whereas these effects were reversed in the DRP group. Furthermore, the ratio of p-p53/p53 protein was significantly reduced in the DD or DR groups, but was reversed in the DRP group. Collectively, the findings of the present study suggested that chronic restraint stress potentially aggravates the gastric epithelial malignant transformation induced by a detrimental diet, at least partially via the Akt/p53 signaling pathway mediated via ADRB2.
Collapse
Affiliation(s)
- Chuanju Zong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Maoquan Yang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiaojing Guo
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
67
|
AMPK's double-faced role in advanced stages of prostate cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2064-2073. [PMID: 35781781 DOI: 10.1007/s12094-022-02874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths in men. Unfortunately, a very limited number of drugs are available for the relapsed and advanced stages of PCa, adding only a few months to survival; therefore, it is vital to develop new drugs. 5´ AMP-activated protein kinase (AMPK) is a master regulator of cell metabolism. It plays a significant role in the metabolism of PCa; hence, it can serve well as a treatment option for the advanced stages of PCa. However, whether this pathway contributes to cancer cell survival or death remains unknown. The present study reviews the possible pathways by which AMPK plays role in the advanced stages of PCa, drug resistance, and metastasis: (1) AMPK has a contradictory role in promoting glycolysis and the Warburg effect which are correlated with cancer stem cells (CSCs) survival and advanced PCa. It exerts its effect by interacting with hypoxia-induced factor 1 (HIF1) α, pyruvate kinase 2 (PKM2), glucose transporter (GLUT) 1 and pyruvate dehydrogenase complex (PDHC), which are key regulators of glycolysis; however, whether it promotes or discourage glycolysis is not conclusive. It can also exert an anti-CSC effect by negative regulation of NANOG and epithelial-mesenchymal transition (EMT) transcription factors, which are the major drivers of CSC maintenance; (2) the regulatory effect of AMPK on autophagy is also noticeable. Androgen receptors' expression increases AMPK activation through Calcium/calmodulin-dependent protein kinase 2 (CaMKK2) and induces autophagy. In addition, AMPK itself increases autophagy by downregulating the mammalian target of rapamycin complex (mTORC). However, whether increased autophagy inhibits or promotes cell death and drug resistance is contradictory. This study reveals that there are numerous pathways other than cell metabolism by which AMPK exerts its effects in the advanced stages of PCa, making it a priceless treatment target. Finally, we mention some drugs developed to treat the advanced stages of PCa by acting on AMPK.
Collapse
|
68
|
Dai S, Venturini E, Yadav S, Lin X, Clapp D, Steckiewicz M, Gocher-Demske AM, Hardie DG, Edelman AM. Calcium/calmodulin-dependent protein kinase kinase 2 mediates pleiotropic effects of epidermal growth factor in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119252. [PMID: 35271909 DOI: 10.1016/j.bbamcr.2022.119252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
AIMS Engagement of epidermal growth factor (EGF) with its receptor (EGFR) produces a broad range of cancer phenotypes. The overriding aim of this study was to understand EGFR signaling and its regulation by the Ca2+/calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) in cancer cells. RESULTS In ovarian cancer cells and other cancer cell types, EGF-induced activation of oncogenic Akt is mediated by both the canonical PI3K-PDK1 pathway and by CaMKK2. Akt activation induced by EGF occurs by both calcium-dependent and calcium-independent mechanisms. In contrast to the canonical pathway, CaMKK2 neither binds to, nor is regulated by phosphoinositides but is activated by Ca2+/CaM. Akt activation at its primary activation site, T308 occurs by direct phosphorylation by CaMKK2, but activation at its secondary site (S473), is through an indirect mechanism requiring mTORC2. In cells in which another CaMKK2 target, 5'AMP-dependent protein kinase (AMPK) was deleted, Akt activation and calcium-dependency of activation were still observed. CaMKK2 accumulates in the nucleus in response to EGF and regulates transcription of phosphofructokinase platelet (PFKP) a glycolytic regulator. CaMKK2 is required for optimal PFK activity. CaMKK2 regulates transcription of plasminogen activator, urokinase (PLAU) a metastasis regulator. The EGFR inhibitor gefitinib synergizes with CaMKK2 inhibition in the regulation of cell survival and increases the dose-reduction index. CRISPR/Cas9 knockout of CaMKK2 leads to compensatory PTEN downregulation and upregulation of Akt activation. CONCLUSIONS CaMKK2-mediation of EGFR action may enable cancer cells to use intracellular calcium elevation as a signal for growth and survival.
Collapse
Affiliation(s)
- Shuhang Dai
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Elisa Venturini
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Saveg Yadav
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Xiaoxuan Lin
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Dylan Clapp
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Martin Steckiewicz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Angela M Gocher-Demske
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America; Department of Immunology School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 1521, United States of America
| | - D Grahame Hardie
- Division of Cell Signaling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arthur M Edelman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America.
| |
Collapse
|
69
|
Kim S, Han J, Ahn YH, Ha CH, Hwang JJ, Lee SE, Kim JJ, Kim N. Protective Role of miR-34c in Hypoxia by Activating Autophagy through BCL2 Repression. Mol Cells 2022; 45:403-412. [PMID: 35611688 PMCID: PMC9200661 DOI: 10.14348/molcells.2022.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Hypoxia leads to significant cellular stress that has diverse pathological consequences such as cardiovascular diseases and cancers. MicroRNAs (miRNAs) are one of regulators of the adaptive pathway in hypoxia. We identified a hypoxia-induced miRNA, miR-34c, that was significantly upregulated in hypoxic human umbilical cord vein endothelial cells (HUVECs) and in murine blood vessels on day 3 of hindlimb ischemia (HLI). miR-34c directly inhibited BCL2 expression, acting as a toggle switch between apoptosis and autophagy in vitro and in vivo. BCL2 repression by miR-34c activated autophagy, which was evaluated by the expression of LC3-II. Overexpression of miR-34c inhibited apoptosis in HUVEC as well as in a murine model of HLI, and increased cell viability in HUVEC. Importantly, the number of viable cells in the blood vessels following HLI was increased by miR-34c overexpression. Collectively, our findings show that miR-34c plays a protective role in hypoxia, suggesting a novel therapeutic target for hypoxic and ischemic diseases in the blood vessels.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaeseok Han
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute for Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Chang Hoon Ha
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Joong Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Nayoung Kim
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
70
|
Eustace AJ, Lee MJ, Colley G, Roban J, Downing T, Buchanan PJ. Aberrant calcium signalling downstream of mutations in TP53 and the PI3K/AKT pathway genes promotes disease progression and therapy resistance in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:560-576. [PMID: 36176752 PMCID: PMC9511797 DOI: 10.20517/cdr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Alex J. Eustace
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Grace Colley
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Jack Roban
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Tim Downing
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Paul J. Buchanan
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin D9, Ireland
| |
Collapse
|
71
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
72
|
GANT61 elevates chemosensitivity to cisplatin through regulating the Hedgehog, AMPK and cAMP pathways in ovarian cancer. Future Med Chem 2022; 14:479-500. [PMID: 35322690 DOI: 10.4155/fmc-2021-0310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: This study aimed to explore the effect of GANT61 on ovarian cancer (OC) chemosensitivity. Materials & methods: OC cells (Caov-3 and SKOV-3) were treated by GANT61 alone or combined with cisplatin/taxol. The mRNA sequencing was conducted, followed by rescue experiments. Results: GANT61 reduced OC cell viability in a dose-dependent manner and enhanced chemosensitivity to cisplatin but not to taxol. In total, 545 dysregulated genes were identified after the addition of GANT61 to cisplatin-treated OC cells, which were enriched in the AMPK, Hedgehog and cAMP pathways, then further validated by western blot. Furthermore, rescue experiments observed that AMPK pathway inhibitor and cAMP pathway inhibitor attenuated GANT61's chemosensitivity to cisplatin. Conclusion: GANT61 enforces OC chemosensitivity to cisplatin by regulating the Hedgehog, AMPK and cAMP pathways.
Collapse
|
73
|
Xu Z, Liu M, Wang J, Liu K, Xu L, Fan D, Zhang H, Hu W, Wei D, Wang J. Single-cell RNA-sequencing analysis reveals MYH9 promotes renal cell carcinoma development and sunitinib resistance via AKT signaling pathway. Cell Death Dis 2022; 8:125. [PMID: 35318312 PMCID: PMC8941107 DOI: 10.1038/s41420-022-00933-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a serious threat to human health worldwide, while its heterogeneity limits therapeutic success and leads to poor survival outcomes. Single-cell RNA-sequencing (scRNA-seq) is an important technology, which provides deep insights into the genetic characteristics of carcinoma. In this study, we profiled the gene expression of single cells from human ccRCC tissues and adjacent normal tissues using the scRNA-seq. We found that MYH9 was commonly upregulated in the ccRCC cell subgroup. Additionally, MYH9 was of highly expression in ccRCC tissues and predicted poor prognosis of ccRCC patients. MYH9 knockdown in ccRCC cells dampened their proliferative and metastatic potentials, whereas MYH9 overexpression enhanced these properties. In vivo, MYH9 also promoted ccRCC growth. Mechanistic studies showed that MYH9 played these vital roles through AKT signaling pathway. Furthermore, MYH9/AKT axis determined the responses of ccRCC cells to sunitinib treatment and might serve as a biomarker for sunitinib benefits in ccRCC patients. Thus, MYH9 might be a novel therapeutic target and prognostic predictor for ccRCC.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Min Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jin Wang
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Kai Liu
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Liuyu Xu
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Demin Fan
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Hui Zhang
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Wenxin Hu
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China
| | - Dan Wei
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China.
| | - Jianning Wang
- Department of Urology, Shandong Qianfoshan Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China. .,Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, China.
| |
Collapse
|
74
|
Wu S, Ge Y, Lin K, Liu Q, Zhou H, Hu Q, Zhao Y, He W, Ju Z. Telomerase RNA TERC and the PI3K-AKT pathway form a positive feedback loop to regulate cell proliferation independent of telomerase activity. Nucleic Acids Res 2022; 50:3764-3776. [PMID: 35323972 PMCID: PMC9023280 DOI: 10.1093/nar/gkac179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The core catalytic unit of telomerase comprises telomerase reverse transcriptase (TERT) and telomerase RNA (TERC). Unlike TERT, which is predominantly expressed in cancer and stem cells, TERC is ubiquitously expressed in normal somatic cells without telomerase activity. However, the functions of TERC in these telomerase-negative cells remain elusive. Here, we reported positive feedback regulation between TERC and the PI3K-AKT pathway that controlled cell proliferation independent of telomerase activity in human fibroblasts. Mechanistically, we revealed that TERC activated the transcription of target genes from the PI3K-AKT pathway, such as PDPK1, by targeting their promoters. Overexpression of PDPK1 partially rescued the deficiency of AKT activation caused by TERC depletion. Furthermore, we found that FOXO1, a transcription factor negatively regulated by the PI3K-AKT pathway, bound to TERC promoter and suppressed its expression. Intriguingly, TERC-induced activation of the PI3K-AKT pathway also played a critical role in the proliferation of activated CD4+ T cells. Collectively, our findings identify a novel function of TERC that regulates the PI3K-AKT pathway via positive feedback to elevate cell proliferation independent of telomerase activity and provide a potential strategy to promote CD4+ T cells expansion that is responsible for enhancing adaptive immune reactions to defend against pathogens and tumor cells.
Collapse
Affiliation(s)
- Shu Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China.,GCH Regenerative Medicine Group-Jinan University Joint Research and Development Center, Jinan University, Guangzhou 510632, China
| | - Kaixuan Lin
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Qianqian Liu
- First Affiliated Hospital, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
75
|
Yoo HY, Park SY, Chang SY, Kim SH. Regulation of Butyrate-Induced Resistance through AMPK Signaling Pathway in Human Colon Cancer Cells. Biomedicines 2021; 9:biomedicines9111604. [PMID: 34829834 PMCID: PMC8615665 DOI: 10.3390/biomedicines9111604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Butyrates inhibit cell growth in colon cancer cells by inhibiting histone deacetylases. However, chronic exposure to butyrates induces butyrate resistance in colon cancer cells. The mechanism underlying the acquisition of resistance is not yet fully understood. Here, butyrate-resistant (BR) colon cancer cells were developed in HCT116, HT29, and SW480 human colon cancer cells and were confirmed by the increase in the inhibitory concentrations of cell growth by 50% (IC50) compared to their respective parental (PT) cells. Chronic exposure to butyrate induced autophagy via higher expression of Beclin-1 and LC3B-II. The AMP-activated protein kinase (AMPK) was downregulated along with the activation of Akt and mammalian target of rapamycin (mTOR) and decrease in acetyl-CoA carboxylase (ACC) in BR colon cancer cells compared to those in their respective PT cells. Activation of AMPK by AICAR treatment in BR colon cancer cells suppressed cell proliferation by inhibiting Akt and mTOR and activating ACC. Taken together, chronic exposure to butyrate increased butyrate resistance in human colon cancer by inducing protective autophagy through the downregulation of AMPK/ACC and activation of Akt/mTOR signaling. Activation of AMPK restored sensitivity to butyrate by the inhibition of Akt/mTOR, suggesting that AMPK could be a therapeutic target for BR colon cancers.
Collapse
Affiliation(s)
| | | | | | - So Hee Kim
- Correspondence: ; Tel.: +82-31-219-3451; Fax: +82-31-219-3435
| |
Collapse
|
76
|
Wegner MS, Schömel N, Olzomer EM, Trautmann S, Olesch C, Byrne FL, Brüne B, Gurke R, Ferreirós N, Weigert A, Geisslinger G, Hoehn KL. Increased glucosylceramide production leads to decreased cell energy metabolism and lowered tumor marker expression in non-cancerous liver cells. Cell Mol Life Sci 2021; 78:7025-7041. [PMID: 34626204 PMCID: PMC8558193 DOI: 10.1007/s00018-021-03958-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most difficult cancer types to treat. Liver cancer is often diagnosed at late stages and therapeutic treatment is frequently accompanied by development of multidrug resistance. This leads to poor outcomes for cancer patients. Understanding the fundamental molecular mechanisms leading to liver cancer development is crucial for developing new therapeutic approaches, which are more efficient in treating cancer. Mice with a liver specific UDP-glucose ceramide glucosyltransferase (UGCG) knockout (KO) show delayed diethylnitrosamine (DEN)-induced liver tumor growth. Accordingly, the rationale for our study was to determine whether UGCG overexpression is sufficient to drive cancer phenotypes in liver cells. We investigated the effect of UGCG overexpression (OE) on normal murine liver (NMuLi) cells. Increased UGCG expression results in decreased mitochondrial respiration and glycolysis, which is reversible by treatment with EtDO-P4, an UGCG inhibitor. Furthermore, tumor markers such as FGF21 and EPCAM are lowered following UGCG OE, which could be related to glucosylceramide (GlcCer) and lactosylceramide (LacCer) accumulation in glycosphingolipid-enriched microdomains (GEMs) and subsequently altered signaling protein phosphorylation. These cellular processes lead to decreased proliferation in NMuLi/UGCG OE cells. Our data show that increased UGCG expression itself does not induce pro-cancerous processes in normal liver cells, which indicates that increased GlcCer expression leads to different outcomes in different cancer types.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Nina Schömel
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Gurke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
77
|
Kumar N, Mandal CC. Cholesterol-Lowering Drugs on Akt Signaling for Prevention of Tumorigenesis. Front Genet 2021; 12:724149. [PMID: 34603386 PMCID: PMC8483559 DOI: 10.3389/fgene.2021.724149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol has been reported to be accumulated in cancer cells. The metabolic dysregulation of the cholesterol is associated with tumor development and progression. The cholesterol-lowering drugs have been found to be involved in the prevention and treatment of various cancers. Akt, a serine/threonine kinase, can modulate the role of several downstream proteins involved in cell proliferation, migration, invasion, metabolism, and apoptosis. Since its involvement in several signaling pathways, its dysregulation is commonly reported in several cancers. Thus, targeting Akt could be an effective approach for cancer prevention and therapy. Cholesterol-lowering drugs have been found to affect the expression of Akt, and its activation in the cancer cells and thus have shown anticancer activity in different type of cancers. These drugs act on various signaling pathways such as PTEN/Akt, PI3k/Akt, Akt/NF-κB, Akt/FOXO1, Akt/mTOR, etc., which will be discussed in this article. This review article will discuss the significance of cholesterol in cancer cells, cholesterol-lowering drugs, the role of Akt in cancer cells, and the effects of cholesterol-lowering drugs on Akt in the prevention of therapy resistance and metastasis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
78
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
79
|
Duan L, Calhoun S, Shim D, Perez RE, Blatter LA, Maki CG. Fatty acid oxidation and autophagy promote endoxifen resistance and counter the effect of AKT inhibition in ER-positive breast cancer cells. J Mol Cell Biol 2021; 13:433-444. [PMID: 33755174 PMCID: PMC8436705 DOI: 10.1093/jmcb/mjab018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Tamoxifen (TAM) is the first-line endocrine therapy for estrogen receptor-positive (ER+) breast cancer (BC). However, acquired resistance occurs in ∼50% cases. Meanwhile, although the PI3K/AKT/mTOR pathway is a viable target for treatment of endocrine therapy-refractory patients, complex signaling feedback loops exist, which can counter the effectiveness of inhibitors of this pathway. Here, we analyzed signaling pathways and metabolism in ER+ MCF7 BC cell line and their TAM-resistant derivatives that are co-resistant to endoxifen using immunoblotting, quantitative polymerase chain reaction, and the Agilent Seahorse XF Analyzer. We found that activation of AKT and the energy-sensing kinase AMPK was increased in TAM and endoxifen-resistant cells. Furthermore, ERRα/PGC-1β and their target genes MCAD and CPT-1 were increased and regulated by AMPK, which coincided with increased fatty acid oxidation (FAO) and autophagy in TAM-resistant cells. Inhibition of AKT feedback-activates AMPK and ERRα/PGC-1β-MCAD/CPT-1 with a consequent increase in FAO and autophagy that counters the therapeutic effect of endoxifen and AKT inhibitors. Therefore, our results indicate increased activation of AKT and AMPK with metabolic reprogramming and increased autophagy in TAM-resistant cells. Simultaneous inhibition of AKT and FAO/autophagy is necessary to fully sensitize resistant cells to endoxifen.
Collapse
Affiliation(s)
- Lei Duan
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sarah Calhoun
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Daeun Shim
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ricardo E Perez
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Carl G Maki
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
80
|
Hosseini A, Hamblin MR, Mirzaei H, Mirzaei HR. Role of the bone marrow microenvironment in drug resistance of hematological malignances. Curr Med Chem 2021; 29:2290-2305. [PMID: 34514979 DOI: 10.2174/0929867328666210910124319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The unique features of the tumor microenvironment (TME) govern the biological properties of many cancers, including hematological malignancies. TME factors can trigger invasion, and protect against drug cytotoxicity by inhibiting apoptosis and activating specific signaling pathways (e.g. NF-ΚB). TME remodeling is facilitated due to the high self-renewal ability of the bone marrow. Progressing tumor cells can alter some extracellular matrix (ECM) components which act as a barrier to drug penetration in the TME. The initial progression of the cell cycle is controlled by the MAPK pathway (Raf/MEK/ERK) and Hippo pathway, while the final phase is regulated by the PI3K/Akt /mTOR and WNT pathways. In this review we summarize the main signaling pathways involved in drug resistance (DR) and some mechanisms by which DR can occur in the bone marrow. The relationship between autophagy, endoplasmic reticulum stress, and cellular signaling pathways in DR and apoptosis are covered in relation to the TME.
Collapse
Affiliation(s)
- Alireza Hosseini
- Laboratory Hematology and Blood Banking, Tehran University of Medical Sciences, Tehran. Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028. South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan. Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
81
|
Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun 2021; 12:5058. [PMID: 34433808 PMCID: PMC8387475 DOI: 10.1038/s41467-021-25274-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Dietary interventions such as intermittent fasting (IF) have emerged as an attractive strategy for cancer therapies; therefore, understanding the underlying molecular mechanisms is pivotal. Here, we find SIRT7 decline markedly attenuates the anti-tumor effect of IF. Mechanistically, AMP-activated protein kinase (AMPK) phosphorylating SIRT7 at T263 triggers further phosphorylation at T255/S259 by glycogen synthase kinase 3β (GSK3β), which stabilizes SIRT7 by decoupling E3 ligase UBR5. SIRT7 hyperphosphorylation achieves anti-tumor activity by disrupting the SKP2-SCF E3 ligase, thus preventing SKP2-mediated K63-linked AKT polyubiquitination and subsequent activation. In contrast, GSK3β-SIRT7 axis is inhibited by EGF/ERK2 signaling, with ERK2 inactivating GSK3β, thus accelerating SIRT7 degradation. Unfavorably, glucose deprivation or chemotherapy hijacks the GSK3β-SIRT7 axis via ERK2, thus activating AKT and ensuring survival. Notably, Trametinib, an FDA-approved MEK inhibitor, enhances the efficacy of combination therapy with doxorubicin and IF. Overall, we have revealed the GSK3β-SIRT7 axis that must be fine-tuned in the face of the energetic and oncogenic stresses in malignancy. The combination of intermittent fasting and chemotherapy can improve the response to treatment. Here, the authors show that SIRT7 activation is required to inactivate Akt during intermittent fasting and that the combination of intermittent fasting and inhibitors that block the Erk pathway can improve efficacy of treatment.
Collapse
|
82
|
Sharma VK, Lahiri M. Interplay between p300 and HDAC1 regulate acetylation and stability of Api5 to regulate cell proliferation. Sci Rep 2021; 11:16427. [PMID: 34385547 PMCID: PMC8361156 DOI: 10.1038/s41598-021-95941-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Api5, is a known anti-apoptotic and nuclear protein that is responsible for inhibiting cell death in serum-starved conditions. The only known post-translational modification of Api5 is acetylation at lysine 251 (K251). K251 acetylation of Api5 is responsible for maintaining its stability while the de-acetylated form of Api5 is unstable. This study aimed to find out the enzymes regulating acetylation and deacetylation of Api5 and the effect of acetylation on its function. Our studies suggest that acetylation of Api5 at lysine 251 is mediated by p300 histone acetyltransferase while de-acetylation is carried out by HDAC1. Inhibition of acetylation by p300 leads to a reduction in Api5 levels while inhibition of deacetylation by HDAC1 results in increased levels of Api5. This dynamic switch between acetylation and deacetylation regulates the localisation of Api5 in the cell. This study also demonstrates that the regulation of acetylation and deacetylation of Api5 is an essential factor for the progression of the cell cycle.
Collapse
Affiliation(s)
- Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
83
|
Muraleedharan R, Dasgupta B. AMPK in the brain: its roles in glucose and neural metabolism. FEBS J 2021; 289:2247-2262. [PMID: 34355526 DOI: 10.1111/febs.16151] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) is an integrative metabolic sensor that maintains energy balance at the cellular level and plays an important role in orchestrating intertissue metabolic signaling. AMPK regulates cell survival, metabolism, and cellular homeostasis basally as well as in response to various metabolic stresses. Studies so far show that the AMPK pathway is associated with neurodegeneration and CNS pathology, but the mechanisms involved remain unclear. AMPK dysregulation has been reported in neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and other neuropathies. AMPK activation appears to be both neuroprotective and pro-apoptotic, possibly dependent upon neural cell types, the nature of insults, and the intensity and duration of AMPK activation. While embryonic brain development in AMPK null mice appears to proceed normally without any overt structural abnormalities, our recent study confirmed the full impact of AMPK loss in the postnatal and aging brain. Our studies revealed that Ampk deletion in neurons increased basal neuronal excitability and reduced latency to seizure upon stimulation. Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in the brain. AMPK's regulation of aerobic glycolysis in astrocytic metabolism warrants further deliberation, particularly glycogen turnover and shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation. In this minireview, we focus on recent advances in AMPK and energy-sensing in the brain.
Collapse
Affiliation(s)
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
84
|
Chua V, Han A, Bechtel N, Purwin TJ, Hunter E, Liao C, Harbour JW, Aplin AE. The AMP-dependent kinase pathway is upregulated in BAP1 mutant uveal melanoma. Pigment Cell Melanoma Res 2021; 35:78-87. [PMID: 34347929 DOI: 10.1111/pcmr.13007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023]
Abstract
Metastatic uveal melanoma (UM) responds poorly to targeted therapies and immune checkpoint inhibitors. Loss of BRCA1-associated protein 1 (BAP1) via inactivating mutations in the BAP1 gene is associated with UM progression. Thus, molecular alterations caused by BAP1 dysfunction may be novel therapeutic targets for metastatic UM. Here, we found that phosphorylation of AMP-dependent kinase (AMPK) was elevated in BAP1-altered (or mutant) compared to BAP1-unaltered (or wild-type [WT]) UM tumors. As a readout of AMPK pathway activation, phosphorylation of an AMPK downstream effector, acetyl-CoA-carboxylase (ACC), was also elevated. BAP1 re-expression in BAP1-null UM cell lines decreased phospho-AMPK (pAMPK) and phospho-ACC (pACC) levels. AMPK phosphorylation is mediated by calcium/calmodulin dependent protein kinase kinase 2 (CaMKK2) and potentially liver kinase B1 (LKB1) in BAP1 mutant UM cells. Knockdown of AMPKα1/2 reduced the viability of BAP1 mutant UM cells, indicating a survival function of AMPK in BAP1 mutant UM. Our data suggest that the AMPK pathway is an important mechanism mediating the survival of BAP1 mutant UM. Targeting the AMPK pathway may be a novel therapeutic strategy for metastatic UM.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna Han
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nelisa Bechtel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emily Hunter
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
85
|
Lin DC, Zheng SY, Zhang ZG, Luo JH, Zhu ZL, Li L, Chen LS, Lin X, Sham JSK, Lin MJ, Zhou RX. TRPC3 promotes tumorigenesis of gastric cancer via the CNB2/GSK3β/NFATc2 signaling pathway. Cancer Lett 2021; 519:211-225. [PMID: 34311033 DOI: 10.1016/j.canlet.2021.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/27/2023]
Abstract
The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3β and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3β-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.
Collapse
Affiliation(s)
- Da-Cen Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Si-Yi Zheng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Zhi-Guang Zhang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jian-Hua Luo
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhuang-Li Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Li Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lu-Shan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mo-Jun Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China.
| | - Rui-Xiang Zhou
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
86
|
Mygland L, Brinch SA, Strand MF, Olsen PA, Aizenshtadt A, Lund K, Solberg NT, Lycke M, Thorvaldsen TE, Espada S, Misaghian D, Page CM, Agafonov O, Nygård S, Chi NW, Lin E, Tan J, Yu Y, Costa M, Krauss S, Waaler J. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience 2021; 24:102807. [PMID: 34337362 PMCID: PMC8313754 DOI: 10.1016/j.isci.2021.102807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Small-molecule tankyrase 1 and tankyrase 2 (TNKS1/2) inhibitors are effective antitumor agents in selected tumor cell lines and mouse models. Here, we characterized the response signatures and the in-depth mechanisms for the antiproliferative effect of tankyrase inhibition (TNKSi). The TNKS1/2-specific inhibitor G007-LK was used to screen 537 human tumor cell lines and a panel of particularly TNKSi-sensitive tumor cell lines was identified. Transcriptome, proteome, and bioinformatic analyses revealed the overall TNKSi-induced response signatures in the selected panel. TNKSi-mediated inhibition of wingless-type mammary tumor virus integration site/β-catenin, yes-associated protein 1 (YAP), and phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT signaling was validated and correlated with lost expression of the key oncogene MYC and impaired cell growth. Moreover, we show that TNKSi induces accumulation of TNKS1/2-containing β-catenin degradasomes functioning as core complexes interacting with YAP and angiomotin proteins during attenuation of YAP signaling. These findings provide a contextual and mechanistic framework for using TNKSi in anticancer treatment that warrants further comprehensive preclinical and clinical evaluations. TNKSi-responding tumor cell lines were identified TNKSi targets WNT/β-catenin, YAP, and PI3K/AKT signaling Reduced MYC expression leads to impaired tumor cell growth
Collapse
Affiliation(s)
- Line Mygland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Shoshy Alam Brinch
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Martin Frank Strand
- School of Health Sciences, Kristiania University College, P.O. Box 1190 Sentrum, 0107 Oslo, Norway
| | - Petter Angell Olsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Kaja Lund
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Nina Therese Solberg
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Max Lycke
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Tor Espen Thorvaldsen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Sandra Espada
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Dorna Misaghian
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway
| | - Christian M Page
- Center for Fertility and Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Oleg Agafonov
- Bioinformatics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway
| | - Ståle Nygård
- Department of Informatics, University of Oslo, P.O. box 080 Blindern, 0316 Oslo, Norway
| | - Nai-Wen Chi
- Endocrine Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Eva Lin
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jenille Tan
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yihong Yu
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mike Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| | - Jo Waaler
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway
| |
Collapse
|
87
|
Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, Zhang Z, Xu K, Duan J, He S, Zhang J, Wan L, Liu T, Zhou X, Hung MC, Freeman GJ, Wei W. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell 2021; 81:2317-2331.e6. [PMID: 33909988 PMCID: PMC8178223 DOI: 10.1016/j.molcel.2021.03.037] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.
Collapse
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Hu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021; 10:cells10051147. [PMID: 34068643 PMCID: PMC8150781 DOI: 10.3390/cells10051147] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
More than half of all cancer patients receive chemotherapy, however, some of them easily acquire drug resistance. Resistance to chemotherapy has become a massive obstacle to achieve high rates of pathological complete response during cancer therapy. S-phase kinase-associated protein 2 (Skp2), as an E3 ligase, was found to be highly correlated with drug resistance and poor prognosis. In this review, we summarize the mechanisms that Skp2 confers to drug resistance, including the Akt-Skp2 feedback loop, Skp2-p27 pathway, cell cycle and mitosis regulation, EMT (epithelial-mesenchymal transition) property, enhanced DNA damage response and repair, etc. We also addressed novel molecules that either inhibit Skp2 expression or target Skp2-centered interactions, which might have vast potential for application in clinics and benefit cancer patients in the future.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China;
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
- Correspondence:
| |
Collapse
|
89
|
Hu CS, Huang JH, Yang DL, Xu C, Xu ZG, Tan HB, Chen ZZ. Lentivirus-mediated silencing of CNTN1 enhances gefitinib sensitivity by reversing epithelial-mesenchymal transition in lung adenocarcinoma A549 cells. Oncol Lett 2021; 21:433. [PMID: 33868471 PMCID: PMC8045161 DOI: 10.3892/ol.2021.12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Contactin-1 (CNTN1), a neuronal cell adhesion molecular, functions in nervous system development and has been associated with carcinogenesis and tumor progression. To investigate the role of CNTN1 in gefitinib resistance in lung adenocarcinoma, lentivirus-mediated short hairpin (sh)RNA was used to silence CNTN1 and its physiological function was analyzed in the A549 cell line. A cell cytotoxicity assay revealed that CNTN1 knockdown enhanced gefitinib sensitivity in the A549 cells. In addition, CNTN1 knockdown, together with gefitinib treatment, resulted in a significant inhibition of colony formation and migration, and promotion of apoptosis. Furthermore, CNTN1 knockdown also reversed the epithelial-mesenchymal transition (EMT) phenotype by increasing E-cadherin protein expression level, and decreasing N-cadherin and vimentin protein expression levels. The PI3K/Akt signaling pathway was also association with the effects of CNTN1 on EMT progression and gefitinib resistance in the A549 cells. Collectively, knockdown of CNTN1 reversed the EMT phenotype and enhanced gefitinib sensitivity in the A549 cells by inhibiting the activation of the PI3K/Akt signaling pathway. These results suggested that CNTN1 may represent a potential therapeutic target for reserving EGFR-tyrosine kinase inhibitor resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Chun-Sheng Hu
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Jiu-Hong Huang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Dong-Lin Yang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Chuan Xu
- Department of Oncology, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610047, P.R. China
| | - Zhi-Gang Xu
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Hong-Bo Tan
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Zhong-Zhu Chen
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| |
Collapse
|
90
|
Lin CY, Huang KY, Lin YC, Yang SC, Chung WC, Chang YL, Shih JY, Ho CC, Lin CA, Shih CC, Chang YH, Kao SH, Yang PC. Vorinostat combined with brigatinib overcomes acquired resistance in EGFR-C797S-mutated lung cancer. Cancer Lett 2021; 508:76-91. [PMID: 33775711 DOI: 10.1016/j.canlet.2021.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022]
Abstract
The development of a new generation of tyrosine kinase inhibitors (TKIs) has improved the treatment response in lung adenocarcinomas. However, acquired resistance often occurs due to new epidermal growth factor receptor (EGFR) mutations. In particular, the C797S mutation confers drug resistance to T790M-targeting EGFR TKIs. To address C797S resistance, a promising therapeutic avenue is combination therapy that targets both total EGFR and acquired mutations to increase drug efficacy. We showed that combining vorinostat, a histone deacetylase inhibitor (HDACi), with brigatinib, a TKI, enhanced antitumor effects in primary culture and cell lines of lung adenocarcinomas harboring EGFR L858R/T790M/C797S mutations (EGFR-3M). While EGFR phosphorylation was decreased by brigatinib, vorinostat reduced total EGFR-3M (L858R/T790M/C797S) proteins through STUB1-mediated ubiquitination and degradation. STUB1 preferably ubiquitinated other EGFR mutants and facilitated protein turnover compared to EGFR-WT. The association between EGFR and STUB1 required the functional chaperone-binding domain of STUB1 and was further enhanced by vorinostat. Finally, STUB1 levels modulated EGFR downstream functions. Low STUB1 expression was associated with significantly poorer overall survival than high STUB1 expression in patients harboring mutant EGFR. Vorinostat combined with brigatinib significantly improved EGFR-TKI sensitivity to EGFR C797S by inducing EGFR-dependent cell death and may be a promising therapy in treating C797S-resistant lung adenocarcinomas.
Collapse
Affiliation(s)
- Chia-Yi Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Kuo-Yen Huang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yi-Chun Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chia Chung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Leong Chang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Pathology, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, 10002, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Chih-An Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Chih-Chun Shih
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
91
|
AMPK Is the Crucial Target for the CDK4/6 Inhibitors Mediated Therapeutic Responses in PANC-1 and MIA PaCa-2 Pancreatic Cancer Cell Lines. STRESSES 2021. [DOI: 10.3390/stresses1010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The survival rate of pancreatic ductal adenocarcinoma (PDAC) patients is short, and PDAC is a cancer type that ranks fourth in the statistics regarding death due to cancer. Mutation in the KRAS gene, which plays a role in pancreatic cancer development, activates the PI3K/AKT/mTOR signaling pathway. The activity of the AMPK as a cellular energy sensor is one of the fundamental mechanisms that can induce effective therapeutic responses against CDK4/6 inhibitors via adjusting the cellular and tumor microenvironment stress management. The phosphorylation of AMPKα at the different phosphorylation residues such as Thr172 and Ser 377 causes metabolic differentiation in the cells following CDK4/6 inhibitor treatment in accordance with an increased cell cycle arrest and senescence under the control of different cellular players. In this study, we examined the competencies of the CDK4/6 inhibitors LY2835219 and PD-0332991 on the mechanism of cell survival and death based on AMPK signaling. Both CDK4/6 inhibitors LY2835219 and PD-0332991 modulated different molecular players on the PI3K/AKT/mTOR and AMPK signaling axis in different ways to reduce cell survival in a cell type dependent manner. These drugs are potential inducers of apoptosis and senescence that can alter the therapeutic efficacy cells.
Collapse
|
92
|
Zhang C, Huang L, Xiong J, Xie L, Ying S, Jia Y, Yao Y, Song X, Zeng Z, Yuan J. Isoalantolactone inhibits pancreatic cancer proliferation by regulation of PI3K and Wnt signal pathway. PLoS One 2021; 16:e0247752. [PMID: 33661942 PMCID: PMC7932101 DOI: 10.1371/journal.pone.0247752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Isoalantolactone (IATL) is one of multiple isomeric sesquiterpene lactones and is isolated from inula helenium. IATL has multiple functions such as antibacterial, antihelminthic and antiproliferative activities. IATL also inhibits pancreatic cancer proliferation and induces apoptosis by increasing ROS production. However, the detailed mechanism of IATL-mediated pancreatic cancer apoptosis remains largely unknown. METHODS In current study, pancreatic carcinoma cell lines (PANC-1, AsPC-1, BxPC-3) and a mouse xenograft model were used to determine the mechanism of IATL-mediated toxic effects. RESULTS IATL (20μM) inhibited pancreatic adenocarcinoma cell lines proliferation in a time-dependent way; while scratch assay showed that IATL significantly inhibited PANC-1 scratch closure (P<0.05); Invasion assays indicated that IATL significantly attenuated pancreatic adenocarcinoma cell lines invasion on matrigel. Signal analysis showed that IATL inhibited pancreatic adenocarcinoma cell proliferation by blocking EGF-PI3K-Skp2-Akt signal axis. Moreover, IATL induced pancreatic adenocarcinoma cell apoptosis by increasing cytosolic Caspase3 and Box expression. This apoptosis was mediated by inhibition of canonical wnt signal pathway. Finally, xenograft studies showed that IATL also significantly inhibited pancreatic adenocarcinoma cell proliferation and induced pancreatic adenocarcinoma cell apoptosis in vivo. CONCLUSIONS IATL inhibits pancreatic cancer proliferation and induces apoptosis on cellular and in vivo models. Signal pathway studies reveal that EGF-PI3K-Skp2-Akt signal axis and canonical wnt pathway are involved in IATL-mediated cellular proliferation inhibition and apoptosis. These studies indicate that IATL may provide a future potential therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chaoxiong Zhang
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lei Huang
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Linshen Xie
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Shi Ying
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - You Jia
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xuejiao Song
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhenguo Zeng
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
93
|
Wu Q, Ma J, Wei J, Meng W, Wang Y, Shi M. lncRNA SNHG11 Promotes Gastric Cancer Progression by Activating the Wnt/β-Catenin Pathway and Oncogenic Autophagy. Mol Ther 2021; 29:1258-1278. [PMID: 33068778 PMCID: PMC7934455 DOI: 10.1016/j.ymthe.2020.10.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/22/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are under active investigation in the development of cancers, including gastric cancer (GC). Oncogenic autophagy is required for cancer cell survival. The present study aimed to investigate the regulatory role of lncRNA small nucleolar host gene 11 (SNHG11) in GC. We show that SNHG11 is upregulated in GC, and that its upregulation correlated with dismal patient outcomes. Functionally, SNHG11 aggravated oncogenic autophagy to facilitate cell proliferation, stemness, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in GC. Mechanistically, SNHG11 post-transcriptionally upregulated catenin beta 1 (CTNNB1) and autophagy related 12 (ATG12) through miR-483-3p/miR-1276, while the processing of precursor (pre-)miR-483/pre-miR-1276 was hindered by SNHG11. SNHG11 induced GSK-3β ubiquitination through interacting with Cullin 4A (CUL4A) to further activate the Wnt/β-catenin pathway. Intriguingly, SNHG11 regulated autophagy in a manner dependent on ATG12 rather than the Wnt/β-catenin pathway, whereas SNHG11 contributed to the malignant behaviors of GC cells via both pathways. Finally, SNHG11 upregulation in GC cells was shown to be transcriptionally induced by TCF7L2. In conclusion, we reveal that SNHG11 is an onco-lncRNA in GC and might be a promising prognostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Jiali Ma
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Jue Wei
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Wenying Meng
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China.
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China.
| |
Collapse
|
94
|
Xiang YC, Shen J, Si Y, Liu XW, Zhang L, Wen J, Zhang T, Yu QQ, Lu JF, Xiang K, Liu Y. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin J Nat Med 2021; 19:195-204. [PMID: 33781453 DOI: 10.1016/s1875-5364(21)60021-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 02/02/2023]
Abstract
Paris saponin VII (PSVII), a bioactive constituent extracted from Trillium tschonoskii Maxim., is cytotoxic to several cancer types. This study was designed to explore whether PSVII prevents non-small-cell lung cancer (NSCLC) proliferation and to investigate its molecular target. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. In cultured human NSCLC cell lines, PSVII induces autophagy by activating AMPK and inhibiting mTOR signaling. Furthermore, PSVII-induced autophagy activation was reversed by the AMPK inhibitor compound C. Computational docking analysis showed that PSVII directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. Microscale thermophoresis assay and drug affinity responsive target stability assay further confirmed the high affinity between PSVII and AMPK. In summary, PSVII acts as a direct AMPK activator to induce cell autophagy, which inhibits the growth of NSCLC cells. In the future, PSVII therapy should be applied to treat patients with NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jie Shen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xue-Wen Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jun Wen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Te Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Qing-Qing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Jun-Fei Lu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Ke Xiang
- Department of Science and Education, Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang 441700, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
95
|
Guerra B, Recio C, Aranda-Tavío H, Guerra-Rodríguez M, García-Castellano JM, Fernández-Pérez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol 2021; 11:626971. [PMID: 33718197 PMCID: PMC7947625 DOI: 10.3389/fonc.2021.626971] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.
Collapse
Affiliation(s)
- Borja Guerra
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Haidée Aranda-Tavío
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miguel Guerra-Rodríguez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José M García-Castellano
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
96
|
Liu X, Xu D, Xu X, Xue Q, Gao X, Tang C. MiR-216b regulates the tumorigenesis of gastric cancer by targeting PXN. Pathol Res Pract 2021; 218:153325. [PMID: 33422779 DOI: 10.1016/j.prp.2020.153325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accumulating evidence has demonstrated that microRNAs (miRNAs) are associated with tumorigenesis. miR-216b can play a vital role in the genesis and development of gastric cancer (GC), and its molecular mechanisms require further elucidation. METHODS The biological effects of miR-216b in GC cells were investigated by MTT, transwell assays, and cell cycle. Western blot and luciferase assay were performed to demonstrate the direct binding of miR-216b on PXN 3'UTR. Furthermore, MTT, colony formation assays, transwell assays, and flow cytometry analysis, as well as xenograft mice model, were used to measure the effects of miR-216b-PXN on GC cell proliferation, migration, and invasion indicated by in vitro and in vivo. RESULTS Our results showed that miR-216b acted as a tumor suppressor in GC progression. miR-216b overexpression suppressed GC cell proliferation, migration, and invasion in vitro. Luciferase reporter assays identified paxillin (PXN) as a novel target gene of miR-216b. PXN overexpression could partially rescue miR-216b-induced the inhibitory effects in GC cells. Besides, overexpression of miR-216b contributed to the activation of PI3K/AKT signaling via partly regulating PXN in GC cells. CONCLUSIONS The above results showed that miR-216b could offer a novel therapeutic avenue by targeting PXN in GC.
Collapse
Affiliation(s)
- Xianchen Liu
- Departmentof Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dong Xu
- Departmentof Obstetrics and Gynecology, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Xiaodong Xu
- Departmentof General Surgery, Yancheng NO.1 People's Hospital, Yancheng, Jiangsu, China
| | - Qiang Xue
- Departmentof Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xuesong Gao
- Departmentof General Surgery, Affiliated Hospital 2 of Nantong University, No.6 haierxiang North Road, 226000, Nantong, Jiangsu, China.
| | - Chong Tang
- Departmentof General Surgery, Affiliated Hospital 2 of Nantong University, No.6 haierxiang North Road, 226000, Nantong, Jiangsu, China.
| |
Collapse
|
97
|
Chedere A, Hari K, Kumar S, Rangarajan A, Jolly MK. Multi-Stability and Consequent Phenotypic Plasticity in AMPK-Akt Double Negative Feedback Loop in Cancer Cells. J Clin Med 2021; 10:jcm10030472. [PMID: 33530625 PMCID: PMC7865639 DOI: 10.3390/jcm10030472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
Adaptation and survival of cancer cells to various stress and growth factor conditions is crucial for successful metastasis. A double-negative feedback loop between two serine/threonine kinases AMPK (AMP-activated protein kinase) and Akt can regulate the adaptation of breast cancer cells to matrix-deprivation stress. This feedback loop can significantly generate two phenotypes or cell states: matrix detachment-triggered pAMPKhigh/ pAktlow state, and matrix (re)attachment-triggered pAkthigh/ pAMPKlow state. However, whether these two cell states can exhibit phenotypic plasticity and heterogeneity in a given cell population, i.e., whether they can co-exist and undergo spontaneous switching to generate the other subpopulation, remains unclear. Here, we develop a mechanism-based mathematical model that captures the set of experimentally reported interactions among AMPK and Akt. Our simulations suggest that the AMPK-Akt feedback loop can give rise to two co-existing phenotypes (pAkthigh/ pAMPKlow and pAMPKhigh/pAktlow) in specific parameter regimes. Next, to test the model predictions, we segregated these two subpopulations in MDA-MB-231 cells and observed that each of them was capable of switching to another in adherent conditions. Finally, the predicted trends are supported by clinical data analysis of The Cancer Genome Atlas (TCGA) breast cancer and pan-cancer cohorts that revealed negatively correlated pAMPK and pAkt protein levels. Overall, our integrated computational-experimental approach unravels that AMPK-Akt feedback loop can generate multi-stability and drive phenotypic switching and heterogeneity in a cancer cell population.
Collapse
Affiliation(s)
- Adithya Chedere
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Saurav Kumar
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (A.R.); (M.K.J.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (A.R.); (M.K.J.)
| |
Collapse
|
98
|
Wang M, Wang J, Liu M, Chen G. Fluvastatin protects neuronal cells from hydrogen peroxide-induced toxicity with decreasing oxidative damage and increasing PI3K/Akt/mTOR signalling. J Pharm Pharmacol 2021; 73:515-521. [PMID: 33793833 DOI: 10.1093/jpp/rgaa058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Statins, the most effective lipoprotein-cholesterol lowering drugs, are widely used for patients with cardiovascular disease. The pleiotropic effects of statins have been recently gained attention for their both beneficial and deleterious effects on neurons. We investigated the effects and molecular mechanisms of fluvastatin at clinically relevant concentrations on neuronal cells after induction of oxidative stress. MATERIALS AND METHODS Both SH-SY5Y, a representative cell line for in vitro neurone model, and human primary neuronal cells were applied. Cellular and biochemical assays were used to investigate the effects of fluvastatin in neurone cells. RESULTS Fluvastatin significantly restored H2O2-induced neuronal death in a dose-dependent manner (P < 0.05) and reversed H2O2-induced oxidative stress and damage via restoring mitochondrial function in neuronal cells (P < 0.05). Although fluvastatin inhibited prenylation in neuronal cells, the protective effects of fluvastatin against H2O2-induced neuronal cytotoxicity are not associated with prenylation inhibition or AMPK activation. In contrast, PI3K/Akt/mTOR activation mediated fluvastatin's neuroprotective activity (P < 0.05). CONCLUSIONS Our work demonstrates the beneficial effects of fluvastatin in neuronal cells under pathological conditions, and, furthermore, this is via prenylation-independent activation of PI3K/Akt/mTOR pathway. Our data highlights the functional significance of the PI3K/Akt/mTOR pathway in neuronal cells in response to oxidative stress.
Collapse
Affiliation(s)
- Miaoxia Wang
- Department of Neurology, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Jia Wang
- Clinical Epidemiology Laboratory, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Meirong Liu
- Intensive Care Unit (Stroke Division), Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Gang Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
99
|
Shin HY, Yang W, Chay DB, Lee EJ, Chung JY, Kim HS, Kim JH. Tetraspanin 1 promotes endometriosis leading to ovarian clear cell carcinoma. Mol Oncol 2021; 15:987-1004. [PMID: 33331115 PMCID: PMC8024726 DOI: 10.1002/1878-0261.12884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) reportedly develops from endometriosis. However, the molecular mechanism underlying its malignant progression to OCCC remains elusive. This study aimed to identify an essential gene in the malignant transformation of endometriosis to OCCC. We performed RNA sequencing in formalin‐fixed, paraffin‐embedded (FFPE) tissues of endometriosis (n = 9), atypical endometriosis (AtyEm) (n = 18), adjacent endometriosis to OCCC (AdjEm) (n = 7), and OCCC (n = 17). We found that tetraspanin 1 (TSPAN1) mRNA level was significantly increased by 2.4‐ (DESeq2) and 3.4‐fold (edgeR) in AtyEm and by 80.7‐ (DESeq2) and 101‐fold (edgeR) in OCCC relative to endometriosis. We confirmed that TSPAN1 protein level was similarly overexpressed in OCCC tissues and cell lines. In immortalized endometriosis cell lines, TSPAN1 overexpression enhanced cell growth and invasion. Mechanistically, TSPAN1 triggered AMP‐activated protein kinase (AMPK) activity, promoting endometriosis and cell growth. Upregulated levels of TSPAN1 are considered an early event in the development of high‐risk endometriosis that could progress to ovarian cancer. Our study suggests the potential of TSPAN1 as a screening candidate for high‐risk endometriosis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Doo Byung Chay
- Department of Obstetrics and Gynecology, Sahmyook Medical Center, Seoul, Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Yong Chung
- Experimental Pathology Lab., Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
100
|
Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal Growth Factor Protects Against High Glucose-Induced Podocyte Injury Possibly via Modulation of Autophagy and PI3K/AKT/mTOR Signaling Pathway Through DNA Methylation. Diabetes Metab Syndr Obes 2021; 14:2255-2268. [PMID: 34045875 PMCID: PMC8149214 DOI: 10.2147/dmso.s299562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
AIM Diabetic nephropathy (DN) is a serious health problem worldwide. Epidermal growth factor (EGF) has suggested as a potential biomarker for the progression of chronic kidney disease. In this study, we examined the effects of EGF on the high glucose (HG)-induced podocyte injury and explored the underlying molecular mechanisms. METHODS The cell proliferation, toxicity, and cell apoptosis of podocytes were determined by CCK-8 assay, lactate dehydrogenase release assay, and flow cytometry, respectively, and protein levels in the podocytes were determined by Western blot assay. Mechanistically, DNA methylation analysis, bioinformatic analysis, methylation‑specific PCR and quantitative real-time PCR were used to analyze functional pathways in differentially methylated genes and the expression of the key methylated genes in the podocytes after different interventions. RESULTS EGF treatment significantly increased the protein expression level of LC3 and decreased the protein level of P62 in HG-stimulated podocytes, which was attenuated by autophagy inhibitor, 3-methyladenine. EGF increased the cell proliferation and the protein expression levels of nephrin and synaptopodin, but reduced cell toxicity and cell apoptosis and protein expression level of cleaved caspase-3, which was partially antagonized by 3-methyladenine. DNA methylation expression profiles revealed the differential hypermethylation sites and hypomethylation sites among podocytes treated with normal glucose, HG and HG+EGF. GO enrichment analysis showed that DNA methylation was significantly enriched in negative regulation of phosphorylation, cell-cell junction and GTPase binding. KEGG pathway analysis showed that these genes were mainly enriched in PI3K-Akt, Hippo and autophagy pathways. Further validation studies revealed that six hub genes (ITGB1, GRB2, FN1, ITGB3, FZD10 and FGFR1) may be associated with the protective effects of EGF on the HG-induced podocyte injury. CONCLUSION In summary, our results demonstrated that EGF exerted protective effects on HG-induced podocytes injury via enhancing cell proliferation and inhibiting cell apoptosis. Further mechanistic studies implied that EGF-mediated protective effects in HG-stimulated podocytes may be associated with modulation of autophagy and PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiangyang Lei
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Hao Ju
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Zhiming Liu
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaosu Bai
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Department of General Practice; Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Correspondence: Xiaosu Bai Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, No. 2, Jianshe East Road, Bao’an District, Shenzhen, 518109, People’s Republic of ChinaTel +86-755-27741585 Email
| |
Collapse
|