51
|
Li S, Ouyang X, Sun H, Jin J, Chen Y, Li L, Wang Q, He Y, Wang J, Chen T, Zhong Q, Liang Y, Pierre P, Zou Q, Ye Y, Su B. DEPDC5 protects CD8 + T cells from ferroptosis by limiting mTORC1-mediated purine catabolism. Cell Discov 2024; 10:53. [PMID: 38763950 PMCID: PMC11102918 DOI: 10.1038/s41421-024-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
Peripheral CD8+ T cell number is tightly controlled but the precise molecular mechanism regulating this process is still not fully understood. In this study, we found that epilepsy patients with loss of function mutation of DEPDC5 had reduced peripheral CD8+ T cells, and DEPDC5 expression positively correlated with tumor-infiltrating CD8+ T cells as well as overall cancer patient survival, indicating that DEPDC5 may control peripheral CD8+ T cell homeostasis. Significantly, mice with T cell-specific Depdc5 deletion also had reduced peripheral CD8+ T cells and impaired anti-tumor immunity. Mechanistically, Depdc5-deficient CD8+ T cells produced high levels of xanthine oxidase and lipid ROS due to hyper-mTORC1-induced expression of ATF4, leading to spontaneous ferroptosis. Together, our study links DEPDC5-mediated mTORC1 signaling with CD8+ T cell protection from ferroptosis, thereby revealing a novel strategy for enhancing anti-tumor immunity via suppression of ferroptosis.
Collapse
Affiliation(s)
- Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Chest Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsi Jin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingzhong He
- Department of Neurology of Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwen Wang
- Department of Neurology of Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongxin Chen
- Department of Allergy and Immunology, Division of Immunology and Multidisciplinary Specialty Clinic, Institute of Pediatric Translational Medicine at Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Philippe Pierre
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, cedex 9, France
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
52
|
Liao Y, Xu Y, Mo Z, Zhu T, Dong H, Zhou W, Xia Q. Interleukin-25 as a Potential Biomarker in Lung Metastasis of Hepatocellular Carcinoma with HBV History in Chinese Patients: A Single Center, Case-control Study. Int J Med Sci 2024; 21:1337-1343. [PMID: 38818476 PMCID: PMC11134585 DOI: 10.7150/ijms.90642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Interleukin-25 (IL-25) has been proved to play a role in the pathogenesis and metastasis of Hepatocellular carcinoma (HCC), but the relationship between the level of IL-25 and the metastasis and prognosis of HCC is still not clear. This study aimed to investigate the expression of IL-25 and other potential biochemical indicators among healthy people, HBV-associated HCC patients without lung metastasis and HBV-associated HCC patients with lung metastasis. Methods: From September 2019 to November 2021, 33 HCC patients without lung metastasis, 37 HCC patients with lung metastasis and 29 healthy controls were included in the study. IL-25 and other commonly used biochemical markers were measured to establish predictors of overall survival (OS) and progression-free survival (PFS) after treatment. Results: The serum level of IL-25 was increased in HCC patients than healthy controls (p < 0.001) and HCC patients with lung metastasis had higher IL-25 level than HCC patients without metastasis (p = 0.035). Lung metastasis also indicated higher death rate (p < 0.001) by chi-square test, higher GGT level (p = 0.024) and higher AFP level (p = 0.049) by non-parametric test. Kaplan-Meier analysis demonstrated that IL-25 was negatively associated with PFS (p = 0.024). Multivariate Cox-regression analysis indicated IL-25 (p = 0.030) and GGT (p = 0.020) to be independent predictors of poorer PFS, while IL-25 showed no significant association with OS. Conclusion: The level of IL-25 was significantly associated with disease progression and lung metastasis of HBV-associated HCC. The high expression of IL-25 predicted high recurrence rate and death probability of HCC patients after treatment. Therefore, IL-25 may be an effective predictor of prognosis in HCC.
Collapse
Affiliation(s)
- Yuan Liao
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yixin Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ziying Mo
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tianyi Zhu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Huimin Dong
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenying Zhou
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Xia
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
53
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
54
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
55
|
Alabarse PG, Oliveira P, Qin H, Yan T, Migaud M, Terkeltaub R, Liu-Bryan R. The NADase CD38 is a central regulator in gouty inflammation and a novel druggable therapeutic target. Inflamm Res 2024; 73:739-751. [PMID: 38493256 PMCID: PMC11058052 DOI: 10.1007/s00011-024-01863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVES Cellular NAD+ declines in inflammatory states associated with increased activity of the leukocyte-expressed NADase CD38. In this study, we tested the potential role of therapeutically targeting CD38 and NAD+ in gout. METHODS We studied cultured mouse wild type and CD38 knockout (KO) murine bone marrow derived macrophages (BMDMs) stimulated by monosodium urate (MSU) crystals and used the air pouch gouty inflammation model. RESULTS MSU crystals induced CD38 in BMDMs in vitro, associated with NAD+ depletion, and IL-1β and CXCL1 release, effects reversed by pharmacologic CD38 inhibitors (apigenin, 78c). Mouse air pouch inflammatory responses to MSU crystals were blunted by CD38 KO and apigenin. Pharmacologic CD38 inhibition suppressed MSU crystal-induced NLRP3 inflammasome activation and increased anti-inflammatory SIRT3-SOD2 activity in macrophages. BMDM RNA-seq analysis of differentially expressed genes (DEGs) revealed CD38 to control multiple MSU crystal-modulated inflammation pathways. Top DEGs included the circadian rhythm modulator GRP176, and the metalloreductase STEAP4 that mediates iron homeostasis, and promotes oxidative stress and NF-κB activation when it is overexpressed. CONCLUSIONS CD38 and NAD+ depletion are druggable targets controlling the MSU crystal- induced inflammation program. Targeting CD38 and NAD+ are potentially novel selective molecular approaches to limit gouty arthritis.
Collapse
Affiliation(s)
- Paulo Gil Alabarse
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Patricia Oliveira
- University of California San Diego, La Jolla, San Diego, CA, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, La Jolla, San Diego, CA, USA
| | - Huaping Qin
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Tiffany Yan
- University of California San Diego, La Jolla, San Diego, CA, USA
- Gritstone Bio, Emeryville, CA, USA
| | - Marie Migaud
- Department of Pharmacology, F. Whiddon College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
- University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
56
|
Tang D, Kroemer G, Kang R. Targeting cuproplasia and cuproptosis in cancer. Nat Rev Clin Oncol 2024; 21:370-388. [PMID: 38486054 DOI: 10.1038/s41571-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
Copper, an essential trace element that exists in oxidized and reduced forms, has pivotal roles in a variety of biological processes, including redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy and immune modulation; maintaining copper homeostasis is crucial as both its deficiency and its excess are deleterious. Dysregulated copper metabolism has a dual role in tumorigenesis and cancer therapy. Specifically, cuproplasia describes copper-dependent cell growth and proliferation, including hyperplasia, metaplasia and neoplasia, whereas cuproptosis refers to a mitochondrial pathway of cell death triggered by excessive copper exposure and subsequent proteotoxic stress (although complex interactions between cuproptosis and other cell death mechanisms, such as ferroptosis, are likely and remain enigmatic). In this Review, we summarize advances in our understanding of copper metabolism, the molecular machineries underlying cuproplasia and cuproptosis, and their potential targeting for cancer therapy. These new findings advance the rapidly expanding field of translational cancer research focused on metal compounds.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée-Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
57
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
58
|
Lu Y, Steiner R, Han S, Srivastava A, Shaik N, Chan M, Diallo A, Punshon T, Jackson B, Kolling F, Vahdat L, Vaickus L, Marotti J, Ho S, Levy J. Integrative Co-Registration of Elemental Imaging and Histopathology for Enhanced Spatial Multimodal Analysis of Tissue Sections through TRACE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583819. [PMID: 38559138 PMCID: PMC10979873 DOI: 10.1101/2024.03.06.583819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Summary Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting specific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of Whole Slide Images (WSI) and elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an interactive containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables integration with other spatial data types through WSI co-registration. Availability and Implementation Available on the following platforms- GitHub: jlevy44/trace_app , PyPI: trace_app , Docker: joshualevy44/trace_app , Singularity: joshualevy44/trace_app . Contact joshua.levy@cshs.org. Supplementary information Supplementary data are available.
Collapse
|
59
|
An Y, Li L, Li L, Sun Y, Li B, Wang P. Peptide-based probe for colorimetric and fluorescent detection of Cu 2+ and S 2- in environmental and biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133192. [PMID: 38070265 DOI: 10.1016/j.jhazmat.2023.133192] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Pollution caused by Copper and hydrogen sulfide pollution has severe adverse effects on the environment and organisms. Real-time, fast and accurate monitoring of Cu2+ and S2- faces serious challenges. In this study, we designed a novel biosensor and synthesized it by mimicking the structure of the main Cu(II)-binding site on bovine serum albumin. As a peptide-based sensor, FGGH (FITC-Gly-Gly-His-NH2) can perform the sequential detection of Cu2+ and S2- by fluorescence and colorimetry. The high water solubility and selectivity make it suitable for monitoring Cu2+ and S2- in environmental water samples with high sensitivity; its limit of detection (LOD) is as low as 1.42 nM for Cu2+ and 22.2 nM for S2-. The paper-based sensing platform of this probe was found to be a promising tool for the on-site visualization of real-time quantitative analysis of Cu2+ and S2- due to its rapid response and recyclable detection characteristics. Additionally, FGGH was successfully used to image Cu2+ and S2- in living cells and zebrafish models with adequate fluorescence stability and low cytotoxicity, providing the first visual evidence of the effect of the interactions between Cu2+ and S2- on the redox homeostasis of organisms.
Collapse
Affiliation(s)
- Yong An
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Linyu Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Lepeng Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Yongqiang Sun
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Bo Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China.
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, PR China.
| |
Collapse
|
60
|
Zhong W, Dong YJ, Hong C, Li YH, Xiao CX, Liu XH, Chang J. ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake. Acta Pharmacol Sin 2024; 45:558-569. [PMID: 37903897 PMCID: PMC10834535 DOI: 10.1038/s41401-023-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Ye-Jun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yu-Hui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen-Xi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xin-Hua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
61
|
Squitti R, Pal A, Dhar A, Shamim MA, Ventriglia M, Simonelli I, Rani I, Sharma A, Rizzo G, Tondolo V, Goswami K, Rongioletti M. Serum copper status of patients with colorectal cancer: A systematic review and meta-analysis. J Trace Elem Med Biol 2024; 82:127370. [PMID: 38159434 DOI: 10.1016/j.jtemb.2023.127370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and a public health problem. Several clinical studies have shown that copper (Cu) is involved in carcinogenesis, possibly via cuproptosis, a new form of programmed cell death, but the conclusions from published reports are inconsistent. This study aimed at evaluating the potential of Cu dysregulation as a CRC susceptibility factor. METHODS In this systematic review and meta-analysis, we searched Cochrane Library, EBSCOhost, EMBASE, ProQuest, PubMed/MEDLINE, Scopus, and Web of Science for studies reporting serum Cu concentrations in CRC patients and controls from articles published till June 2023. The studies included reported measurements of serum/plasma/blood Cu levels. Meta-analyses were performed as well as study quality, heterogeneity, and small study effects were assessed. Based on a random effects model, summary standardized mean differences (SMDs) and the corresponding 95% confidence intervals (95% CIs) were applied to compare the levels of Cu between CRC patients and controls. RESULTS 26 studies with a pooled total of9628 participants and 2578 CRC cases were included. The pooled SMD was equal to 0.85 (95% CIs -0.44; 2.14) showing that the CRC patients had higher mean Cu levels than the control subjects, but the difference was not significant (p = 0.185) and the heterogeneity was very high, I2 = 97.9% (95% CIs: 97.5-98.3%; p < 0.001). CONCLUSION The pooled results were inconclusive, likely due to discordant results and inaccuracy in reporting data of some studies; further research is needed to establish whether Cu dysregulation might contribute to the CRC risk and whether it might reflect different CRC grades.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy.
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Aninda Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | | | - Mariacarla Ventriglia
- Clinical Research Centre, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| | - Ilaria Simonelli
- Clinical Research Centre, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Ambala, India
| | - Aaina Sharma
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Gianluca Rizzo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Mauro Rongioletti
- Department of Laboratory Science, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
62
|
Fang ZX, Chen WJ, Wu Z, Hou YY, Lan YZ, Wu HT, Liu J. Inflammatory response in gastrointestinal cancers: Overview of six transmembrane epithelial antigens of the prostate in pathophysiology and clinical implications. World J Clin Oncol 2024; 15:9-22. [PMID: 38292664 PMCID: PMC10823946 DOI: 10.5306/wjco.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic inflammation is known to increase the risk of gastrointestinal cancers (GICs), the common solid tumors worldwide. Precancerous lesions, such as chronic atrophic inflammation and ulcers, are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis. Unfortunately, due to the lack of effective therapeutic targets, the prognosis of patients with GICs is still unsatisfactory. Interestingly, it is found that six transmembrane epithelial antigens of the prostate (STEAPs), a group of metal reductases, are significantly associated with the progression of malignancies, playing a crucial role in systemic metabolic homeostasis and inflammatory responses. The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress, responding to inflammatory reactions. Under the imbalance status of abnormal oxidative stress, STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process. This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms, with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
63
|
Fu D, Zhang X, Zhou Y, Hu S. A novel prognostic signature and therapy guidance for hepatocellular carcinoma based on STEAP family. BMC Med Genomics 2024; 17:16. [PMID: 38191397 PMCID: PMC10775544 DOI: 10.1186/s12920-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The six-transmembrane epithelial antigen of prostate (STEAP) family members are known to be involved in various tumor-related biological processes and showed its huge potential role in tumor immunotherapy. METHODS Biological differences were investigated through Gene set enrichment analysis (GSEA) and tumor microenvironment analysis by CIBERSORT. Tumor mutation burden (TMB), immunotherapy response and chemotherapeutic drugs sensitivity were estimated in R. RESULTS We established a prognostic signature with the formula: risk score = STEAP1 × 0.3994 + STEAP4 × (- 0.7596), which had a favorable concordance with the prediction. The high-risk group were enriched in cell cycle and RNA and protein synthesis related pathways, while the low-risk group were enriched in complement and metabolic related pathways. And the risk score was significantly correlated with immune cell infiltration. Most notably, the patients in the low-risk group were characterized with increased TMB and decreased tumor immune dysfunction and exclusion (TIDE) score, indicating that these patients showed better immune checkpoint blockade response. Meanwhile, we found the patients with high-risk were more sensitive to some drugs related to cell cycle and apoptosis. CONCLUSIONS The novel signature based on STEAPs may be effective indicators for predicting prognosis, and provides corresponding clinical treatment recommendations for HCC patients based on this classification.
Collapse
Affiliation(s)
- Dongxue Fu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Shanshan Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
64
|
Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024; 321:211-227. [PMID: 37715546 DOI: 10.1111/imr.13276] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wan-Rong Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Hao Xu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
65
|
Liu J, Zhou W, Yang L, Li Y, Qiu J, Fu X, Ren P, Guo F, Zhou Y, Liu J, Chen P, DiSanto ME, Zhang X. STEAP4 modulates cell proliferation and oxidative stress in benign prostatic hyperplasia. Cell Signal 2024; 113:110933. [PMID: 37866665 DOI: 10.1016/j.cellsig.2023.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a quite common chronic disease plagued elderly men and its etiology remains unclear. It was reported that the six-transmembrane epithelial antigen of prostate 4 (STEAP4) could modulate cell proliferation/apoptosis ratio and oxidative stress in cancers. Our current study aimed to explore the expression, biological function, and underlying mechanism of STEAP4 in BPH progress. Human prostate tissues and cell lines were utilized. qRT-PCR and immunofluorescence staining were employed. STEAP4 knockdown (STEAP4-KD) or STEAP4 overexpression (STEAP4-OE) cell models were established. Cell proliferation, cell cycle, apoptosis, and reactive oxygen species (ROS) were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Apoptosis-related proteins and antioxidant enzymes were identified by Western Blot. In addition, the epithelial-mesenchymal transition (EMT) process and fibrosis biomarker (collagen I and α-SMA) were analyzed. It was indicated that STEAP4 was mainly located in the prostate epithelium and upregulated in BPH tissues. STEAP4 deficiency induced apoptosis and inhibited cell survival, but had no effect on the cell cycle, fibrosis, and EMT process. In addition, ROS changes were observed in the STEAP4-KD model. Consistently, overproduction of STEAP4 suppressed apoptosis and promoted cell proliferation, as well as facilitated ROS production. We further examined AKT / mTOR, p38MAPK / p-p38MAPK, and WNT/ β-Catenin signaling pathway and demonstrated that STEAP4 regulated the proliferation and apoptosis of prostate cells through AKT / mTOR signaling, rather than p38MAPK / p-p38MAPK and WNT/ β-Catenin pathways. Furthermore, activating AKT / mTOR signaling with SC79 significantly reversed apoptosis triggered by STEAP4 deficiency, whereas suppressing AKT / mTOR signaling with MK2206 reduced the increase of cell viability triggered by STEAP4 overproduction. Our original data demonstrated that STEAP4 is crucial in the onset and progression of prostate hyperplasia and may become a new target for the treatment of BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengfei Ren
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
66
|
Midorikawa K, Kobayashi K, Kato S, Kawanishi S, Kobayashi H, Oikawa S, Murata M. Oxidative DNA damage: Induction by fructose, in vitro, and its enhancement by hydrogen peroxide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503719. [PMID: 38272630 DOI: 10.1016/j.mrgentox.2023.503719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H2O2. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H2O2 enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H2O2-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Faculty of Child Education, Suzuka University, 663-222, Koriyama, Suzuka, Mie 510-0298, Japan
| | - Kokoro Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie 513-8670, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
67
|
Bao H, Peng Z, Cheng X, Jian C, Li X, Shi Y, Zhu W, Hu Y, Jiang M, Song J, Fang F, Chen J, Shu X. GABA induced by sleep deprivation promotes the proliferation and migration of colon tumors through miR-223-3p endogenous pathway and exosome pathway. J Exp Clin Cancer Res 2023; 42:344. [PMID: 38105184 PMCID: PMC10726571 DOI: 10.1186/s13046-023-02921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Research has indicated that long-term sleep deprivation can lead to immune dysfunction and participate in the occurance and progression of tumors. However, the relationship between sleep deprivation and colon cancer remains unclear. This study explored the specific mechanism through which sleep deprivation promotes the proliferation and migration of colon cancer, with a focus on the neurotransmitter GABA. METHODS Chronic sleep deprivation mice model were used to investigate the effect of sleep disorder on tumors. We detected neurotransmitter levels in the peripheral blood of mice using ELISA. CCK-8 assay, colony formation assay, wound healing assay, and transwell assay were performed to investigate the effect of GABA on colon cancer cells, while immunofluorescence showed the distribution of macrophages in lung metastatic tissues. We isolated exosomes from a GABA-induced culture medium to explore the effects of GABA-induced colon cancer cells on macrophages. Gain- and loss-of-function experiments, luciferase report analysis, immunohistochemistry, and cytokine detection were performed to reveal the crosstalk between colon cancer cells and macrophages. RESULTS Sleep deprivation promote peripheral blood GABA level and colon cancer cell proliferation and migration. Immunofluorescence analysis revealed that GABA-induced colon cancer metastasis is associated with enhanced recruitment of macrophages in the lungs. The co-culture results showed that GABA intensified M2 polarization of macrophage induced by colon cancer cells. This effect is due to the activation of the macrophage MAPK pathway by tumor-derived exosomal miR-223-3p. Furthermore, M2-like macrophages promote tumor proliferation and migration by secreting IL-17. We also identified an endogenous miR-223-3p downregulation of the E3 ligase CBLB, which enhances the stability of cMYC protein and augments colon cancer cells proliferation and migration ability. Notably, cMYC acts as a transcription factor and can also regulate the expression of miR-223-3p. CONCLUSION Our results suggest that sleep deprivation can promote the expression of miR-223-3p in colon cancer cells through GABA, leading to downregulation of the E3 ligase CBLB and inhibition of cMYC ubiquitination. Simultaneously, extracellular miR-223-3p promotes M2-like macrophage polarization, which leads to the secretion of IL-17, further enhancing the proliferation and migration of colon cancer cells.
Collapse
Affiliation(s)
- Haijun Bao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Xukai Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Chenxing Jian
- Department of Colorectal Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Yuan Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Mi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Jia Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Feifei Fang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No,1277, Hubei, 430022, Wuhan, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China.
| |
Collapse
|
68
|
Yan R, Dai W, Mao Y, Yu G, Li W, Shu M, Xu B. Melittin inhibits tumor cell migration and enhances cisplatin sensitivity by suppressing IL-17 signaling pathway gene LCN2 in castration-resistant prostate cancer. Prostate 2023; 83:1430-1445. [PMID: 37517867 DOI: 10.1002/pros.24605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Melittin is a small molecule polypeptide extracted from the abdominal cavity of bees, which is used to treat inflammatory diseases and relieve pain. However, the antitumor effect of melittin and its mechanisms remain unclear, especially in castration-resistant prostate cancer (CRPC). METHODS Through CCK-8 assay, colony formation assay, wound healing assay and Transwell migration assay, we explored the effect of melittin on CRPC cell lines. In addition, with microarray analysis, gene ontology analysis and kyoto encyclopedia of genes and genomes analysis, this study identified key genes and signaling pathways that influence the growth of PC-3 cells. Meanwhile, the effect of melittin on CRPC was also verified through subcutaneous tumor formation experiments. Finally, we also tested the relevant indicators of human prostate cancer (PCa) specimens through immunohistochemistry and H&E stating. RESULTS Here, melittin was verified to inhibit the cell proliferation and migration of CPRC. Moreover, RNA-sequence analysis demonstrated that Interleukin-17 (IL-17) signaling pathway gene Lipocalin-2 (LCN2) was downregulated by melittin treatment in CRPC. Further investigation revealed that overexpression of LCN2 was able to rescue tumor suppression and cisplatin sensitivity which melittin mediated. Interestingly, the expression of LCN2 is highly related to metastasis in PCa. CONCLUSIONS In brief, our study indicates that LCN2 plays an oncogenic role in CRPC and melittin may be selected as an attractive candidate for CRPC therapy.
Collapse
Affiliation(s)
- Rucheng Yan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
69
|
He L, Zhao C, Xu J, Li W, Lu Y, Gong Y, Gu D, Wang X, Guo F. A potential novel biomarker: comprehensive analysis of prognostic value and immune implication of CES3 in colonic adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:13239-13255. [PMID: 37480527 DOI: 10.1007/s00432-023-05156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Colon cancer is the most common malignant tumor in the intestine. Abnormal Carboxylesterases 3 (CES3) expression had been reported to be correlated to multiple tumor progression. However, the association among CES3 expression and prognostic value and immune effects in colonic adenocarcinoma (COAD) were unclear. PATIENTS AND METHODS The transcription and expression data of CES3 and corresponding clinical information was downloaded from The Cancer Genome Atlas (TCGA). The CES3 protein expression and the prognostic value were verified based on tissue microarray data. The Cancer immune group Atlas (TCIA), Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the GSE78220 immunotherapy cohort were used to forecast immunotherapy efficacy. Finally, a prognostic immune signature was constructed and verified. RESULTS Compared with normal colon tissues, the expression of mRNA and protein levels of CES3 were downregulated in tumor tissues. CES3 expression was associated with TIICs. Hihg-CES3 COAD patients had better efficacy of concurrent immunotherapy. CES3-related immune genes (CRIs) were identified and were then used to construct prognostic immune signature and had been successfully verified in GES39582. CONCLUSION CES3 might be a potential immune-related gene and promising prognostic biomarker in COAD.
Collapse
Affiliation(s)
- Lulu He
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Chenyi Zhao
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xu
- Central Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjing Li
- Department of Clinical Laboratory, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yujie Lu
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yang Gong
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Dingyi Gu
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Xiaoyan Wang
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Feng Guo
- Department of Oncology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
70
|
Zou M, Zhang W, Zhu Y, Xu Y. Identification of 6 cuproptosis-related genes for active ulcerative colitis with both diagnostic and therapeutic values. Medicine (Baltimore) 2023; 102:e35503. [PMID: 37904461 PMCID: PMC10615546 DOI: 10.1097/md.0000000000035503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Cuproptosis has been reported to affect a variety of diseases. Therefore, we aimed to examine the role of cuproptosis-related genes in active ulcerative colitis (UC). We acquired 2 datasets of active UC from the Gene Expression Omnibus database and created immune cell infiltrations to research immune cell dysregulation. Based on the cuproptosis gene set and differentially expressed genes (DEGs), we identified the differentially expressed genes of cuproptosis (CuDEGs). We then used 2 machine learning methods to screen hub CuDEGs. Subsequently, we performed validation on additional datasets and investigated the relationship between hub CuDEGs and drug treatments. Thirty-five controls with inactive UC and 90 patients with active UC were obtained from the training sets. A total of 9157 DEGs and 27 CuDEGs were identified, respectively. Immune cell infiltration analysis revealed that patients with active UC exhibited higher levels of activated dendritic cells and neutrophils as well as lower levels of CD8+ T cells, regulatory T cells (Tregs), and macrophage M2. A six-gene cuproptosis signature was identified using machine learning algorithms. We further validated that the 6 hub CuDEGs showed a strong correlation with active UC and acted as cuproptosis-related biomarkers of active UC. Moreover, the expression of ATOX1 was downregulated, and SUMF1, MT1G, ATP7B, FDX1, and LIAS expression was upregulated in the colonic mucosa of active UC patients who responded to golimumab or vedolizumab therapy. With the exception of ATP7B, the expression patterns of hub CuDEGs before and after infliximab treatment of patients with active UC were similar to those of golimumab and vedolizumab. Cuproptosis and active UC have a complex relationship, as illustrated in our study. ATOX1, SUMF1, MT1G, ATP7B, FDX1, and LIAS are cuproptosis-related hub genes of active UC. Our study opens new avenues for investigating UC progression and developing novel therapeutic potential targets for the disease.
Collapse
Affiliation(s)
- Menglong Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
71
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
72
|
Liu T, Wei J. Validation of a Novel Cuproptosis-Related Prognostic Gene Marker and Differential Expression Associated with Lung Adenocarcinoma. Curr Issues Mol Biol 2023; 45:8502-8518. [PMID: 37886979 PMCID: PMC10605745 DOI: 10.3390/cimb45100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Cuproptosis induction is seen as a promising alternative for immunotherapies and targeted therapies in breast cancer. The objective of this research was to examine the prognostic and biological importance of cuproptosis-related genes (CRGs) in lung adenocarcinoma (LUAD). METHODS The following methods were used: GSE10072 dataset and TCGA database analysis, differential expression analysis of CRGs, and biological function (BP) and signaling pathway enrichment analysis, prognostic analysis and clinical analysis of CRGs, construction of the prognostic signature and RNA modified genes and miRNA analysis of CRGs in LUAD, immunoinfiltration analysis and immunohistochemical staining of DβH, UBE2D3, SOD1, UBE2D1 and LOXL2. RESULTS AOC1, ATOX1, CCL8, CCS, COX11, CP, LOXL2, MAP2K2, PDK1, SCO2, SOD1, UBE2D1, UBE2D3 and VEGFA showed significantly higher expression, while ATP7B, DβH, PDE3B, SLC31A2, UBE2D2, UBE2D4 and ULK2 showed lower expression in LUAD tissues than normal tissues. We also found that ATP7B (4%), AOC1 (3%) PDE3B (2%), DβH (2%), CP (1%), ULK2 (1%), PDK1 (1%), LOXL2 (1%) and UBE2D3 (1%) showed higher mutation frequencies. The univariate Cox analysis was used to identify CRGs that have prognostic value. It identified 21 genes that showed significant prognostic value, containing DβH, UBE2D3, SOD1, UBE2D1 and LOXL2. Patients with DβH up-expression have a longer survival time and patients with UBE2D3, SOD1, UBE2D1 and LOXL2 down-expression also have a longer survival time. hsa-miR-29c-3p, hsa-miR-29a-3p, hsa-miR-181c-5p, hsa-miR-1245a, etc., play an important role in the miRNA regulatory network, and in LUAD, miR-29a, miR-29c and miR-181c high expression survival was longer, and miR-1245a low expression survival was longer. We also performed an analysis to examine the relationships between DβH, LOXL2, SOD1, UBE2D1 and UBE2D3 and immune infiltration in LUAD, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and DCs. CONCLUSION DβH, UBE2D3, SOD1, UBE2D1, and LOXL2 are potential candidates implicated in LUAD and can be further explored for their application as diagnostic, prognostic, and therapeutic biomarkers for LUAD.
Collapse
Affiliation(s)
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
73
|
Tarin M, Babaie M, Eshghi H, Matin MM, Saljooghi AS. Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med 2023; 21:745. [PMID: 37864163 PMCID: PMC10589935 DOI: 10.1186/s12967-023-04533-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/16/2023] [Indexed: 10/22/2023] Open
Abstract
Copper (Cu) is an essential element that is involved in a variety of biochemical processes. Both deficiency and accumulation of Cu are associated with various diseases; and a high amount of accumulated Cu in cells can be fatal. The production of reactive oxygen species (ROS), oxidative stress, and cuproptosis are among the proposed mechanisms of copper toxicity at high concentrations. Elesclomol (ELC) is a mitochondrion-targeting agent discovered for the treatment of solid tumors. In this review, we summarize the synthesis of this drug, its mechanisms of action, and the current status of its applications in the treatment of various diseases such as cancer, tuberculosis, SARS-CoV-2 infection, and other copper-associated disorders. We also provide some detailed information about future directions to improve its clinical performance.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
74
|
Wan H, Yang X, Sang G, Ruan Z, Ling Z, Zhang M, Liu C, Hu X, Guo T, He J, Liu D, Pei J. CDKN2A was a cuproptosis-related gene in regulating chemotherapy resistance by the MAGE-A family in breast cancer: based on artificial intelligence (AI)-constructed pan-cancer risk model. Aging (Albany NY) 2023; 15:11244-11267. [PMID: 37857018 PMCID: PMC10637804 DOI: 10.18632/aging.205125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Before the discovery of cuproptosis, copper-loaded nanoparticle is a wildly applied strategy for enhancing the tumor-cell-killing effect of chemotherapy. Although copper(ii)-related researches are wide, details of cuproptosis-related bioprocess in pan-cancer are not clear yet now, especially for prognosis and drug sensitivity prediction yet now. METHODS In this study, VOSviewer is used for the literature review, and R4.2.0 is used for data analysis. Public data are collected from TCGA and GEO, local breast cancer cohort is collected to verify the expression level of CDKN2A. RESULTS 7036 published articles exhibited a time-dependent linear relationship (R=0.9781, p<0.0001), and breast cancer (33.4%) is the most researched topic. Cuproptosis-related-genes (CRGs)-based unsupervised clustering divides pan-cancer subgroups into four groups (CRG subgroup) with differences in prognosis and tumor immunity. 44 tumor-driver-genes (TDGs)-based prediction model of drug sensitivity and prognosis is constructed by artificial intelligence (AI). Based on TDGs and clinical features, a nomogram is (C- index: 0.7, p= 6.958e- 12) constructed to predict the prognosis of breast cancer. Importance analysis identifies CDKN2A has a pivotal role in AI modeling, whose higher expression indicates worse prognosis in breast cancer. Furthermore, inhibition of CDKN2A down-regulates decreases Snail1, Twist1, Zeb1, vimentin and MMP9, while E-cadherin is increased. Besides, inhibition of CDKN2A also decreases the expression of MEGEA4, phosphorylated STAT3, PD-L1, and caspase3, while cleaved-caspase3 is increased. Finally, we find down-regulation of CDKN2A or MAGEA inhibits cell migration and wound healing, respectively. CONCLUSIONS AI identified CRG subgroups in pan-cancer based on CRGs-related TDGs, and 44-gene-based AI modeling is a novel tool to identify chemotherapy sensitivity in breast cancer, in which CDKN2A/MAGEA4 pathway played the most important role.
Collapse
Affiliation(s)
- Hong Wan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xiaowei Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guopeng Sang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhifan Ruan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zichen Ling
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyang Hu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Juntong He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Defeng Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jing Pei
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
75
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
76
|
Bian C, Zheng Z, Su J, Chang S, Yu H, Bao J, Xin Y, Jiang X. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies. Front Pharmacol 2023; 14:1271613. [PMID: 37767404 PMCID: PMC10520736 DOI: 10.3389/fphar.2023.1271613] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Copper is an indispensable micronutrient for the development and replication of all eukaryotes, and its redox properties are both harmful and beneficial to cells. An imbalance in copper homeostasis is thought to be involved in carcinogenesis. Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be separated from the effects of copper. Cuproposis is a copper-dependent form of cell death that differs from other existing modalities of regulatory cell death. The role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems has been widely studied; however, its impact on malignant tumors is yet to be fully understood from a clinical perspective. Exploring signaling pathways related to cuproptosis will undoubtedly provide a new perspective for the development of anti-tumor drugs in the future. Here, we systematically review the systemic and cellular metabolic processes of copper and the regulatory mechanisms of cuproptosis in cancer. In addition, we discuss the possibility of targeting copper ion drugs to prolong the survival of cancer patients, with an emphasis on the most representative copper ionophores and chelators. We suggest that attention should be paid to the potential value of copper in the treatment of specific cancers.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
77
|
Lin Z, He Y, Wu Z, Yuan Y, Li X, Luo W. Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma. Sci Rep 2023; 13:15059. [PMID: 37700003 PMCID: PMC10497601 DOI: 10.1038/s41598-023-42053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Despite being significant in various diseases, including cancers, the impact of copper metabolism on osteosarcoma (OS) remains largely unexplored. This study aimed to use bioinformatics analyses to identify a reliable copper metabolism signature that could improve OS patient prognosis prediction, immune landscape understanding, and drug sensitivity. Through nonnegative matrix factorization (NMF) clustering, we revealed distinct prognosis-associated clusters of OS patients based on copper metabolism-related genes (CMRGs), showing differential gene expression linked to immune processes. The risk model, comprising 13 prognostic CMRGs, was established using least absolute shrinkage and selection operator (LASSO) Cox regression, closely associated with the OS microenvironment's immune situation and drug sensitivity. Furthermore, we developed an integrated nomogram, combining the risk score and clinical traits to quantitatively predict OS patient prognosis. The calibration plot, timeROC, and timeROC analyses demonstrated its predictable accuracy and clinical usefulness. Finally, we identified three independent prognostic signatures for OS patients: COX11, AP1B1, and ABCB6. This study confirmed the involvement of CMRGs in OS patient prognosis, immune processes, and drug sensitivity, suggesting their potential as promising prognostic signatures and therapeutic targets for OS.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yizhe He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiangyao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
78
|
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A, Li F. Mechanistic Insights into the Roles of the IL-17/IL-17R Families in Pancreatic Cancer. Int J Mol Sci 2023; 24:13539. [PMID: 37686343 PMCID: PMC10487659 DOI: 10.3390/ijms241713539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The members of the cytokine interleukin 17 (IL-17) family, along with their receptors (IL-17R), are vital players in a range of inflammatory diseases and cancer. Although generally regarded as proinflammatory, the effects they exhibit on cancer progression are a double-edged sword, with both antitumor and protumor activities being discovered. There is growing evidence that the IL-17 signaling pathways have significant impacts on the tumor microenvironment (TME), immune response, and inflammation in various types of cancer, including pancreatic cancer. However, the detailed mechanistic functions of the IL-17/IL-17R families in pancreatic cancer were rarely systematically elucidated. This review considers the role of the IL-17/IL-17R families in inflammation and tumor immunity and elaborates on the mechanistic functions and correlations of these members with pathogenesis, progression, and chemoresistance in pancreatic cancer. By summarizing the advanced findings on the role of IL-17/IL17R family members and IL-17 signaling pathways at the molecular level, cellular level, and disease level in pancreatic cancer, this review provides an in-depth discussion on the potential of IL-17/IL-17R as prognostic markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Boyue Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
79
|
Liu Y, Wang Y, Li C, Feng H, Liu Y, Ma L. An effective prognostic model in colon adenocarcinoma composed of cuproptosis-related epigenetic regulators. Front Pharmacol 2023; 14:1254918. [PMID: 37701039 PMCID: PMC10494936 DOI: 10.3389/fphar.2023.1254918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Colorectal adenocarcinoma (COAD) is a common malignant tumor with little effective prognostic markers. Cuproptosis is a newly discovered mode of cell death that may be related to epigenetic regulators. This study aimed to explore the association between epigenetic regulators and cuproptosis, and to establish a prognostic prediction model for COAD based on epigenetic regulators associated with cuproptosis (EACs). Methods: RNA sequencing data and clinical data of 524 COAD patients were obtained from the TCGA-COAD database, cuproptosis-related genes were from the FerrDb database, and epigenetic-related genes were from databases such as GO and EpiFactors. LASSO regression analysis and other methods were used to screen out epigenetic regulators associated with cuproptosis and prognosis. The risk score of each patient was calculated and the patients were divided into high-risk group and low-risk group. Next, the survival difference, functional enrichment analyses, tumor mutation burden, chemotherapy drug sensitivity and other indicators between the two groups were compared and analyzed. Results: We found 716 epigenetic regulators closely related to cuproptosis, among which 35 genes were related to prognosis of COAD. We further screened out 7 EACs from the 35 EACs to construct a prognostic prediction model. We calculated the risk score of each patient based on these 7 genes, and divided the patients into high-risk group and low-risk group. We found that the overall survival rate and progression-free survival rate of the high-risk group were significantly lower than those of the low-risk group. This model showed good predictive ability in the training set, test set and overall data set. We also constructed a prognostic prediction model based on risk score and other clinical features, and drew the corresponding Nomogram. In addition, we found significant differences between the high-risk group and the low-risk group in tumor mutation burden, chemotherapy drug sensitivity and other clinical aspects. Conclusion: We established an effective predictive prediction model for COAD based on EACs, revealing the association between epigenetic regulators and cuproptosis in COAD. We hope that this model can not only facilitate the treatment decision of COAD patients, but also promote the research progress in the field of cuproptosis.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yizhao Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijin Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqing Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
80
|
Fang ZX, Hou YY, Wu Z, Wu BX, Deng Y, Wu HT, Liu J. Immune responses of six-transmembrane epithelial antigen of the prostate 4 functions as a novel biomarker in gastric cancer. World J Clin Oncol 2023; 14:297-310. [PMID: 37700807 PMCID: PMC10494559 DOI: 10.5306/wjco.v14.i8.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Immune cells play an important role in regulating the behavior of tumor cells. According to emerging evidence, six-transmembrane epithelial antigen of the prostate 4 (STEAP4) performs a crucial part in tumor microenvironmental immune response and tumorigenesis, and serves as the potential target for cellular and antibody immunotherapy. However, the immunotherapeutic role of STEAP4 in gastric cancer (GC) remains unclear. AIM To investigate the expression of STEAP4 in GC and its relationship with immune infiltrating cells, and explore the potential value of STEAP4 as an immune prognostic indicator in GC. METHODS The expression level of STEAP4 was characterized by immunohistochemistry in tumors and adjacent non-cancerous samples in 96 GC patients. Tumor Immune Estimation Resource was used to study the correlation between STEAP4 and tumor immune infiltration level and immune infiltration gene signature. R package was used to analyze the relationship between STEAP4 expression and immune and stromal scores in GC (GSE62254) by the ESTIMATE algorithm, and Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis were applied to analyze the effect of STEAP4 on clinical prognosis. RESULTS Immunohistochemistry analysis showed that STEAP4 expression was higher in GC tissues than in adjacent tissues, and STEAP4 expression was positively correlated with the clinical stage of GC. In GC, the expression of STEAP4 was positively correlated with the infiltration levels of B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. The expression level of STEAP4 was strongly correlated with most of the immune markers. In addition, STEAP4 expression was inversely correlated with tumor purity, but correlated with stromal score (r = 0.43, P < 0.001), immune score (r = 0.29, P < 0.001) and estimate score (r = 0.39, P < 0.001). Moreover, stromal, immune, and estimate scores were higher in the STEAP4 high expression group, whereas tumor purity was higher in the STEAP4 Low expression group. The relationship between STEAP4 expression and prognosis of patients with GC was further investigated, and the results showed that high STEAP4 expression was associated with poor overall survival and disease-free survival. In addition, Kaplan-Meier Plotter showed that high expression of STEAP4 was significantly correlated with poor survival of patients with GC. CONCLUSION The current findings suggest an oncogenic role for STEAP4 in GC, with significantly high levels being associated with poor prognosis. Investigation of the GC tumor microenvironment suggests the potential function of STEAP4 is connected with the infiltration of diverse immune cells, which may contribute to the regulation of the tumor microenvironment. In conclusion, STEAP4 may serve as a potential therapeutic target for GC to improve the immune infiltration, as well as serve as a prognostic biomarker for judging the prognosis and immune infiltration status of GC.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
81
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023; 19:2175-2195. [PMID: 37055935 PMCID: PMC10351475 DOI: 10.1080/15548627.2023.2200554] [Citation(s) in RCA: 253] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions. Pathologically, impaired copper metabolism due to environmental or genetic causes is implicated in a variety of human diseases, such as rare Wilson disease and common cancers. Therapeutically, copper-based compounds are potential chemotherapeutic agents that can be used alone or in combination with other drugs or approaches to treat cancer. Here, we review the progress made in understanding copper metabolic processes and their impact on the regulation of cell death and autophagy. This knowledge may help in the design of future clinical tools to improve cancer diagnosis and treatment.Abbreviations: ACSL4, acyl-CoA synthetase long chain family member 4; AIFM1/AIF, apoptosis inducing factor mitochondria associated 1; AIFM2, apoptosis inducing factor mitochondria associated 2; ALDH, aldehyde dehydrogenase; ALOX, arachidonate lipoxygenase; AMPK, AMP-activated protein kinase; APAF1, apoptotic peptidase activating factor 1; ATF4, activating transcription factor 4; ATG, autophagy related; ATG13, autophagy related 13; ATG5, autophagy related 5; ATOX1, antioxidant 1 copper chaperone; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting alpha; ATP7B, ATPase copper transporting beta; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCS, bathocuproinedisulfonic acid; BECN1, beclin 1; BID, BH3 interacting domain death agonist; BRCA1, BRCA1 DNA repair associated; BSO, buthionine sulphoximine; CASP1, caspase 1; CASP3, caspase 3; CASP4/CASP11, caspase 4; CASP5, caspase 5; CASP8, caspase 8; CASP9, caspase 9; CCS, copper chaperone for superoxide dismutase; CD274/PD-L1, CD274 molecule; CDH2, cadherin 2; CDKN1A/p21, cyclin dependent kinase inhibitor 1A; CDKN1B/p27, cyclin-dependent kinase inhibitor 1B; COMMD10, COMM domain containing 10; CoQ10, coenzyme Q 10; CoQ10H2, reduced coenzyme Q 10; COX11, cytochrome c oxidase copper chaperone COX11; COX17, cytochrome c oxidase copper chaperone COX17; CP, ceruloplasmin; CYCS, cytochrome c, somatic; DBH, dopamine beta-hydroxylase; DDIT3/CHOP, DNA damage inducible transcript 3; DLAT, dihydrolipoamide S-acetyltransferase; DTC, diethyldithiocarbamate; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK3/PERK, eukaryotic translation initiation factor 2 alpha kinase 3; ER, endoplasmic reticulum; ESCRT-III, endosomal sorting complex required for transport-III; ETC, electron transport chain; FABP3, fatty acid binding protein 3; FABP7, fatty acid binding protein 7; FADD, Fas associated via death domain; FAS, Fas cell surface death receptor; FASL, Fas ligand; FDX1, ferredoxin 1; GNAQ/11, G protein subunit alpha q/11; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HDAC, histone deacetylase; HIF1, hypoxia inducible factor 1; HIF1A, hypoxia inducible factor 1 subunit alpha; HMGB1, high mobility group box 1; IL1B, interleukin 1 beta; IL17, interleukin 17; KRAS, KRAS proto-oncogene, GTPase; LOX, lysyl oxidase; LPCAT3, lysophosphatidylcholine acyltransferase 3; MAP1LC3, microtubule associated protein 1 light chain 3; MAP2K1, mitogen-activated protein kinase kinase 1; MAP2K2, mitogen-activated protein kinase kinase 2; MAPK, mitogen-activated protein kinases; MAPK14/p38, mitogen-activated protein kinase 14; MEMO1, mediator of cell motility 1; MT-CO1/COX1, mitochondrially encoded cytochrome c oxidase I; MT-CO2/COX2, mitochondrially encoded cytochrome c oxidase II; MTOR, mechanistic target of rapamycin kinase; MTs, metallothioneins; NAC, N-acetylcysteine; NFKB/NF-Κb, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NPLOC4/NPL4, NPL4 homolog ubiquitin recognition factor; PDE3B, phosphodiesterase 3B; PDK1, phosphoinositide dependent protein kinase 1; PHD, prolyl-4-hydroxylase domain; PIK3C3/VPS34, phosphatidylinositol 3-kinase catalytic subunit type 3; PMAIP1/NOXA, phorbol-12-myristate-13-acetate-induced protein 1; POR, cytochrome P450 oxidoreductase; PUFA-PL, PUFA of phospholipids; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SCO1, synthesis of cytochrome C oxidase 1; SCO2, synthesis of cytochrome C oxidase 2; SLC7A11, solute carrier family 7 member 11; SLC11A2/DMT1, solute carrier family 11 member 2; SLC31A1/CTR1, solute carrier family 31 member 1; SLC47A1, solute carrier family 47 member 1; SOD1, superoxide dismutase; SP1, Sp1 transcription factor; SQSTM1/p62, sequestosome 1; STEAP4, STEAP4 metalloreductase; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TFEB, transcription factor EB; TM, tetrathiomolybdate; TP53/p53, tumor protein p53; TXNRD1, thioredoxin reductase 1; UCHL5, ubiquitin C-terminal hydrolase L5; ULK1, Unc-51 like autophagy activating kinase 1; ULK1, unc-51 like autophagy activating kinase 1; ULK2, unc-51 like autophagy activating kinase 2; USP14, ubiquitin specific peptidase 14; VEGF, vascular endothelial gro wth factor; XIAP, X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Qian Xue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
82
|
Huang D, Lai S, Zhong S, Jia Y. Association between serum copper, zinc, and selenium concentrations and depressive symptoms in the US adult population, NHANES (2011-2016). BMC Psychiatry 2023; 23:498. [PMID: 37434135 DOI: 10.1186/s12888-023-04953-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Evidence suggests that alterations in serum trace element concentrations are closely associated with mental illness. However, studies on the relationship between serum copper, zinc, and selenium concentrations and depressive symptoms are limited and with controversial results. We aimed to investigate the association between serum concentrations of these trace elements and depressive symptoms in US adults. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) (2011-2016) were used in this cross-sectional study. The Patient Health Questionnaire-9 Items (PHQ-9) was employed to assess depressive symptoms. Multiple logistic regression was performed to determine the relationship between the serum concentrations of copper, zinc, and selenium and depressive symptoms. RESULTS A total of 4552 adults were included. Subjects with depressive symptoms had higher serum copper concentrations (123.88 ± 1.87) than those without depressive symptoms (116.99 ± 0.86) (p < 0.001). In Model 2, weighted logistic regression analysis showed that the second (Q2) quartile of zinc concentrations (odds ratio [OR] = 1.534, 95% confident interval [CI]: 1.018 to 2.313) were significantly associated with an increased risk of depressive symptoms. Subgroup analysis revealed that the third (Q3) and fourth (Q4) quartiles of copper concentrations (Q3: OR = 2.699, 95% CI: 1.285 to 5.667; Q4: OR = 2.490, 95% CI: 1.026 to 6.046) were also positively associated with depressive symptoms in obese individuals after controlling for all confounders. However, no significant relationship between serum selenium concentrations and depressive symptoms was observed. CONCLUSIONS Obese US adults with high serum copper concentrations, as well as US adults in general with low serum zinc concentrations, were susceptible to depressive symptoms. Nevertheless, the causal mechanisms underlying these relationships need to be further explored.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
83
|
Jiang Z, Sha G, Zhang W, Zhang Z, Liu T, Wang D, Tang D. The huge potential of targeting copper status in the treatment of colorectal cancer. Clin Transl Oncol 2023; 25:1977-1990. [PMID: 36781599 DOI: 10.1007/s12094-023-03107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Colorectal cancer (CRC) commonly leads to cancer deaths and is often diagnosed at advanced stages. It also faces difficulties due to the poor results of conventional treatments such as surgery, chemotherapy, and radiotherapy. Copper is a mineral nutrient whose intrinsic properties have a two-way effect on the production and treatment of cancer. Copper's redox properties allow it to be used in developing anti-cancer drugs, while its potential toxicity leads to oxidative stress and even cancer. Copper status is closely related to colorectal tumors' proliferation and metastasis. The study of the mechanisms of copper homeostasis, cuproplasia, and cuproptosis due to altered copper status plays a crucial role in developing anticancer drugs. Therefore, targeting alteration of copper status becomes a potential option for treating colorectal cancer. This review summarizes the mechanisms by which altered copper status causes CRC progression and emphasizes the potential of regulating copper status in treating CRC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|
84
|
Ma Z, Liang H, Cui R, Ji J, Liu H, Liu X, Shen P, Wang H, Wang X, Song Z, Jiang Y. Construction of a risk model and prediction of prognosis and immunotherapy based on cuproptosis-related LncRNAs in the urinary system pan-cancer. Eur J Med Res 2023; 28:198. [PMID: 37370148 DOI: 10.1186/s40001-023-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Urinary pan-cancer system is a general term for tumors of the urinary system including renal cell carcinoma (RCC), prostate cancer (PRAD), and bladder cancer (BLCA). Their location, physiological functions, and metabolism are closely related, making the occurrence and outcome of these tumors highly similar. Cuproptosis is a new type of cell death that is different from apoptosis and plays an essential role in tumors. Therefore, it is necessary to study the molecular mechanism of cuproptosis-related lncRNAs to urinary system pan-cancer for the prognosis, clinical diagnosis, and treatment of urinary tumors. METHOD In our study, we identified 35 co-expression cuproptosis-related lncRNAs (CRLs) from the urinary pan-cancer system. 28 CRLs were identified as prognostic-related CRLs by univariate Cox regression analysis. Then 12 CRLs were obtained using lasso regression and multivariate cox analysis to construct a prognostic model. We divided patients into high- and low-risk groups based on the median risk scores. Next, Kaplan-Meier analysis, principal component analysis (PCA), functional rich annotations, and nomogram were used to compare the differences between the high- and low-risk groups. Finally, the prediction of tumor immune dysfunction and rejection, gene mutation, and drug sensitivity were discussed. CONCLUSION Finally, the candidate molecules of the urinary system pan-cancer were identified. This CRLs risk model may be promising for clinical prediction of prognosis and immunotherapy response in urinary system pan-cancer patients.
Collapse
Affiliation(s)
- Zhihui Ma
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Haining Liang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Rongjun Cui
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jinli Ji
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hongfeng Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoxue Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ping Shen
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Huan Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xingyun Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zheyao Song
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ying Jiang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
85
|
Gao F, Yuan Y, Ding Y, Li PY, Chang Y, He XX. DLAT as a Cuproptosis Promoter and a Molecular Target of Elesclomol in Hepatocellular Carcinoma. Curr Med Sci 2023:10.1007/s11596-023-2755-0. [PMID: 37286711 DOI: 10.1007/s11596-023-2755-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Cuproptosis is a novel cell death pathway that was newly discovered in early 2022. However, cuproptosis is still in its infancy in many respects and warrants further research in hepatocellular carcinoma (HCC). This study aimed to analyze the mechanism of cuprptosis in HCC. METHODS Herein, the tumor microenvironment infiltration landscape of molecular subtypes was illustrated using GSVA, ssGSEA, TIMER, CIBERSORT, and ESTIMATE algorithms based on the expression profile of cuproptosis-related genes (CRGs) from TCGA and GEO databases. Then, the least absolute shrinkage and selection operator regression method was applied to construct a cuproptosis signature to quantify the cuproptosis profile of HCC. Further, we explored the expression of three hub CRGs in cell lines and clinical patient tissues of HCC by Western blotting, qRT-PCR and immunohistochemistry. Finally, we examined the function of dihydrolipoamide S-acetyltransferase (DLAT) in cuproptosis in HCC by loss-of-function strategy, Western blotting and CCK8 assay. RESULTS Three distinct molecular subtypes were identified. Cluster 2 had the greatest infiltration of immune cells with best prognosis. The cuproptosis signature was indicative of tumor subtype, immunity, and prognosis for HCC, and specifically, a low cuproptosis score foreshadowed good prognosis. DLAT was highly expressed in liver cancer cell lines and HCC tissues and positively correlated with clinical stage and grade. We also found that potent copper ionophore elesclomol could induce cuproptosis in a copper-dependent manner. Selective Cu++ chelator ammonium tetrathiomolybdate and downregulating DLAT expression by siRNA could effectively inhibit cuproptosis. CONCLUSION Cuproptosis and DLAT as a promising biomarker could help to determine the prognosis of HCC and may offer novel insights for effective treatment.
Collapse
Affiliation(s)
- Fan Gao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pei-Yuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| | - Xing-Xing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
86
|
Qayyum MA, Farooq T, Baig A, Bokhari TH, Anjum MN, Mahmood MHUR, Ashraf AR, Muddassir K, Ahmad M. Assessment of essential and toxic elemental concentrations in tumor and non-tumor tissues with risk of colorectal carcinoma in Pakistan. J Trace Elem Med Biol 2023; 79:127234. [PMID: 37302218 DOI: 10.1016/j.jtemb.2023.127234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Colorectal tumor is a major cause of cancer morbidity and mortality both in USA and around the globe. Exposure to environmental toxicants such as toxic trace elements has been implicated in colorectal malignancy. However, data linking them to this cancer are generally lacking. METHODS Accordingly, the current study was to investigate the distribution, correlation and chemometric evaluation of 20 elements (Ca, Na, Mg, K, Zn, Fe, Ag, Co, Pb, Sn, Ni, Cr, Sr, Mn, Li, Se, Cd, Cu, Hg and As) in the tumor tissues (n = 147) and adjacent non tumor tissues (n = 147) of same colorectal patients which were analyzed by flame atomic absorption spectrophometry employing nitric acid-perchloric acid based wet digestion method. RESULTS On the average, Zn (p < 0.05), Ag (p < 0.001), Pb (p < 0.001), Ni (p < 0.01), Cr (p < 0.005) and Cd (p < 0.001) showed significantly higher levels in the tumor tissues compared with the non tumor tissues of patients, whereas mean levels of Ca (p < 0.01), Na (p < 0.05), Mg (p < 0.001), Fe (p < 0.001), Sn (p < 0.05) and Se (p < 0.01), were significantly elevated in the non tumor tissues than the tissues of tumor patients. Most of the elements revealed markedly disparities in their elemental levels based on food (vegetarian/nonvegetarian) habits and smoking (smoker/nonsmoker) habits of donor groups. The correlation study and multivariate statistical analyses demonstrated some significantly divergent associations and apportionment of the elements in the tumor tissues and non tumor tissues of donors. Noticeably, variations in the elemental levels were also noted for colorectal tumor types (lymphoma, carcinoids tumor and adenocarcinoma) and stages (I, II, III, & IV) in patients. CONCLUSION Overall, the study revealed that disproportions in essential and toxic elemental concentrations in the tissues are involved in pathogenesis of the malignancy. These findings provide the data base that helps to oncologist for diagnosis and prognosis of colorectal malignant patients.
Collapse
Affiliation(s)
- Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Baig
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | | | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | | | - Ahmad Raza Ashraf
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Khawaja Muddassir
- Division of Pulmonary Critical Care and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
87
|
Liu T, Liu Y, Zhang F, Gao Y. Copper homeostasis dysregulation promoting cell damage and the association with liver diseases. Chin Med J (Engl) 2023:00029330-990000000-00652. [PMID: 37284739 DOI: 10.1097/cm9.0000000000002697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/08/2023] Open
Abstract
ABSTRACT Copper plays an important role in many metabolic activities in the human body. Copper level in the human body is in a state of dynamic equilibrium. Recent research on copper metabolism has revealed that copper dyshomeostasis can cause cell damage and induce or aggravate some diseases by affecting oxidative stress, proteasome, cuprotosis, and angiogenesis. The liver plays a central role in copper metabolism in the human body. Research conducted in recent years has unraveled the relationship between copper homeostasis and liver diseases. In this paper, we review the available evidence of the mechanism by which copper dyshomeostasis promotes cell damage and the development of liver diseases, and identify the future research priorities.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | | | | | | |
Collapse
|
88
|
Jain SM, Deka D, Das A, Paul S, Pathak S, Banerjee A. Role of Interleukins in Inflammation-Mediated Tumor Immune Microenvironment Modulation in Colorectal Cancer Pathogenesis. Dig Dis Sci 2023:10.1007/s10620-023-07972-8. [PMID: 37277647 DOI: 10.1007/s10620-023-07972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Tumor cells invade and spread through a procedure termed as epithelial-to-mesenchymal cell transition (EMT). EMT is triggered by any alterations in the genes that encode the extracellular matrix (ECM) proteins, the enzymes that break down the ECM, and the activation of the genes that causes the epithelial cell to change into a mesenchymal type. The transcription factors NF-κB, Smads, STAT3, Snail, Zeb, and Twist are activated by inflammatory cytokines, for instance, Tumor Necrosis Factor, Tumor Growth Factors, Interleukin-1, Interleukin-8, and Interleukin-6, which promotes EMT. MATERIALS The current piece of work has been reviewed from the literature works published in last 10 years on the role interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis utilizing the databases like Google Scholar, PubMed, Science Direct. RESULTS Recent studies have demonstrated that pathological situations, such as epithelial malignancies, exhibit EMT characteristics, such as the downregulation of epithelial markers and the overexpression of mesenchymal markers. Several growing evidence have also proved its existence in the human colon during the carcinogenesis of colorectal cancer. Most often, persistent inflammation is thought to be one factor contributing to the initiation of human cancers, such as colorectal cancer (CRC). Therefore, according to epidemiologic and clinical research, people with ulcerative colitis and Crohn's disease have a greater probability of developing CRC. CONCLUSION A substantial amount of data points to the involvement of the NF-κB system, SMAD/STAT3 signaling cascade, microRNAs, and the Ras-mitogen-activated protein kinase/Snail/Slug in the epithelial-to-mesenchymal transition-mediated development of colorectal malignancies. As a result, EMT is reported to play an active task in the pathogenesis of colorectal cancer, and therapeutic interventions targeting the inflammation-mediated EMT might serve as a novel strategy for treating CRC. The illustration depicts the relationship between interleukins and their receptors as a driver of CRC development and the potential therapeutic targets.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc. San Pablo, 76130, Querétaro, CP, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India.
| |
Collapse
|
89
|
Guan D, Zhao L, Shi X, Ma X, Chen Z. Copper in cancer: From pathogenesis to therapy. Biomed Pharmacother 2023; 163:114791. [PMID: 37105071 DOI: 10.1016/j.biopha.2023.114791] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
One of the basic trace elements for the structure and metabolism of human tissue is copper. However, as a heavy metal, excessive intake or abnormal accumulation of copper in the body can cause inevitable damage to the organism because copper can result in direct injury to various cell components or disruption of the redox balance, eventually leading to cell death. Interestingly, a growing body of research reports that diverse cancers have raised serum and tumor copper levels. Tumor cells depend on more copper for their metabolism than normal cells, and a decrease in copper or copper overload can have a detrimental effect on tumor cells. New modalities for identifying and characterizing copper-dependent signals offer translational opportunities for tumor therapy, but their mechanisms remain unclear. Therefore, this article summarizes what we currently know about the correlation between copper and cancer and describes the characteristics of copper metabolism in tumor cells and the prospective application of copper-derived therapeutics.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lihui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xin Shi
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
90
|
Rocha SM, Nascimento D, Coelho RS, Cardoso AM, Passarinha LA, Socorro S, Maia CJ. STEAP1 Knockdown Decreases the Sensitivity of Prostate Cancer Cells to Paclitaxel, Docetaxel and Cabazitaxel. Int J Mol Sci 2023; 24:6643. [PMID: 37047621 PMCID: PMC10095014 DOI: 10.3390/ijms24076643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Daniel Nascimento
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Rafaella S. Coelho
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Ana Margarida Cardoso
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| |
Collapse
|
91
|
Wang X, Zhou M, Liu Y, Si Z. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett 2023; 561:216157. [PMID: 37011869 DOI: 10.1016/j.canlet.2023.216157] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
Recent studies have established a strong link between copper and cancer biology, as copper is necessary for cancer growth and metastasis. Beyond the conventional concept of copper serving as a catalytic cofactor of metalloenzymes, emerging evidence demonstrates copper as a regulator for signaling transduction and gene expression, which are vital for tumorigenesis and cancer progression. Interestingly, strong redox-active properties make copper both beneficial and detrimental to cancer cells. Cuproplasia is copper-dependent cell growth and proliferation, whereas cuproptosis is copper-dependent cell death. Both mechanisms act in cancer cells, suggesting that copper depletion and copper supplementation may be viable approaches for developing novel anticancer therapies. In this review, we summarized the current understanding of copper's biological role and related molecular mechanisms in cancer proliferation, angiogenesis, metastasis, autophagy, immunosuppressive microenvironment development, and copper-mediated cancer cell death. We also highlighted copper-based strategies for cancer treatment. The current challenges of copper in cancer biology and therapy and their potential solutions were also discussed. Further investigation in this field will yield a more comprehensive molecular explanation for the causal relationship between copper and cancers. It will reveal a series of key regulators governing copper-dependent signaling pathways, thereby providing potential targets for developing copper-related anticancer drugs.
Collapse
Affiliation(s)
- Xidi Wang
- Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, PR China; Department of Pathology, Health Science Center, Ningbo University, Ningbo, Ningbo, PR China.
| | - Miao Zhou
- Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, PR China
| | - Zizhen Si
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, PR China.
| |
Collapse
|
92
|
Lim YY, Zaidi AMA, Miskon A. Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy. Molecules 2023; 28:2920. [PMID: 37049685 PMCID: PMC10096333 DOI: 10.3390/molecules28072920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
93
|
Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023; 22:46. [PMID: 36882769 PMCID: PMC9990368 DOI: 10.1186/s12943-023-01732-y] [Citation(s) in RCA: 339] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
Collapse
Affiliation(s)
- Jiaming Xie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| |
Collapse
|
94
|
Xu X, Liang JH, Xu QC, Yin XY. Development and Verification of a novel cuproptosis- and immune-associated based prognostic genetic signature for pancreatic ductal adenocarcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102089. [PMID: 36707046 DOI: 10.1016/j.clinre.2023.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a dismal prognosis. Cuproptosis, a novel mechanism mediated by protein lipoylation, results in acute proteotoxic stress and ultimately cell death. However, the clinical impacts of cuproptosis-associated genes and their relationship with immune status in PDAC have not been documented. In this study, we aimed at constructing a cuproptosis- and immune-associated prognostic signature to stratify and predict the prognosis for PDAC patients. METHODS The gene expression profiles of 176 PDAC patients from The Cancer Genome Atlas and 167 normal pancreas tissues from the Genotype-Tissue Expression Project were analyzed for differentially expressed genes (DEGs) between PDAC and normal tissues. Pearson correlation analyses were performed to screen out cuproptosis- and immune-associated DEGs. The risk signature of DEGs was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, which was validated in the Gene Expression Omnibus (GEO) cohort (n = 114). The immune characteristics in the two risk groups were evaluated using single-sample gene set enrichment analysis and ESTIMATE algorithms. RESULTS A total of 91 cuproptosis- and immune-associated DEGs were screened out, and eight prognostic-related genes were identified using LASSO Cox regression. The prognostic-related genes were then used to construct a risk scoring model, which stratified patients into low- and high-risk groups and were further verified in the external GEO database. The patients in the high-risk group had significantly shorter overall survival than those in the low-risk group. A nomogram based on the risk signature was then constructed. Immune infiltration evaluation suggested that immune status was more activated in the low-risk group. The mutation spectrum also differed between high- and low-risk groups. CONCLUSIONS Our cuproptosis- and immune-associated genetic risk signature could be a prognostic biomarker for PDAC. Cuproptosis might be a promising therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jia-Hua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
95
|
In Vitro Evaluation of the Cytotoxic Potential of Thiosemicarbazide Coordinating Compounds in Hepatocyte Cell Culture. Biomedicines 2023; 11:biomedicines11020366. [PMID: 36830902 PMCID: PMC9953081 DOI: 10.3390/biomedicines11020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cancer is a global medical problem and, despite research efforts in the field of tumor treatment, there is currently a shortage of specific anticancer drugs. Most anticancer drugs show significant side effects. The liver is the organ that has central functions in drug metabolism, being a major target of the harmful action of anticancer compounds. In this context, it is essential to evaluate the cytotoxic effects of potential anticancer substances. Therefore, hepatotoxicity and hepatocyte viability were determined in vitro to evaluate the action of seven new local thiosemicarbazide coordination compounds (CCT) on normal liver cells. Doxorubicin was used as a reference substance. The control group consisted of hepatocytes not exposed to CCT action. The cell viability of hepatocytes treated with CCT decreased significantly by 5-12% compared to the control, but was statistically significantly higher by 5-14% compared to doxorubicin, except after CMD-8 and CMT-67 influence, when it does not change. Thus, new local CCT had a selective effect on hepatocytes in vitro and were less hepatotoxic compared to doxorubicin, which may be the basis for further study of its potential in anticancer drugs.
Collapse
|
96
|
Shi X, Li Y, Jia M, Zhang Z, Huang L, Zhang M, Xun Q, Jiang D, Liu Y. A novel copper chelator for the suppression of colorectal cancer. Drug Dev Res 2023; 84:312-325. [PMID: 36658741 DOI: 10.1002/ddr.22034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Copper ions play a crucial role in the progression of cancers. Tumor tissue is rich in copper ions, and copper chelators could potentially scavenge these copper ions and thus exert an antitumor effect. In this study, we report the synthesis of a novel thieno[3,2-c]pyridine compound we have called "JYFY-001" that can act as the copper chelator thanks to the inclusion of an N-(pyridin-2-yl)acetamide moiety that targets copper ions. JYFY-001 potently inhibited cancer proliferation, inducing cell apoptosis and impairing the extracellular acidification rate and oxygen consumption rate of colorectal cancer (CRC) cells. JYFY-001 also inhibited the growth of a CRC-transplanted tumor in a dose-dependent manner, inducing apoptosis of the tumor cells and promoting the infiltration of lymphocytes in the CRC-transplanted tumor tissues. JYFY-001 also enhanced the antitumor effects of the programmed cell death protein 1 (PD-1) inhibitor. The relatively benign nature of JYFY-001 was demonstrated by the effect on normal cell viability and acute toxicity tests in mice. Our findings suggest that JYFY-001 is a prospective copper chelator to be used as a targeted drug and a synergist of immunotherapy for CRC treatments.
Collapse
Affiliation(s)
- Xiaolong Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mengting Jia
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Zhixin Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Lunhua Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Miaomiao Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingqing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Di Jiang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yanrong Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
97
|
Li Y, Zeng X. A novel cuproptosis-related prognostic gene signature and validation of differential expression in hepatocellular carcinoma. Front Pharmacol 2023; 13:1081952. [PMID: 36703728 PMCID: PMC9871247 DOI: 10.3389/fphar.2022.1081952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Cuproptosis is a newly discovered form of programmed cell death, which is characterized by accumulation of intra-cellular copper ion leading to the aggregation of lipoproteins and destabilization of Fe-S cluster proteins in mitochondrial metabolism, thereby affecting the prognosis of patients with cancer. However, the role of cuproptosis-related genes (CRGs) in hepatocellular carcinoma (HCC) remains elusive. Methods: Mutation signature, copy number variation and the expression of 10 CRGs were assessed in HCC from TCGA-LIHC dataset. ICGC-LIRI-JP dataset was used as further validation cohort. The least absolute shrinkage and selection operator (LASSO) was used to construct the prognostic model. Kaplan Meier curves, time-ROC curves, nomogram, univariate and multivariate Cox regression were utilized to evaluate the predictive efficacy of CRGs-score. Immune infiltration was analyzed by CIBERSOFT, ssGSEA algorithm, and TIMER database. The expression of prognostic CRGs was validated by qPCR both in-vitro and in-vivo. Drug sensitivity analysis was performed by pRRophetic. Results: All of the CRGs were differentially expressed in HCC and 5 out of them (CDKN2A, DLAT, GLS, LIPT1, MTF1) correlated with patient survival. These signature genes were selected by LASSO analysis to establish a prognosis model to stratify HCC patients into high and low CRGs-score subgroups. High CRGs-score was associated with a worse prognosis. Subsequently, univariate and multivariate Cox regression verified that CRGs-score was an independent cancer risk factor that correlated with clinical factors including stage and grade. Nomogram integrating the CRGs-score and clinical risk factors performed well to predict patient survival. Immune infiltration analysis further revealed that the expression of immune checkpoint genes was significantly enhanced in high CRGs-score group, especially PD-1 and PD-L1. An independent validation cohort (ICGC) confirmed that CRGs-score as a stable and universally applicable indicator in predicting HCC patient survival. Concordantly, the expression of five confirmed signature genes were also differentially expressed in human HCC cell lines and mouse HCC model. In addition, we also analyzed the sensitivity of 10 clinical targeted therapies between high and low CRGs-score groups. Conclusion: This study elucidated the role of dysregulated CRGs in HCC cohort, with validation with in-vitro and in-vivo models. The CRGs-score might be applied as a novel prognostic factor in HCC.
Collapse
Affiliation(s)
- Yaoting Li
- Department of Forensic Science, Guangdong Police College, Guangzhou, Guangdong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,*Correspondence: Xuezhen Zeng,
| |
Collapse
|
98
|
Dong H, Zhao S, Zhang C, Wang X. Identification of cuproptosis related subtypes and construction of prognostic signature in gastric cancer. Front Surg 2023; 9:991624. [PMID: 36684237 PMCID: PMC9852337 DOI: 10.3389/fsurg.2022.991624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/24/2022] [Indexed: 01/09/2023] Open
Abstract
Cuprotosis is a novel mechanism of cell death that differs from known mechanisms, which depends on mitochondrial respiration and is closely related to lipoylated components of the tricarboxylic acid (TCA) cycle. However, it is unclear whether cuprotosis-related genes (CRGs) affect the tumor microenvironment (TME) and prognosis of patients with gastric cancer. In this study, the genetic and transcriptional characteristics of CRGs in gastric cancer (GC) were analyzed, and five CRGs that were differentially expressed and correlated with the survival of patients were obtained. Two different molecular subtypes were identified according to the five CRGs. Then, we constructed a CRG_score applied to patients of any age, gender, and stage. Subsequently, we found that cluster B and a high CRG_score had a worse prognosis, fewer immune checkpoints, and higher tumor immune dysfunction and exclusion (TIDE) compared to cluster A and a low CRG_score. In addition, two subtypes and the CRG_score were closely associated with clinicopathological characteristics, human leukocyte antigens (HLAs) and TME cell infiltration. A high CRG_score was featured with decreased microsatellite instability-high (MSI-H) and mutational burden. Meanwhile, the CRG_score was significantly related to the cancer stem cell (CSC) index and chemotherapeutic response. Moreover, we developed a nomogram to predict the survival probability of patients. Our study explained the role of CRGs in GC, and the prognostic signature could potentially provide an approach for personalized tumor therapy.
Collapse
|
99
|
The Cuproptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9557690. [PMID: 36891559 PMCID: PMC9988371 DOI: 10.1155/2023/9557690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 03/02/2023]
Abstract
Background Hepatocellular carcinoma (HCC), ranking as one of the most common malignant tumors, is one of the leading causes of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confirmed recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis and immune responses. It may be of great significance to predict HCC based on cuproptosis genes and their related LncRNA. Methods The sample data on HCC patients were obtained from The Cancer Genome Atlas (TCGA) database. Combined with cuproptosis-related genes collected from the literature search, expression analysis was carried out to find cuproptosis genes and their related LncRNAs significantly expressed in HCC. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression. The feasibility of these signature LncRNAs used for the evaluation of the overall survival rate in HCC patients as independent factors was investigated. The expression profile of cuproptosis, immune cell infiltration, and the status of somatic mutation were analyzed and compared. Results A prognostic model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verification methods have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classified high-risk group under the risk score of this model had worse survival status, more significant expression of the immune function, and higher mutation frequency. During the analysis, the cuproptosis gene CDKN2A was found to be most closely related to LncRNA DDX11-AS1 in the expression profile of HCC patients. Conclusion The cuproptosis-related signature LncRNA in HCC was identified, on the basis of which a model was constructed, and it was verified that it can be used to predict the prognosis of HCC patients. The potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC development was discussed.
Collapse
|
100
|
Zhang D, Liu H, Wang W, Xu G, Yin C, Wang S. STEAP2 promotes osteosarcoma progression by inducing epithelial-mesenchymal transition via the PI3K/AKT/mTOR signaling pathway and is regulated by EFEMP2. Cancer Biol Ther 2022; 23:1-16. [PMID: 36316642 PMCID: PMC9629848 DOI: 10.1080/15384047.2022.2136465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This study was designed to explore the prognostic significance and functionality of STEAP2 (six-transmembrane epithelial antigen of prostate 2) in osteosarcomas and determine whether EFEMP2 (Epidermal growth factor-containing fibulin-like extracellular matrix protein 2) targets STEAP2 to facilitate osteosarcoma cell infiltration and migration. STEAP2 expression in peritumoral tissues, osteosarcoma, benign fibrous dysplasia, osteosarcoma cells, normal osteoblastic hFOB cells, and various invasive subclones was evaluated using IHC, ICC, and qRT-PCR. We also evaluated the association between STEAP2 expression and disease outcome using Kaplan-Meier analyses and then investigated STEAP2 regulation and its functional effects using both in vitro and in vivo assays. The results revealed that the upregulation of STEAP2 in osteosarcoma tissues positively correlated with both the malignant osteosarcoma phenotype and poor patient outcomes. In addition, STEAP2 expression induced epithelial-mesenchymal transition (EMT) via the PI3K/AKT/mTOR axis and facilitated osteosarcoma cell infiltration and migration. Changes in EFEMP2 expression resulted in correlating changes in STEAP2 expression, with EFEMP2-overexpressing osteosarcoma cells exhibiting a less invasive phenotype and reduced EMT following STEAP2 inhibition. It is also worth noting that although EFEMP2 overexpression activated the PI3K/AKT/mTOR pathway promoting EMT, it did not affect osteosarcoma cells in which STEAP2 or Akt was knocked down. Thus, we can conclude that STEAP2 acts as an oncogene in osteosarcoma progression, while EFEMP2 enables PI3K/AKT/mTOR axis initiation and EMT by partly targeting STEAP2, thereby facilitating osteosarcoma cell infiltration and migration.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Suzhou Hospital of Anhui Medical University, Suzhou, P.R. China
| | - Haitao Liu
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Weihua Wang
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Gang Xu
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Chenxiao Yin
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Songgang Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,CONTACT Songgang Wang Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xilu, Jinan, Shandong250012, China
| |
Collapse
|